Chapter 4 Mathematical Analysis of Transcendental Equation in Rectangular DRA

Abstract Mathematical analysis of transcendental equation in rectangular DRA has been derived. Transcendental equation of rectangular DRA provides complete solution of propagation constants, i.e., k_x , k_y , and k_z . The propagation constant gives rise to resonant frequency with the help of characteristic equation. The wave numbers k_x , k_y , and k_z are in x, y, and z direction, respectively. The free space wave number is k_0 . The exact solution of RDRA resonant frequency can be determined from combined solution of transcendental equation and characteristic equation. These equations have unique solution. RDRA depends upon boundary conditions. MATLAB-based simulation has been worked for RDRAs.

Keywords Mathematical analysis • Transcendental equation • Rectangular DRA • Propagation constant • Eigen vectors • Effective electrical length • Characteristic equation

Transcendental equation of rectangular DRA provides complete solution of propagation constants, i.e., k_x , k_y , and k_z . The propagation constant gives rise to resonant frequency with the help of characteristic equation. The wave numbers k_x , k_y , and k_z are in x, y, and z direction, respectively. The free space wave number is k_0 . The exact solution of RDRA resonant frequency can be determined from combined solution of transcendental equation and characteristic equation. These equations have unique solution if RDRA boundary conditions are fixed. For example, top and bottom walls are PMC and rest of the four walls is PEC and vice versa, only two different transcendental equations will be developed.

To get this solution, H_z fields and derivative of H_z fields need to be solved. They are solved for continuous propagating fields conditions. The fields are assumed continuous at interface of RDRA. The RDRA along with eigen vectors is shown in Fig. 4.1a, b.

CASE#1 RDRA solution:

See Fig. 4.2.

Fig. 4.1 a Rectangular DRA. b Eigen currents (current vectors) versus wavelength

Fig. 4.2 RDRA under defined boundaries

To derive transcendental equation, the fields inside the resonator and outside the resonator are required.

$$\tan(k_z d) = \frac{k_z}{\sqrt{(\epsilon_r - 1)k_0^2 - k_z^2}}$$
(transcendental equation) (4.1)

$$\epsilon_r k_0^2 = k_x^2 + k_y^2 + k_z^2 \text{(wave equation)}$$
(4.2)

$$k_x = m\pi/a \tag{4.3a}$$

$$k_{\rm v} = n\pi/b \tag{4.3b}$$

$$k_z = p\pi/d \tag{4.3c}$$

where a, b, and d are dimensions; m, n, and p are the indices.

 $TE_{\delta 11}$, $TE_{1\delta 1}$, and $TE_{11\delta}$ are dominant modes.

The solution of resonant frequency can be had if solution of k_y propagation constant is obtained from characteristic equation, $\epsilon_r k_0^2 = k_x^2 + k_y^2 + k_z^2$, and then substituted in transcendental equation to compute resonant frequency $f_{0.1}$

Boundary condition

Propagation constant, $\gamma_{mn}^2 = k_0^2 + h_{mn}^2$

$$k = 2\pi/\lambda = \omega\sqrt{\mu\epsilon} = \omega/c;$$

$$\int E^2 dV = \int H^2 dV$$

Time average electric energy = time average magnetic energy

$$\epsilon_r k_0^2 = k_x^2 + k_y^2 + k_z^2 \tag{4.4}$$

$$\epsilon_0 k_0^2 = k_x^2 + k_y^2 + k_z'^2$$

$$k_z = p\pi/d$$
(4.5)

Subtracting Eq. (4.1) from Eq. (4.2), we get

$$k_{z}'^{2} - k_{z}^{2} = \epsilon_{0}k_{0}'^{2} - \epsilon_{r}k_{0}^{2}$$
$$k_{z}'^{2} - k_{z}^{2} = \epsilon_{0}\mu_{0}\omega^{2} - \epsilon_{r}\mu_{0}\omega^{2}$$

Taking value of $\epsilon_0 = 1$ and $\mu_0 = \mu$, we get

$$k_{z}^{\prime 2} - k_{z}^{\ 2} = \omega^{2} \mu (1 - \epsilon_{r}) \tag{4.6}$$

4.1 Case-1: Top and Bottom Walls as PMC and Rest of the Four Walls are PEC

.

See Fig. 4.3.

Assuming that the top and bottom surface plane be at z = 0, d to be PMC

$$n \times H = 0$$

And

or,

And

At

$$x = 0, a \quad E_y = E_z = 0$$
$$H_x = 0$$

PMC

d

PEC PEC

Fig. 4.3 RDRA with boundaries

$$n \cdot E = 0$$

 $H_y = H_x = 0$ $E_z = 0$

$$n \times E = 0$$

$$n \cdot H = 0$$

$$x = 0, a$$
 $E_y = E_z = 0$
 $H_x = 0$

At

$$y = 0, b \quad E_x = E_z = 0$$
$$H_y = 0$$

We also know

$$E_x = \frac{1}{j\omega\epsilon \left(1 + \frac{\gamma^2}{k^2}\right)} \left[\frac{\partial H_z}{\partial y} - \frac{1}{j\omega\mu}\frac{\partial^2 E_z}{\partial z\partial x}\right]$$
(4.7a)

$$E_{y} = \frac{1}{j\omega\epsilon \left(1 + \frac{\gamma^{2}}{k^{2}}\right)} \left[-\frac{1}{j\omega\mu} \frac{\partial^{2}E_{z}}{\partial z\partial y} - \frac{\partial H_{z}}{\partial x} \right]$$
(4.7b)

$$H_{x} = \frac{-1}{j\omega\mu\left(1 + \frac{\gamma^{2}}{k^{2}}\right)} \left[\frac{\partial E_{z}}{\partial y} - \frac{1}{j\omega\epsilon}\frac{\partial^{2}H_{z}}{\partial z\partial x}\right]$$
(4.7c)

$$H_{y} = \frac{-1}{j\omega\mu\left(1 + \frac{\gamma^{2}}{k^{2}}\right)} \left[\frac{1}{j\omega\epsilon} \frac{\partial^{2}H_{z}}{\partial z\partial y} - \frac{\partial E_{z}}{\partial x}\right]$$
(4.7d)

Now, the solution of second-order differential equation is given as follows:

$$\psi_z = X(x)Y(y)Z(z)$$

where

$$X(x) = A_1 \sin k_x x + A_2 \cos k_x x \tag{4.8a}$$

$$Y(y) = A_3 \sin k_y y + A_4 \cos k_y y \tag{4.8b}$$

$$Z(z) = A_5 \sin k_z z + A_6 \cos k_z z \tag{4.8c}$$

For TE mode $(E_z = 0 \text{ and } H_z \neq 0)$

$$\psi_{H_z} = X(x)Y(y)Z(z)$$

After putting $E_z = 0$, we get

$$E_{y} = C' \left[-\frac{\partial H_{z}}{\partial x} \right]$$

or,

$$E_y = C'X'(x)Y(y)Z(z)$$

Now

$$X'(x) = A_1 \cos k_x x - A_2 \sin k_x x$$

But at

$$x = 0, a \quad E_y = 0$$

$$\therefore \quad 0 = A_1 \cos k_x 0 - A_2 \sin k_x 0$$

or,

$$A_1 = 0$$
 and $k_x = \frac{m\pi}{a}$

Similarly,

$$E_x = C' \left[\frac{\partial H_z}{\partial y} \right]$$

or,

$$E_x = C'X(x)Y(y)Z(z)$$

Now

$$Y'(y) = A_3 \cos k_y y - A_4 \sin k_y y$$

But at

$$y = 0, b \quad E_x = 0$$

$$\therefore \quad 0 = A_3 \cos k_y 0 - A_4 \sin k_y 0$$

or,

$$A_3 = 0$$
 and $k_y = \frac{n\pi}{b}$

from

$$H_x = C' \left[-\frac{1}{j\omega\epsilon} \frac{\partial^2 H_z}{\partial z \partial x} \right]$$

or,

$$H_x = C'X'(x)Y(y)Z'(z)$$

Now

$$Z'(z) = A_5 \cos k_z z - A_6 \sin k_z z$$

At

$$z = 0, d \quad H_x = 0$$

$$\therefore \quad A_5 \cos k_z 0 - A_6 \sin k_z 0 = 0$$

$$A_5 = 0 \text{ and } k_z = \frac{p\pi}{d}$$

Hence,

$$H_z = A_2 A_4 A_6 \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) \cos\left(\frac{p\pi}{d}z\right)$$
(4.9)

Using Eqs. (4.1)-(4.4), and (4.8a)-(4.8c), we get

$$H_x = C'' A_2 A_4 A_6 \left(\frac{m\pi}{a}\right) \left(\frac{p\pi}{d}\right) \sin\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) \sin\left(\frac{p\pi}{d}z\right)$$
(4.10a)

$$H_{y} = C'' A_{2} A_{4} A_{6} \left(\frac{n\pi}{b}\right) \left(\frac{p\pi}{d}\right) \cos\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \sin\left(\frac{p\pi}{d}z\right)$$
(4.10b)

$$E_{y} = C'' A_{2} A_{4} A_{6} \left(\frac{m\pi}{a}\right) \sin\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) \cos\left(\frac{p\pi}{d}z\right)$$
(4.10c)

$$E_x = C'' A_2 A_4 A_6 \left(\frac{n\pi}{b}\right) \cos\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \cos\left(\frac{p\pi}{d}z\right)$$
(4.10d)

Now, evaluate E_x and H_z at the boundary walls of the dielectric waveguide.

