
Chapter 6
Mathematical Analysis of Radiation
Pattern of RDRA

Abstract In this chapter, detailed study using mathematical analysis for radiation
pattern of RDRA has been described. RF excitation with proper impedance match
can generate J-current density into surfaces of RDRA, which leads to produce
A-magnetic vector potential and finally E-electric intensity or H-magnetic field
intensity. Acceleration or deceleration of charge carriers causing current is
mandatory phenomenon for radiations. Wave can only propagate if wave vector
k > kc, where kc is cutoff frequency. The lowest resonance can be termed as
dominant mode and second and third resonances are higher-order modes.
Propagation constant kx ¼ np=a, and propagation takes place if kx [ np=a, while
no propagation takes place if kx\np=a. Thus, standing waves inside the resonator
are formed and energy storing will take place. Hence, mode spectrum will result
into corresponding resonant frequency generation. Wave propagation can be well
defined by Helmholtz equation. The Maxwell’s equations describe the behavior of
electromagnetic fields and form the basis of all EM classical phenomena. Prad

(power radiated) can be evaluated using Parseval’s power theorem. The radiated
power is produced by oscillating dipole moments. The current varying in time can
be analyzed by Fourier analysis. If medium is inhomogeneous, wave possesses
exponential growth or decay in some direction. Thus, Poynting vector “S” shall
give the magnitude and phase of the radiated fields in particular direction.

Keywords Impedance match � Current density � Magnetic vector potential �
Power radiated � Poynting vector � Persvals power theorem � Moat-shaped DRA

6.1 Introduction

RF excitation with proper impedance match can generate J-current density into
surfaces of RDRA, which leads to produce A-magnetic vector potential and finally
E-electric intensity. Acceleration or deceleration of charge carriers causing current
is mandatory phenomenon for radiations. Wave can only propagate if wave vector
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k > kc, where kc is cutoff frequency and the lowest resonance can be termed as
dominant mode and second and third resonances are higher-order modes.
Propagation constant kx ¼ np=a. Propagation takes place if kx [ np=a, while no
propagation takes place kx\np=a. Standing waves inside the resonator are formed
and energy storing will take place. Hence, mode spectrum will result into corre-
sponding resonant frequency generation due to equivalent RLC circuit formation.
Wave propagation can be well defined by Helmholtz equation. The Maxwell’s
equations describe the behavior of electromagnetic fields and form the basis of all
EM classical phenomenon. Prad (power radiated) can be evaluated using Parseval’s
power theorem. The radiated power is produced by oscillating dipole moments. The
current varying in time can be analyzed by Fourier analysis. If medium is inho-
mogeneous, wave possesses exponential growth or decay in some direction. Thus,
Poynting vector “S” shall give the magnitude and phase of the radiated fields in
particular direction.

Finally, the radiation pattern produced by the surface electric and magnetic
current densities on the RDRA surfaces is computed. PEC walls, the surface electric
current density is Js ¼ n̂� E.

Then, the far-field magnetic vector and electric vector potentials are determined
by the usual reactance potential formulae as follows:

A x; rð Þ ¼ l
4p

e�jkr

r

Z
s

Js x; r
0ð Þ exp jkr̂ � r0ð Þ dsðr0Þ; ð6:1aÞ

and

F x; rð Þ ¼ �

4p
e�jkr

r

Z
s

Ms x; r
0ð Þ exp jkr̂ � r0ð Þ dsðr0Þ: ð6:1bÞ

Lorentz force conditions are applied to determine the far-field electric scalar and
magnetic scalar potentials as follows:

/
e
x; rð Þ ¼ j

x�l
div A x; rð Þ

¼ k
x�l

r̂;A x; rð Þð Þ
ð6:2aÞ

/
m
x; rð Þ ¼ j

x�l
div F x; rð Þ

¼ k
x�l

r̂;F x; rð Þð Þ
ð6:2bÞ

The far-field electric and magnetic fields (i.e., up to Order ðr�1Þ) are then
determined as follows:
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E ¼ �r �/
e
� jxAþ 1

