Chapter 5
Mathematical Analysis of RDRA
Amplitude Coefficients

Abstract Mathematical analysis of amplitude coefficients in rectangular DRA
(RDRA) have been evaluated. Rigorous theoretical analysis has been developed for
different resonant modes inside RDRA. The resonance phenomenon and its
potential use as radiator have been described. The dielectric polarization P is equal
to the total dipole moment induced in the volume of the material by the electric
field. The discontinuity of the relative permittivity at the resonator surface allows a
standing electromagnetic wave to be supported in its interior at a particular resonant
frequency, thereby leading to maximum confinement of energy within the reso-
nator. Certain field distributions or modes will satisfy Maxwell’s equations and
boundary condition. Mathematical solution to get amplitude coefficients C,,,, along
with its phase coefficients has been obtained. These are also known as eigenvector.

Keywords Amplitude coefficients -+ Resonant modes - Radiation lobes - Fourier
transform - Discrete solution - PMC (perfect magnetic conducting) - PEC (perfect
electrical conducting) + Dominant mode - Higher-order modes

5.1 Introduction

Rigorous theoretical analysis has been developed for resonant modes in rectangular
DRA (RDRA). RDRA resonance phenomenon and its potential, as a radiator have
been long back described. Accordingly, external electric fields bring the charges of
the molecules of the dielectric into a certain ordered arrangement in space. The
dielectric polarization P is equal to the total dipole moment induced in the volume
of the material by the electric field. The discontinuity of the relative permittivity at
the resonator surface allows a standing electromagnetic wave to be supported in its
interior at a particular resonant frequency, thereby leading to maximum confine-
ment of energy within the resonator. Certain field distributions or modes will satisfy
Maxwell’s equations and boundary conditions. Resonant modes are field structures
that can exist inside the RDRA. The RDRA prototype is shown in Fig. 5.1.
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Fig. 5.1 Homogenous
dielectric RDRA on ground
plane

5.2 Amplitude Coefficients C,,,,

Time domain fields can be written as follows: E,(x,y,z,1) =
> ynp RE(Counp€” ™)1ty (x, v, 2)), using orthonormality.
In discrete form,

Z |Cmnp|umnp(xay7z) cos(co(wmnp)t + 'I’(mnp))

m,n.p

The probe current can be expressed as:

ouddl(2 +2) W ,
E, (x,y,6,1) = / Glx.y) M (o2 +y )3/2 otV T g 40
Am(x2 +y2 + 8%)

where G(x,y) are the constant terms associated with current.

2 0
Resonator current = Z | Conp| \/;sin (%) cos(w(mnp)t + W (mnp) iy »(x,y);
P

jopldl(® +y?)
dm(o + 2 +6%) "2
<e (o555 ) ) (s, y)dx d 5

Probe current = / G(x,y) (w)e*dw
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The probe current must be equal to the resonator current due to principle of
orthonormality.

00
)C y7Z, Z { mnp ejw mnp)t lpm,,p( ¥ Z )}

+ Z Re{ (mnp)etme ’qunp(x,y, z)}

mnp=1

H(x,y,z,1) = EOC: Re{C(mnp) oy (33,2 )}

mnp=1

+ Z Re{ (mnp)el@mp)t d)mnp( Z)}

mnp=1

7 jop
E, = _ﬁZLEz ) V., H,
From duality
H —-tv H -2y
217 Tt V, Exz

From above two equations, we obtain E, and E, fields as given below:

() n(22) ) )
E, p o (mnp) cos ) sin(—, 5 — B (mnp) cos ) sin(— =)

E, = Ty o (mnp) sin (m;zx) cos (”bﬂ) My (mnp) cos (m;zx) sin (?) ;

and

. 2
E = Z Re[c(mnp)e]a)(mnp)l\/; sin (?) Umn (x, y)

mup

. 2 2
dn(x2 +y2 +6%)

Here, I () is the Fourier transform of source current, i.e., I(z) is the probe current

= 3 S )| [5(> — o(mnp) e (mnp) -+ & (map)5(c> + o(mnp)]

mnp
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dl 2 2
E (x,y,2,1) = ,u(x—-i-y)m (mnp)|I(mnp)|sin ((o(mnp) (t -

4 (o2 +)2 + 6%) ¢

2
VR ¢,(mn,,)>>
= | Counp|thn (x, ¥) cos (e (mnp)t + lﬁ(mnp))\/gsin <I%O)

B(mnp) +a(mnp)” .

>—; amplitude coefficient
[Zon()]

Hence, C,p, =

Lnnp COS(P(mnp)) + By, sin(¢p (mnp))
(xmnp Sln(d)(mnp)) - ﬁmnp COS(¢(mnp))

Y (mnp) = tan~! l ];Phase

This completely solves the problem of RDRA resonant modes’ coefficients in
homogeneous medium.

