Gigabit Network Intrusion Detection
System Using Extended Bloom Filter
in Reconfigurable Hardware

Akshay Eldho Jose and T. Gireeshkumar

Abstract Network intrusion detection system collects information from network
and identifies all the possible existing network security threats. Software based
detection systems are common but are not good enough for the current network
security requirements. Present day network intrusion detection needs wire-level
data transfer to avoid the inefficiency in pattern matching process. Hardware based
solutions like field programmable gate array which is known for its high processing
capability can easily solve these issues. This paper implements a hardware based
gigabit intrusion detection system using extended Bloom filter concepts. The paper
presents a solution to reduce the high error rate of Bloom Filter by introducing a
Reference Vector to the work and evaluates its performance. The reference vector
verifies the Bloom filter output for any possible false positive results and reduces
the error rate in the system.

Keywords Network intrusion detection - Field programmable gate array
Extended bloom filter - Reference vector

1 Introduction

Network security refers to the protection of various resources from all kind of
malicious activities and ensures safety to network and data. It implements the
security policies and analyzes various threats and stops it from entering the net-
work. Network security consist of many layers such as firewall and network

A.E. Jose (X)) - T. Gireeshkumar

TIFAC CORE in Cyber Security, Amrita Vishwa Vidyapeetham,
Coimbatore, Tamil Nadu, India

e-mail: akshayeldhojose@gmail.com

T. Gireeshkumar
e-mail: gireeshkumart@gmail.com

© Springer India 2016 11
S.C. Satapathy et al. (eds.), Proceedings of the Second International

Conference on Computer and Communication Technologies, Advances

in Intelligent Systems and Computing 379, DOI 10.1007/978-81-322-2517-1_2

12 A.E. Jose and T. Gireeshkumar

intrusion detection systems. Firewalls are used to block the access between the
networks but it does not study the traffic nor alert the administrator. An intrusion
detection system is capable of studying the traffic patterns and compares it against
the known attack patterns. It has the capability to inspect the packet contents deeply
and protects against network threats.

Software based network intrusion detections are common which can be imple-
mented easily. Snort is an example of open source light weight intrusion detection
system [1] which uses signatures to compare thousands of attack patterns. But if the
network falls in gigabit speed, it will be difficult for the software to support the
system. Hardware solutions solve these issues by converting the rules into
Hardware description language. Field programmable gate array is one such hard-
ware which is designed to be configured by a Hardware description language. It
consists of many high speed logic blocks capable of parallel processing to produce
high performance gain. The general functional model consists of three sections:
buffering, packet analyzer and rule matching section. The gigabit network is con-
nected to hardware through Ethernet interfaces. The packets are queued in buffer
section to balance between hardware and network. Packets are forwarded to the
packet analyzer where it extracts the information from packet. These information
are then compared against a set of rules in rule matcher. The alerting and logging
mechanism works according to the output of rule matcher.

In this paper, a gigabit network intrusion detection system is designed based on
Bloom Filter, to identify the attack patterns in the network. The paper efficiently
designs Bloom filter algorithm for string matching engine (SME). Bloom filter test
the participation of an element from a group of elements. In this approach, the
elements in a group are hashed with multiple hash functions and are stored in the
memory. This stored information can be used to check whether a given element
belongs to the group or not. The major advantage in Bloom filter is the constant
amount of memory needed to store the hashed values irrespective of length of the
input element. Also, the amount of computation needed for hash functions and
memory lookups are constant thereby making process faster. The designs are based
on the concepts of spectral Bloom filters [2] which is an extended version of naive
Bloom filter [3] and optimized version of counting Bloom filter [4]. They solve
some of the problems such as multi-set query, insertion and deletion to Bloom in
real-time which are not possible with original Bloom Filters. In spectral Bloom
Filter [2], instead of bit vectors, an array of counters was implemented and is
incremented or decremented according to corresponding insertions or deletions.

The rest of the paper is organized as follows: In Sect. 2 the background and
related works are given; In Sect. 3, the design implementation of the work and
description of the design; In Sect. 4, results and discussions of the experiment and
Sect. 5 concludes the paper.