As we know that at the PMC wall, the tangential component of magnetic field and normal component of electric field are equal to "zero" at the interface z = 0, d. Hence,

$$H_x, H_y = 0$$

and

$$E_z = 0$$

Also, for propagation to be possible, we need two normal components of *E* and *H*. Thus, we take E_x and H_y .

Now, the propagating wave is continuous at the interface, i.e., $E_x = E'_x$.

Therefore,

$$A\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)\left(C_{1}e^{jk_{z}z}+C_{2}e^{-jk_{z}z}\right) = A\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)C_{2}'e^{-jk_{z}'z}$$
(4.11)

or,

$$C_1 e^{jk_z z} + C_2 e^{-jk_z z} = C'_2 e^{-jk'_z z}$$
(4.12)

But at z = 0, only the inside waveform exists.

Therefore,

$$C_1 e^{jk_z z} + C_2 e^{-jk_z z} = 0$$

Now substituting the value of z = 0, we get

$$C_1 + C_2 = 0$$

or, $C_1 = -C_2$ (4.13)

As H_z is continuous at the interface z = d,

$$H_z = H'_z$$
 and $\frac{\partial H_z}{\partial x} = \frac{\partial H'_z}{\partial x}$

From Eq. (4.9),

 $H_z = B\cos\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)\cos(k_z z)$ (4.14a)

and

$$H'_{z} = B\cos\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)\cos\left(k'_{z}z\right)$$
(4.14b)

Equating Eqs. (4.14a) and (4.14b), we get

$$B\cos\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)\left(C_{1}e^{jk_{z}z}+C_{2}e^{-jk_{z}z}\right)=B\cos\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)\left(C_{2}'e^{-jk_{z}'z}\right)$$

or,

$$C_1 e^{jk_z z} + C_2 e^{-jk_z z} = C'_2 e^{-jk'_z z}$$
(4.15)

From Eq. (4.15), i.e., $C_1 = -C_2$, we get, at z = d,

$$2jC_1\sin(k_z d) = C'_2 e^{-jk_z d}$$
(4.16)

Now, equating the derivative of H_z , we get

$$jk_{z}(C_{1}e^{jk_{z}z} - C_{2}e^{-jk_{z}z}) = -jk_{z}'C_{2}'e^{-jk_{z}'z}$$
(4.17)

or,

$$2k_z C_1 \cos(k_z d) = -k'_z C'_2 e^{-jk'_z z}$$

Dividing equation (4.16) by (4.17)

$$\frac{j\tan k_z d}{k_z} = \frac{-1}{k_z'} \tag{4.18a}$$

Squaring both sides and substituting the value of k_z^2 from Eq. (4.3c),

$$k_{z}^{\prime 2} = k_{z}^{2} - \omega^{2} \mu(\epsilon_{r} - 1)$$

and substituting $\mu = 1$. We get,

$$\tan(k_z d) = \frac{k_z}{\sqrt{k_0^2(\epsilon_r - 1) - k_z^2}}$$
(4.18b)

The above equation is the required transcendental equation.

4.2 Case-2

For transcendental equation, we need to compute the fields inside the resonator and outside it.

$$\tan(k_z d) = \frac{k_z}{\sqrt{(\epsilon_r - 1)k_0^2 - k_z^2}}$$
(4.19)

where $\epsilon_r k_0^2 = k_x^2 + k_y^2 + k_z^2$ (characteristic wave equation)

$$k_x = \frac{m\pi}{a} \tag{4.20a}$$

$$k_y = \frac{n\pi}{b} \tag{4.20b}$$

$$k_z = \frac{p\pi}{d} \tag{4.20c}$$

where a, b, and d are dimensions; m, n, and p are modes.

 $TE_{\delta 11}$, $TE_{1\delta 1}$, and $TE_{11\delta}$ are dominant modes.

Boundary condition

Propagation constant, $\gamma_{mn}^2 = k_0^2 + hmn^2$ where $k = \frac{2\pi}{\lambda} = \omega \sqrt{\mu\epsilon} = \frac{\omega}{c}$.

From the energy conservation principle,

$$\int E^2 \mathrm{d}V = \int H^2 \mathrm{d}V.$$

i.e., time average electric energy = time average magnetic energy.

When top and bottom walls are PMC, rest of the other walls is PEC Assuming that the top and bottom surface plane be at z = 0, d

$$\therefore n \times H = 0$$

And

 $n \cdot E = 0$

or,

$$H_y = H_x = 0$$
$$E_z = 0$$

Rest of the other walls is PEC

$$\therefore n \times E = 0$$

And

 $n \cdot H = 0$

At

$$x = 0, a \quad E_y = E_z = 0$$
$$H_x = 0$$

4.2 Case-2

At

$$y = 0, b \quad E_x = E_z = 0$$
$$H_y = 0$$

We also know

$$E_x = \frac{1}{j\omega\epsilon \left(1 + \frac{\gamma^2}{k^2}\right)} \left[\frac{\partial H_z}{\partial y} - \frac{1}{j\omega\mu} \frac{\partial^2 E_z}{\partial z \partial x}\right]$$
(4.21a)

$$E_{y} = \frac{1}{j\omega\epsilon \left(1 + \frac{\gamma^{2}}{k^{2}}\right)} \left[-\frac{1}{j\omega\mu} \frac{\partial^{2}E_{z}}{\partial z\partial y} - \frac{\partial H_{z}}{\partial x} \right]$$
(4.21b)

$$H_{x} = \frac{-1}{j\omega\mu\left(1 + \frac{\gamma^{2}}{k^{2}}\right)} \left[\frac{\partial E_{z}}{\partial y} - \frac{1}{j\omega\epsilon}\frac{\partial^{2}H_{z}}{\partial z\partial x}\right]$$
(4.21c)

$$H_{y} = \frac{-1}{j\omega\mu\left(1 + \frac{\gamma^{2}}{k^{2}}\right)} \left[\frac{1}{j\omega\epsilon} \frac{\partial^{2}H_{z}}{\partial z\partial y} - \frac{\partial E_{z}}{\partial x}\right]$$
(4.21d)

Now, the solution of second-order differential equation is given as follows:

$$\psi_z = X(x)Y(y)Z(z) \tag{4.22}$$

where

$$X(x) = A_1 \sin k_x x + A_2 \cos k_x x$$

$$Y(y) = A_3 \sin k_y y + A_4 \cos k_y y$$

$$Z(z) = A_5 \sin k_z z + A_6 \cos k_z z$$

For TE mode $(E_z = 0 \text{ and } H_z \neq 0)$

$$\psi_{H_z} = X(x)Y(y)Z(z)$$
$$E_z = 0$$

we get

$$E_y = C' \left[-\frac{\partial H_z}{\partial x} \right]$$

or,

$$E_y = C'X'(x)Y(y)Z(z)$$

Now

$$X'(x) = A_1 \cos k_x x - A_2 \sin k_x x$$

But at

$$x = 0, a \quad E_y = 0$$

$$\therefore \quad 0 = A_1 \cos k_x 0 - A_2 \sin k_x 0$$

or,

$$A_1 = 0$$
 and $k_x = \frac{m\pi}{a}$

Similarly,

$$E_x = C' \left[\frac{\partial H_z}{\partial y} \right]$$

or,

$$E_x = C'X(x)Y'(y)Z(z)$$

Now

$$Y'(y) = A_3 \cos k_y y - A_4 \sin k_y y$$

But at

$$y = 0, b \quad E_x = 0$$

$$\therefore \quad 0 = A_3 \cos k_y 0 - A_4 \sin k_y 0$$

or,

$$A_3 = 0$$
 and $k_y = \frac{n\pi}{b}$
 $H_x = C' \left[-\frac{1}{j\omega\epsilon} \frac{\partial^2 H_z}{\partial z \partial x} \right]$

4.2 Case-2

or,

$$H_x = C'X'(x)Y(y)Z'(z)$$

Now

$$Z'(z) = A_5 \cos k_z z - A_6 \sin k_z z$$

At

$$z = 0, d \quad H_x = 0$$

$$\therefore \quad A_5 \cos k_z 0 - A_6 \sin k_z 0 = 0$$

$$A_5 = 0 \quad \text{and} \quad k_z = \frac{p\pi}{d}$$

Hence,

$$H_z = A_2 A_4 A_6 \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) \cos\left(\frac{p\pi}{d}z\right)$$
(4.23)

