
Chapter 3
Mathematical Analysis of Rectangular
DRA

Abstract This chapter, mathematical analysis of electromagnetic fields in rectan-
gular dielectric resonator antenna (RDRA) has been introduced. The investigations
are based on the first applying waveguide theory, then converting it to resonator by
replacing �c to d/dz. Initially, these fields are exploited using the Maxwell curl
equations, then manipulating them to express the transverse components of the
fields in terms of partial derivatives of the longitudinal components of the fields
with respect to x and y axis (i.e., the transverse coordinates). Waveguide models of
four rectangular DRAs with specified boundary conditions with linear permittivity
have been realized.
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In this chapter, mathematical analysis of electromagnetic fields in rectangular
dielectric resonator antenna (RDRA) has been introduced. The investigations are
based on first applying waveguide theory, then converting it to resonator by
replacing �c to d/dz. Through out this book, electromagnetic field propagation has
been taken along z-axis, i.e., exp(−γz). Initially, these fields are exploited using the
Maxwell curl equations, then manipulating them to express the transverse com-
ponents of the fields in terms of partial derivatives of the longitudinal components
of the fields with respect to x and y axis (i.e., the transverse coordinates).
Waveguide models of four different rectangular DRAs with specified boundary
conditions with homogeneous material having linear permittivity have been
mathematically modeled. The fields are realized to determine TE and TM modes of
propagating fields. These have resulted into different sine–cosine combinations.
Propagation of these fields have been split as inside the RDRA and outside RDRA.
The interfacing surface is having two different dielectrics. The solution is developed
as transcendental equation, which purely characterized rectangular DRA frequency
and propagating fields in terms of propagation constants and dominant resonant
frequency. TE modes generation required Hz as longitudinal fields and Ex, Ey, Hx,
and Hy as transverse fields. Excitation is applied along x-axis as partial fields, y-axis
will have fixed variation, and z-axis will have desired variation in propagating
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fields, for example, TE d13 and TE d43. Similar cases can be developed for other
modes, so as to propagate Ez fields as longitudinal and Ex, Ey, Hx, and Hy as
transverse fields. In this case, Hz shall get vanished because of boundary conditions.
Resonant modes, i.e., amplitude coefficient of these fields Cmnp and Dmnp inside the
DRA can be determined by comparing magnetic energies equal to electrical ener-
gies based on principle orthonormality or law of conservation. The derivation for
the quality factor and radiation pattern have been developed for deeper antenna
analysis.

3.1 Rectangular DRA with Homogeneous Medium

In Rectangular DRA as shown in Fig. 3.1, top and bottom walls of RDRA are PMC
and rest of the other walls are PEC. On magnetic walls (PMC), n · E = 0, where
E denotes the electric field intensity and n denotes the normal to the surface of
the resonator. Similarly, n ×H = 0 is not necessarily satisfied at all the surfaces of the
DRA by all the modes. Different resonant modes shall have different electromagnetic

Fig. 3.1 a Rectangular DRA with aperture-coupled feed. b RDRA with input excitation
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field distribution inside the RDRA, and each mode may provide a different resonant
frequency and radiation pattern, i.e., eigen vector and eigen frequency.
Excitation-based resonant modes can generate desired radiation pattern for different
coverage requirements. By making use of this mechanism, internal as well as
associated external fields distribution can be obtained.

Rectangular DRA is better choice due to flexible aspect ratio, i.e., b/a or d/
a options can generate different modes. The existence of two independent aspect
ratios in a rectangular DRA offers better design flexibility. Assuming the ground
plane to be infinitely large, image theory is applied to replace the isolated RDRA by
a grounded resonator of half-size. In this RDRA, two of the six surfaces of the
resonator are assumed to be perfect magnetic walls, while the remaining four are
assumed to be perfect electric walls. Electromagnetic theory is then applied to study
its theoretical analysis, and later three more cases have been developed based on the
different boundary conditions. For example, the fields undergo one half-wave
variation along the dimension ‘a’ and remains constant along dimension ‘b’. They
undergo less than a half-wave variation along z-axis, i.e., variation along DRA
height ‘d’. The resonant mode is therefore identified as TEz

