Chapter 3

Mathematical Analysis of Rectangular
DRA

Abstract This chapter, mathematical analysis of electromagnetic fields in rectan-
gular dielectric resonator antenna (RDRA) has been introduced. The investigations
are based on the first applying waveguide theory, then converting it to resonator by
replacing —y to d/dz. Initially, these fields are exploited using the Maxwell curl
equations, then manipulating them to express the transverse components of the
fields in terms of partial derivatives of the longitudinal components of the fields
with respect to x and y axis (i.e., the transverse coordinates). Waveguide models of
four rectangular DRAs with specified boundary conditions with linear permittivity
have been realized.
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In this chapter, mathematical analysis of electromagnetic fields in rectangular
dielectric resonator antenna (RDRA) has been introduced. The investigations are
based on first applying waveguide theory, then converting it to resonator by
replacing —7 to d/dz. Through out this book, electromagnetic field propagation has
been taken along z-axis, i.e., exp(—yz). Initially, these fields are exploited using the
Maxwell curl equations, then manipulating them to express the transverse com-
ponents of the fields in terms of partial derivatives of the longitudinal components
of the fields with respect to x and y axis (i.e., the transverse coordinates).
Waveguide models of four different rectangular DRAs with specified boundary
conditions with homogeneous material having linear permittivity have been
mathematically modeled. The fields are realized to determine TE and TM modes of
propagating fields. These have resulted into different sine—cosine combinations.
Propagation of these fields have been split as inside the RDRA and outside RDRA.
The interfacing surface is having two different dielectrics. The solution is developed
as transcendental equation, which purely characterized rectangular DRA frequency
and propagating fields in terms of propagation constants and dominant resonant
frequency. TE modes generation required H, as longitudinal fields and E,, E,, H,,
and H,, as transverse fields. Excitation is applied along x-axis as partial fields, y-axis
will have fixed variation, and z-axis will have desired variation in propagating
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34 3 Mathematical Analysis of Rectangular DRA

fields, for example, TE 6,3 and TE 043. Similar cases can be developed for other
modes, so as to propagate E, fields as longitudinal and E,, E,, H,, and H, as
transverse fields. In this case, H, shall get vanished because of boundary conditions.
Resonant modes, i.e., amplitude coefficient of these fields C,,,,, and D,y,,, inside the
DRA can be determined by comparing magnetic energies equal to electrical ener-
gies based on principle orthonormality or law of conservation. The derivation for
the quality factor and radiation pattern have been developed for deeper antenna
analysis.

3.1 Rectangular DRA with Homogeneous Medium

In Rectangular DRA as shown in Fig. 3.1, top and bottom walls of RDRA are PMC
and rest of the other walls are PEC. On magnetic walls (PMC), n - E = 0, where
E denotes the electric field intensity and n denotes the normal to the surface of
the resonator. Similarly, n x H = 0 is not necessarily satisfied at all the surfaces of the
DRA by all the modes. Different resonant modes shall have different electromagnetic
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Fig. 3.1 a Rectangular DRA with aperture-coupled feed. b RDRA with input excitation
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field distribution inside the RDRA, and each mode may provide a different resonant
frequency and radiation pattern, i.e., eigen vector and eigen frequency.
Excitation-based resonant modes can generate desired radiation pattern for different
coverage requirements. By making use of this mechanism, internal as well as
associated external fields distribution can be obtained.