Using Eqs. (4.1)-(4.4), and (4.8a)-(4.8c), we get

$$H_x = C'' A_2 A_4 A_6 \left(\frac{m\pi}{a}\right) \left(\frac{p\pi}{d}\right) \sin\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) \sin\left(\frac{p\pi}{d}z\right)$$
(4.24a)

$$H_{y} = C'' A_{2} A_{4} A_{6} \left(\frac{n\pi}{b}\right) \left(\frac{p\pi}{d}\right) \cos\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \sin\left(\frac{p\pi}{d}z\right)$$
(4.24b)

$$E_{y} = C'' A_{2} A_{4} A_{6} \left(\frac{m\pi}{a}\right) \sin\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) \cos\left(\frac{p\pi}{d}z\right)$$
(4.24c)

$$E_x = C'' A_2 A_4 A_6 \left(\frac{n\pi}{b}\right) \cos\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \cos\left(\frac{p\pi}{d}z\right)$$
(4.24d)

Above equations can also be written as follows:

$$H_x = \frac{k_x k_z}{j \omega \mu_0} \sin(k_x x) \cos(k_y y) \sin(k_z z)$$

$$H_y = \frac{k_y k_z}{j \omega \mu_0} \cos(k_x x) \sin(k_y y) \sin(k_z z)$$

$$E_y = -k_x \sin(k_x x) \cos(k_y y) \cos(k_z z)$$

$$E_x = k_y \cos(k_x x) \sin(k_y y) \cos(k_z z)$$

$$H_z = \frac{k_x^2 + k_y^2}{j \omega \mu_0} \cos(k_x x) \cos(k_y y) \cos(k_z z)$$

Since H_z is continuous, i.e., $\frac{\mathrm{d}H_z}{\mathrm{d}z} \neq 0$,

$$H'_{z} = \frac{k_x^2 + k_y^2}{j\omega\mu_0}\cos(k_x x)\cos(k_y y)\cos(k'_z z)$$

Now, H_y can be written as follows:

$$H_{y} = \frac{k_{y}k_{z}}{j\omega\mu_{0}}\cos(k_{x}x)\sin(k_{y}y)(C_{1}e^{jk_{z}d} - C_{2}e^{-jk_{z}d})$$

But

$$H_y = 0 \text{ at } d = 0$$
$$C_1 - C_2 = 0$$

or,

$$C_1 = C_2$$
$$\frac{\mathrm{d}H_y}{\mathrm{d}z} = A'jk_z\cos(k_xx)\sin(k_yy)(C_1e^{jk_zd} + C_2e^{-jk_zd})$$

or,

$$\frac{\mathrm{d}H_y}{\mathrm{d}z} = C_1 j k_z \cos(k_x x) \sin(k_y y) (e^{jk_z d} + e^{-jk_z d})$$

or,

$$\frac{dH_y}{dz} = C_1 2jk_z \cos(k_x x) \sin(k_y y) \cos(k_z d)$$

$$H'_y = C'_1 \cos(k_x x) \sin(k_y y) e^{-jk'_z d} \text{ outside the cavity}$$

For H_z to be continuous,

$$\frac{\mathrm{d}H_y}{\mathrm{d}z} = \frac{\mathrm{d}H'_y}{\mathrm{d}z}$$

or,

$$C_1 2jk_z \cos(k_x x) \sin(k_y y) \cos(k_z d) = -jk'_z C'_1 \cos(k_x x) \sin(k_y y) e^{-jk'_z d}$$

70

4.2 Case-2

or,

$$2C_1k_z\cos(k_zd) = -k'_zC'_1e^{-jk'_zd}$$
(4.25)

From above equations, we have

$$E_x = k_y \cos(k_x x) \sin(k_y y) \left(C_1 e^{jk_z d} + C_2 e^{-jk_z d}\right)$$

 $d=0, E_x=0,$

At

so,

 $C_1 + C_2 = 0$

or,

$$C_1 = -C_2$$

$$\therefore \quad E_x = k_y \cos(k_x x) \sin(k_y y) C_1 \left(e^{jk_z d} - e^{-jk_z d} \right)$$

or,

$$E_x = 2jC_1k_y\cos(k_xx)\sin(k_yy)\sin(k_zd)$$

Also

$$E'_{x} = k_{y} \cos(k_{x}x) \sin(k_{y}y) \cos(k'_{z}z)$$

or,

$$E'_x = C'_1 k_y \cos(k_x x) \sin(k_y y) e^{-jk_z d}$$

For H_z to be continuous,

$$E_x = E'_x$$

or,

$$jC_1k_y\cos(k_xx)\sin(k_yy)\sin(k_zd) = C'_1k_y\cos(k_xx)\sin(k_yy)e^{-jk_zd}$$

or,

$$2jC_1\sin(k_z d) = C_1' e^{-jk_z d}$$
(4.26)

Dividing Eq. (4.16) by Eq. (4.25), we get

$$\frac{2C_1 j \sin(k_z d)}{2C_1 k_z \cos(k_z d)} = \frac{-C_1' e^{-jk_z d}}{k_z' C_1' e^{-jk_z' d}}$$

or,

$$\frac{j\tan k_z d}{k_z} = \frac{-1}{k_z'}$$

or,

$$j \tan k_z d = -\frac{k_z}{k'_z}$$

On squaring and putting ${k_z'}^2 = k_z^2 + \omega^2 \mu_0 (1 - \epsilon_r)$

$$\tan^2 k_z d = -\frac{k_z^2}{k_z^2 + \omega^2 \mu_0 (1 - \epsilon_r)}$$

or,

$$\tan^{2} k_{z} d = \frac{k_{z}^{2}}{\omega^{2} \mu_{0}(\epsilon_{r} - 1) - k_{z}^{2}}$$
$$\tan k_{z} d = \frac{k_{z}}{\sqrt{(\epsilon_{r} - 1)k_{0}^{2} - k_{z}^{2}}}$$
(4.27)

With the help of transcendental equation, we can find the propagation factor. Also with the help of this equation, we can obtain resonant frequency.

CASE#3

For transcendental equation, we need to compute the fields inside the resonator and outside it.

$$k_z \tan(k_z d) = \sqrt{(\epsilon_r - 1)k_0^2 - k_z^2},$$

 $\epsilon_r k_0^2 = k_x^2 + k_y^2 + k_z^2;$

and

$$k_x = m\pi/a \tag{4.28a}$$

$$k_{\rm v} = n\pi/b \tag{4.28b}$$

$$k_z = p\pi/d \tag{4.28c}$$

where a, b, and d are dimensions; m, n, and p are the indices.

 $TE_{\delta 11}$, $TE_{1\delta 1}$, $TE_{11\delta}$ are dominant modes.

Boundary conditions

Propagation constant, $\gamma_{mn}^2 = k_0^2 + h_{mn}^2$

$$k = 2\pi/\lambda = \omega\sqrt[2]{\mu\epsilon} = \omega/c;$$

$$\int E^2 \mathrm{d}V = \int H^2 \mathrm{d}V$$

Time average electric energy = time average magnetic energy

$$\epsilon_0 \epsilon_r k_0^2 = k_x^2 + k_y^2 + k_z^2 \tag{4.29a}$$

$$\epsilon_0 k_0^2 = k_x^2 + k_y^2 + k_z'^2 \qquad (4.29b)$$
$$k_z' \neq p\pi/d$$

Subtracting Eq. (4.1) from Eq. (4.2), we get

$$k_z'^2 - k_z^2 = \epsilon_0 k_0'^2 - \epsilon_0 \epsilon_r k_0^2$$

$$k_z'^2 - k_z^2 = \epsilon_0 \mu_0 \omega^2 - \epsilon_0 \epsilon_r \mu_0 \omega^2$$

Taking the value of $\epsilon_0 = 1$ and $\mu_0 = \mu$, we get

$$k_z^{\prime 2} - k_z^2 = \omega^2 \mu \epsilon_0 \ (1 - \epsilon_r) \tag{4.30}$$