Gigabit Network Intrusion Detection System ... 13

2 Related Works

The high speed Intrusion Detection System is an area of high opportunity, espe-
cially in hardware based NIDS. The increase in data speed has led to the require-
ment of dedicated hardware components and its improvement is necessary for a
near perfect product. Roesch [1], developed a tool in 1999 called Snort, that can
rapidly find the possible holes in network security. Sidhu and Prasanna [5] focused
on methods that could convert the regular expression faster to hardware circuitry.
They skipped the conversion to deterministic finite automaton (DFA), directly
compiled regular expression to nondeterministic finite automaton (NFA). This
implementation was extended in the works of Hutchings, Brad and Franklin [6] in
2002 which proposed a high speed Network Intrusion Detection system. The sys-
tem extracted regular expression from snort with the help of java code which was
then processed by the Xilinx software to create the FPGA input. They proposed an
automated compiler that could convert regular expression automatically.

Bloom Filter from Bloom [3] was mainly used for checking the string and
database applications. Broder and Mitzenmacher [7] uncovered the various appli-
cations of Bloom filters in networking, its modern variants, and the mathematical
basis behind them. The main advantage of Bloom filter is that it takes only constant
amount of memory to hash each of the elements irrespective of its length and also
the computation involved in detecting an element is constant. Dharmapurikar and
Krishnamurthy [8] in 2003 proposed a technique with Bloom filter to verify the
membership of the queries. The focus was to implement the fast string matching in
hardware based Intrusion Detection System. The design consist of bloom filters
corresponding to each string length which ranges from a minimum value to size of
window. In 2004 [9] they analyzed its performance against the finite automata
solutions. Universal Hash function known as H3, is found to be suitable for
implementation of hash table in hardware from the study conducted by
Ramakrishna et al. [10].

Song and Lockwood [11] in 2005 suggested a method for long string matching
to reduce the supported signature length. Three bit extended Bloom filter were
chosen because of its scalability and fast incremental updating ability. Fan et al. [4]
proposed an extension to bloom filter that could insert and delete from Bloom
vector in real time. Cohen and Matias [2] optimized the work for multiset query and
introduced two new algorithms. Pontarelli and Bianchi [12] proposed a system
where instead of purely distributing the packets across the modules they grouped
similar traffic packets and dispatched it to differently capable blocks. The design
mainly used the header information to classify it into different categories and each
module of hardware processes the disjoint rule sets. They followed a shift and
compare architecture which was presented by Baker and Prasanna [13].

14 A.E. Jose and T. Gireeshkumar

3 Design and Implementations

Let a string be processed by some multiple hash functions and they result in some
values less than the size of the vector to which hash function map the string. Those
values are set as bit positions in vectors. The query procedure is same as pro-
gramming where the strings are checked for membership. The bit in corresponding
values of vector is compared against the hash values of the queried string and if at
least one value is found different then it is declared as a non member. The false
positive probability fis given by [4]

1 nk\ Lk
f= (1—(1—Z) >z(1—e)

where m is the size of the vector with n members and & hash functions. In optimal
case, for a given value of m and n, we get number of hash functions with minimum

false positivity,
k= (=m2).
n

The extended Bloom filter replaces the vector with array of counters. The
counter corresponding to hash value increases when strings are inserted and
decreased when deleted. When an item is queried or deleted it checks only the
minimum counter value which should be greater than one if it existed in Bloom.
When an item is inserted to Bloom filter, minimum counter is increased which is
equivalent to increasing all the counters. The hash function implemented in this
paper is the universal hash function, H3. This class of function are found suitable
for hardware implementations [14] since they are bound to the limited memory
resources. For any bit string X with bits represented as

X = <X1,X0,X3,...,Xp>
the ith hash function over X is calculated as,

hi=dn x1@©dp-x2®dn-x3® - Ddip - xp
where ‘.’ is a bitwise AND operator and ‘@’ is a bitwise XOR operator. dj; is a
predetermined random number in the range [0 ... m — 1].

A second bloom vector of same size known as the reference vector is introduced
in this paper. The resultant hash values of multiple hash functions from previous
vector are hashed together to get a single value and is set in the reference bloom
vector. The reference vector is considered only when there is a chance of false
positivity. The reference vector is ignored when the first vector finds the item as a
non member. This can further reduce the false positivity. The hash function uses
simple XOR of previous hash function values to increase the lookup speed.