5.3 RDRA Maxwell’s Equation-Based Solution

Maxwell’s equations with J electric and M magnetic sources:
V X E = —jouHd — M; (a)
V x H=J+jocE; (b)

Py

V X E ==, VXH:p—m;
&

u

where p, is the electric charge density, and p,, is the magnetic charge density.

For consistency, —jweV x H —V x M = 0;
V xJ 4+ jweV x E =0;
ie. VxXM+jowp, =0,V xJ+jop=0;

namely conservation of electric and magnetic charge:
Vx(V X E) = —jouV x H—V x M;
taking curl on both sides
or V(V X E)—V?E = —jou (J +joeE) — V x M,

\Y4
or (V*+K)E= _Tp +jouJ + ¥V x H = s (electric source); (c)
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i.e., E satisfies the Helmholtz equation with source.

Likewise, V X (VxH)=V xJ+jweV X E
or V(V x H)—V*H =V xJ+ joe(—jouH — M)

Vo,
u

or (V2+k)H = +jweM =N x J =f

(magnetic source due to probe); (d)

Hence, H also satisfies Helmholtz equation with source. Rectangular cavity reso-
nator sidewalls are the perfect magnetic conductors (PMC) and top and bottom
surfaces are the perfect electric conductors (PEC). Applying these boundary con-
ditions, we get the following equation:

H,=0; where x=0,a or y=0,b

So,
H x Vs 2 Z ¢mn l"mn(x Y|a b) (5-1)
mmn>1
where
2
umn(xvy|aa b) = ﬁSin (an:x) sin (nTny) (52)
as we know,
2
Hz(o) (x,¥,2) = Comn —\/% sin (anx> sin (H—Zy) sin ([%)
Let
£063,2) =Y Foun(@)ttmnlx, yla, b] (5.3)
mn>1
(V> + R H, =Y ¢, (2) + (K = 12 [m, nla, ], (2) it ¥, V], D)
mn (54)

=f= ¢! (2) + (k2 - hz[m,n|a,b]q'>mn(z))
:ﬁ111n(z)

where k? = w?pe, and h*[x,y|a, b] = nz((%)z—i—(%)z);
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H,=0; for z=0,d; completely determines @,,,,(z)

from (1),
Taking Laplace Transform of (5.4);

Sz¢mn (s) = S, (0) — ¢:nn (0) + V? [m,n]fa\mn(s) ""fzmn(s)

So,

/

=~ _ fA‘Zmn (S) Sﬂmn (0) — %
ﬂmn(s) - §2 4 y%[m, n] S2 4 'V%[m, }’l] (55)

where 72[m,n] = k* — h*[m, n|a, b].

Thus,
G / sin (7, m, 1)z — &) o (£)de
+ Cy sm(yz ) + G5 cos(y,[m, n]z)

O (0) = Gpn(d) =0 = C, =0,
d

Cl = "/Z[m n] sin "/Z m, n /SIH ))z m I’l](d 6) zmn(f)dé)
0

So,
-1
Q’mn(Z) = yz[m’ }’l] « sin(yz[m, I’l}d sin yz m, n /Sln yz m, l’l Z - 5)) Zmn(é)dg

0

Sin(Vz[’”?”](d - é)) o (£)dE

— sin(y,[m, n]z)

o\&

In the limit k2 — n2<(%)2+(%)2+(§)2), we have, y2[m,n] — (%)2 and we get,

%(z)eé{ [ sn(%2 = (10 — in () 1 Jisin(e 4=2) zmn(f)dé}

0

(5.6)
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The limit in ©0 showing resonance, when

e (@)

Joun( Zfzmnr \/7 sin (sm %U) (5.7)

Then

d

[ sin(%a - 9) om0

0
\/7 Zfzmnr / sm( 5)) sin (%) d¢

d
= (—1)p+1\/32fzmn, / sin(4&) sin (}‘Zf) dé
RN Sy O A
0
1 Py in((4—"5)d) sin((2+5)d)
e R

. o
Here / propagation parameter = kz ~ 7
Thus,

(5.8)

d
Lo
sin(id / sin(A(d = &) fom(E)de
0

)
l [y sin(4d)(=1)" sin(Ad)(=1)"
2 \/72]2’”’" sin(Ad l (A—15) (A+3) ] 5.10)
1 p+l1 r 1 1
:\/ﬁ (_1) Z(_l)ﬁmnr[(}_%)_(ﬂ_’_%)

(-1

= a2 (_l)rfzmnr|:(/12d(r_n)2)]
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Writing 2 =27+ 6 (0 — 0), we get,

d
l .
sin(id) / sin(A(d — &) foun(£)dE
0

~ (_1)p+1 (_1)1’@
‘/51& 0 (5.11)
= ———fom (Dominant term)
ov2d ™"
Hence,
d rré . (PTZ 1
B (2 E {0/5111 < );fzmnr\/r < 4 ) dé +sin (T) W zmnp}
(5.12)
Now