When top and bottom walls are PEC, rest of the other walls is PMC. Now,

Assuming that the top and bottom surface plane be at z = 0, d

•

$$n \times E = 0$$

and

$$n \cdot H = 0$$

or,

$$E_y = E_x = 0$$
$$H_z = 0$$

Rest of the other walls is PMC

$$\therefore n \times H = 0$$

 $n \cdot E = 0$

And

At

$$x = 0, a \quad H_y = H_z = 0$$
$$E_x = 0$$

At

$$y = 0, b \quad H_x = H_z = 0$$
$$E_y = 0$$

We also know

$$E_{x} = \frac{1}{j\omega\epsilon \left(1 + \frac{\gamma^{2}}{k^{2}}\right)} \left[\frac{\partial H_{z}}{\partial y} - \frac{1}{j\omega\mu}\frac{\partial^{2}E_{z}}{\partial z\partial x}\right]$$
(4.31a)

$$E_{y} = \frac{1}{j\omega\epsilon \left(1 + \frac{\gamma^{2}}{k^{2}}\right)} \left[-\frac{1}{j\omega\mu} \frac{\partial^{2}E_{z}}{\partial z\partial y} - \frac{\partial H_{z}}{\partial x} \right]$$
(4.31b)

$$H_{x} = \frac{-1}{j\omega\mu\left(1 + \frac{\gamma^{2}}{k^{2}}\right)} \left[\frac{\partial E_{z}}{\partial y} - \frac{1}{j\omega\epsilon}\frac{\partial^{2}H_{z}}{\partial z\partial x}\right]$$
(4.31c)

$$H_{y} = \frac{-1}{j\omega\mu\left(1 + \frac{y^{2}}{k^{2}}\right)} \left[\frac{1}{j\omega\epsilon}\frac{\partial^{2}H_{z}}{\partial z\partial y} - \frac{\partial E_{z}}{\partial x}\right]$$
(4.31d)

Now, the solution of second-order differential equation is given as follows:

 $\psi_z = X(x)Y(y)Z(z)$

74

where

$$X(x) = A_1 \sin k_x x + A_2 \cos k_x x$$

$$Y(y) = A_3 \sin k_y y + A_4 \cos k_y y$$

$$Z(z) = A_5 \sin k_z z + A_6 \cos k_z z$$

(i) For TE mode
$$(E_z = 0 \text{ and } H_z \neq 0)$$

$$\psi_{H_z} = X(x)Y(y)Z(z)$$

At

$$x=0, a \quad H_z=0,$$

or,

$$A_1 \sin k_x 0 + A_2 \cos k_x 0 = 0$$

$$\therefore \quad A_2 = 0 \text{ and } k_x = \frac{m\pi}{a}$$

Also at

$$y=0, b \quad H_z=0$$

or,

$$A_3 \sin k_y 0 + A_4 \cos k_y 0 = 0$$

$$\therefore \quad A_4 = 0 \text{ and } k_y = \frac{n\pi}{b}$$

At

$$z = 0, d \quad H_z = 0$$

$$\therefore \quad A_5 \sin k_z 0 + A_6 \cos k_z 0 = 0$$

$$A_6 = 0 \quad \text{and} \quad k_z = \frac{p\pi}{d}$$

Hence,

$$H_z = A_1 A_3 A_5 \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \sin\left(\frac{p\pi}{d}z\right)$$
(4.32)

Using Eqs. (4.1)–(4.4), and (4.8a)–(4.8c), we get

$$H_x = C'' A_1 A_3 A_5 \left(\frac{m\pi}{a}\right) \left(\frac{p\pi}{d}\right) \cos\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \cos\left(\frac{p\pi}{d}z\right)$$
(4.33a)

$$H_{y} = C'' A_{1} A_{3} A_{5} \left(\frac{n\pi}{b}\right) \left(\frac{p\pi}{d}\right) \sin\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) \cos\left(\frac{p\pi}{d}z\right)$$
(4.33b)

$$E_{y} = C'' A_{1} A_{3} A_{5} \left(\frac{m\pi}{a}\right) \cos\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \sin\left(\frac{p\pi}{d}z\right)$$
(4.33c)

$$E_x = C'' A_1 A_3 A_5 \left(\frac{n\pi}{b}\right) \sin\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) \sin\left(\frac{p\pi}{d}z\right)$$
(4.33d)

Now, evaluate H_x and H_z at the boundary walls of the dielectric waveguide.

As we know that at the PEC wall, the tangential component of electric field and normal component of magnetic field is equal to "zero" at the interface z = 0, d.

Hence,

$$E_{x}, E_{y} = 0$$

and

$$H_z = 0$$

Also, for propagation to be possible, we need two normal components of *E* and *H*. Thus we take E_y and H_x .

Now, the propagating wave is continuous at the interface, i.e., $H_x = H'_x$. Therefore,

$$A\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)\left(C_{1}e^{jk_{z}z}+C_{2}e^{-jk_{z}z}\right)=A\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)C_{2}'e^{-jk_{z}'z}$$

or,

$$C_1 e^{jk_z z} + C_2 e^{-jk_z z} = C_2' e^{-jk_z' z}$$
(4.34)

But at z = 0, only the inside waveform exists.

Therefore,

$$C_1 e^{jk_z z} + C_2 e^{-jk_z z} = 0$$

Now, substituting the value of z = 0, we get

$$C_1 + C_2 = 0$$

4.2 Case-2

or,

$$C_1 = -C_2$$
 (4.35)

As H_z is continuous at the interface z = d. Therefore,

$$H_{z} = H'_{z} \text{ and } \frac{\partial H_{z}}{\partial x} = \frac{\partial H'_{z}}{\partial x}$$
$$H_{z} = B \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \sin(k_{z}z)$$
(4.36a)

and

$$H'_{z} = B \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \sin(k'_{z}z)$$
(4.36b)

Equating Eqs. (i) and (ii), we get

$$B\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)(C_1e^{jk_zz}-C_2e^{-jk_zz})=B\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)C_2'e^{-jk_z'z}$$

or,

$$C_1 e^{jk_z z} - C_2 e^{-jk_z z} = C'_2 e^{-jk'_z z}$$

From Eq. (1b), i.e., $C_1 = -C_2$, we get, at z = d,

$$2C_1 \cos(k_z d) = C'_2 e^{-jk_z d} \tag{4.37}$$

Now, equating the derivative of H_z , we get

$$jk_z(C_1e^{jk_zz} + C_2e^{-jk_zz}) = -jk'_zC'_2e^{-jk'_zz}$$

or,

$$2jk_z C_1 \sin(k_z d) = -k'_z C'_2 e^{-jk'_z z}$$
(4.38)

Dividing equation (iv) by (iii), we get

$$jk_z \tan k_z d = -k'_z$$

Squaring both sides and substituting the value of $k_z^{\prime 2}$ from Eq. (4.3c), we get

$$k'_z = k_z^2 - \omega^2 \mu(\epsilon_r - 1)$$

and substituting $\mu = 1$, we get isolated DRA case as:

$$k_z \tan(k_z d) = \sqrt{(\epsilon_r - 1)k_0^2 - k_z^2}$$
 (4.39a)

DRA with ground plane case as:

$$k_z \tan(k_z d/2) = \sqrt{(\epsilon_r - 1)k_0^2 - k_z^2}$$
 (4.39b)

Hence, the solution of transcendental equation is completely obtained.

4.3 MATLAB Simulation Results

The same can be seen if MATLAB simulation is obtained as given below:

```
clear
clear all
er=9.8;
c=3*10^8;
d=10*10^-3;
for p=1:1:10
    f=c*p*(sqrt(1+tan(p*pi/2).^2))/2*d*(sqrt(er-1));
    end
plot(p,f);
title('pvsf')
xlabel('p----->>');
ylabel('f----->>');
grid on;
```

Relationship between delta distance and its impact on resonant frequency is shown in Fig. 4.4.

The resonant frequency is increasing as the delta length is increasing as shown in Fig. 4.4. Also, radiation lobe is increasing as the number of resonant mode is increasing as shown in Fig. 4.5.

Fig. 4.4 Frequency versus delta distance

Radiation Lobes: RDRA dimensions are given to compute resonant modes using MATLAB.

Program for RDRA (a=length=10mm, b=width=5mm ,d=height=2mm)

m=3; n=3; a=10; b=5; x=linspace(-5,5,51); y=linspace(-2.5,2.5,51); [xi,yi] = meshgrid(x,y); Ez= cos(m*pi*xi/a).*cos(n*pi*yi/b); Ez= Ez.^2; Ez= sqrt(Ez); surf(xi,yi,Ez) view([-45,60]) %%view([180,0]) drawnow

Fig. 4.5 Radiation lobes of radiation pattern in RDRA

MATLAB Program for Ez field

m=5;n=4;p=3; a=10; b=5; c=2; x=linspace(-5,5,51);y=linspace(-2.5,2.5,51); z=linspace(-1,1,51); [xi,yi,zi] = meshgrid(x,y,z); Ez= (cos(m*pi*xi/a).*cos(n*pi*yi/b)).*sin(p*pi*zi/c); $Ez = Ez.^{2};$ Ez= sqrt(Ez); xslice = -4.5; yslice = -2.5; zslice =1; slice(xi,yi,zi,Ez,xslice,yslice,zslice) colormap hsv

MATLAB program for transcendental equation and resonant frequency of RDRA:

```
d=9;
w=6;
h=7.6;
c=3e8;
cons=9.8;
syms y real
kx=pi/d;
kz=pi/2/h;
ko=sqrt((kx^2+y^2+kz^2)/cons);
f=real(y*tan(y*w/2)-sqrt((cons-1)*ko^2-y^2));
ky=fzero(inline(f),[0,(pi/w)-0.01]);
fresonance = c/2/pi*sqrt((kx^2+ky^2+kz^2)/cons)/1e7;
```

The MATLAB-simulated resonant modes in Figs. 4.6, 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12 have been drawn, and resonant frequency using transcendental equation is placed in table form.