Rectangular DRA is better choice due to flexible aspect ratio, i.e., b/a or d/
a options can generate different modes. The existence of two independent aspect
ratios in a rectangular DRA offers better design flexibility. Assuming the ground
plane to be infinitely large, image theory is applied to replace the isolated RDRA by
a grounded resonator of half-size. In this RDRA, two of the six surfaces of the
resonator are assumed to be perfect magnetic walls, while the remaining four are
assumed to be perfect electric walls. Electromagnetic theory is then applied to study
its theoretical analysis, and later three more cases have been developed based on the
different boundary conditions. For example, the fields undergo one half-wave
variation along the dimension ‘a’ and remains constant along dimension ‘b’. They
undergo less than a half-wave variation along z-axis, i.e., variation along DRA
height ‘d’. The resonant mode is therefore identified as TE* o6 The propagation
direction has been assumed in z-direction. TE*3;, resonant fields undergo three
half-wave variations along length of DRA ‘@’ and one half-wave variation along
breadth ‘b’, and no variation along height ‘d’. To adapt these formulae to an DRA,
we note that the propagation constants along z can be £y with the linear combi-
nations of coefficients chosen, so as to meet the boundary conditions at z = 0 and
z=d, i.e., the top and bottom surfaces of the RDRA, which have been taken as PEC
(permanent electrical conducting) walls. On a PEC, the tangential components
(n x E = 0) of the electric field and the normal component (n - H = 0) of the
magnetic fields get vanished. While on a PMC wall, by directly, the normal
component of the electric field (n - £ = 0) and the tangential components
(n x H = 0) of the magnetic field get vanished.

To compute resonant modes, vector principle of orthonormality on half-wave
Fourier analysis has been applied, i.e., radiated magnetic energies are compared
with applied electrical energies in RDRA. More number of modes along z-axis in
RDRA can be generated either by increasing electrical height ‘d” of RDRA or by
increasing excitation resonant frequency. Given below are the two rectangular
DRAs with different configurations shown in Fig. 3.1.

In Fig. 3.1, PMC and PEC walls’ configuration is labeled. The mathematical
solution is developed based on this configuration. The boundary conditions of
interface walls shall form linear combinations of sine—cosine terms. Accordingly,
they will decide whether transverse electric fields or magnetic fields will vanish.
Propagation of longitudinal fields shall depend on the direction of excitation.
Excitation of resonant modes in rectangular boundaries are easier as compared to
cylindrical. Transcendental equation and characteristics equations have been
developed for rectangular DRA. This has provided complete solution of resonant
frequency and propagation constants.
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3.2 Rectangular DRA Mathematical Modeling

In this chapter, four different solutions are presented, each RDRA is associated with
different boundaries. The resultant field formed the resonant modes of different
kinds.

Figure 3.2 described E and H fields pattern forming resonant modes, i.e.,
dominant or higher-order excited modes inside the RDRA.

3.2.1 Model-1

(a) Here, top and bottom walls are assumed as PMC and rest of the other four walls
are PEC as per Fig. 3.1.
Given top and bottom surfaces of RDRA as PMC at z = 0, d;

Rest of the other four walls are PEC.

nx E=0;
n-H=0;
x=0,qa;
E,=E, =0,
H, =0;

H H

Fig. 3.2 E and H fields pattern inside RDRA
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At,
y=0,b;
E, Ez: )
H, =0;
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Solution of second-order differential equation is given as,

Y. =X(x)Y(y)Z(2)
where
X(x) = A sinkyx + Aj coskx
Y(y) = Azsink,y + A4 cos kyy
Z(z) = Assink,z + Ag cos k;z

TE mode (E; =0 and H, # 0)
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But at
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Ey = C'X'(x)Y(y)Z(2);

X'(x) = Ay cos kyx — A sinkyx;

x=0,a; E, =0;
0 =A; cosk,0 — A, sin k,0;
mmn

A =0 and k,=—;
a

Similarly from Eq. (3.1)

or,

Now

At,

or,

E. =C [aHZ] ;

dy

0 = A3 cosk,0 — Ay sink,0;

A3 =0 and ky:%

)
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From above equation,

H =C [— LazHZ} ;
* Jjwe 0z0x|’
or,
H, = C'X'(x)Y(y)Z'(2);
Now
7'(z) = As cos k,z — Ag sink,z;
At,
z=0,d H,=0;
As cos k,0 — Ag sink,0 = 0;
n
As=0 and k =D =
Hence,