10d. The propagation
direction has been assumed in z-direction. TEz

310 resonant fields undergo three
half-wave variations along length of DRA ‘a’ and one half-wave variation along
breadth ‘b’, and no variation along height ‘d’. To adapt these formulae to an DRA,
we note that the propagation constants along z can be �c with the linear combi-
nations of coefficients chosen, so as to meet the boundary conditions at z = 0 and
z = d, i.e., the top and bottom surfaces of the RDRA, which have been taken as PEC
(permanent electrical conducting) walls. On a PEC, the tangential components
(n × E = 0) of the electric field and the normal component (n · H = 0) of the
magnetic fields get vanished. While on a PMC wall, by directly, the normal
component of the electric field (n · E = 0) and the tangential components
(n × H = 0) of the magnetic field get vanished.

To compute resonant modes, vector principle of orthonormality on half-wave
Fourier analysis has been applied, i.e., radiated magnetic energies are compared
with applied electrical energies in RDRA. More number of modes along z-axis in
RDRA can be generated either by increasing electrical height ‘d’ of RDRA or by
increasing excitation resonant frequency. Given below are the two rectangular
DRAs with different configurations shown in Fig. 3.1.

In Fig. 3.1, PMC and PEC walls’ configuration is labeled. The mathematical
solution is developed based on this configuration. The boundary conditions of
interface walls shall form linear combinations of sine–cosine terms. Accordingly,
they will decide whether transverse electric fields or magnetic fields will vanish.
Propagation of longitudinal fields shall depend on the direction of excitation.
Excitation of resonant modes in rectangular boundaries are easier as compared to
cylindrical. Transcendental equation and characteristics equations have been
developed for rectangular DRA. This has provided complete solution of resonant
frequency and propagation constants.
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3.2 Rectangular DRA Mathematical Modeling

In this chapter, four different solutions are presented, each RDRA is associated with
different boundaries. The resultant field formed the resonant modes of different
kinds.

Figure 3.2 described E and H fields pattern forming resonant modes, i.e.,
dominant or higher-order excited modes inside the RDRA.

3.2.1 Model-1

(a) Here, top and bottom walls are assumed as PMC and rest of the other four walls
are PEC as per Fig. 3.1.

Given top and bottom surfaces of RDRA as PMC at z ¼ 0; d;

) n� H ¼ 0

n � E ¼ 0;

Hy ¼ Hx ¼ 0;

Ez ¼ 0;

Rest of the other four walls are PEC.

n� E ¼ 0;

n � H ¼ 0;

x ¼ 0; a;

Ey ¼ Ez ¼ 0;

Hx ¼ 0;

Fig. 3.2 E and H fields pattern inside RDRA
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At,

y ¼ 0; b;

Ex ¼ Ez ¼ 0;

Hy ¼ 0;

From separation of variables (Refer Chap. 2),

Ex ¼ 1

jx� 1þ c2

k2

� � @Hz

@y
� 1
jxl

@2Ez

@z@x

� �
ð3:1Þ

Ey ¼ 1

jx� 1þ c2

k2

� � � 1
jxl

@2Ez

@z@y
� @Hz

@x

� �
ð3:2Þ

Hx ¼ �1

jxl 1þ c2

k2

� � @Ez

@y
� 1
jx�

@2Hz

@z@x

� �
ð3:3Þ

Hy ¼ �1

jxl 1þ c2

k2

� � 1
jx�

@2Hz

@z@y
� @Ez

@x

� �
ð3:4Þ

Solution of second-order differential equation is given as,

wz ¼ X xð ÞY yð ÞZðzÞ

where

X xð Þ ¼ A1 sin kxxþ A2 cos kxx ð3:5Þ

Y yð Þ ¼ A3 sin kyyþ A4 cos kyy ð3:6Þ

Z zð Þ ¼ A5 sin kzzþ A6 cos kzz ð3:7Þ

TE mode Ez ¼ 0 and Hz 6¼ 0ð Þ

wHz
¼ X xð ÞY yð ÞZðzÞ

substituting Ez ¼ 0 in Eq. (3.2) to get, Ey

Ey ¼ C0 � @Hz

@x

� �
;
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or,

Ey ¼ C0X 0 xð ÞY yð ÞZ zð Þ;