Fig. 4.6 Resonant modes in xy plane

Fig. 4.7 Resonant modes in xy plane

Fig. 4.8 Resonant modes in RDRA in xy plane

Solved examples of RDRA resonant frequency:

Example 1 Calculate the dimension of "d" in RDRA: For TE₁₁₁ mode when

$$\epsilon_r = 100$$

 $a = 10 \text{ mm}$
 $b = 10 \text{ mm}$
 $f_r = 7.97 \text{ GHz}$

Fig. 4.9 Resonant modes in RDRA in xy plane

Fig. 4.10 Resonant modes 3D in RDRA in xyz plane

Fig. 4.11 TE 341 resonant modes

Fig. 4.12 TE 323 resonant modes

Solution Resonant frequency:

$$f_r = \frac{c}{2\sqrt{\epsilon_r}} \sqrt{\frac{m^2}{a} + \frac{n^2}{b} + \frac{p^2}{d}}$$

$$7.97 \times 10^9 = \frac{3 \times 10^8}{2\sqrt{100}} \sqrt{100^2 + 100^2 + \frac{1^2}{d}}$$

$$531.33 = \sqrt{20000 + \frac{1^2}{d}}$$

$$\frac{1}{d} = 512.167$$

$$d = 1.95 \text{ mm}$$

$$\epsilon_r = 35$$

 $a = 18 \text{ mm}$
 $b = 18 \text{ mm}$
 $f_r = 2.45 \text{ GHz}$

Solution

$$f_r = \frac{c}{2\sqrt{\epsilon_r}} \sqrt{\frac{m^2}{a} + \frac{n^2}{b} + \frac{p^2}{d}}$$

$$2.45 \times 10^9 = \frac{3 \times 10^8}{2\sqrt{35}} \sqrt{\frac{1000^2}{18} + \frac{1000^2}{18} + \frac{1^2}{d}}$$

$$9337.222 = \sqrt{2\left(\frac{1000^2}{18}\right) + \frac{1^2}{d}}$$

$$\frac{1}{d} = 56.252$$

$$d = 17.77 \text{ mm}$$

Example 3 Calculate the resonant frequency for TE_{111} mode using the given data of RDRA:

$$\epsilon_r = 10$$

 $a = 14 \text{ mm}$
 $b = 8 \text{ mm}$
 $d = 8 \text{ mm}$

Solution

$$f_r = \frac{c}{2\sqrt{\epsilon_r}} \sqrt{\frac{m^2}{a} + \frac{n^2}{b} + \frac{p^2}{d}}$$
$$f_r = \frac{3 \times 10^8}{2\sqrt{10}} \sqrt{\frac{1000^2}{14} + \frac{1000^2}{8} + \frac{1000^2}{8}}$$
$$f_r = 9.04 \,\text{GHz}$$

Example 4

 $\epsilon_r = 10$ a = 14 mm b = 8 mmd = 16 mm

Solution

$$f_r = \frac{c}{2\sqrt{\epsilon_r}} \sqrt{\frac{m^2}{a} + \frac{n^2}{b} + \frac{p^2}{d}}$$
$$f_r = \frac{3 \times 10^8}{2\sqrt{10}} \sqrt{\frac{1000^2}{14} + \frac{1000^2}{8} + \frac{1000^2}{16}}$$
$$f_r = 7.44 \text{ GHz}$$

Example 5 Calculate the resonant frequency for the $TE_{11\delta}$ mode using the given data:

$$\epsilon_r = 10$$

 $a = 14 \text{ mm}$
 $b = 8 \text{ mm}$
 $d = 8 \text{ mm}$

Solution

$$f_r = \frac{c}{2\sqrt{\epsilon_r}} \sqrt{\frac{m^2}{a} + \frac{n^2}{b} + \frac{\delta^2}{d}}$$
$$f_r = \frac{3 \times 10^8}{2\sqrt{10}} \sqrt{\frac{1000^2}{14} + \frac{1000^2}{8} + 0}$$
$$f_r = 6.82 \,\text{GHz}$$

Example 6

$$\epsilon_r = 10$$

 $a = 14 \text{ mm}$
 $b = 8 \text{ mm}$
 $d = 16 \text{ mm}$

Solution

$$f_r = \frac{c}{2\sqrt{\epsilon_r}} \sqrt{\frac{m^2}{a} + \frac{n^2}{b} + \frac{p^2}{d}}$$
$$f_r = \frac{3 \times 10^8}{2\sqrt{10}} \sqrt{\frac{1000^2}{14} + \frac{1000^2}{8} + 0}$$
$$f_r = 6.82 \,\text{GHz}$$

4.4 Resonant Frequency of RDRA for Experimentations

The RDRAs can be prototyped with various materials and sizes as per the requirements.

Table 4.1 consists of list of RDRA materials, permittivity, dimensions, and computed resonant frequency.

Example 7 Compute resonant frequency when RDRA dimensions are $10 \times 10 \times 10 \times 10 \text{ mm}^3$ and dielectric constant of material used is 10.

$$(f_r)m, n, p = \frac{c}{2\pi\sqrt{\epsilon\mu}}\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{p\pi}{d}\right)^2}$$

Resonant frequencies in isolated case are 49.7 and 25.8 GHz with ground plane (Table 4.2).

S. no.	Material	Permittivity	RDRA dimension $(a \times b \times h)$ mm	Resonant frequency simulated by HFSS	Resonant frequency calculated
Cou	ntis Laboratories		·	·	
1.	MgO–SiO ₂ –TiO ₂ (CD-9)	9.8	9 × 6 × 7.6	7.43	7.6757
2.	MgO–SiO ₂ –TiO ₂ (CD-9)	9.8	14.3 × 25.4 × 26.1	3.5	3.7430
3.	MgO–CaO–TiO ₂ (CD-20)	20.0	10.16 × 10.2 × 7.11	4.71	4.6215
4.	MgO–CaO–TiO ₂ (CD-20)	20.0	10.16 × 7.11 × 10.2	4.55	4.5941
5.	MgO–CaO–TiO ₂ (CD-20)	20.0	$10.2 \times 10.2 \times 7.89$	4.635	4.4833
6.	MgO–CaO–TiO ₂ (CD-100)	100.0	$10 \times 10 \times 2$	4.57	4.2158
7.	MgO–CaO–TiO ₂ (CD-100)	100.0	$10 \times 10 \times 1$	7.97	7.7587
8.	MgO–CaO–TiO ₂ (CD-100)	100.0	12.7 × 12.7 × 1	7.72	7.6628
9.	MgO–CaO–TiO ₂ (CD-100)	100.0	$5 \times 10 \times 1$	8.85	8.1828
10.	MgO–CaO–TiO ₂ (CD-100)	100.0	$10 \times 5 \times 1$	8.5	8.0147
Eme	rson & Cuming Mid	crowave Prod	ucts N.V.		
11.	Magnesium titanate (ECCOSTOCK@)	10.0	$14 \times 8 \times 8$	5.5	5.6117
12.	Magnesium titanate (ECCOSTOCK@)	10.0	14.3 × 25.4 × 26.1	3.92	3.7055
13.	Zirconia (ECCOSTOCK@)	20.0	10.16 × 10.2 × 7.11	4.71	4.6215
14.	Zirconia (ECCOSTOCK@)	20.0	10.16 × 7.11 × 10.2	4.55	4.5941
15.	Zirconia (ECCOSTOCK@)	20.0	$10.2 \times 10.2 \times 7.89$	4.635	4.4833
16.	Strontium titanate (ECCOSTOCK@)	100.0	$10 \times 10 \times 2$	4.57	4.2158
17.	Strontium titanate (ECCOSTOCK@)	100.0	$10 \times 10 \times 1$	7.97	7.7587
18.	Strontium titanate (ECCOSTOCK@)	100.0	12.7 × 12.7 × 1	7.72	7.6628
19.	Strontium titanate (ECCOSTOCK@)	100.0	5 × 10 × 1	8.85	8.1828

Table 4.1 RDRA materials, permittivity, dimensions, and computed resonant frequency