/zsin()u(z £)) sin (rdf) dé = —/Z [cos (/lz - (i + %) é) — cos ()»z - (). - %) f)] d¢
0 0

1 (sin(Z2) + sin(4z))  (sin(Z%) — sin(Az))
2 (2+3) A=)

1 [(sin(%) S +62))  (sin(F) — sin(%E + m))}
2

W (@)

(5.13)
There is no dominant term here, i.e., if > O(%), where O-order.
Hence, for k> = nz((%)2+(%)2) + 2+ 5)2
d npz
Bmn (Z) < fzmnp sin ( ))

7P \ov2d d

! (5.14)

. pTCZ
= \[2fm sin(°7°)
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Likewise, propagation in x direction can be taken as:

(V2 + 0 )i =1,
HJC(xayv Z) = ngmnﬁmn(yydbyd)

m,n

Let, ﬂ X, ¥, 2 Zf.;cmn umn (y7Z|b d)

m,n
mmy

where it (v, 2|b, d) = WE s1n( 5 ) cos( ) orthogonal 2D half wave Fourier basis

function.
Then,

Q;/mn (X) + (k2 - h2 [m,n|b, d])gxmn (x) :f:fmil(x)

Hence, general solution can be given as follows:

X

() = / s, 1) x = ) o ()
+ Ci cos(,m, nlx)Ca sin(y,fm, nJx) (5.15)
Likewise,
Hy(x,y,2) = ;ﬂymn(y)umn(mlaﬂ)
FERR: nymn ()t (x, 2], )
with

Q;/mn (y) + (k2 - h2 [m7 n|a7 d]) (pymn (y> :fymn (y)

and with the boundary conditions:

E., =0 where x=0,a or z=0,d,
E, =0 where y=0,b or z=0,d;

The general solution for @y,,,(y) is given as follows:

/sm Vylm,n](z — E))fymn(E)dE

0vmn (y ) -

~2
‘<

(5.16)

+ Dy COS(V_V [m, n]y) + Dy sin(y,[m, n]y)



112 5 Mathematical Analysis of RDRA Amplitude Coefficients
Here, y,[m,n] = (k — h*[m, n|b,d])"/>
pylm,n] = (& — W m, nla,d))""?
The equation
V x H=J + joeE
gives

joweE, =H,, —H,, —J
joeE, =H,. . —H. ,—J

We assume that J on the walls is zero. Then, the boundary conditions yields

H,,—H,,=0; where x=0,a
H,,—H,,=0; where y=0,b

Recall that H, has been completely determined.

5.4 RDRA Inhomogeneous Permittivity and Permeability

e =g (1+5Xc(x,y)) (5.17)
1=t (14 8, X (x,y)) (5.18)

At some known frequency w and J, as perturbation parameter, the solution has
been worked out using perturbation techniques to determine shift in the frequency.
As per Maxwell’s equation,

V X E = —jouH
V x H = joeE

where boundary conditions are given as follows:

0<x<a=W
0<y<b=L
0<z<d=h
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Due to duality E - H,H — —FE, and p < ¢.
Sidewalls have been taken as PMC (magnetic conductor walls) and top and
bottom as PEC (perfect electrical conductor).

H, = 0; on side walls

H,,H,=0; when y=20,b
H,,H,=0; when x=20,d
EE,=0; when z=0,d

E=E(x,y)e ™ (5.19)
H = H(x,y)e ™ (5.20)

Propagation constant is given as:
hy = 7* + w*pgeo, = 7> + k*; when k* = w?pyeo

Y Jop

Ex = — 5B —T0H,, (5.21)
Ey = _Lthz,y —j;l"—z”Hz,x (5.22)
Hy = _Lth —%EZ,y (5.23)
Hy = _LthZ/y —%Ew (5.24)

Top and bottom walls are perfect electric conditions so that
E.E,=0; when z=0,d
E~E(x,y)exp(—=yz), ~H — H(x,y)exp(—7z)

E=E, + EZ, H=H, +Hz.

0 N
V=V, +i-=V, -2

0z
VIE xz=7y2xEL =—jou(H,) (5.25)
E=E +Ez, H=H, +HzZ (5.26)

V H, XxZ—7ZxH, =joweE, (5.27)
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V, xH, =jweEz
Taking z x of (5.25) gives
V,E +7E| = —jouzxH,
Equations (5.11) and (5.13) can be changed as:
5 sl ] [0
—y jop||ZxH, V., E
—jou —y] {ZLHZ X Z]

E, _{ Y Jwe V,E,
IxH) w? e + 92

- jop .
E, =FLEZ _FZJ_HZ X Z

2 Jjou

2xQL:hZZLHZ ><2+WZLEZ

W =R (x,y) =77 + o p(x,y)e(x,y) = hg + kgoz(x,y),
where 1} = 2 + w?uyeo, K = 0’ pgeo = 7* + K

2(,Y) = 2, y) + (X, ¥) + 0 X 1, (6, ¥) s (x,¥)