�
r� F; ð6:3Þ

H ¼� 1
l
r� A�r/

m
� jxF;

¼ jk2

x�l
r̂ r̂;Að Þ � jxA/

jk
�
r̂ � F;

¼� jxA?/m
jk
�
r̂ � F;

ð6:4Þ

where

A? ¼ Ahĥþ A//̂;

H? ¼ jk
l
r̂ � A� jxF1;

Finally, we derive expression for the Poynting vector as follows:

S ¼ 1
2
RefE � H�g:

Up to order 1
r2
� �

i.e., value 1/r2 is taken into account from where, the RDRA
radiation resistance is evaluated:

1
2
I2Rr ¼ lim

r!1

Z
S � r̂ � r2 � dX;

when I is the input current to the RDRA, Rr or RrðxÞ is radiation resistance and
depends on the frequency.

6.2 Radiation Pattern of RDRA Due to Probe Current
i(t) and Probe Length dl

lI dl
!
e�jkr

4pr
¼ A

!
; where A is magnetic vector potential ð6:5Þ

From Helmholtz equation ~A
�� ��

E ¼ �jx~A
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Radiated power can be given as follows:

Ej j2
2g

¼ x2 ~A
�� ��2
2g

;

ffiffiffi
l
�

r
¼ g ¼ characteristic impedance:

~A ¼ l
4p

Z
Volume

J r0;xð Þe�jk r�r0j j
r � r0j j d3r0; at source: ð6:6Þ

We know that radiation pattern can be defined by the electrical field intensity
Eh;E/:

Eh ¼ �jxAh and Ah ¼ ĥ � A

Antenna surface current density can be expressed as follows:

J r0;xð Þ ¼
X
mnp

Js mnp; r
0½ �ejx mnpð Þt; where; r ¼ x; y; zð Þ ð6:7Þ

The magnetic vector potential in terms of J can be written as follows:

A ¼ l
4p

X
mnp

Z
Js mnp; r

0½ �ejx mnpð Þ t� r�r0j j
c

� �
r � r0j j ds r0ð Þ; where; ds is surface of RDRA

¼ l
4p

ejkn

r � r0j j
X
mnp

Z
s

Js mnp; r
0½ �ejx mnpð Þr̂�r0ds r0ð Þ

ð6:8Þ

H/ ¼ Eh=g; Hh ¼ �E/
�
g:

Hence radiated power can be given as:

Prad ¼ 1
2g

Ehj j2 þ E/

�� ��2� �

ĥ ¼ x̂ cosu cos hþ ŷ sinu cos h� ẑ sin h
/̂ ¼ �x̂ sinuþ ŷ cosu

	

Eh ¼ l
4pr2

Re
X
mnp

Z
s

Jsx½mnp; r0� cosu cos hþ Jsy mnp;r0½ � sin/ cos h� Jsz mnp;r0½ � sin h
n o

expðjx mnpð Þ
c

gðx0 cos/ sin hþ y0 sin/ sin hþ z0 cos hÞ ds r0ð Þ� ejx mnpð Þt;

ð6:9aÞ
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Eu ¼ Re
X
mnp

Z
s

�Jsx mnp; r0ð Þ sin/þ Jsy mnp;r0½ � cos/
n o

ej
x mnpð Þ

c

x0 cosu sin hþ y0 sin/ sin hþ z0 cos hð Þ ds r0ð Þ ejx mnpð Þtds r0ð Þ:
ð6:9bÞ

Radiated power Prad, x, y, z component wise, can thus be defined as follows:

Px ½̂rjmnp� ¼
Z
s

Jsx mnp; r0ð �ejx mnpð Þr̂�r0
c ds r0ð Þ ð6:10aÞ

Py ½̂rjmnp� ¼
Z
s

Jsy mnp; r0ð �ejx mnpð Þr̂�r0
c ds r0ð Þ ð6:10bÞ

Pz ½̂rjmnp� ¼
Z
s

Jsz mnp; r
0ð �ejx mnpð Þr�r0

c ds r0ð Þ ð6:10cÞ

r̂ðh;/Þ ¼ x̂ cos/ sin hþ ŷ sin/ sin hþ ẑ cos h:

Let s = mnp for convenience then

Eh ¼ Re
X
s

Px r̂ sj½ � � cos/ cos hþ Py r̂js½ � sin/ cos h� Pz r̂js½ � sin h
 �
ejx sð Þt

¼ Re
X
s

Eshe
jx sð Þt ð6:11Þ

where s ¼ mnpð Þ ¼
000
001
010

2
4

3
5 and so on till s ¼ 111½ �, similarly

E/ ¼ Re
X
s

ð�Px r̂js½ � sin/þ Py r̂js½ �cos/Þejx sð Þt ð6:12Þ

6.2.1 Radiation Pattern

Now, power radiation pattern can be defined as follows:

Ehj j2þ E/

�� ��2
2g

¼ 1
2

X
s

Eshe
jx sð Þt þ Es/e

jx sð Þt
� �( )

� 1
2

X
s

Hshe
jx sð Þt þ

X
s

Hs/e
jx sð Þt

( ) ð6:13Þ
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¼ 1
4

X
s

Es � H�
m ej xs�xmð Þt þ

X
s

E�
s � Hm ej xm�xsð Þt

 !

¼ 1
4

X
s

Esh � H�
sø þ E�

sø � Hsh
� 


¼ 1
2
Re
X
s

Esh � H�
sø

� �

¼ 1
2

Eshĥþ Eøø̂
� �

� E�
sh

g
/̂� Esø

g
ĥ

� �

¼
X
s

Eshj j2
2g

r̂ þ Esøj j2
2g

r̂;

ð6:14Þ

6.3 Poynting Vector

Poynting vector is defined as radiated power flux per unit solid angle or power
radiated in particular direction in specified angular zone.

H ¼ r� A

E ¼ �rø� dA
dt ; scalar and magnetic vector potential from Lorentz gauge

conditions.
S ¼ E � H�ð Þ; S is Poynting vector (energy flow or flux).

Z ¼ Prad

jIj2 ¼ Input impedance

S � r̂ ¼ 1
2g

X
mnp

xðsÞ2 Pxj ðr̂ sj Þ cos/ cos hþ Py r̂ sjð Þ sin/ cos h� Pz r̂ sjð Þ sin h 2
��h

þ xðsÞ2 Pxj ðr̂ sj Þ sin/� Py r̂ sjð Þ cos/ 2
�� i ð6:15Þ

S � r̂ r; h;/ð Þ ¼ 1
2g

X
mnp

xðmnpÞ2 Pxðh;/j jmnpÞ cos/ cos hf

þ Py h;/ mnpjð Þ sin/ cos h� Pz h;/ mnpjð Þ sin h 2
��

þ Pxðh;/j jmnpÞ sin/� Py h;/ mnpjð Þ cos/ 2
�� �

ð6:16Þ
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6.4 Moat-Shaped RDRA Radiation Pattern

Moat-shaped RDRA is shown in Fig. 6.1a with x, y, and z coordinates, and feed is
given at a/2 position.

In Fig. 6.1b, rectangular moat-shaped RDRA is covered with r copper plate to
reduce resonant frequency.

E(t, x, y, z) is electric field intensity of RDRA to be computed in time domain
and E(ω, x, y, z) in frequency domain having a, b, and d dimensions, excited with
feed probe at a

2 ;
a
2 ; 0 point by I0cosxt RF current.

A ¼ Azẑ (due to RF excitation current I0 cosxt along length d inserted into the
RDRA).