H, = AyA4A¢ cos (%n x) cos (% y) cos (%T z)
Using Egs. (3.1)—~(3.4), and (3.8), we get
= C"AAs Ag( ) (p;) sin <%x) cos (% y ) sin (lgz)
1= o)) e )
E, = C”A2A4A6( p ) sm( ) cos % y) cos (%z);
)co ( )sin(%y) cos(%z ;
Similarly, for TM mode (H, = 0 and E; # 0)

Ve, = X(0)Y(y)Z(2);

=

nrw

E, = C'AyAuAq (7

)
Y
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Also, at

At,

Hence,
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x=0,a;
E, =0;
A sink,0 + A, cos k0 = 0;

Ay=0 and k =%,
a

y=0,b;

E, =0;

Ajsink,0 + A4 cosk,0 = 0;
nm

Ay =0; and ky:7

z=0,d,
E, =0;

As sink,0 4+ Ag cos k,0 = 0;
_prr

A¢ =0 and kz—?,

E, = A1A3As5 sin (%nx> sin (Ey) sin (p—nz) (3.9)

b

Using Egs. (1.1)—~(1.4), and (1.9), we get

H, = C"A1A3As

a/\d
) (1) 25 s o )

E. = C'A1A3As (mn) <@> cos (@x) sin (@y) cos (lﬁ z);
a b d
T

H, = C"A1A3As (@) cos (@x> sin (@y> sin (ﬂz>;
a a b d
( T

) (o) eos () in ()
b N ax Ccos by SlHdZ,
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3.2.2 Model-2

(b) Top and bottom walls are PEC and rest of the other walls are PMC:
Assuming the top and bottom surface plane be at z = 0, d;

nxE=0;
n-H=0;
E, =E, = 0;
H,=0;

Rest of the other walls are PMC

nxH=0;
n-E=0;

At,

At,

We also know that

SRR |
' jwe(l—l—;’;—i) dy  joudzox|’
e[ LoE o
) ja)e(1+'> joudzdy  Ox
H. = —1 [%_LaZHZ].
* jwﬂ(lJr}%) Oy jweOdz0x|’
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o= [ OO, (3.13)

jw,u(l _H/(_) we 0z0y  Ox
Now, the solution of second-order differential equation is given as
Y. = XY ()Z(2);
where

X(x) = Ay sinkyx + Aj cos kyx; (3.14)
Y(y) = Az sinkyy + Ay cos kyy; (3.15)
Z(z) = As sink,z + Ag cos k.z; (3.16)

TE mode (E;=0and H; #£0)

At,
x=0,q
H, =0
A1 sink,0 + A; cos k0 = 0;
A2 = O,
and
kx = @7
a
Also, at
y=0,b;
H,=0;
A3 sink,0 + A4 cos k0 = 0;
A4 = 0,
and
ky =28
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At,
z=20,d,
H, =0;
Assink,0 4 Ag cos k.0 = 0;
A6 = O;
and
pn
k; = j?
Hence,

H, = A1A3As5 sin (@x) sin (E y) sin (ﬂ z) ;
a b d

Using Egs. (1.1)-(1.4), and (1.8), we get

= Caiats () () eos () sin(T) eos (G72)
G
E, = C"A1AsAs (%ﬂ) cos (’%x) sin (% y) sm(
o)) )

E, = C"A1AAs (%

TM mode (H,=0 and E, #0)

From Eq. (3.2) after substituting H, = 0, we get

1 0°E,
E, =C
’ C[ quazay}

Now

Y'(y) = Az cos kyy — Aq sink,y;

43

(3.17)
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At,

y=0,b; E,=0;
0 = A3 cos k,0 — Ay sin k,0;
A;=0 and ky:%;

Similarly, from the above equations,

1 O’E
Ex = C/ - < ;
{ jou 628x]

E. = CX' ()Y (y)Z'(2);
X'(x) = Aj coskex — Ay sink,x;

x=0,q
E, = 0;
0 =A; cosk,0 — A, sink,0;
Al :0,
and
kx :@;
a

Also, from above equations,

7/(z) = As cos k,z — Ag sink,z;

