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Abstract Precise position and navigation with GPS is always required for both
civil and military applications. The errors and biases associated with navigation will
change the positional information from centimeters to several meters. To estimate
and mitigate the errors in GPS positioning data, the wavelet transform is most
significant technique and proven. The traditional wavelet threshold methods will
work to a certain extent but are not useful to estimate the signal levels to the
expected level due to their incapability for capturing the joint statistics of the
wavelet coefficients. The wavelet-based hidden Markov tree (WHMT) is designed
to capture such dependencies by modeling the statistical properties of the wavelet
coefficients as well. In this paper, a WHMT is proposed to reduce positioning error
of the GPS data. To establish proposed method, the position data are decomposed
using wavelets. The obtained wavelet coefficients are subjected to Discrete Wavelet
Transform (DWT) as well-proposed WHMT for noise removal. In this proposed
methodology, an Expectation Maximization (EM) algorithm used for computing the
model parameters. The root-mean square error (RMSE) of proposed method shows
better performance comparatively classical DWT.
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1 Introduction

The accuracy of positioning service for the simple stand-alone GPS system is
severely affected by several types of biases and noises [1]. Those are mainly sys-
tematic and random errors. The systematic errors may be due to ionosphere, by the
troposphere and clock offset. Random errors may result from satellite orbit, receiver
noise, and multipath effect. The systematic errors behave like a low-frequency noise
whereas the random errors are typically characterized as high-frequency noise.
Filtering out these errors by applying a filter with constant length does not suit if the
error behavior is not common in all the levels. If the signal is decomposed into
multiscale or bands, and applying threshold gives better results than traditional
filtering methods.

It is more than one decade now the wavelet transform emerged as a new tool and
gained wide acceptance in the field of statistical signal and image processing.
Wavelets are applied in key areas which include signal estimation, detection,
classification, and filtering [2–4]. The primary properties like locality and multi-
resolution made wavelet transform to become an important tool to reduce the noise
and its effectiveness. Donho and Johnston, in 1998, pioneered wavelet threshold
methods by grouping the wavelet coefficients as significant and insignificant and are
modified by certain specific rules. The optimal threshold estimation is based on the
assumption that the wavelet coefficients are sparse. This assumption is invalid in the
case of coarser levels leading to error in estimating the threshold. To overcome this,
several researchers have proposed Bayesian approach to capture the sparseness of
the wavelet coefficients .These shrinkage methods had later been improved by
inter-scale and intra-scale correlation of the coefficients. Crouse et al., developed a
framework for statistical signal processing based on wavelet domain Hidden
Markov Tree (HMT) models [3]. This framework has enabled them to concisely
model the non-Gaussian statistics of individual wavelet coefficients and statistical
dependencies between coefficients. The applications of wavelets to the GPS signal
processing were quite new in 1995, and Coliin and Warrant applied wavelets for
GPS cycle slip correction. The authors, Fu and Rizos, widely used the method of
MRA in GPS signal processing [5–9]. Authors [10–13] continued to apply wavelets
for GPS signal processing for different applications and contributed significant
amount of work in the field of denoising. All these methods are used for popular
wavelet thresholding/Shrinkage methods.

In this paper, a new approach based on wavelet domain hidden markov tree
(WHMT) model is used to mitigate the GPS position errors. To evaluate the per-
formance of proposed method, the WHMT is compared to DWT denoising meth-
ods. Section 2 describes problem statement of denoising in GPS positioning data.
The classical wavelet denoising and WHMT model are discussed in Sect. 3.
Section 4 briefly explains the data collection and analysis of GPS data.
Experimental results and analysis achieved in this proposed method are discussed in
Sect. 5. A conclusion of the experiment is presented in Sect. 6.
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2 Problem Statement

The GPS code observable for the L1 single frequency f1 = 1575.42 MHz is [1]

qi ¼ rki þ bi � Bk þ Tk
i þ Iki þ eqi ð1Þ

Here ‘r’ is the true range between the ith receiver and kth satellite, where ‘b’ is
the receiver clock bias, ‘B’ is the satellite clock bias, ‘T’ is the troposphere errors,
‘I’ is the ionosphere error, and ‘ɛρi’ is the noise. The majority of the GPS receiver
operates on single frequency and uses noisy code measurements for its simple
positioning services. The GPS observables in Eq. (2) are subjected to systematic
delays, i.e., ionospheric, tropospheric, and clock difference, and the random errors
like receiver noise and multipath noise. The errors are more prominent in
low-latitude region and solar days. During the period of disturbance, the receiver
suffers from high noise level and the pseudo range noise distributed on a
non-Gaussian tails. Traditional wavelet-based denoising methods cannot capture
the non-Gaussian statistics nature of the wavelet coefficients.