Taking Z of (5.32) gives
v Joe
~(i5) Vet A+ e VB~ H,
from Egs. (5.31) and (5.33),

Y Jou

= Sy b =T e
Y Jou

Ey = ——thZ’y + FHZ,X
Y Jjwe

o= 2 e 5 B
Y Jowe

=2t =57 B

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)
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From Egs. (5.25) and (5.26),

V. x ( V.E. + 2V .H, x Z> — jouHz =0 (5.34)

or (2xV,(5) V.iE) - (L/w“ V.H ) — jouH, =0

or
jou h? o4 Y
Vi H.+IH, + <YL <h2>azLHz> XjaTu—chﬂ (Z X L(ﬁ),LEz)
=0
or
2 2 2 ~1 H “/kz
(ZL + ho)Hz + 5{k XH.0 ]Og(h2) V., V,H)+ jouh? (VLXIVL )}
=0
(5.35)
Now, we retain only 0 (J) terms.
L~ Te + Aom
Lo T
o
e ok
jouh?  jouh}
and (5.35) becomes
eV, 1
(zi + h(z))Hz + 5{k2 rH A+ NVt — ;(%L ,V H,)
. (5.36)
jwu0h2 (ZLa 1V E )} =0

By duality
E_>Hv H_)_Ev Le < Xm

€ < Ho, XX
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we get from (5.36)

k2 k2
(V3 +hg)E: + 5{k2sz + (Visem 7 Vit B) + (Vitem 7 Vi Er)
0 0

2 (5.37)

- H =0
jwcohg (ZJ_X7ZJ_ z)}

Boundary conditions are given as:
H,=0, x=0,a and Y=0,b H,=0, Z=0,d
Hx =0, Y=0,b Hy=0, x=0,a Ex=0, x=0,a
Ex=Ey=0, Z=0,d Ey=0 y=0,b

Equations (5.28) and (5.29) are the own fundamental equations, let h% = A
Let

A=20 +68x M +0(6%)
E, = EY + 5EM +0(5%) (5.38)
H,=HY + sHY +0(5%) (5.39)

if there is non-homogeneity —

2 2
2 (0 (M 1
A,(q,r)n =7 <g+ﬁ>

(93 +40)80 =0

(V2 + 49" =0 (5.40)

0 Y 0 ](UEO 0

m,n m,n

Since

H;O) =0, when Y =0,b HZ@ =0, when y=0,b
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Then
HO =0, wheny=0,b — E =0, whenY =0,b
Likewise
Eg(;) =0, when X =0,a
Thus,
2
HO = Cpsin (") sin (M) = (5.41)
2
Eéo) = D,,, cos (?) cos (n_zy) X T (5.42)

If z-dependent is taken into account, then HZ(O), E§0> must be multiplied by exp(+yz)
according to Eq. (5.34),

0 - Joy 0
EY = PO HY)
and E)EO) =0, when z =0,d, and HZ(0> =0, when 7z =0,d.
We get ES? =0, when z = 0,d then,

("%y) sin (I%‘S) (5.43)

2 mmnx
EO© X,¥,2) = Dy ——=cos (—) cos
L (X,),2) N P

jpm
= =1,2,3.
d b p ) )
Since H”) =0, when z=0.d,
2 . /mmx\ . (ATY\ . (PTZ
(0) —
H"(x,y,z2) Cm,,\/a;sm( ; )sm( 5 )sm( 7 ) (5.44)

Frequency of oscillations:

W = Wpp

7+ ol geo = A

mn

w0 (GO
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5.5 RDRA with Probe Current Excitation

The rectangular cavity has dimensions a, b, and d as shown in Fig. 5.2. Sidewalls
are taken as magnetic conductors (PMC), and top and bottom surfaces are as PEC;
theoretical fields (modes) solution has been worked under boundary conditions with
a square-type feed probe for excitation.

Ex,E, = 0, top and bottom plane being electric walls.

Ex,E, = 0, sidewalls being magnetic walls.

(x,3,2,1) ZC m,n,p) bsm( nx) sin(nbﬂ) sin(%) {cos(w(m,n,p)t

mnp

+ ¢(m,n,p))

where m, n, and p are the integers (half wave variations in particular direction, i.e.,
x, v, z directions, respectively); a, b, and d are the dimensions (width, length, and
height) of the RDRA, C(m,n,p) and ¢(m,n,p) are the magnitude and phase
coefficients of H, and D(m,n,p) and (m,n,p) for E..

Let, orthogonal 2D half wave Fourier basis function = \/—sm("“”) sm(’”bw) =

U (x,y) for convenience.

(X, y,2,1) Zd (m,n,p) \/_[;cos (m;tx) cos (n_Zy) cos

mnp

pnz
(7)
{cos (m,n,p)t+y(m,n,p)}

’””) cos ('”W) = Vu(x,y) for convenience = orthogonal 2D half wave

Let, \/‘ cos ( b

Fourier basis function.
From Lorentz Gauge conditions, E, = —jwA,; — %

Therefore, the magnetic vector potential can be given as below in discrete form
after taking Fourier transform of A,.