Table 4.1	(continued)
-----------	-------------

S. no.	Material	Permittivity	RDRA dimension $(a \times b \times h)$ mm	Resonant frequency simulated by	Resonant frequency calculated
				HFSS	
20.	Strontium titanate (ECCOSTOCK@)	100.0	$10 \times 5 \times 1$	8.5	8.0147
Mor	gan Advanced Mate	erials	1	1	
21.	CaMgTi (Mg, Ca titanate) (D20)	20.0	10.16 × 10.2 × 7.11	4.71	4.6215
22.	CaMgTi (Mg, Ca titanate) (D20)	20.0	10.16 × 7.11 × 10.2	4.55	4.5941
23.	CaMgTi (Mg, Ca titanate) (D20)	20.0	10.2 × 10.2 × 7.89	4.635	4.4833
24.	ZrTiSn (Zr, Sn titanate) (D36)	37.0	18 × 18 × 9	2.45	2.1617
Tem	ex Components & T	Temex Telecon	m, USA		
25.	Zr Sn Ti Oxide (E2000)	37.0	$18 \times 18 \times 9$	2.45	2.1617
Trai	ns-Tech Skyworks S	olutions, Inc.	·		
26.	BaZnCoNb (D-83)	35.0–36.5	$18 \times 18 \times 6$	2.532	2.7081
27.	BaZnCoNb (D-83)	35.0–36.5	$18 \times 6 \times 18$	2.835	2.3947
T-C	ERAM, RF & Micro	owave			
28.	E-11	10.8	$15.2 \times 7 \times 2.6$	11.6	10.379
29.	E-11	10.8	$15 \times 3 \times 7.5$	6.88	7.0937
30.	E-11	10.8	$15.24 \times 3.1 \times 7.62$	6.21	6.9440
31.	E-20	20.0	$10.16 \times 10.2 \times 7.11$	4.71	4.6215
32.	E-20	20.0	$10.16 \times 7.11 \times 10.2$	4.55	4.5941
33.	E-20	20.0	$10.2 \times 10.2 \times 7.89$	4.635	4.4833
34.	E-37	37.0	$18 \times 18 \times 9$	2.45	2.1617
TCI	Ceramics, Inc.				
35.	DR-36	36.0	$18 \times 18 \times 6$	2.532	2.7081
36.	DR-36	36.0	$18 \times 6 \times 18$	2.835	2.3947

s.	Permittivity	Dimension (a (length) $\times b$ (width) $\times d$ (depth))	Resonant	Effective width	Multiple	% change in
no.	•	mm	frequency	(<i>p</i>)	factor	width
37.	10.0	$14.3 \times 25.4 \times 26.1$	3.5	34.22	1.3474	34.7381
38.	10.0	$14 \times 8 \times 8$	5.5	14.13	1.7665	76.6535
39.	10.0	$15.24 \times 3.1 \times 7.62$	6.21	8.33	2.8872	168.7230
40.	20.0	$10.2 \times 10.2 \times 7.89$	4.635	15.31	1.5014	50.1419
41.	20.0	$10.16 \times 10.2 \times 7.11$	4.71	15.15	1.4858	48.5797
42.	35.0	$18 \times 18 \times 6$	2.532	24.12	1.34	33.9973
43.	35.0	$18 \times 18 \times 9$	2.45	25.64	1.4244	42.4423
44.	100.0	$10 \times 10 \times 1$	7.97	11.24	1.1242	12.4237

RDRA
of
v-direction
along 3
effective
increased
limensions
, "q,
along '
effect
Fringing
9
Table 4

MATLAB program and simulation effective length due to fringing effect:

```
%%Dimensions of RDRA
%%length
d=[14.3,14.0,15.24,10.2,10.16,18,18,10];
%%width
w = [25.4, 8, 3.1, 10.2, 10.2, 18, 18, 10];
%%height
h=[26.1,8,7.62,7.89,7.11,6,9,1];
%%Mode
m=1;
n=1;
p=1;
c=3e8;
cons=[10.0,10.0,10,20,20,35,35,100];
syms y real
for i=drange(1:8)
kx(i)=pi/d(i);
kz(i)=pi/2/h(i);
ko=sgrt((kx(i),^2+y,^2+kz(i),^2)/cons(i));
f=real(y.*tan(y*w(i)/2)-sqrt((cons(i)-1)*ko.^2-y.^2));
ky(i)=fzero(inline(f),[0,(pi/w(i))-0.01]);
%%Resonant frequency
fre(i) = c/2/pi*sqrt((kx(i).^2+ky(i).^2+kz(i).^2)/cons(i))*1e3;
Effwidth(i)=pi/ky(i);
factor(i)=Effwidth(i)./w(i);
perchangwidth(i) = ((Effwidth(i) -w(i))/w(i))*100;
end
```

Effective increased length computations due to fringing effect:

Program 1

```
%%Dimensions of DRA
%%length
d=[14.3,14.0,15.24,10.2,10.16,18,18,10];
%%width
w=[25.4,8,3.1,10.2,10.2,18,18,10];
%%height
h=[26.1,8,7.62,7.89,7.11,6,9,1];
%%Mode
m=1;
n=1;
```

```
p=1;
c=3e8;
cons=[10.0,10.0,10,20,20,35,35,100];
syms y real
for i=drange(1:8)
kx(i)=pi/d(i);
kz(i)=pi/2/h(i);
ko=sqrt((kx(i).^2+y.^2+kz(i).^2)/cons(i));
f=real(y.*tan(y*w(i)/2)-sqrt((cons(i)-1)*ko.^2-y.^2));
ky(i)=fzero(inline(f),[0,(pi/w(i))-0.01]);
%%Resonant frequency
fre(i)=c/2/pi*sqrt((kx(i).^2+ky(i).^2+kz(i).^2)/cons(i))*1e3;
Effwidth(i)=pi/ky(i);
factor(i)=Effwidth(i)./w(i);
perchangwidth(i) = ((Effwidth(i) -w(i))/w(i))*100;
end
```

Results:

	Work	space		- 0 🗙
File Edit View	Graphics Debug Desktop Window Help			
	Stack: Ease 👻 🕼 Select data to plot 🔹			
Name -	Value	Min	Max	
Effwidth	[34,2235,14,1323,8,3304,15,3145,15,1551,24,1195,25,6396,11,2424]	8.3304	34,2235	
e c	30000000	30000	30000	
E cons	[10, 10, 10, 20, 20, 35, 35, 100]	10	100	
🔠 d	[14.3000,14,15.2400,10.2000,10.1600,18,18,10]	10	18	
101	< hd sym>			
factor	[1.3474, 1.7665, 2.6872, 1.5014, 1.4858, 1.3400, 1.4244, 1.1242]	1.1242	2.6872	
fre	[3.7081e+09,5.6155e+09,7.1971e+09,4.4864e+09,4.6217e+09,2.7464e+09,2.2240e+09,7.7640e+09]	2.2240	7.7640	
h 🔁	[26.1000,8,7.6200,7.8900,7.1100,6,9,1]	1	26.1000	
	1	8	8	
NO KO	<1x1 sym>			
ka la	[0,27197,0,2244,0,2061,0,3080,0,3092,0,1745,0,1745,0,3142]	0.1745	0.3142	
NY I	[0.0918;0.2223;0.3771;0.2013;0.2073;0.1303;0.1223;0.2794]	0.0918	0.3771	
10 K2	[magetin: Jaco'mana (m. Jaal'methadineta jata) 1.40° r.24 na]	010602	1.3706	
m				
H .				
ner/hannaidh	114,7381 76,4535 168,7230 50 1419 48,5797 33,9973 42,4473 12,42371	12,4217	168.72_	
-	[25.4000.8.3.1000.10.2000.10.2000.18.18.10]	3.1000	25,4000	
R Y	<pre>cmg fsf></pre>			
-				0204 PM
				22-62-2015

```
m=1;
n=1;
p=1;
E_r=10;
a=15.24e-03;
b=3.1e-03;
d=7.62e-03;
c=3e+08;
kx=m*pi/a;
ky=n*pi/b;
kz=p*(pi/d)/2;
ko=sqrt(kx^2+ky^2+kz^2)/sqrt(E_r);
fo=(c*ko/pi)/2;
foghz=fo/(1e+09);
```

Results:

4	Work	space		- 0 ×
File Edit View	Graphics Debug Desktop Window Help			
	Stack: Ease 👻 🐼 Select data to plot 🔹			
Name -	Value	Min	Max	
BEL BEL BEL BEL BEL BEL BEL BEL	9 19 19 19 19 19 19 19 19 19 1	10 4.3004 0.0152 0.00000 0.0076 1.322 1.322 1.322 1.3224-10 1.3224-09 1.33.4670 20.1413 1.0134-01 20.1413 1.13 1.134-01 2.33.4670 2.34.413 1.13 1.134-01 2.34.413 1.144-01 2.34.215 3.14000 3.14000 3.14000 3.14000 3.14000 3.140000 3.14000 3.1	9 142235 6.0732 0.001 0.000 0.00% 2.4472 5.5224-10 15.5224-10 15.5224-10 15.5224-10 15.5279 2.84.000 2.84.100 2.04.101 2.04.113 1.0114e-02 2.04.113 1.1114	
4 📋	o 🧿 📣 🖾			• ₱• 8 -at €) 02566 PM 22-02-2015