In general, the denoising problem can be viewed as

yi ¼ f ðtiÞ þ r2i ð2Þ

The ‘ϵi’ is standard Gaussian while noise (i.i.d). ‘σ’ is the noise level may be
known or unknown. Here, the goal is to record the under laying function ‘f’ from
the noisy data ‘y’ with small error.

3 Methodology

3.1 Classical Wavelet Denoising

The DWT will decompose data, and it can be represented as pair of high- and
low-pass coefficients followed by down sampling by two and iterated on the
low-pass output. The outputs of the low-pass filters are the scaling coefficients, and
the outputs of the high-pass filter are the wavelet coefficients. The approximated
coefficients are processed successively by first down sampled and split further. The
detailed coefficients dj(t) are used to estimate threshold value via median estimator
to remove the high-frequency noise components. Median estimator method will
estimate threshold for optimum soft threshold that minimizes the Mean Squared
error (MSE). In these approaches, a prior distribution is imposed on the wavelet
coefficients, which is designed to capture the sparseness of the wavelet expansions
that is common to most application. The noise variance ~r2e is estimated from the
each level by the robust median estimator (MAD) [2].
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~r2e ¼
medianð yij jÞ

0:6745
ð3Þ

The signal variance ~rx is estimated as

~rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðð~r2y � ~r2

q
Þ; 0Þ ð4Þ

Since y is modeled as zero mean, ~ry can be found empirically as

~r2y ¼
1
n

Xn
i¼1

y2i ð5Þ

The classical wavelet denoising of signal can be obtained by the following steps.

1. Apply the DWT to the noisy data (‘y’) to obtain transformed noisy coefficients
w = DWT(y) = (wj)j ∊ [1; j + 1] where wj = ℜn, and here < is set of noisy
coefficients at each level ‘n,’

2. Apply suitable thresholding function (Γ) to the transformed noisy coefficients to
get ω∧ = Γ(w), and

3. Reconstruct the original signal by applying the inverse DWT to the wavelet
coefficients.

The shrinkage technique may vary according to thresholding function and its
applicability of wavelet coefficients.

3.2 HMT-Based Denoising

The primary properties of DWT assume that the wavelet coefficients are jointly
Gaussian and statistically independent. In general, the actual signal wavelet coef-
ficients have sparseness, and some residual dependency exists between the coeffi-
cients. To capture statistical dependencies between coefficients, a hidden markov
model was introduced [3]. In this, the hidden state variables are introduced to match
the wavelet coefficients, and the dependencies between the hidden state variables
are well characterized. For estimating the model parameters of HMT, an EM
algorithm is used. In HMT, the nested sets of coefficients are generated at every
scale in wavelet decomposition process and represent as state variable across scale.
This model connects the hidden states ‘Si’ nodes to observed wavelet coefficients
Wi. Each hidden state node represents the mixture state variable (Si) and wavelet
coefficient (‘Wi’) as shown in Fig. 1.

(i) Modeling of Wavelet Coefficients
The wavelet coefficient of most real-world signals is sparse: a few wavelet coeffi-
cients are large, but most are small. Therefore, we associate each wavelet coefficient
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‘ѡi’ an unobserved hidden state variable Si = {S, L}. The state ‘S’ corresponds to a
zero-mean, low-variance Gaussian whereas high variance, zero mean corresponds
to the large state ‘L.’ Hence, the Gaussian mixture model appears to be good fit for
the distribution of the wavelet coefficient data being one of the states.

Thus, the overall pdf is given by

f wið Þ ¼ p Si ¼ mð Þf wi=Si ¼ mð Þ ð6Þ

where the conditional probability f(wi/Si = m) of the coefficient value ‘wi’ given the
state ‘Si’ corresponds to the Gaussian distribution

f wi=Si ¼ m
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2i;m

q exp �ðwi � li;mÞ2
2ri;m

 !
ð7Þ

(ii) Estimation of Signal
The HMT model is completely parameterized by two-component mixture of gen-
eralized Gaussian for the wavelet coefficients at each scale. The estimation of the
true signal wavelet coefficients can be obtained by using of following equation:

Wavelet Coefficient (Wi) 

Hidden State variable (Si) 

End

Apply Model Based De-noise 

Train WHMT

Reconstruct WHMT

Compute RMSE

Apply DWT

Start

Read RINEX Nav. file Read RINEX Obs.  File

Extract Pseudo range    of all 

visible satellites

Compute Rx Position

Raw GPS Data

Extract Ephemeris

(a) (b)

Fig. 1 a Signal decomposition hierarchy of HMT model. b Flow chart for signal denoising using
DWT and WHMT
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w^
i ¼ E wi=h½ � ¼

X
p Si ¼ m=wi; hð Þ r2i;m

r2i;m þ r2n
wi ð8Þ

where p Si ¼ m=wi; hð Þ is the probability of state ‘m’ given the noisy wavelet
coefficient ‘wi’ and the model parameters ‘Ɵ’ are computed by the EM algorithm.
The variance ‘σi,m

2 ’ common to all coefficients in given scale and the noise variance
‘σn

2’ is unknown which in turn estimated through the Median Absolute Deviation
(MAD) estimator.