At,
z=0,d; E,=0;
0 = As cos k,0 — Ag sin k,0;
or,
As=0 and k, :%”;
Hence,

E, = AyA4Ag cos (@ x) cos (nbn y) cos (l% z) ; (3.18)
a
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Using Egs. (3.11-3.14) and (3.18), we get

3.2.3 Model-3

(c) Solution of RDRA, when all six walls are PEC (perfect electrical walls):
Using Maxwell equations:

V X E = —joB = —jouH,;

V x H = jweE;
V X E = —jouH,
Xy z
% 5 &|=-jouH;
E. E, E
E. E, E, E. . (OFE E, .
’“@y‘ aaz)> A(aaz ‘%x) H@;_ a@y) = ot

On comparing (x,y, z) components both the sides

%—% - a;; = —jouHy; (3.19)
881? N % — jout,: (3.20)
68?_%%: _ jouH.: (3.21)
Similarly, using V x H = jweE; We get
OH. OHy _ .0k, (3.22)

dy 0z



46 3 Mathematical Analysis of Rectangular DRA

oH, _oH,

0. ox U (3:23)
OH, OH,
—— = jweE,; 3.24
ax oy U (3:24)
Comparing above equations,
g L [0H: 1 OPE.  OE\] (3.25)
T jwe | Oy jou \ 022 0xdz) |’ '
1&°E, 1 [0H, 1 O’E
Eid——r = — |- — — 3.26
+ k2 072 jwe [By jou Bxaz} (3.26)
2
E(140) = L |20 v OE|
k2 jowe | Oy  jou Ox

E,, H,, and H, are expressed in E, and H, fields:

2

Y 1 [—y0E, OH,
E(1+0) = | L% 2
}< +k2) jwe[y’wu dy 8x}’

2
HX(HV_):_L[%_L%}

2
Yy 1 y OH, OE,
Hll+4) = — | L 2= 7=
g ( +k2> Jjou [iwu y (’A

Separation of variables with given boundary conditions, solution is obtained.

Y =X(x)Y(y)Z(2);
= (A; sinkux + A, cos kx) (A3 sink,y + A, sin kyy) (As sink,z + Ag cos k;z);

TM mode of propagation, H, = 0;
Boundary conditions
Electrical walls — Eyy, =0 =n X E;
—H,=0=n-H,
At, x = 0;

E, = X(x) =A,cos(0); so A, must be zero.
y=0,Y(y) =A,cos(0); A4 must be zero.
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For standing wave in direction of z,
Therefore,

0

2 7(2) = 0:

0z @ 7

As cos(k.z) — Agsin(k.z) = 0;

Therefore, at

z=0,d;
As must be zero;

Hence, we are left with
E, = Ay,A3,As, sink.x sin kyy cos kz;

Next, boundary conditions are

At,
X =a,
X(x) = A;sinkya = 0;
kx :@7
a
At,
Y=>0b; Y(y)=A;sink,d = 0;
nm
ky :?,
At,

47
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As, we know that

ks =k 4k 4k

1

k2(1+{§)(

A1A3Askyk, cos kx sin kyy sink.z);

E_ 1 OH, 1 O’E,
y_jw€(1+z_§) Ox  joudydz)’
o _ ~Aidsdsk,

y = ———<k;(sin kex cos kyy sin k.z) ;
K2 (1 + %2)

H. — —1 <8E2162HZ).
' jw,u(l + {—;) dy  jwedxdz)’
—k,A1A3A
= LTS (sin kyx cos kyy cos k.z);

a)2,ue(1 +Z—;)

H, = -1 : (’;amz%);
) jo),u(l +%2) wedy0z  Ox

| —kkAiAsAs

- wz,ue(l + ,%;)
kxA1A3As

Hy = ————(cos k,xsin kyy cos k.z);
Joou (1 + i—z)

(cos kyx sin kyy cos k.z);

For, TE mode
V¥ = A (sinkyx + A, cos kx) (A3 sinkyy + A, sin ky) (As sink,z + Ag cos k;z);

