Chapter 6

Mathematical Analysis of Radiation
Pattern of RDRA

Abstract In this chapter, detailed study using mathematical analysis for radiation
pattern of RDRA has been described. RF excitation with proper impedance match
can generate J-current density into surfaces of RDRA, which leads to produce
A-magnetic vector potential and finally E-electric intensity or H-magnetic field
intensity. Acceleration or deceleration of charge carriers causing current is
mandatory phenomenon for radiations. Wave can only propagate if wave vector
k > k., where k. is cutoff frequency. The lowest resonance can be termed as
dominant mode and second and third resonances are higher-order modes.
Propagation constant k, = nn/a, and propagation takes place if k, > nn/a, while
no propagation takes place if k, <nn/a. Thus, standing waves inside the resonator
are formed and energy storing will take place. Hence, mode spectrum will result
into corresponding resonant frequency generation. Wave propagation can be well
defined by Helmbholtz equation. The Maxwell’s equations describe the behavior of
electromagnetic fields and form the basis of all EM classical phenomena. P, .q
(power radiated) can be evaluated using Parseval’s power theorem. The radiated
power is produced by oscillating dipole moments. The current varying in time can
be analyzed by Fourier analysis. If medium is inhomogeneous, wave possesses
exponential growth or decay in some direction. Thus, Poynting vector “S” shall
give the magnitude and phase of the radiated fields in particular direction.

Keywords Impedance match - Current density - Magnetic vector potential -
Power radiated - Poynting vector - Persvals power theorem - Moat-shaped DRA

6.1 Introduction

RF excitation with proper impedance match can generate J-current density into
surfaces of RDRA, which leads to produce A-magnetic vector potential and finally
E-electric intensity. Acceleration or deceleration of charge carriers causing current
is mandatory phenomenon for radiations. Wave can only propagate if wave vector
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k > k., where k. is cutoff frequency and the lowest resonance can be termed as
dominant mode and second and third resonances are higher-order modes.
Propagation constant k, = nn/a. Propagation takes place if k, > nn/a, while no
propagation takes place k, <nm/a. Standing waves inside the resonator are formed
and energy storing will take place. Hence, mode spectrum will result into corre-
sponding resonant frequency generation due to equivalent RLC circuit formation.
Wave propagation can be well defined by Helmholtz equation. The Maxwell’s
equations describe the behavior of electromagnetic fields and form the basis of all
EM classical phenomenon. P4 (power radiated) can be evaluated using Parseval’s
power theorem. The radiated power is produced by oscillating dipole moments. The
current varying in time can be analyzed by Fourier analysis. If medium is inho-
mogeneous, wave possesses exponential growth or decay in some direction. Thus,
Poynting vector “S” shall give the magnitude and phase of the radiated fields in
particular direction.

Finally, the radiation pattern produced by the surface electric and magnetic
current densities on the RDRA surfaces is computed. PEC walls, the surface electric
current density is J; =7 X E.

Then, the far-field magnetic vector and electric vector potentials are determined
by the usual reactance potential formulae as follows:

—jkr

Alw,) = L / I (.1) exp(ik? - ) ds(); (6.1a)

s

and

€ e—jkr
E(wal) = E e

/M.(w,[’) exp(jki - r') ds(r'). (6.1b)

N

Lorentz force conditions are applied to determine the far-field electric scalar and
magnetic scalar potentials as follows:

¢ _div A(w, r
Qe(wvr)_w]:’ud A( ’ ) (62a)
:a)_é,u(rjé(wyr))
¢ (o,r) =——div F(w,r)
w]:“ (6.2b)
:@(raﬂ(wvr))

The far-field electric and magnetic fields (i.e., up to Order (r~!)) are then
determined as follows:
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(6.3)

- 1
E=-V¢ —joA+-V xF;
P, .