Now

X 0 xð Þ ¼ A1 cos kxx� A2 sin kxx;

But at

x ¼ 0; a; Ey ¼ 0;

) 0 ¼ A1 cos kx0� A2 sin kx0;

or,

A1 ¼ 0 and kx ¼ mp
a

;

Similarly from Eq. (3.1)

Ex ¼ C0 @Hz

@y

� �
;

or,

Ex ¼ C0X xð ÞY 0 yð ÞZðzÞ:

Now

Y 0 yð Þ ¼ A3 cos kyy� A4 sin kyy;

At,

y ¼ 0; b; Ex ¼ 0;

) 0 ¼ A3 cos ky0� A4 sin ky0;

or,

A3 ¼ 0 and ky ¼ np
b
;
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From above equation,

Hx ¼ C0 � 1
jx�

@2Hz

@z@x

� �
;

or,

Hx ¼ C0X 0 xð ÞY yð ÞZ 0 zð Þ;

Now

Z 0 zð Þ ¼ A5 cos kzz� A6 sin kzz;

At,

z ¼ 0; d Hx ¼ 0;

) A5 cos kz0� A6 sin kz0 ¼ 0;

A5 ¼ 0 and kz ¼ pp
d
;

Hence,

Hz ¼ A2A4A6 cos
mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
ð3:8Þ

Using Eqs. (3.1)–(3.4), and (3.8), we get

Hx ¼ C00A2A4A6
mp
a

� � pp
d

� �
sin

mp
a

x
� �

cos
np
b
y

� �
sin

pp
d
z

� �
;

Hy ¼ C00A2A4A6
np
b

� � pp
d

� �
cos

mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
;

Ey ¼ C00A2A4A6
mp
a

� �
sin

mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
;

Ex ¼ C00A2A4A6
np
b

� �
cos

mp
a

x
� �

sin
np
b
y

� �
cos

pp
d
z

� �
;

Similarly, for TM mode Hz ¼ 0 and Ez 6¼ 0ð Þ

wEz
¼ X xð ÞY yð ÞZ zð Þ;

3.2 Rectangular DRA Mathematical Modeling 39



At,

x ¼ 0; a;

Ez ¼ 0;

A1 sin kx0þ A2 cos kx0 ¼ 0;

) A2 ¼ 0 and kx ¼ mp
a

;

Also, at

y ¼ 0; b;

Ez ¼ 0;

A3 sin ky0þ A4 cos ky0 ¼ 0;

A4 ¼ 0; and ky ¼ np
b

At,

z ¼ 0; d;

Ez ¼ 0;

) A5 sin kz0þ A6 cos kz0 ¼ 0;

A6 ¼ 0 and kz ¼ pp
d
;

Hence,

Ez ¼ A1A3A5 sin
mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
ð3:9Þ

Using Eqs. (1.1)–(1.4), and (1.9), we get

Ex ¼ C00A1A3A5
mp
a

� � pp
d

� �
cos

mp
a

x
� �

sin
np
b
y

� �
cos

pp
d
z

� �
;

Ey ¼ C00A1A3A5
np
b

� � pp
d

� �
sin

mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
;

Hy ¼ C00A1A3A5
mp
a

� �
cos

mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
;

Hx ¼ C00A1A3A5
np
b

� �
sin

mp
a

x
� �

cos
np
b
y

� �
sin

pp
d
z

� �
;
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3.2.2 Model-2

(b) Top and bottom walls are PEC and rest of the other walls are PMC:
Assuming the top and bottom surface plane be at z ¼ 0; d;

n� E ¼ 0;

n � H ¼ 0;

Ey ¼ Ex ¼ 0;

Hz ¼ 0;

Rest of the other walls are PMC

n� H ¼ 0;

n � E ¼ 0;

At,

x ¼ 0; a;

Hy ¼ Hz ¼ 0;

Ex ¼ 0;