For PEC walls, electric field components are assumed to be varying with H,in
direction of (x, y, z)
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0
g:C@m
= CX()Y'(y)Z(2);
y=0,b;
Y'(y) = Az cos kyy — Ag sinkyy = 0;
A; = 0;
k= nm

?§

0
Similarly, E, = C"

aHd

A =0

mm
ky = 5
a

Z(z) = Assink.z + Ag cos k.z;

At,

z=0,d,
A(, = 0,
pT
k, =—;
Z d I
H, = AyA4As cos kyx cos kyy sin k. z;
Therefore,

= m (A2A4As cos kyx sin ky sin kz);
=

_ sk,

_jeco<1 + ;—i)

Coe(1+y)

—kokyA1A3As

E,
E, (sin kex cos kyy sin k;z);
(sin kex cos kyy cos kzz) ;

H, = (cos kyx sin k,y cos kzz) ;
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3.2.4 Model-4

(d) When all the six walls of RDRA are assumed to be PMC (permanent magnetic
walls),
Y, = X(x)Y(y)Z(z) where y, is wave function in x, y, and z direction as space.

Or = (A; sinkyx + A; cos kyx) (A3 sinkyy + A4 cos kyy) (As sin k,z + Ag cos k.z)
(3.27)

where A1-A6 are constants and (A; sin k,x + A cos k,x) is solution of second-order
differential equation in x direction, i.e., X(x).
When all six walls are PMC, the rectangular DRA solution is

Hyn=nx H=0;
Hyor =n-E=0;

Applying boundaries,

At,

x=0,a= Hyand H, = 0; E, = 0;
At,

y=0,b= H,and H, = 0; E, = 0;
At,

72=0,d= H,and H, = 0;E, = 0;

TE mode of propagation (E, = 0; H, # 0)
Using boundary conditions
At,

H=0=A =0 and k ==,
a

At,

y:O,b; HZ:0:>A4:O and ky:@-
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Now,
H,=C" OH. _ C"X'(x)Y ()7 (2)
* Ox0z
7(z) = Ascosk,z — Ag sink.z
At,
7z=0,d =>d= H,=0;
= H, = 0= As = 0k =22
Hence,
H. = A A3Aq sin (@) sin (”bﬂ) cos (’%) (3.28)
a

TM mode of propagation (E, #0, H, =0)
We again look for the conditions, when H, = 0, i.e., to get the value of E,

C'OE,
=5
= CX()Y()Z(2);
Y'(y) = Az cos kyy — Ag sinkyy; (3.29)
H.,=0atY =0,b;

:>A3:Oatky:%;

HZ

Similarly,

OE.
H, =" 2=,
’ 0

X

C"X'(x)Y(y)Z(2);

X'(x) = Ay cos kyx — Ay sinkyx;
= H,=0atx=0,aq,

=A; =0,

kx—_7

a
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At,
2=0,d=E, = 0;
= As=0and k. =2
d
At,
72=0,d=E,=0;
= As =0and k, :E;
d
Hence,
E, = AyA4As cos (m—m) cos (nTny) sin <I%) (3.30)
a

3.2.5 Basic Theory

Depending on the nature of the surfaces, different linear combinations of the £y
modes are formed. The propagation constant (y) itself is taking discrete values. This
forces the natural frequencies of the field oscillations to take discrete values (mnp),
indexed by three positive integers m, n, and p. The solutions of the waveguide
problem yield discrete values of 7y, i.e., y(m,n,®) for a given frequency @ by
applying boundary conditions to the electromagnetic fields on the side walls. The
corresponding field amplitudes are solutions to the 2-D Helmholtz equations
corresponding to the transverse Laplacian Vi. These amplitudes are called “the
waveguide modes” and are of the form

e L)l T o £ f oo (") "}

where £ denotes linear components. It turns out that, depending on the nature of
wall surfaces (PEC or PMC), four possible linear combinations can appear
(cos ® sin, sin ® cos, sin ® sin, and cos ® cos).