1 _
H=- VxA-Yj, - joF.
=37, 4) — joAg™ 7 x F; (64)

- €

weL

ik
— —joA, $, "7 x F;
— €

where
A, = Aol + Ay
Jk . .
H, =Zr X A — joF;

Finally, we derive expression for the Poynting vector as follows:
1 *
S = ERG{E x H'}.
Up to order (r%) i.e., value 1/#° is taken into account from where, the RDRA

radiation resistance is evaluated:

1
—I’R, = lim [ §-7-r*-dQ;

r—0o0

when [ is the input current to the RDRA, R, or R,(®) is radiation resistance and

depends on the frequency.

6.2 Radiation Pattern of RDRA Due to Probe Current

i(t) and Probe Length d/
(6.5)

— .

ldle ¥ — . . .
uT = A; where A is magnetic vector potential

r

From Helmholtz equation ]A ‘

[oxy
Il
.
S
[>1
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Radiated power can be given as follows:
-2

[ _ «’[4]
w2

— = n = characteristic impedance.

=

d*/'; atsource. (6.6)

1 / (', w)e et

r—r|
We know that radiation pattern can be defined by the electrical field intensity
Ey,Ey:
Ey=—joAg and A, =0-A
Antenna surface current density can be expressed as follows:

J(r o) = Ziy[mnp,g’}e"w(m””)t; where, r = (x,y,2) (6.7)

mnp

The magnetic vector potential in terms of J can be written as follows:

- 7|£*£’|)
s [ Ll ) .
A= i %; / ds(r'); where,ds is surface of RDRA

r—=r|

_Kr i Z J [mnp r’]eiw(mnp)i'flds(r')
Anlr—r|4= ) =0 B

(6.8)
Hy=Ep/n, Hy= —E¢/,1.

Hence radiated power can be given as:
Prad :L |E9|2+ E¢ :
2n

(?:Xcoswcose—k)?sin(pcosH—Zsinﬁ
¢ = —xsin@ + ycos @

Ey= #Re Z / {Jsx [mnp, r'] cos ¢ cos 6 + ny[mnpl,} sin ¢ cos 6 — Jsz[mnp{,} sin 0}

mn,
P s

exp(jo M}(x/ cos ¢ sin 0 + y' sin ¢ sin 0 + 2 cos 0) ds(r/)] &P
c

(6.9a)
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E, = ReZ/ Jox(mnp, r') sin ¢ +J, - Cos¢} S
N (6.9b)

(X' cos @ sin 0 + y' sin ¢ sin 0 + 2 cos ) ds(r') &Pl ds(r).

Radiated power P4, X, y, z component wise, can thus be defined as follows:

«o(mnp ?[/

Py[F|mnp] = / Jo(mnp, ¥ ds (1) (6.10a)
o)z

P [#mnp] = / T (mnp, )™ ds(r) (6.10b)
o(mnp)r-r’

P, [#|mnp] :/Jsz(mnp,z']e’ < ds(r) (6.10c)

s
7(0, ¢) = kcos ¢ sin 0 + ysin ¢p sin 0 + Zcos 6.
Let s = mnp for convenience then

Ep = ReZ{P 7|s] - cos ¢ cos 0 + Py[F|s] sin ¢ cos 0 — P [ s1n0}e’“’(

6.11
— Re ZES,)EM( )t ( )
000
where s = (mnp) = | 001 | and so on till s = [111], similarly
010
Rez P, [F|s] sin ¢ + P, [i|s]cose)e™ ) (6.12)
6.2.1 Radiation Pattern
Now, power radiation pattern can be defined as follows:
|EH|2+|E¢|2 1 Eo o) 4 | o)
T =3 Z:( 50 + Esg )
‘ (6.13)

1 . )
_ 0 (s)t o(s)t
x5 { E Hyge®) + E Hiyyel }
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:% (Z Es % H;en e/'(mxfw,,,)z + ZE; x Hm ej(w,,,rm)t)
Z—Z 0 X Hiy + Ely X Hy)
1 .
ZEReZS: (Eqo x H,) (6.14)
— 1 (Bab+ Ead) x (ﬂd; _@z))
2 n

_Z |Eyﬁ|2 |Eyg|2
3 2n

’

6.3 Poynting Vector

Poynting vector is defined as radiated power flux per unit solid angle or power
radiated in particular direction in specified angular zone.