MATLAB programs taking parameters a, b, d same and comparing frequency using: Program 1: Characteristic equation m=1 n=1 p=1 E_r=10 a=14.3e-03 b=25.4e-03 d=26.1e-03 c=3e+08 k x=m*pi/a k_y=n*pi/b $k_z=p*(pi/d)/2$ $k_o = sqrt(k_x^2+k_y^2+k_z^2)/sqrt(E_r)$ f_o=(c*k_o/pi)/2 f_oGHz=f_o/1e+09

A MATLAS 7.1	2.0 (R2011a)		100 C			Statements of the local division of the loca	- 0 - X-
File Edit Vi	iew Graphics Debug	Parallel Desktop Wind	ow Help				
na x	5 0 0 C A 1	Current Folder	C/Program Files/MAT	LAB\\$2011a\bin +	ř.		
Shortcuts 2	How to Add R What's N			(tank			
Wedgebace							-++ ED # - ×
and the bit	In Oast Lass -	Calact data to plot					
Name -	Value	Min Max					
	10	10 10					
	0.0243	0.0143 0.0143					
	20000000	20000 20000					
	0.0261	0.0261 0.0261					
Hf.o.	3.9136e+09	3.9136					
f oGHz	3.9136	3.9136 3.9136					
H k.o	81.9661	81.9661 81.9661					
H kur	219.6918	219.69 219.69					
E k.y	123.6848	123.68 123.68					
1 k.2	60.1838	60.1838 60.1838					
m	1	1 1					
11 n	1	1 1					
III P	1	1 1					
Start .							
a 1	S 🕋 🖪	A 10					8.54 PM
- C				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second second		2/24/2015

Transcendental equation for same dimensions:

```
m=1;
n=1;
p=1;
E_r=10;
a=14.3e-03;
b=25.4e-03;
d=26.1e-03;
c=3e+08;
syms y real
kx=pi/a;
kz=pi/d/2;
ko=sqrt(kx^2+y^2+kz^2)/sqrt(E_r);
f=real(y*tan(y*b/2)-sqrt((E_r-1)*ko^2-y^2));
ky=fzero(inline(f),[0,(pi/b)-0.01]);
fre=c/2/pi*sqrt((kx^2+ky^2+kz^2)/E_r)*1e3;
effwidth=pi/ky;
factor=effwidth/b;
perchangwidth=((effwidth-b)/b)*100;
```

MATLAB 7.12.0 (R2011a)	-		-			_	1		-		1	0	0 X
File Edit View	Graphics Debug	Parallel Desi	ktop Windo	w Help										
DOX N	200	2) 0 Cu	ment Folder	C//Program File	MATLAR/R201	Ilalbin v	100							
						/65								
Shortcuts 2 How	to Add A what's No	ew												
Workspace														-+ [] = X
🖻 🖬 🗐 🍇 🖦	Stack: Base -	P Select data	to plot	•										
Name -	Value	Min	Max											
E.	10	10	10											
	0.0143	0.0143	0.0143											
b b	0.0254	0.0254	0.0254											
e c	30000000	30000	30000											
a d	0.0261	0.0261	0.0261											
effwidth	0.0342	0.0342	0.0342											
01	«Inf rom»													
- to	3.9136e+09	3.9136	3.9136											
f oGHz	3.9136	3.9136	3.9136											
factor	1.3474	1.3474	1.3474											
fre	3.7081e+12	3.7081	3.7081											
+ ko	81,9661	81,9661	81,9661											
+ kx	219.6918	219.69	219.69											
H k v	123,6848	123.68	123.68											
H k.z	60.1838	60,1838	60.1838											
10 kp	«Ind num»													
H kx	219,6918	219.69_	219.69											
- ky	91,7964	91,7964	91,7964											
H kz	60.1838	60,1838	60.1838											
1 m	1	1	1											
Bn	1	1	1											
- p	1	1	1											
+ perchangwidth	34,7381	34,7381	34,7381											
0v	<1x1 rum>													
4 Start														
(2)	O	3		0	1	1	-	-	-	24	72			9:09 PM 2/24/2015

MATLAB programs taking parameters a, b, d same and comparing frequency using:

```
Characteristic equation
```

```
Where a=17mm
           b=25mm
           c=10mm
m=1;
n=1;
p=1;
E_r=10;
a=17e-03;
b=25e-03;
d=10e-03;
c=3e+08;
k_x=m*pi/a;
k_y=n*pi/b;
k z=p*(pi/d)/2;
k_o=sqrt(k_x^2+k_y^2+k_z^2)/sqrt(E_r);
f_o=(c*k_o/pi)/2;
f_oGHz=f_o/1e+09;
```

A MATLAS 7.12.0 (R2	0114)								- 0 -X-
File Edit View 0	Graphics Debug Pi	arallel Desktop V	Vindow Help						
1 🖬 🕹 🖬 🛱	204 20	Current Fo	Ider D.\matlab	R2011a	- 🗐 🛍				
Shortcuts 🗶 Hew to	Add 🗶 What's New								
Curr_ * 0 * ×	Workspace								+ 0 + X
🔒 « R_ » = 🔎	1 1 2 2 3 5	Stack: Base ~	🕼 Select data	to plot					
Name -	Name -	Value	Min	Max					
Appendes propulses pro pro	The second secon	 [9] [9] 0.0,72 0.0,70 0.0,000 0.0,00	10 0.0170 0.0250 0.0000 4.1244 86.5807 184.79, 125.66 157.07, 1	20 0.0170 0.0250 0.0000 4.1244_ 4.1244 86.8807_ 125.66_ 125.06_ 1 1 1					
	Command Window						-0 * ×	Command History	* 0 # ×
× (New to MATLAS	Watch this <u>Video</u> , se	e <u>Demos</u> , or rea	d <u>Getting Star</u>	ted.		×	2/25/2015 8:07 AM	-a 0
A Start									

Transcendental equation

```
m=1;
n=1;
p=1;
E_r=10;
a=17e-03;
b=25e-03;
d=10e-03;
c=3e+08;
syms y real
kx=pi/a;
kz=pi/d/2;
ko=sqrt(kx^2+y^2+kz^2)/sqrt(E_r);
f=real(y*tan(y*b/2)-sqrt((E_r-1)*ko^2-y^2));
ky=fzero(inline(f),[0,(pi/b)-0.01]);
fre=c/2/pi*sqrt((kx^2+ky^2+kz^2)/E_r)*1e3;
effwidth=pi/ky;
factor=effwidth/b;
perchangwidth=((effwidth-b)/b)*100;
```

A MATLAS 7.12.0 (R2011a)					and the second sec	- 0
File Edit View Graphic	cs Debug	Parallel Desktop	Window Help			
10 B X B 20 7	0 4 3	👔 🥹 Current Fo	ider: D:\matlab\R203	1a	• 🗐 🛍	
Shortcuts Z How to Add	2 Whit's N	Ew.				
Current Folder ** D * ×	0 * ×	Workspace				+ D # X
	(D) New Iv	fal mf fal \$5 II.	Stark Base +	CD Salart dat	to elet	
	6		Tanana ana an		in period	
Name -	14 22	Name A	Value	Min	Max	
(i) appdets .		10 C	10	10	10	
(i) bin		100	0.0170	0.0170	0.0170	
(8) 🔐 etc		E b	0.0250	0.0250	0.0250	
🗄 🔔 extern			30000000	30000	3000	
18 🌲 help		1 d	0.0100	0.0100	0.0200	
(ii) 🚜 ja		effwidth	0.0333	0.0333	0.0111	
(8) 🍶 java			<1x1 sym>			
8 🔔 lib		factor	1.3325	1.3325	1350	
B icenses		tre fre	3.9291e+12	3.9291	. 3.9291	
🗷 🌲 notebook		NO NO	<1x1 sym>			
E in resources		ka ka	184.7996	184.79.	. 184.79	
(ii) 👘 rbw		tt ky	94.3067	94.3067	94.3067	
E in runtime		kz kz	157.0796	157.07.	. 157.07	
(8) simulink		m	1	1	1	
🛞 🔐 stateflow			1	1	1	
B 🖆 tys		p p	1	1	1	
(i) 🛃 toolbox		the perchangwidth	33.2501	33,2501	33.2501	
(E) in uninstall		C y	<1x1 sym>			
assgn1.m						
assgn2.m	80 I					
icense.bit						
matlab program2						
1 mtlbresontfr.m						
newprgm1.m						
patents.txt *						
Details V						
		Command History				
		plot (Effv	idth, 'DisplayN	ane', 'Effy	idth', 'YDataSource', 'Effwidth');figure(gcf)	
Education of the second		2/24/201	5 1:43 FM+			
select a nie to view defails		2/25/201	5 12124 35			
		1 2/25/203	5 8107 M			
		2/28/200	5 8.00 BM			
		2/25/201	0 0120 A21			
4 Start						