Fig. 5.2 RDRA with square
feed probe inserted in
a % b plane

A
v
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A.(x,y,2,0) = 4“”1(&)) ‘”ef"u‘#' where 6/ = probe length
Div A = d 52 ; need to be computed

Now, if we insert this probe at the location defined below into the cavity to find
the fields pattern, we get:

lg a a lg b b
=73

Then, the magnetic vector potential will be

A, uldl [0 e wiol  [cosO jkcosO\ _ it jo 27
_— _ = —_ e = —_——
0z 4xm |0z r 4xm r? r 2=

and scalar potential will be

G = uldljc? cos 6(i _]_k) gk widlc? (i ]kz) ik

2 r 4 x oo \r® r?

Differentiating é w.r.t. z

0p ol (132 k2P [z k) (=) e
%2 _ R Lk -k (545
0z 4w (r3 + s A + (}'3 ,.2) ( r ))e ( )

when, EZ —ij ? ,substltutlng 37 in EZ,

. —joul 161c* (1 2 gk 2k ki kP2 ,
B - jooud o1 . olc 1 327 jk 2jkz  jkz K2\ | ik (5.46)
47r 4y \r3  r

If we take 0 =%, z=0

If we take 02%, z=0

s  wculdl [—ij (1 30% jk o 2jk0*  jk&? k252)}

YT 4nk r B 2 r r# r

Also,

ro=1/x2+y* 48

Er =1 for r=1=2n/k.
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Coulomb component of electric field is dominant in this inductive zone r? ~ §*
given that § < r.
Minimum of r /2 [, and Maximum of r = (a, b);

kr <1
Hence,
. ucldl uc?él j( )
~—— and =~ 0);
© 7 dnkrd Anrijm '
ol ’ ol
t
A P — / I()dt ~ g( ) (5.47)
47'[6(\/)62 + yz) eer
Charge flowing through the resonator is fo 7)dt or equivalently
=12 = O(w),
Here,

4ne(x2 +y2)?

— 3~ Z M, 1, D)V (X, Y) sm<n25) cos(w(m,n,p)t + y(m,n,p))
inp

and

t
# ZC m n p)vmn(x y) pcos(w(m,n,p)t+ V(manap))
4ne(x2 + y2)2 mnp d

For complete solution, we need to compute D(m,n,p) and y(m, n,p) coefficients
for H, fields and C(m,n,p) and y(m,n,p) for E, fields. The D(m,n,p) and
C(m,n,p) are the desired resonant modes. For region,

b a a
> <k —3l<3
2 20 2
vmn X y D(manap)ﬂp
L dady = ) D cos(@(m, n,p)t -+ (m.n,p))
47'[6 x2 +y P d

(5.48)

a+lz . Cl—lz b+lz b—lz
{ 5 <x<a; 0<x< 5 }ﬂ{ 5 <y<b UO<y 5 }
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{cos(wr) cos(wt)) = %
(sin(wr) cos(wt)) =0
%&p)n])cos(lﬂmmvl’)) :4—:T€<Q(t) cos(w(m’n’p)t»/%dxdy
_%f)’”’sm(wm,n,p)) :4—71Z€<Q(t) sin(w(m, n, p)t) /%
Hence,

_ . 1 . Vo (X, y)dxdy
D(m,n,p) = 2d/np sin(y(m,n,p)) <H<Q(I) sm(w(m,n,p)t))/W)

(5.49)

5.6 RDRA Resonant Modes Coefficients in Homogeneous
Medium

The basic Maxwell’s theory can be applied with boundary conditions to express
RDRA resonant fields as superposition of these characteristics frequencies. RDRA is
shown in Fig. 5.3. u,,, depends on input excitation = orthogonal Fourier basis
function, h,,, resonant mode (cut off frequency), k propagation constant. The gen-
eration of modes or characteristics frequencies w(mnp) due to electromagnetic fields
oscillations inside the cavity resonator has been described. Orthogonal Fourier basis
function u,, ,(x,y) = \/%sin(%) sin(%2); w(mnp) is the characteristic frequency
and (mnp) is the phase of current applied. The rectangular cavity resonator is
excited at the center with an antenna probe carrying current i(f) of some known

Fig. 5.3 RDRA with ground b Ground plane
plane a 4

Rectangular DRA (&,
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frequency w(mnp). This generates the field E, inside the cavity of the form given
below:

k2 J’» y%nn = h12nn
hence,
2.2
2 2 p
k® = hmn + d2

Ez(x»yv <y t) = Z Re/ Cmnp ejw(mnp)t um,,,,(x,y,z);

m,n.p

or Z |Cmnp|umnp(x7y7 Z) cos(w(mnp)t + l//(mnp))7

mn.p

jouldl(x* 4+ 2 o > .
E; (x,y,0,t) = /G(x, y) joulditx” + )3/2 UV 1) el da
4m(x2 +y2 +6%)
where G(x,y) are the constant terms associated with the current.
Equating RDRA probe current fields with the antenna-radiated current fields at