At,

y ¼ 0; b;

Hx ¼ Hz ¼ 0;

Ey ¼ 0;

We also know that

Ex ¼ 1

jx� 1þ c2

k2

� � @Hz

@y
� 1
jxl

@2Ez

@z@x

� �
; ð3:10Þ

Ey ¼ 1

jx� 1þ c2

k2

� � � 1
jxl

@2Ez

@z@y
� @Hz

@x

� �
; ð3:11Þ

Hx ¼ �1

jxl 1þ c2

k2

� � @Ez

@y
� 1
jx�

@2Hz

@z@x

� �
; ð3:12Þ
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Hy ¼ �1

jxl 1þ c2

k2

� � 1
jx�

@2Hz

@z@y
� @Ez

@x

� �
; ð3:13Þ

Now, the solution of second-order differential equation is given as

wz ¼ X xð ÞY yð ÞZðzÞ;

where

X xð Þ ¼ A1 sin kxxþ A2 cos kxx; ð3:14Þ

Y yð Þ ¼ A3 sin kyyþ A4 cos kyy; ð3:15Þ

Z zð Þ ¼ A5 sin kzzþ A6 cos kzz; ð3:16Þ

TE mode Ez ¼ 0 and Hz 6¼ 0ð Þ

wHz
¼ X xð ÞY yð ÞZ zð Þ;

At,

x ¼ 0; a;

Hz ¼ 0;

A1 sin kx0þ A2 cos kx0 ¼ 0;

A2 ¼ 0;

and

kx ¼ mp
a

;

Also, at

y ¼ 0; b;

Hz ¼ 0;

A3 sin ky0þ A4 cos ky0 ¼ 0;

A4 ¼ 0;

and

ky ¼ np
b
;
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At,

z ¼ 0; d;

Hz ¼ 0;

A5 sin kz0þ A6 cos kz0 ¼ 0;

A6 ¼ 0;

and

kz ¼ pp
d
;

Hence,

Hz ¼ A1A3A5 sin
mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
; ð3:17Þ

Using Eqs. (1.1)–(1.4), and (1.8), we get

Hx ¼ C00A1A3A5
mp
a

� � pp
d

� �
cos

mp
a

x
� �

sin
np
b
y

� �
cos

pp
d
z

� �
;

Hy ¼ C00A1A3A5
np
b

� � pp
d

� �
sin

mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
;

Ey ¼ C00A1A3A5
mp
a

� �
cos

mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
;

Ex ¼ C00A1A3A5
np
b

� �
sin

mp
a

x
� �

cos
np
b
y

� �
sin

pp
d
z

� �
;

TM mode Hz ¼ 0 and Ez 6¼ 0ð Þ

wEz
¼ X xð ÞY yð ÞZ zð Þ;

From Eq. (3.2) after substituting Hz ¼ 0, we get

Ey ¼ C0 � 1
jxl

@2Ez

@z@y

� �
;

Ey ¼ C0X xð ÞY 0 yð ÞZ 0 zð Þ;

Now

Y 0 yð Þ ¼ A3 cos kyy� A4 sin kyy;
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At,

y ¼ 0; b; Ey ¼ 0;

0 ¼ A3 cos ky0� A4 sin ky0;

A3 ¼ 0 and ky ¼ np
b
;

Similarly, from the above equations,

Ex ¼ C0 � 1
jxl

@2Ez

@z@x

� �
;

Ex ¼ C0X 0 xð ÞY yð ÞZ 0ðzÞ;
X 0 xð Þ ¼ A1 cos kxx� A2 sin kxx;

x ¼ 0; a;

Ex ¼ 0;

0 ¼ A1 cos kx0� A2 sin kx0;

A1 ¼ 0;

and

kx ¼ mp
a

;

Also, from above equations,

Z 0 zð Þ ¼ A5 cos kzz� A6 sin kzz;

At,

z ¼ 0; d; Ex ¼ 0;

) 0 ¼ A5 cos kz0� A6 sin kz0;

or,

A5 ¼ 0 and kz ¼ pp
d
;