Hence, magnetic vector potential can be written as follows:

Azðx; x; y; zÞ ¼ lI0
4p

Zd
0

e�jkjr�a=2x̂�b=2ŷ�nẑj

jr � a=2x̂� b=2ŷ� nẑjdn; ð6:17Þ

Fig. 6.1 a Moat-shaped RDRA. b RDRA moat cover with rectangular copper plate to reduce
resonant frequency
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Let C ¼ l
4p ; k ¼ x=c and n = variable probe length.

Az ¼ CI0

Zd
0

expf�jk ðx� a=2Þ2 þ ðy� a=2Þ2 þ ðz� nÞ2
� �

ðx� a=2Þ2 þ ðy� a=2Þ2 þ ðz� nÞ2
� �1=2

9>=
>;dn ð6:18Þ

Far-field approximation can be determined as follows:

Az ¼ CI0e�jkr

r
Pðh0; ø0Þ; ð6:19Þ

where Pðh0; ø0Þ is radiation pattern.
Here, it is assumed that probe is very small as compared to RDRA.

ðx� a=2Þ2 þ ðy� a=2Þ2 þ ðz� nÞ2

¼ ðx� a=2Þ2 þ y� a=2
� �2þz2 � 2zn

ðx� a=2Þ2 þ y� a=2
� �2þz2 � d2

r ¼ ðx� a=2Þ2 þ ðy� a=2Þ2 þ z2
� �1=2

where r = distance from the points (x, y, z) in the center of the feed probe
a=2;

a=2; 0
� �

ðx� a=2Þ2 þ ðy� a=2Þ2 þ ðzÞ2
� �1=2

¼ ðr2 � 2znÞ1=2 ¼ rð1� zn�
r02Þ ¼ r � zn=r0:

Hence, magnetic vector potential due to source inside RDRA can be computed
as follows:

Az ¼CI0e�jkr0

r0

Zd
0

exp
jkzn
r0

	 �
dn; where I0 probe RF current:

¼CI0e�jkr0

r0

exp jkzn=r0

� �
jkz=r0

� � n ¼ d

n ¼ 0

����
���� i.e., variable probe length:

¼CI0
r0

e�jkr0
exp jkzd=r0

� �
� 1

jkz=r0

� �

¼CI0
r0

e�jkr0
exp jkzd=2r0

� �
2j sin kzd=2r0

� �
jkz=r0

� �

ð6:20Þ
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Az ¼ 2CI0 exp �jk r0 � zd=2r0

� �n o sin kzd=2r0

� �
kz

where, z ¼ r cos h:

Azðx; x; y; zÞ ¼ CI0 exp �jkr0ð Þ exp
jkd
2 cos h0
� �

sin kd cos h0
2

� �
kr0 cos h0

ð6:21Þ

here, (r, θ, Φ) are spherical polar coordinates of (x, y, z) so as to relate a=2;
a=2; 0

� �
,

the probe insertion point. Hence, magnetic vector potential can be expressed as
follows:

E t; x; y; zð Þ ¼ x

r30
P h0ð Þj jsin xt � kr0 þW h0ð Þð Þ x�a=2

� �2þ y� a=2
� �2� �

þ x� a
2

� �
zx̂

þ �x y� a=2
� �

z
� �

r03
P h0ð Þj j sinð xt � kr0 þW h0ð Þð ÞÞ

	 �
ŷ

ð6:22Þ

B t; x; y; zð Þ ¼ � k x� a
2

� �
r20

P h0ð Þj jsin xt � kr0 þW h0ð Þð Þŷ

þ k y� a
2

� �
r02

P h0ð Þj jsin xt � kr0 þW h0ð Þð Þx̂

¼ k
P h0ð Þ
r02

sin xt � kr0 þW h0ð Þð Þ y� a
2

� �
x̂þ x� a

2

� �
ŷ

� �
ð6:23Þ

Finally, we derive expression for the Poynting vector as follows:

S ¼ 1
2
RefE � H�g

Up to O 1
r2
� �

from where the radiator resistance is evaluated as

1
2
I2Rr ¼ lim

r!1

Z
S � r̂ � r2 � dX

where I is the input current to the RDRA. Rr or RrðxÞ depends on the frequency.
Hence, this completes the solution for radiation pattern of RDRA.
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6.5 Quality Factor of RDRA

The quality factor Q of the RDRA can be evaluated by comparing the power
radiated Prad ¼ 1

2 I
2Rr with the average electromagnetic energy (W) stored with the

RDRA as follows:

W xð Þ ¼ 1
4

Z
0;a½ �� 0;b½ ��½0;c�

ð�ðE;E�ÞÞ þ l H;H�ð Þ dx dy dz ð6:24Þ

The average energy stored per unit cycle with the RDRA is

P xð Þ ¼ W xð Þ
2p=x

¼ x
2p

W xð Þ ð6:25Þ

The quality field factor of the RDRA is thus

Q xð Þ ¼ 2xW xð Þ
I xð Þj j2 �Rr xð Þ ;

where x corresponds to resonant frequency.
The quality factor of a resonant mode measures how sharp its resonance is. As

per conservation of energy, Z
Ej j2dv ¼

Z
Hj j2dv

(time) average magnetic energy will be equal to electric energy inside the resonator.
The time-averaged energy dissipated in the walls of RDRA in unit time can be

calculated as of energy into walls from the electromagnetic fields in the cavity
normal component of energy based on the boundary conditions as energy flux
density as follows:

S ¼ C
8p

� �
ReðE � H�Þ ð6:27Þ

Hence, total energy dissipated is given by

c
8p

I
Re Hj j2df

Change in resonant frequency due to dielectric material used in RDRA:
The resonant frequency is reduced by

ffiffiffiffiffi
l�

p
If x ! x

ffiffiffiffiffi
l�

p
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xa;xb are orthogonal frequencies, and Ea and Eb are orthogonal fields.
x0

2 x00j j = quality factor (Q), x0 is real frequency, and x00 is imaginary frequency.

Complex freq x ¼ x0 þ jx00

Z
Ea � Eb�dv ¼

Z
Ha � Hb�dv ¼ 0

Resonator filled with non-absorbing dielectric, for which � and l differ from
unity by replacing x by x

ffiffiffiffiffi
l�

p
and E by �E, and H by lH.

The (time) average energy flux through surface is

S ¼ c
8p

Re Et � H�
t

� � ð6:28Þ

where S ¼ c
4p

E � Hð Þ.
If Q of heat evolved per unit time and volumes

Q ¼ x
4p

�00E2 ¼ þl00H2
� �

ð6:29Þ

Bar denotes time-average exciting frequency, must be exactly equal to the chosen
resonance frequency, and is required to establish field configuration inside res-
onator. This results in dissipation of energy in the cavity walls and dielectric filling
of the cavity resonator. A measure of the sharpen of response of the cavity to
external excitation is quality of the cavity. This is defined as 2p times the ratio of
the time-averaged energy stored in the cavity to the energy dissipated.

Q ¼ x0
stored energyfWðxÞg
power lossðI � I � RrÞ ð6:30Þ

Fig. 6.2 Rectangular RDRA
moat
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where x0—Resonant frequency oscillations of fields are damped and time depen-
dent. Change in frequency Dx to occur based on superposition of frequencies:

x ¼ x0 þ Dx

E tð Þ ¼ 1ffiffiffiffiffiffi
2p

p Z1

�1
E xð Þe�jxtdx

Q. No. 1 Compute resonant frequency and propagation constant of given RDRA
shown in Fig. 6.2 and also compute quality factor of a RDRA having dimensions
10 × 10 × 10 mm3 with dielectric constant 10 and probe current 10 mA.
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