Z=0;
Radiated currents:

-y ooy Zsin (222 cos(cmmp)-+ tomp) 2.9

Due to orthonormality, probe currents will be equal to radiated fields.
Probe currents:

joouldl(x> + y* . o, -
_ / G(X, y) JoOU ()C +y )3/21(60)61]“(160 <€ (](ut—?\/x2+y2+bz+l%,,,w) Uy ()C, y)) dxdy
4m(x® +y? + 8%)

It is clear that these two expressions have to be equal due to energy conservation.
The probe current can be defined as:

1) = 5 3 1) [ (e — o (mp)e™ ™) 1 P05 ) — ao(mnp)|

mnp

The antenna probe current must contain only the resonator characteristics fre-
quencies w(mnp). The radiated and input currents are equated as:
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|\f ( )( o(mnp)t + (mnp) i, )

Id] . o )
= / G(x,y) Jouldl® + v )3 /Z.I(w)e”“dw(e(’“”*?szﬂ’z*" W""’f’)umﬁn(x,y)dxdy;
4n(x2 +y? + 8%)

probe current = radiated current; thus C,,,, can be completely determined.

Hence, we can conclude that modes generation is due to the dipole moment in
cavity resonator, mostly depend on size, dimensions of device, excitation type,
coupling, and point of excitation.

5.7 RDRA Modes with Different Feed Position

Let us take z = 0, i.e., very small probe length inserted into RDRA resonator at
point of insertion (“/27 b/z, (3) or (x —A4p YT b/z, 5); where J—Ilength of

insertion.
H, H, E, E,), transverse fields; (E, and H,) longitudinal fields
) y z z g

E, = Z Upnp (X, Y, 2 ( ap€ )

mnp

where  ttyp (x,y,2) = j/Tdsm (=) sin () sin (%) =E., (when top and bottom

walls are PMC, rest all four walls are PEC).

Appling boundary conditions on transparent sidewalls (on all four sides of
RDRA or resonator) and top and bottom planes as electrical walls, we get H, = 0,
for magnetic walls; and E, = 0, for electrical walls; fields to be computed are

(E,, H,)—longitudinal fields;

X » Vs Za Z Re/ Cmnpejw(mnp)tumnp ()C, Y, Z)

mnp

At z=0; E,, E, E, all will be zero

E. =Y, Re[Cupe )] \/gsm (” d") Unn(x,y); this is the E, field in the reso-

nator at z = J. It must be equated to the corresponding field generated by the
antenna probe, i.e., for the above two expressions to be equal, the antenna probe
currents must contain frequencies only from the set {w(mnp)}.

Where u,,,(x,y) = \/— sm( ) sm( b )
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Jjouldle P22t

E, will exist little above from z = 0 plane; E, = Wl(w)dw; where
I(®) is the Fourier transform of ()
0
E, = —jwA, —¢
0z

Hence, scalar potential ¢ = %e’k’

O¢p  ulcos O
0z dur
Jkul cos20

=—¢

(—jk cos 0)e 7k

—jkr
dnr

]wuldl —jkr
——e
dnr dnr

- Jjoeuldl cos 20 ik

Hence,

jouldlsin® 0 _
E. will bew eIk
Tr

where

E|_=9¢ Z Re[C(mnp)ejw(m"p)’ X @ sin (%) U n (X, )

mnp

. 2 — .
Ez :/ ]w,uldl(xz +y )3/2671"2—?\/)%1—2%)2_ % I(w)e”“dw
Am(x2 +y2 + 8%)

(5.50)

(5.51)

(5.52)

(5.53)
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Here, I(w) is the Fourier transform of source current, i.e., I(¢) probe current

1(0) =3 3 1Hmnp) 5o — oomnp))e mnp)

mnp

+ ¢ (mnp)3(e — o(mnp))]

1) =23 1) |[3(e> — eo(mnp)) e (mnp)
2

mnp

+ € (mp)d( — (mnp))

I(w) = / cos(eo(mmp)r)e 1 ds

When o(mnp) = nzy/’;—;—FZ—;—l—Z—z, probe current magnitude and phase I(w) =
> mupll(mnp)| cos(w(mnp)t + ¢p(mnp)) @(mnp) is the phase of current at fre-
quency w(mnp).