In rectangular DRA, we have got to applying in additional boundary conditions
on top and bottom surfaces to be the linear combinations as compared to the
waveguide.

G exp{(—y(m, n, Q))Z} + G exp{—i—y(m, n, CO)Z}

and these cases are y(m,n,®w) =22 whenp =1,2,3... and have two possible

>
linear combinations of sin (%) and cos (%)
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Thus, the possible frequencies « obtained by solving y(m,n, ) = and then
comes out to be

nz p 1/2
b2 dZ}

m2
o(m,n,p)=n [ +-5+

An equivalent but computationally simpler way to pass on from waveguide
physics to resonator physics is to just replace y by % in all the waveguide
formulae that express the tangential field components in terms of the longitudinal
components. This is done after solving the full 3-D Helmholtz equations using

separation of variable in x, y, and z.

2
2 WO\ [(E\ _
(=) (i) -

The discrete modes w(mnp) enable us to visualize the resonator as collection of
L, C oscillators with different L, C values. The outcome of all this analysis enables
us to write down the E and H fields inside the resonator, as superposition of four or
three vector-valued basis functions.

o0

E(eyzn) = > Re{Clommp)e ™ yE (xy.z)}
m,n,p=1 (331>
- Z Re{ (mnp)e P G” (x,y, Z)}
m,n,p=1
and
e .
Hixy,z0) = > Re{Clmmp)e ™ yf (xy.z)}
m,n.p=1 (332)

+ Z Re{ mnp e]m(mnp)téf:

LE52.0}
m,n.p=1
We note that there are only two sets of amplitude coefficients {C(mnp)} and
{D(mnp)} of linear combination of coefficients using from the E, and H, expansions.

The vector-valued complex functions are x//m , qunp, w )’ qunpeR3 (where R is

autocorrelation) and contains components {cos,sm} ® {cos,sm} ® {cos, sin},

functions and hence for (m'n'p") # (mnp), each function of the set

{lpmnp’ d)mnp’ lp p’ d)mnp}



54 3 Mathematical Analysis of Rectangular DRA

is orthogonal to each functions of the set

E —E H -H .
W BV O b
w.r.t. The measure of dx dy dz over [0, a] x [0, b] x [0, dI;

The exact form of the function éE, QH,QE , %H depends on the nature of the
boundaries. The next problem addressed can be on excitations of RDRA. To cal-
culate the amplitude coefficients { C(mnp)} and {D(mnp)}, we assume that at z = 0,
an excitation E\” (x,y,t) or E}(,e) (x,y,1) is applied for some time say ¢ € [0, T] and
then removed. Then, the Fourier components in this excitation corresponding to the
frequencies {w(mnp)} are excited and their solutions are the oscillations, while the
waveguide for r > T. The other Fourier components decay within the resonator.

{C(mnp), D(mnp)} are components of the form,

e x y? Z Re mnp jw(mnp)tlp'Ennp x(xa Y, 0)
b (3.33)
+ Re{D(mnp)ej‘”('""p)’éE X, y, 0}

mnp x

and

EY(x,y,t) = > Re (C(mnp))e/”™Py | (x,y,0)
P (3.34)
+ Re{D(mnp)ejw(mnp)réinpy<x7)’a 0)}
By using orthogonality of {z//mnp L(x,»,0), cﬁfmpx(x, Y, O)} for different (m, n), we
~E
can write p to be fixed and likewise of {lpmnp\(x y,0), anpy(x, ¥, 0)},

In addition, we need to use KAM (Kolmogorov—Arnold—Moser) type of time
averaging to yield

C(mnp)lpmnp x('x Y 0) + D(mnp>¢
T

lim 1 .
_ 2 E@ (v pe—ietmplig,
T — 00 2T / X (‘x7 y? )e

x,y,0)

Lmnp x(

-T
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and likewise

Clmnp)YE,, (x,y,0) + D(mnp)d. ~ (x,y,0)

Lmnp y
T

(e) jo(mnp)
/Ey (x,y, 1)/l qg

-T

B lim 1
_T—>ooﬁ
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