Hence,

Ez ¼ A2A4A6 cos
mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
; ð3:18Þ
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Using Eqs. (3.11–3.14) and (3.18), we get

Ex ¼ A2A4A6
mp
a

� � pp
d

� �
sin

mp
a

x
� �

cos
np
b
y

� �
sin

pp
d
z

� �
;

Ey ¼ A2A4A6
np
b

� � pp
d

� �
cos

mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
;

Hx ¼ A2A4A6
np
b

� �
cos

mp
a

x
� �

sin
np
b
y

� �
cos

pp
d
z

� �
;

Hy ¼ A2A4A6
mp
a

� �
sin

mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
;

3.2.3 Model-3

(c) Solution of RDRA, when all six walls are PEC (perfect electrical walls):
Using Maxwell equations:

r� E ¼ �jxB ¼ �jxlH;

r� H ¼ jx�E;

r� E ¼ �jxlH;

x̂ ŷ ẑ
@
@x

@
@y

@
@z

Ex Ey Ez

�������

�������
¼ �jxlH;

x̂
@Ez

@y
� @Ey

@z

� �
þ ŷ

@Ex

@z
� @Ez

@x

� �
þ ẑ

@Ey

@x
� @Ex

@y

� �
¼ �jxlH;

On comparing ðx; y; zÞ components both the sides

@Ez

@y
� @Ey

@z
¼ �jxlHx; ð3:19Þ

@Ex

@z
� @Ez

@x
¼ �jxlHy; ð3:20Þ

@Ey

@x
� @Ex

@y
¼ � jxlHz; ð3:21Þ

Similarly, using r� H ¼ jx�E; We get

@Hz

@y
� @Hy

@z
¼ jx�Ex; ð3:22Þ
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@Hx

@z
� @Hz

@x
¼ jx�Ey; ð3:23Þ

@Hy

@x
� @Hx

@y
¼ jx�Ez; ð3:24Þ

Comparing above equations,

Ex ¼ 1
jx�

@Hz

@y
þ 1
jxl

@2Ex

@z2
� @2Ez

@x@z

� �� �
; ð3:25Þ

Ex þ 1
k2

@2Ex

@z2
¼ 1

jx�
@Hz

@y
� 1
jxl

@2Ez

@x@z

� �
; ð3:26Þ

Ex 1þ c2

k2

� �
¼ 1

jx�
@Hz

@y
� c
jxl

@Ez

@x

� �
;

Ey, Hx, and Hy are expressed in Ez and Hz fields:

Ey 1þ c2

k2

� �
¼ 1

jx�
�c
jxl

@Ez

@y
� @Hz

@x

� �
;

Hx 1þ c2

k2

� �
¼ � 1

jxl
@Ez

@y
� c
jx�

@Hz

@x

� �
;

Hy 1þ c2

k2

� �
¼ � 1

jxl
c

jxl
@Hz

@y
� @Ez

@x

� �

Separation of variables with given boundary conditions, solution is obtained.

w ¼ X xð ÞY yð ÞZ zð Þ;
¼ A1 sin kxxþ A2 cos kxxð Þ A3 sin kyyþ Ay sin kyy

	 

A5 sin kzzþ A6 cos kzzð Þ;

TM mode of propagation, Hz ¼ 0;
Boundary conditions
Electrical walls ! Etan ¼ 0 ¼ n� E;

! Hn ¼ 0 ¼ n � H;
At, x = 0;

Ez ¼ X xð Þ ¼ Az cos 0ð Þ; so A2 must be zero:

y ¼ 0;Y yð Þ ¼ Ay cos 0ð Þ; A4 must be zero:
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For standing wave in direction of z,
Therefore,

@

@z
Z zð Þ ¼ 0;

A5 cos kzzð Þ � A6 sin kzzð Þ ¼ 0;

Therefore, at

z ¼ 0; d;

A5 must be zero;

Hence, we are left with

Ez ¼ A1;A3;A5; sin kxx sin kyy cos kzz;

Next, boundary conditions are
At,

x ¼ a;

X xð Þ ¼ A1 sin kxa ¼ 0;

kx ¼ mp
a

;