MATLAB programs taking parameters a,b,d same and comparing frequency using: Characteristic equation

```
m=1
n=1
p=1
E_r=10
a=14.3e-03
b=25.4e-03
d=26.1e-03
c=3e+08
k_x=m*pi/a
k_y=n*pi/b
k_z=p*(pi/d)/2
k_o=sqrt(k_x^2+k_y^2+k_z^2)/sqrt(E_r)
f_o=(c*k_o/pi)/2
f_oGHz=f_o/1e+09
```

A MATLA	8 7.12.0 (R2011a)	-	1 A A		-	-0	x
File Edit	t View Graphics Debug	Parallel Desktop Wind	ow Help				
100	※●白ッマ 夢ば	2 Current Folder	C:\Program Files\MATL	A8\R2011a\bin 🔹 🛄 🛍			
Shortcut	s 🗷 How to Add 🕑 What's N	EW .					
Workspace		34.74					* ×
۵ 🖬 🖻	Stack: Base -	Select data to plot	•				
Name -	Value	Min Max					
HE.	10	10 10					
11 ·	0.0143	0.0143 0.0143					
b b	0.0254	0.0254 0.0254					
	0.0261	0.0261 0.0261					
10	3.9136e+09	3.9136 3.9136					
f oGHz	3.9136	3.9136 3.9136					
H k.o	81.9661	81.9661 81.9661					
	219.6918	219.69. 219.69.					
H Y	123,0848	60.1838 60.1838					
H m	1	1 1					
H n	1	1 1					
tt p	1	1 1					
1.00							
4 Start							
3	6 📋 🖸	- 2 🍂	🧿 🔺 🔋			• 🔐 🧮 📹 🌒 8541 2/24/2	M 015

Transcendental equation

```
m=1;
n=1;
p=1;
E r=10;
a=14.3e-03;
b=25.4e-03;
d=26.1e-03;
c=3e+08;
syms y real
kx=pi/a;
kz=pi/d/2;
ko=sqrt(kx^2+y^2+kz^2)/sqrt(E_r);
f=real(y*tan(y*b/2)-sqrt((E_r-1)*ko^2-y^2));
ky=fzero(inline(f),[0,(pi/b)-0.01]);
fre=c/2/pi*sqrt((kx^2+ky^2+kz^2)/E_r)*1e3;
effwidth=pi/ky;
factor=effwidth/b;
perchangwidth=((effwidth-b)/b)*100;
```

MATLAB 7.12.0 (R2011a)	-		The second s				1		-			(Card	5 X
File Edit View	Graphics Debug	Parallel Desk	top Wind	ow Help										
DOXE	0 2 C 4 M	2 0 Cur	vent Folder	C/\Program Files\M	ATLAR \$2011	bin • 🗆 🕅								
Charles de Cil Mare	to Add (2) the of a					1000								
Shortcuts 2 How	to Add 🛃 What's N	ew												_
Workspace														· E · ×
	Stack: Base -	Select data t	o plot	*										
Name -	Value	Min	Max											
H Eyr	10	10	10											
	0.0143	0.0143	0.0143											
b	0.0254	0.0254	0.0254											
e c	300000000	30000	30000											
d d	0.0261	0.0261	0.0261											
effwidth	0.0342	0.0342	0.0342											
©1	<1x1 sym>													
1 t_o	3.9136e+09	3.9136	3.9136											
f_oGHz	3.9136	3.9136	3.9136											
factor 1	1.3474	1.3474	1.3474											
fre	3.7081e+12	3.7081	3.7081											
t k o	81.9661	81.9661	81.9661											
k k	219.6918	219.69	219.69_											
B ky	123.6848	123.68	123.68											
- kz	60.1838	60.1838	60.1838											
🐑 ko	<1x1 sym>													
🗄 ko:	219.6918	219.69	219.69											
🛨 ky	91.7964	91.7964	91.7964											
🛨 kz	60.1838	60.1838	60.1838											
m	1	1	1											
1 n	1	1	1											
± P	1	1	1											
perchangwidth	34.7381	34.7381	34.7381											
Юy	<1x1 sym>													
4 Start														-
- A	-		-		1	1	1	-	-	1.1.8	100			9.09 PM
			-		19/	1	-		-		100	- Carlo	2	/24/2015

1	-	m=3;
2	-	n=3;
3	-	a=10;
4	-	b=5;
5	-	<pre>x=linspace(-5,5,51);</pre>
6	-	<pre>y=linspace(-2.5, 2.5, 51);</pre>
7	-	<pre>[xi,yi]=meshgrid(x,y);</pre>
8	-	<pre>Ez=cos(m*pi*xi/a).*cos(n*pi*yi/b);</pre>
9	-	Ez=Ez.^2;
10	-	Ez=sqrt(Ez);
11	-	<pre>surf(xi,yi,Ez)</pre>
12	-	view([-45,60])
13		%%view([180,0])
14	-	drawnow

Workspace				* 🗆 *
🖻 🖬 🗟 🍓 🖷	Stack: Base V	Select	data to plot 🔹	
Name *	Value	Min	Max	
🗄 Ez	<51x51 double>	3.37	1	
a	10	10	10	
🗄 b	5	5	5	
🗄 m	3	3	3	
🗄 n	3	3	3	
H x	<1x51 double>	-5	5	
🛨 xi	<51x51 double>	-5	5	
🗄 y	<1x51 double>	-2.50	2.50	
🗄 yi	<51x51 double>	-2.50	2.50	

```
1 -
       d=[14.3,14.0,15.24,10.2,10.16,18,18,10];
2 -
       w=[25.4,8,3.1,10.2,10.2,18,18,10];
3 -
       h=[26.1,8,7.62,7.89,7.11,6,9,1];
4 -
      m=1;
5 -
      n=1;
6 -
      p=1;
7 -
      c=3e8;
8 -
       cons=[10.0,10.0,10,20,20,35,35,100];
9 -
       syms y real
10 - _ for i=drange(1:8)
11 -
       kx(i) = pi/d(i);
12 -
       kz(i)=pi/2/h(i);
13 -
       ko=sqrt((kx(i).^2+y.^2+kz(i).^2)/cons(i));
14 -
       f=real(y.*tan(y*w(i)/2)-sqrt((cons(i)-1)*ko.^2-y.^2));
15 -
       ky(i)=fzero(inline(f),[0,(pi/w(i))-0.01]);
16 -
       fre(i)=c/2/pi*sqrt((kx(i).^2+ky(i).^2+kz(i).^2)/cons(i))*1e3;
17 -
      Effwidth(i)=pi/ky(i);
18 -
      factor(i)=Effwidth(i)./w(i);
19 -
      perchangwidth(i) = ((Effwidth(i) - w(i))/w(i)) *100;
20 -
      end
```

Workspace				
🖲 🖬 🗑 🖏 🖦	Stack Base 🗸 🔯	Select	data to plot 🔹	
Name -	Value	Min	Max	
Effwidth	[34.2235,14.1323,	8.33_	34.2	
🗄 Ez	<51x51 double>	3.37_	1	
🗄 a	10	10	10	
Шb	5	5	5	
Ξc	30000000	3000	3000	
H cons	[10,10,10,20,20,3	10	100	
H d	[14.3000.14.15.24	10	18	
Øf	<1x1 sym>			
H factor	[1.3474,1.7665,2	1.12_	2.68	
🗄 fre	[3.7081e+09.5.61	2.22_	7.76	
🗄 h	[26.1000,8,7.6200	1	26.1	
🖽 i	8	8	8	
🕄 ko	<1x1 sym>			
H kx	10.2197.0.2244.0	0.17	0.31	
🗄 kv	[0.0918.0.2223.0	0.09	0.37	
H kz	[0.0602.0.1963.0	0.06	1.57	
🖽 m	1	1	1	
H n	1	1	1	
E p	1	1	1	
erchangwidth	[34.7381.76.6535	12.4_	168	
⊞w	[25.4000.8.3.1000	3.10	25.4	
III x	<1x51 double>	-5	5	
🖽 xi	<51x51 double>	-5	5	
€v	<1x1 sym>			
H vi	<51x51 double>	-2.50_	2.50	

- Q.No. 1 Develop transcendental equation for moat-shaped RDRA.
- Q.No. 2 Compute propagation constants in *x*-, *y*-, and *z*-directed propagated RDRAs, when feed probe is given. Compute its resonant frequency when RDRA dimensions are $5 \times 5 \times 3 \text{ mm}^3$ and dielectric constant used is 20.