Gigabit Network Intrusion Detection System ... 15

Fig. 1 Reference vector ;’_;{‘I’;’;"ﬁmcﬁa” bit vector
o 1]olojo 1]o o]1]o]

hi(xi) ha(xi) hs(xi

reference
vector

0o/0/ojofo of1 oo]o]

The Fig. 1 shows the implementation of reference vector in Bloom filter and the
hash function is given as

h=hx)®h(x) - - & hx)

where x is the string and k is the number of hash functions in first vector.

3.1 Architectural Model

The architectural model of network intrusion detection based on reference Bloom
Vector is shown in Fig. 2. It consists of an ethernet interface to which the network is
connected. The queue manager record the packets and puts it in order. It allows
synchronization between hardware and network. The packet classifier consists of
header classifier and payload extractor. The header classifier extracts the header
through the layers of protocol and the control is passed to the payload extractor. The
information from payload extractor is given to the dispatcher unit which decides the
distribution of the packet. It distributes the payload to one of the multiple bloom
engines in such a way that the load is uniformly distributed. A Bloom engine
consist of many Bloom filters, each having a different input window size. At each
clock cycle, one byte is shifted in the window. The Bloom filter compares the
resultant hash values of the input with the values stored in the hash table. The
number of parallel bloom filters depends on the maximum length of the string to be
compared and so window size is set from minimum to maximum length.
Multiple such Bloom engines are considered in order to increase the throughput
of the system. These Bloom engines are connected to hash tables stored in the
memory. Hash tables consist of stored hashes of attack patterns which are compared
with hashed inputs in bloom filters. If the item is found to be a member, then the
hash values are forwarded to False Positive Verifier. The reference vector is similar
to a Bloom vector, except that the function intakes the Bloom filter hash values. The
reference vector is already set with values corresponding to each string. If the

16

A.E. Jose and T. Gireeshkumar

Fig. 2 Architectural model

ETHERNET INTERFACE

QUEUE MANAGER

|

PACKET CLASSIFIER ‘

‘ HEADER CLASSIFIER ‘

PAYLOAD EXTRACTION ‘

i

DISPATCHER

BLOOM
ENGINE
1

BLOOM BLOOM BLOOM

ENGINE ENGINE ENGINE
2 3 4

T

I T 71

HASH TABLE INTERFACE ‘

OUTPUT

(_ MANAGER

1

FALSE POSITIVE VERIFICATION ‘

1

| LOGGING SYSTEM |

comparison with the bloom vector gives a positive result with a certain error
probability, the reference vector confirms the result, reducing the error rate. The
alerting and logging systems are activated incase the output of reference vector is
positive. The alerting mechanism notifies the administrator for the event and log-
ging system saves the collected information to a file.

4 Results and Discussions

FPGA is the most feasible solution for wire-speed implementations. The design
mainly focused on the minimum resource utilization in hardware. Different hard-
ware implementable string matching algorithms were selected and analyzed, based
on their complexities and features. Table 1 shows a brief comparison between

Table 1 Study of different String matching algorithms

Algorithm Search method Pre-processing Search-time complexity
Brute force Linear No O((n —m+ 1)m)
Rabin—-Karp Hash Yes O((n—m+ 1)m)
Morris Pratt Heuristics based Yes O(m+n)
Aho—Corasick Automaton-based Yes O(m+7z)

Bloom filter Hash Yes O(k)

Gigabit Network Intrusion Detection System ... 17

different hardware string matching algorithms. Bloom filter found to be the most
compatible algorithm among them. It remembers only the flipping of bits in bit
array and do not store any hashed keys. The selection of hash function, thus directly
impacts the performance of the hardware. Five different non cryptographic hash
functions were chosen for investigation. Universal Hash function, CRC 32, Pearson
hash, Bit extraction hashing, XOR hashing were tested with uniformity test and
avalanche test. Uniformity test analyze the distribution of hash values. Avalanche
test checks whether a small change in input produce a large change in output.
Considering the results from tests, H3 class of universal hash function was found
better than the rest for hardware implementation.

The design is implemented in Xilinx Virtex II Pro with 4,176 Kbit block RAM
[15]. Hash table were stored in SRAM with a total capacity of 4.5 Mbytes. Multiple
engines with 20 distinct lengths can be scanned at a time. Despite the fact that the
rate is kept at the same level as in other comparable works, the error rate is
decreased to a small value. The system is designed in such a way that, the reference
vector is inquired only after a positive outcome in bloom filter. The value %' gives
the ratio between vector size and number of elements. The proper selection of m,
n and k values can reduce the error probability.