At,

Y ¼ b; Y yð Þ ¼ A2 sin kyd ¼ 0;

ky ¼ np
b
;

At,

z ¼ 0 z zð ÞA4 sin kzd ¼ 0;

kz ¼ pp
d
;
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As, we know that

k20 ¼ k2x þ k2y þ k2z ;

Ex ¼ 1

jx� 1þ y2

k2

� � @Hz

@y
� 1
jxl

@2Ez

@x@z

� �
;

Ez ¼ 0;

Ex ¼ 1

k2 1þ y2

k2

� � A1A3A5kxkz cos kxx sin kyy sin kzz
	 


;

Ey ¼ 1

jx� 1þ y2

k2

� � � @Hz

@x
� 1
jxl

@2Ez

@y@z

� �
;

Ey ¼ �A1A3A5ky

k2 1þ y2

k2

� � kz sin kxx cos kyy sin kzz
	 


;

Hx ¼ �1

jxl 1þ y2

k2

� � @Ez

@y
� 1
jx�

@2Hz

@x@z

� �
;

¼ �kyA1A3A5

x2l� 1þ y2

k2

� � sin kxx cos kyy cos kzz
	 


;

Hy ¼ �1

jxl 1þ y2

k2

� � 1
jx�

@2Hz

@y@z
� @Ez

@x

� �
;

¼ �kzkxA1A3A5

x2l� 1þ y2

k2

� � cos kxx sin kyy cos kzz
	 


;

Hy ¼ kxA1A3A5

jxl 1þ y2

k2

� � cos kxx sin kyy cos kzz
	 


;

For, TE mode

w ¼ A1 sin kxxþ A2 cos kxð Þ A3 sin kyyþ Ay sin ky
	 


A5 sin kzzþ A6 cos kzzð Þ;

For PEC walls, electric field components are assumed to be varying with Hz in
direction of (x, y, z)
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Ex ¼ C0 @
@y

Hz

¼ C0X xð ÞY 0 yð ÞZ zð Þ;
y ¼ 0; b;

Y 0 yð Þ ¼ A3 cos kyy� A4 sin kyy ¼ 0;

A3 ¼ 0;

ky ¼ np
b
;

Similarly, Ey ¼ C00 @
@x

Hz;

A1 ¼ 0;

kx ¼ mp
a

;

Z zð Þ ¼ A5 sin kzzþ A6 cos kzz;

At,

z ¼ 0; d;

A6 ¼ 0;

kz ¼ pp
d
;

Hz ¼ A2A4A5 cos kxx cos kyy sin kzz;

Therefore,

Ex ¼ 1

j�x 1þ y2

k2

� � A2A4A5 cos kxx sin ky sin kzð Þ;

Ey ¼ �A2A4A5kx

j�x 1þ y2

k2

� � sin kxx cos kyy sin kzz
	 


;

Hx ¼ kxkzA1A3A5

k2 1þ y2

k2

� � sin kxx cos kyy cos kzz
	 


;

Hy ¼ �kzkyA1A3A5

x2l� 1þ y2

k2

� � cos kxx sin kyy cos kzz
	 


;
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3.2.4 Model-4

(d) When all the six walls of RDRA are assumed to be PMC (permanent magnetic
walls),

wz ¼ X xð ÞY yð ÞZ zð Þ where wz is wave function in x, y, and z direction as space.

Or ¼ A1 sin kxxþ A2 cos kxxð Þ A3 sin kyyþ A4 cos kyy
	 


A5 sin kzzþ A6 cos kzzð Þ
ð3:27Þ

where A1–A6 are constants and (A1 sin kxx + A2 cos kxxÞ is solution of second-order
differential equation in x direction, i.e., X(x).