(iii) Implementation
The flow chart for the proposed denoising method is shown in Fig. 1 and sum-
marized as follows:

1. Extract the raw GPS data from single frequency GPS Receiver.
2. Read the RINEX observation and navigation files.
3. Extract ephemeris and observation data of all visible satellites
4. Compute the receiver position using Least Square method.
5. Apply the DWT to the computed position.
6. Reconstruct the DWT coefficients using IDWT
7. Train the obtained wavelet coefficients from DWT using HMT.
8. Apply the model-based denoise to remove the noisy coefficients.
9. Compute the RMSE of original and estimated coefficients.

The proposed method of GPS data processing involves two steps. The first step
involves calculation of receiver position at each epoch from GPS data. The second
step is to compute receiver positioning data with DWT and the proposed WHMT.

4 Data Collection and Analysis

To verify the proposed method of denoising, two sets of data collected from IGS
stations established at IISC Bangalore and Hyderabad as shown in Table 1, which is
in RINEX format. One set of data consists of severely affected noisy data on solar
eclipse day and other set consists of normal day’s data with different seasons. The
collected data-sampling interval of 30 s and total 1024 epochs are taken for

Table 1 Data collection

S. No Receiver station name Solar day Normal day

1 Bangalore (IISC) 15th Jan 2010 15th May and 15th Oct 2010

2 Hyderabad (HYDE)
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computation. The average receiver position of each epoch is computed and shown
in Fig. 2. The original and smoothed position coordinates of WHMT method is
shown in Figs. 3, 4, and 5. The error plot is shown in Fig. 6.
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Fig. 2 The original position data signal of IISC Bangalore (15th January 2010)
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Fig. 3 The original and denoised X position using WHMT
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Fig. 4 The original and denoised Z position using WHMT
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Fig. 5 The original and denoised Z position using WHMT
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5 Results and Discussions

To evaluate the performance of the proposed method, WHMT is compared with
classical DWT. In this analysis, a different seasonal data is collected and evaluated.
The quality measure of this algorithm is RMSE. Different wavelet base functions
considered and tested. Table 2 shows the root-mean squared error (RMSE) of the
processed GPS position coordinates data using traditional denoising method DWT,
as well as WHMT. As compared with the RMSE of DWT to WHMT, the WHMT
shows significant improvement. The results are clearly indicating that the proposed
method is best suited and promising for accurate position. In this analysis, it has
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Fig. 6 The noise present in GPS positioning data

Table 2 Position smoothing using DWT and WHMT

Station
name

Wavelets Error
parameter

Position smoothing using DWT Position smoothing using
WHMT

On
X Pos

On
Y Pos

On
Z Pos

On
X Pos

On
Y Pos

On
Z Pos

Bangalore
(IISC) (1024
Epochs)

Db6 Min −2.3094 4.0621 −1.8301 −1.3750 −1.6131 −1.0520

Max 2.0885 −4.0714 2.1763 1.3707 −1.7468 1.0961

Mean 0.4670 1.3647 0.2711 0.1808 0.3384 0.1228

RMSE 0.6834 1.1682 0.5207 0.4252 0.5817 0.3504

Symmlet6 Min −2.2435 −4.0524 −1.7061 −1.4856 −1.5077 −1.1221

Max 2.3823 4.7679 1.5965 1.3537 1.9629 1.0044

Mean 0.4533 1.4156 0.2789 0.1846 0.3283 0.1215

RMSE 0.6733 1.1898 0.5281 0.4297 0.5730 0.3486

Coiflet5 Min −2.5125 −5.1005 −1.9578 −1.1558 −1.5957 −1.1659

Max 2.3033 4.8904 2.3462 1.2800 1.6327 1.1974

Mean 0.4720 1.5386 0.2884 0.1722 0.3182 0.1114

RMSE 0.6870 1.2404 0.5370 0.4150 0.5641 0.3338
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been observed that the Y coordinate is noisy than other two coordinates. Among
three coordinates, the coordinate Y is noisy. Further, with all wavelet basis function,
the coeflet5 gives better performance.

6 Conclusions

In this paper, the traditional DWT and proposed WHMT are used for removal of
systematic and random errors of GPS positional data. The experimental result on
collected data demonstrates that the proposed method can effectively remove the
GPS errors and biases. This method well suited critical aviation applications like
GAGAN of Indian SBAS. The median estimator (MAD) is simple and robust, and
requires less computation time to estimate threshold. Therefore, here it is consid-
ered and used to denoise the position data. In future analysis, the proposed method
can be tested with non-orthogonal wavelet families as well as other available
threshold techniques.
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