The relationship between them clearly shows the size of bit vector (m) to be
greater than the number of elements (n) and larger k values could reduce the errors.
The Fig. 3 shows the comparison of false positive probability between old and new
proposed system for different values of k with ' = 15. The graph shows an enor-
mous reduction in error probability making the system highly efficient.

8- min=15 (old) = min=15 (new)

0.070

0.065

0.060
B 0.055
g 0.050
[
g 0.045
o 0.040
B |
2 0035 !
© |
A4 0,030 :
© |
& 0025 !
& |

0.020

0.015

0.010

0.005 §—— —

0,000 e e $ s $

A 5 3 A 5 3 1 g 9 10

NMumber of Hash Functions

Fig. 3 Comparison of new error probability for various k values with 2 = 15

18 A.E. Jose and T. Gireeshkumar

5 Conclusion

The paper proposed a network intrusion detection system in hardware platform to
meet the current network requirements. The system adopted Bloom filter algorithm
along with H3 hash function for the generation of bit vector. This paper presents an
architecture for fast string matching with the help of multiple bloom engines.
Further the design consists of a reference vector, which is meant to reduce the error
rate in the system. An analysis of the trade-offs between number of hash functions
and false positive probability has been presented. The FPGA based implementation
is performed with the help of Xilinx Virtex Pro II FPGA board to support gigabit
speed.

References

1. Roesch, Martin, et al.: Snort: lightweight intrusion detection for networks. LISA 99, 229-238
(1999)

2. Cohen, S., Matias, Y.: Spectral bloom filters. In: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pp. 241-252. ACM (2003)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM
13(7), 422-426 (1970)

4. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web
cache sharing protocol. In: IEEE/ACM Transactions on Networking (TON) 8(3):281-293
(2000)

5. Sidhu, R., Prasanna, V.K.: Fast regular expression matching using FPGAs. In: The th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM’01,
pp. 227-238. IEEE (2001)

6. Hutchings, B.L., Franklin, R., Carver, D.: Assisting network intrusion detection with
reconfigurable hardware. In: Proceedings 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines. pp. 111-120. IEEE (2002)

7. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. Internet Math
1(4), 485-509 (2004)

8. Dharmapurikar, S., Krishnamurthy, P., Sproull, T., Lockwood, J.: Deep packet inspection
using parallel bloom filters. In: Proceedings of 11th Symposium on High Performance
Interconnects. pp. 44-51. IEEE (2003)

9. Dharmapurikar, S., Attig, M., Lockwood, J.: Design and implementation of a string matching
system for network intrusion detection using FPGA-based bloom filters. In: IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM04) (2004)

10. Ramakrishna, M., Fu, E., Bahcekapili, E.: A performance study of hashing functions for
hardware applications. In: Proceedings of International Conference on Computing and
Information, pp. 1621-1636 (1994)

11. Song, H., Lockwood, J.W.: Efficient packet classification for network intrusion detection using
FPGA. In: Proceedings of the 2005 ACM/SIGDA 13th international symposium on
Field-programmable gate arrays, pp. 238-245. ACM (2005)

12. Pontarelli, S., Bianchi, G., Teofili, S.: Traffic-aware design of a high-speed FPGA network
intrusion detection system. Trans. Comput. IEEE 62(11), 2322-2334 (2013)

13. Baker, Z.K., Prasanna, V.K.: Automatic synthesis of efficient intrusion detection systems on
FPGAs. In: Field Programmable Logic and Application, pp. 311-321. Springer, Berlin (2004)

Gigabit Network Intrusion Detection System ... 19

14. Hua, N., Norige, E., Kumar, S., Lynch, B.: Non-crypto hardware hash functions for high
performance networking ASICs. In: Proceedings of the 2011 ACM/IEEE Seventh Symposium
on Architectures for Networking and Communications Systems, pp. 156-166. IEEE Computer
Society (2011)

15. Xilinx Inc. Virtex-II Pro and Virtex-II Pro X platform FPGAs: Complete data sheet (2004)

	2 Gigabit Network Intrusion Detection System Using Extended Bloom Filter in Reconfigurable Hardware
	Abstract
	1 Introduction
	2 Related Works
	3 Design and Implementations
	3.1 Architectural Model

	4 Results and Discussions
	5 Conclusion
	References