E (x,y,2,1)

2 2
pudl(x® 4y ))3/2 o (mnp)|I(mnp)| sin <(D(mn[)) <

An(x2 42+ 8 c

= bt} cosotmmp + tomp)y 2sin (20,

(5.54)

5.8 R, L, C Circuits and Resonant Modes

The information contained in eigenvalue or eigenvector of modes can impart the
knowledge of antenna radiation behavior, surface current distribution, input
impedance, and its feeding point location. Combinations of feeding configuration
and dimensions can generate or excite various modes. Thus, modes can be effec-
tively used in design control of an antenna. Surface current and geometry of an
antenna give eigenfunctions or eigenvectors. Closed-loop currents of eigenvectors
that present inductive nature are the magnetic fields. Horizontal and vertical
eigenvectors are noninductive are electric fields. These electric fields are produced
by supplied probe currents. Number of lobes in radiation pattern gets increased if
mode number or order of mode is increased and vice versa. The modal excitation
coefficients shall depend on position, magnitude, and phase of the applied probe
current. The effective current is superposition of all modes excited. The eigenvalue
is most important because its magnitude tells effectiveness of radiation or reactive
power and modes are the solution of characteristics equation. Smaller magnitude of
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@ (b)

Fig. 5.5 Higher-order even and odd modes

eigenvalue is more efficient. Positive eigenvalue is the magnetic energy storing
mode, and if modes are negative, it stores electric energy. The eigenvalue variation
versus frequency gives information about resonance and radiation nature.
Excitation angle can have impact on antenna quality factor. The excited mode will
adjust the phase of the reflected currents. Orthogonality of modes can be used to
produce circular polarization in the RDRA. Figure 5.4 represents the equivalent
RLC circuit of RDRA, resonant modes excited, and corresponding magnetic
dipoles. Figure 5.5 depicts the even and odd modes generation. Figure 5.6 presents
RDRA HFF model along with its equivalent RLC circuit. Figures 5.7 and 5.8 are
RLC circuits which are used for derivation of resonant frequency and impedance.

(a) | )

@ ;

Fig. 5.6 a RDRA model and b equivalent RLC circuit
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Fig. 5.7 RLC circuit |

Fig. 5.8 Series RLC circuit

0 taracy

R L c

)
7
V

R, L, C equivalent circuit: An antenna can be represented as R, L, C circuitry with
natural frequencies w. and forced resonance due to excitation eigen-valued (a)mnp)
has been determined along with eigenvector J,,,,. Separation of all frequencies will
be the out come of modes. The second-order differential equation is the general
solution of equivalent antenna (R, L, C) circuit. Fourier solution will provide a
discrete solution of resonance. J, is excitation current or probe current and 7y is an
propagation constant (y = o + jf}). L, C circuit will introduce non-homogeneous or
inhomogeneous matter, ? will be replaced in this case by w?ue x —7 is replaced by
7 introducing decay. Hz(f ) represents forced resonance mode.

q

Lg+—=+Rg=v(t
q+C+q V(1)

. &2 q
where ¢ = 71
q dr

1
X; =joL, Xc=-——
L=] C jaC
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Taking Fourier Transform

C
. Vi(w)
(joL)* + 1+ joR

+00 X
e](t)td
q(r) = / Lw;n -

(o2 + g +ioR ) 0() = Vitw)

Q(w)

R=0

1

L)? =—

(L) =—
1
w=——

LC
lsg(xay7 Z) = ]sx(xvy)é(z - dO))AC + sz(xa )’)5(Z - dO))A}

where J; is the current surface density, and J, is the electron current
/dez = Jsx(xa% (U)JAC + ny(xay7 (D)

From Maxwell’s equation,

VxH=J,+ (6 +joe)E

V x E = —jouH

—V2E = —jou(c + joe)E + J,
V’E, = y*(0)E.

When
() = Vijou(o + joe) = a(w) + jB(w)
Similarly, we can compute
V?H, = y*(w)H,
Boundary conditions are applied

H,=0, x=0,a, or y=0,b, z=0,d
E,=0, x=0,a, when z=0,d,E, =0,y=0, b,z=0,d;
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Fields propagating is H, for TE mode

J(x,y,z,0) Z \/67 ("”x> sin (?) sin <pzd> Re (C (mnp) eXp(jw(ﬂmp)t))

(V2 =7*(@))E, =0
y and 7 are two propagation constants

(V? = 7*(0))E, =0

(V2 =7 (w)E, =1,

—V?H =Y x J, + (0 + joe)(—jowH)
(V2 =7 (0)H =~V xJ,

(V2 =y (@))EL = J,

(VZ - 772>Hx = sz5 (z —do)

(V2 = 7°)Hy = —Jx0(z — do)

_ 2 m2 p2
P (o) +m ( +ﬁ+d2)20

2o 2
jou(e + joe) + 7 ( +— = +22> =0

2 2 2
=2 ,(n* m* p
-7 (w(mﬂp)) =’ pe — jouo =m <a2 +ﬁ “r?)