H=VxA
E=-Vo— %; scalar and magnetic vector potential from Lorentz gauge
conditions.

S = (E x H"); S is Poynting vector (energy flow or flux).

Z = 1|Jlr|ad = Input impedance
1
S-F= 2_;12 {w(s)2|Px(if|s) cos ¢ cos 0 + Py (7|s) sin ¢ cos 0 — P,(F|s) sin 0|2
mnp
o(s)?|Py(7s) sin ¢ — P, (#]s) cos ¢>H (6.15)

S-#(r,0,¢) = %Z o (mnp)*{|P(6, ¢p|mnp) cos ¢ cos O

mnp
+ P, (0, ¢|mnp) sin ¢ cos 0 — P,(0, ¢p|mnp) sin 9’2
+ |P,(0, ¢p|mnp) sin ¢ £ P, (0, ¢p|mnp) cos ¢|2}

(6.16)
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6.4 Moat-Shaped RDRA Radiation Pattern

Moat-shaped RDRA is shown in Fig. 6.1a with x, y, and z coordinates, and feed is
given at a/2 position.

In Fig. 6.1b, rectangular moat-shaped RDRA is covered with r copper plate to
reduce resonant frequency.

E(, x, y, z) is electric field intensity of RDRA to be computed in time domain
and E(w, x, y, z) in frequency domain having a, b, and d dimensions, excited with
feed probe at §,4,0 point by Iycos wt RF current.

A = A;Z (due to RF excitation current I cos wt along length d inserted into the
RDRA).

Hence, magnetic vector potential can be written as follows:

d e .
1 e—jk|r—a/lx—b/ZY—€z|
Ac(w,x,y,2) = 52

4an ) |r—a/2x —b/2y - z:z|d€’ (6.17)
0

- a' ’
- L T ~
x L l:coswt

Maot RDRA

alr

(b)

Fig. 6.1 a Moat-shaped RDRA. b RDRA moat cover with rectangular copper plate to reduce
resonant frequency
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Let C =4,k = w/c and ¢ = variable probe length.

A= czo/d eXp{fjk((x — )+ (= %) + (2 - é)z)

a2 a2 2 1/2 dé (6.18)
0 (6= + =%+ -9
Far-field approximation can be determined as follows:
CI()eijkr
A= P(0o, 00), (6.19)

where P(0y,90) is radiation pattern.
Here, it is assumed that probe is very small as compared to RDRA.

(x=h) + (= Y) + (== ¢)
= (x4 + (v~ 9p) "+ — 2:¢
(=) + (y = U)*+2 > &

) ) 1/2
r= (=% + (- %) +2)
where r = distance from the points (x, y, z) in the center of the feed probe

(%2, %, 0)

(=98 + 0 -7 + )"

= (- 225)1/2 =r(l-— Zé/roz) =r— Zé/ro'

Hence, magnetic vector potential due to source inside RDRA can be computed
as follows:

d
Clye ko ik:
A, e T / exp {] Zé}d{f, where [ probe RF current.

o o

Clyer €XP (ijé/rO) E=d
= : i.e., variable probe length.
ro (JkZ/r ) ¢=0
0
jkzd) | _
ro (ij/r0>
Cly &P (szd/m) 2jsin (kZd/Zro)
=—ce
7o (ij/r())

(6.20)
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sin (kzd/ 2r0>

A, =2CI exp{—jk (ro - Zd/Zro)} X
z

where, z = rcos 0.