When all six walls are PMC, the rectangular DRA solution is

Htan ¼ n� H ¼ 0;

Hnor ¼ n � E ¼ 0;

Applying boundaries,
At,

x ¼ 0; a ) Hy and Hz ¼ 0;Ex ¼ 0;

At,

y ¼ 0; b ) Hx and Hz ¼ 0;Ey ¼ 0;

At,

z ¼ 0; d ) Hx and Hy ¼ 0;Ez ¼ 0;

TE mode of propagation Ez ¼ 0;Hz 6¼ 0ð Þ
Using boundary conditions
At,

x ¼ 0; a; Hz ¼ 0 ) A2 ¼ 0 and kx ¼ mp
a

;

At,

y ¼ 0; b; Hz ¼ 0 ) A4 ¼ 0 and ky ¼ np
b
;
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Now,

Hx ¼ C00 @
2Hz

@x@z
¼ C00X 0 xð ÞY yð Þz0 zð Þ

z0 zð Þ ¼ A5 cos kzz� A6 sin kzz

At,

z ¼ 0; d ) d ) Hx ¼ 0;

) Hx ¼ 0 ) A5 ¼ 0; kz ¼ pp
d
;

Hence,

Hz ¼ A1A3A6 sin
mpx
a

� �
sin

npy
b

� �
cos

ppz
d

� �
ð3:28Þ

TM mode of propagation Ez 6¼ 0;Hz ¼ 0ð Þ
We again look for the conditions, when Hz = 0, i.e., to get the value of Ez

Hz ¼ C0@Ez

@y

¼ C0X xð ÞY y0ð ÞZ zð Þ;
Y 0 yð Þ ¼ A3 cos kyy� A4 sin kyy;

Hx ¼ 0 at Y ¼ 0; b;

) A3 ¼ 0 at ky ¼ np
b
;

ð3:29Þ

Similarly,

Hy ¼ C00 @Ez

@x
;

C00X 0 xð ÞY y0ð ÞZ zð Þ;
X 0 xð Þ ¼ A1 cos kxx� A2 sin kxx;

) Hy ¼ 0 at x ¼ 0; a;

) A1 ¼ 0;

kx ¼ mp
a

;
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At,

z ¼ 0; d ) Ez ¼ 0;

) A5 ¼ 0 and kz ¼ pp
d
;

At,

z ¼ 0; d ) Ez ¼ 0;

) A5 ¼ 0 and kz ¼ pp
d
;

Hence,

Ez ¼ A2A4A5 cos
mpx
a

� �
cos

npy
b

� �
sin

ppz
d

� �
: ð3:30Þ

3.2.5 Basic Theory

Depending on the nature of the surfaces, different linear combinations of the �c
modes are formed. The propagation constant cð Þ itself is taking discrete values. This
forces the natural frequencies of the field oscillations to take discrete values mnpð Þ,
indexed by three positive integers m, n, and p. The solutions of the waveguide
problem yield discrete values of c, i.e., c m; n;xð Þ for a given frequency x by
applying boundary conditions to the electromagnetic fields on the side walls. The
corresponding field amplitudes are solutions to the 2-D Helmholtz equations
corresponding to the transverse Laplacian r2

?: These amplitudes are called “the
waveguide modes” and are of the form

L
I

cos
npx
a

� �
; sin

npx
a

n on o
� L

I
cos

mpy
b

� �
; sin

mpy
b

n on o

where L denotes linear components. It turns out that, depending on the nature of
wall surfaces (PEC or PMC), four possible linear combinations can appear
cos� sin; sin� cos; sin� sin; and cos� cosð Þ.
In rectangular DRA, we have got to applying in additional boundary conditions

on top and bottom surfaces to be the linear combinations as compared to the
waveguide.

C1 exp �cðm; n;xð Þzf g þ C2 exp þc m; n;xð Þzf g

and these cases are c m; n;xð Þ ¼ pp
d ; when p ¼ 1; 2; 3. . . and have two possible

linear combinations of sin ppz
d

	 

and cos ppz

d

	 

.
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Thus, the possible frequencies x obtained by solving c m; n;xð Þ ¼ pp
d and then

comes out to be

x m; n; pð Þ ¼ p
m2

a2
þ n2

b2
þ p2

d2

� �1=2

An equivalent but computationally simpler way to pass on from waveguide
physics to resonator physics is to just replace c by � @

@z in all the waveguide
formulae that express the tangential field components in terms of the longitudinal
components. This is done after solving the full 3-D Helmholtz equations using
separation of variable in x, y, and z.

r2 þ x2

c2

� �
Ez

Hz

� �
¼ 0

The discrete modes x mnpð Þ enable us to visualize the resonator as collection of
L, C oscillators with different L, C values. The outcome of all this analysis enables
us to write down the E and H fields inside the resonator, as superposition of four or
three vector-valued basis functions.