@ (mnp) = Orea (Mnp) + jormg (mnp)
e/'w(mnp)t — fORal (mnp)t e~ @img (mnp)t

w*pe — o’ pe — jops = —7(w)
(Jsva (X7y w) - ‘IS}-,‘ (X,y CO)é(Z - dO) = ij(nv m,p, w)unmp (xuyv Z)

a b
2V2 d
Jin,m,p, 0] = // oo (6,9, @) — Js, (x,y, 0) X \/_a—\/b;dsm(naﬂ) sin (?) sin <0777:p) dxdy

0

(5.55)

(V2 - ")N)z(w))Hz = ij[m”pa w]”mnp(xvya z)

mnp

= ZHz[mnpv w]”mnp(X,yv Z);

mnp
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When Hz(f ) is the forced resonant mode, then

n2 m2 pZ

smp. o] = (% 5 + 0 ) + P fp, o

J[nmp, )ty (x,y)
H(f) X, y,2 0) = ~Z aN P\
D20 =3 ()

where
2\/5 cos <n7rx> cos (mny) coS (pnz) H
Vonp = ——— — — — ) =
P Vabd a b d ‘

J.vy(X,ya (’U)él(z - d()) = Z‘]} [ml/lp, w}vmnp(xvya Z)

Hence, current density

a b d
J n m,p, @ ///JS) Xy, 0 (Z_dO)anp(x 2 )dXdde
0 0

This completes the general solution of R, L, C circuit.

5.9 Resonant Modes Based on R, L, C Circuits

V H,xz—y zxH, =J,+ (6 +jwe)EL
V E xXz—y ZxE| = —jouH,
X (VE; x 2=y 2x E ) =2 x (—jopH,)
V. E +)E, = —jop 2xH;
Eliminate Z x H, from Eqgs. (5.56) and (5.58)
V,E +yE, :#(ZLHZ xz—J,— (6 +jwe)E}).

(v =P (0)EL = —jou ¥V H, x 2+ jou J. —y ¥V E,

(5.56)

(5.57)

(5.58)
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Hence,

—jou . Jou YV E;
==V H,x z+ — J. — b~
P2 =) 7 P =) =7 ()

Parallel RLC Circuits solution:

di 1
Ii+L—l+—/idt:V
dt ¢

On differentiating

di? di 1
L—+R—+-=0
d2z+ dt+c

Second-order linear, homogeneous differential equation dividing by L both sides
gives the following:

2 Rdi 1
d* Ldr LC

Taking Laplace transform

L 2
e VO

VO ()
=1 2

Series RLC circuit
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132
Let
_ R
2L
R\? /1)
wy = — | —(—
2 2L Le
St =A+w,
SQZ)L—G)]

Hence, solution of differential equation can be written as:
I=A " +Ae™

Here, A; and A, are the magnitude of currents

Now
R\> 1
Carel |— ) > —
2L Lc

%:RI( )+ Lsi( )+%
1%
(s) R+ Ls +
1(s) v
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Since,

—R/L+\/(B)*-4/LC

S12 = )
1(s5) Vv Vv [ 1 1 }
S) = = —_
L +84 L ] Lisi—s)[s—s1 s—s
Taking Laplace inverse of equation
1 1
I(t) = e — e
R _ 4 R _ 4
L\/iz—1c Ly\/iz—1c

Example 5.1 Series RLC circuit solution

t
di(r) 1
CRxi (L1
% x i(t) + n C/z(t)xdt
0

Taking Laplace transform on both the sides gives

1
I(s
CXxs

E = I(s) x R+ L[s x I(s) — i(0)] +

N

v 1
-=1 R+L
(s){ + XS+C><J
1
v_I(s)[RxsqLLxserE]

Roots of the equation are as follows:

Lxs?+Rxs+C'=0
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2
—R R 1
= —— :l: e _—
5= <2L) LC

—R R\? 1
Let slzs:i—i— () -——

nd o R R\? 1
27950 2L) T LC

NOW, S+ 85 = = and 5182 = —
L LC
v =1(s) X L[s* — 5 X (51 + 82) + 5159]
v=1(s) x L[s(s — s1) — s2(s — 51)]
v=1(s) X L[(s — 51)(s — 52)]
v 1

I(s) = L (s —s1)(s — 82)

Using partial fraction solution, we get

I(s) = L(SIV_S2) X |:(s—lsl) - (s—lsz)]

Taking inverse Laplace transform on both the sides

i(t) = x [t — e
0= < e = e
R 4L
S‘l—Sz—z 1—6
v St Sat
i(t) = x [e" — e"']
Ry/1— 4L
Let, A = —Ay——
4L
Ry/1—4L



	5 Mathematical Analysis of RDRA Amplitude Coefficients
	Abstract
	5.1 Introduction
	5.2 Amplitude Coefficients Cmnp
	5.3 RDRA Maxwell's Equation-Based Solution
	5.4 RDRA Inhomogeneous Permittivity and Permeability
	5.5 RDRA with Probe Current Excitation
	5.6 RDRA Resonant Modes Coefficients in Homogeneous Medium
	5.7 RDRA Modes with Different Feed Position
	5.8 R, L, C Circuits and Resonant Modes
	5.9 Resonant Modes Based on R, L, C Circuits