(jde cos 00) sin (k—d 5 H")

Ay (w,x,y,z) = Clyexp(—jkro) exp ko 005 00

(6.21)

here, (r, 6, @) are spherical polar coordinates of (x, y, z) so as to relate (“/2, 4, O),

the probe insertion point. Hence, magnetic vector potential can be expressed as
follows:

E(t,x,v,2) :%|P(90)|sin(wt — krg + IP(HO))((X—“/Z)Z-F()»—“/2)2> n (x— g)z)%

N _M|p(@o)|(sin(wz—kro+3”(90))) ¥
1o

(6.22)
Bloox.2) = = ) intor — n + 00
+ k(yr - D) |p(00) sin(ot — ko + ¥(00))3 (6.23)
_ kpffzo) sinor — ky + 2(00) (v 5)5+ (x=5)3)

Finally, we derive expression for the Poynting vector as follows:
1 *
S= ERe{E x H'}

Up to O(%z) from where the radiator resistance is evaluated as

1
PR, =1lim [ S-7-/-dQ

2 r—00

where I is the input current to the RDRA. R, or R,(w) depends on the frequency.
Hence, this completes the solution for radiation pattern of RDRA.
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6.5 Quality Factor of RDRA

The quality factor Q of the RDRA can be evaluated by comparing the power
radiated Ppyq = %I 2R, with the average electromagnetic energy (W) stored with the
RDRA as follows:

Wol=y [ CEE) ) EdE (624)

[0,a]%[0,5] X [0,c]
The average energy stored per unit cycle with the RDRA is

W(©) _ ) (6.25)

P(w) = 2”/(9 =5

The quality field factor of the RDRA is thus

20W(w)

o) = )P R (o)

where @ corresponds to resonant frequency.
The quality factor of a resonant mode measures how sharp its resonance is. As

per conservation of energy,
/ |E|*dv = / |H|*dv

(time) average magnetic energy will be equal to electric energy inside the resonator.

The time-averaged energy dissipated in the walls of RDRA in unit time can be
calculated as of energy into walls from the electromagnetic fields in the cavity
normal component of energy based on the boundary conditions as energy flux
density as follows:

S— (83) Re(E x H") (6.27)

T

Hence, total energy dissipated is given by

i%Re\HEdf
8

Change in resonant frequency due to dielectric material used in RDRA:
The resonant frequency is reduced by /ue

If o — w\/ue
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wa, wb are orthogonal frequencies, and Ea and Eb are orthogonal fields.
#}”’I = quality factor (Q), ' is real frequency, and " is imaginary frequency.

Complex freq w = o' + jow"
/Ea -Eb*dv = /Ha -Hb*dv =10

Resonator filled with non-absorbing dielectric, for which eand u differ from
unity by replacing @ by w./ue and E by €E, and H by uH.
The (time) average energy flux through surface is

c *
§:§ﬁd5xm) (6.28)

c
here S = —(E x H).
where 471( x H)

If O of heat evolved per unit time and volumes
_ O e 6

Bar denotes time-average exciting frequency, must be exactly equal to the chosen
resonance frequency, and is required to establish field configuration inside res-
onator. This results in dissipation of energy in the cavity walls and dielectric filling
of the cavity resonator. A measure of the sharpen of response of the cavity to
external excitation is quality of the cavity. This is defined as 27 times the ratio of
the time-averaged energy stored in the cavity to the energy dissipated.

stored energy{W(w)}
0 power loss(I-1-R,)

0=o (6.30)

Fig. 6.2 Rectangular RDRA
moat
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where wy—Resonant frequency oscillations of fields are damped and time depen-
dent. Change in frequency Aw to occur based on superposition of frequencies:

w=wy+ Aw

E(t e 'do

1 o
) :\/—Z_n_/ocE(w)

Q. No. 1 Compute resonant frequency and propagation constant of given RDRA
shown in Fig. 6.2 and also compute quality factor of a RDRA having dimensions
10 x 10 x 10 mm® with dielectric constant 10 and probe current 10 mA.
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