E x; y; z; tð Þ ¼
X1

m;n;p¼1

Re C mnpð Þe jx mnpð ÞtwE
mnp

x; y; zð Þ
n o

þ
X1

m;n;p¼1

Re D mnpð Þe jx mnpð Þt�/E

mnp
x; y; zð Þ

n o ð3:31Þ

and

H x; y; z; tð Þ ¼
X1

m;n;p¼1

Re C mnpð Þe jx mnpð Þt wH
mnp

x; y; zð Þ
n o

þ
X1

m;n;p¼1

Re D mnpð Þe jx mnpð Þt�/H

mnp
x; y; zð Þ

n o ð3:32Þ

We note that there are only two sets of amplitude coefficients {C(mnp)} and
{D(mnp)} of linear combination of coefficients using from the Ez andHz expansions.

The vector-valued complex functions are wE
mnp

; �/
E

mnp
; wH

mnp
; �/

H

mnp
�R3 (where R is

autocorrelation) and contains components cos; sinf g � cos; sinf g � cos; sinf g;
functions and hence for m0n0p0ð Þ 6¼ mnpð Þ; each function of the set

wE
mnp

; �/
E

mnp
; wH

mnp
; �/

H

mnp

n o
;
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is orthogonal to each functions of the set

wE
m0n0p

; �/
E

m0n0p
;wH

mnp
; �/

H

m0n0p0

n o
;

w.r.t. The measure of dx dy dz over [0, a] × [0, b] × [0, d];

The exact form of the function �/
E
; �/

H
;wE;wH depends on the nature of the

boundaries. The next problem addressed can be on excitations of RDRA. To cal-
culate the amplitude coefficients {C(mnp)} and {D(mnp)}, we assume that at z = 0,

an excitation EðeÞ
x x; y; tð Þ or EðeÞ

y x; y; tð Þ is applied for some time say t 2 [0, T] and
then removed. Then, the Fourier components in this excitation corresponding to the
frequencies x mnpð Þf g are excited and their solutions are the oscillations, while the
waveguide for t > T. The other Fourier components decay within the resonator.

{C(mnp), D(mnp)} are components of the form,

EðeÞ
x x; y; tð Þ ¼

X
m;n;p

Re CðmnpÞð Þe jx mnpð ÞtwE
mnp x x; y; 0ð Þ

þ Re DðmnpÞe jx mnpð Þt �/E

mnp x
x; y; 0

n o ð3:33Þ

and

EðeÞ
y x; y; tð Þ ¼

X
m;n;p

Re CðmnpÞð Þe jx mnpð ÞtwE
mnp y x; y; 0ð Þ

þ Re DðmnpÞe jx mnpð Þt�/E

mnp y
x; y; 0ð Þ

n o ð3:34Þ

By using orthogonality of wE
mnp x x; y; 0ð Þ; �/E

mnp x
x; y; 0ð Þ

n o
, for different (m, n), we

can write p to be fixed and likewise of wE
mnp y x; y; 0ð Þ; �/E

mnp y
x; y; 0ð Þ

n o
;

In addition, we need to use KAM (Kolmogorov–Arnold–Moser) type of time
averaging to yield

CðmnpÞwE
mnp x x; y; 0ð Þ þ DðmnpÞ�/E

mnp x
x; y; 0ð Þ

¼ lim

T ! 1
1
2T

ZT

�T

E eð Þ
x x; y; tð Þe�jx mnpð Þtdt
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and likewise

CðmnpÞwE
mnp y x; y; 0ð Þ þ DðmnpÞ�/E

mnp y
x; y; 0ð Þ

¼ lim

T ! 1
1
2T

ZT

�T

E eð Þ
y x; y; tð Þe jx mnpð Þtdt
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