
Chapter 2
Rectangular DRA Resonant Modes
and Sources

Abstract Basics of resonant modes have been described. Their mathematical
analysis for generation of different resonant modes have been presented in this
chapter. Realization of resonant modes based on MATLAB has also been worked.
Modes are generated by applying voltage source. Various types of resonant modes
have been described along with all possible applications.
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2.1 Introduction

In the early 1960s, Okaya and Barash [1] reported the first ever DRA in the form of
a single-crystal TiO2. Since then, no rigorous theoretical analysis has been devel-
oped so far in the literature to evaluate the resonant modes in Rectangular DRA.
Based on Cherenkov principle of radiations, an external electric field brings the
charges of the molecules of the dielectric into a certain ordered arrangement in
space and creates acceleration phenomenon in dielectric material itself. The
dielectric polarization P is equal to the total dipole moment induced in the volume
of the material by the electric fields. In most cases, the magnitude of polarization is
directly proportional to the intensity of the electric field at a given point of a
dielectric. The relative permittivity is related to the dielectric susceptibility.
A dielectric resonator is defined as “object of dielectric material which functions as
a resonant cavity by means of reflections at the dielectric air interface.” The
discontinuity of the relative permittivity at the resonator surface allows a standing
electromagnetic wave to be supported in its interior at a particular resonant fre-
quency, thereby leading to maximum confinement of energy within the resonator.

Certain fields distribution or modes will satisfy Maxwell’s equations and
boundary conditions. Resonant modes are field structures that can exist inside the
DRA. Modes are the pattern of motion which repeat itself sinusoidally. Infinite
number of modes can excited at same time. Any motion is superposition or
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weighted sum of all the modes at any instant of time by combining amplitudes and
phases. As in the case of all resonant cavities, there are many possible resonant
modes that can be excited in dielectric resonators. The boundary conditions are
n · H = 0; where H denotes the electric field intensity and n denotes the normal to
the surface of the resonator.

And, n × E = 0, is not necessarily satisfied at all the surfaces of the RDRA by all
the modes. Different resonant modes have distinct electromagnetic field distribu-
tions within the DRA, and each mode may provide a different radiation pattern.

Operation of DRA is based on the process that if excitation is applied, then a
high magnetic field is created inside the dielectric object placed on a ground plane.
Phenomena which occur like a charge particle passing to the field create the
physical environment like any metal ball passing through liquid. Thus, there will be
change in the field, contraction, and expansion, which causes fringing effect. This
way dielectric object starts to radiate. Another phenomenon that occurs is that there
might be reflection of the field from sidewalls of dielectric object due to change in
the refractive index of the medium. The dielectric object acts as an oscillator.

Theory of characteristic modes can be applied in the design of antenna or DRA.
These modes give insight into physical phenomenon taking place inside device in
terms of current vectors as maxima and minima. This helps to locate the feeding
point and desired dimension of RDRA.

In 1968, modes were introduced by Garbacz and later by Harrington. Inagaki
gave simpler theory on modes for radiation mechanism in an antenna. It requires lot
of computation, for loading quality factor, double feeding to improve bandwidth,
and circular polarization. Characteristic modes are current modes or eigenvectors,
which are the solution of characteristic equation. These are orthogonal functions
that can predict total current on surfaces of body of the antenna. Also, desired mode
can be excited for specific radiating pattern. Excitation of mode mainly depends on
feeding arrangement, geometry of the device, and dielectric material used. In time
domain, varying electric field can produce magnetic fields and vice versa. By
applying RF, excitation currents in RDRA get converted into surface current
density distributed over the surfaces, i.e., RF excitation with proper impedance
match can generates J. This probe current produced magnetic vector potential “A.”
The radiated magnetic fields are presented in the form E-electric field intensity
using Lorentz gauge transformation. An antenna can propagate electromagnetic
fields, if wave vector k > kc. The cutoff wave vector kc determines the cutoff
frequency. There can be dominant resonant frequency or higher-order resonant
frequency. The propagation takes place along x-axis if propagation constant k[ np

b .
There will not be any propagation if k� np

b , as it will lead to formation of standing
waves. Similar conditions persist for propagation along y-axis and z-axis.
Maxwell’s equations define the behavior of electromagnetic wave propagation,
while the solution of Maxwell equation is defined by Helmholtz equation. The
radiated power is given by Parseval’s power theorem. Half-wave Fourier analysis is
used to determine the time domain behavior of antenna radiations. The magnitude
and phase of the radiated field is given by Poynting vector (S = E × H). The image

12 2 Rectangular DRA Resonant Modes and Sources



theorem can be applied for antenna size reduction. It can be implemented by
extending ground plane to an isolated RDRA. Resonance in RDRA is created due
to formation of standing waves inside the device. Frequency xmnp is the spectral
solution of an antenna, and this can determine the base half-wave Fourier analysis.
Principle of orthonormality is used to determine radiation parameters by equating
electric time average energy equal to magnetic time average energy by KAM
(Kalmogorov–Arnold–Moser).

At any instant of time, n number of modes exist. The particular mode can be
excited by increasing weighted amplitude of desired mode. More than one mode
can also be excited into RDRA. Blocking modes can take place if Ez and Hz fields
of same frequency are available in RDRA at any instant of time. Hence, mode
spectrum will result into corresponding resonant frequency generation. Wave
propagation can be defined by Helmholtz equation. The Maxwell’s equation
describes the behavior of electromagnetic fields and forms the basis of all EM
classical phenomena. The size of antenna can be reduced to half by image theorem,
converting isolated cavity into infinite ground plane. Dielectric resonator antenna is
formed with high permittivity substrate. The abrupt change in permittivity due to
change in medium forms standing waves. These waves establish resonance as they
bounce back and forth in-between two walls due to fields perturbation. Modes are
spectral resolution of electromagnetic fields of waves radiated by the RDRA. Modal
excitation mainly depends on:

(a) Position of probe;
(b) Magnitude of probe current; and
(c) Phase of input current.

To compute resonant modes, vector principle of orthonormality on half-wave
Fourier analysis has been applied, i.e., radiated magnetic energies time averaged are
compared with applied electrical energies time averaged in the case of resonator
antennas. More number of modes along z-axis in RDRA can be generated either by
increasing electrical height “d” of RDRA or by increasing resonant frequency of
DRA. Figure 2.1 depicts the prototype RDRA with moat under fabrication.

Fig. 2.1 RDRA prototype with neat sketch
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Depending on the nature of the surfaces, different linear combinations of the �c
modes are formed. The propagation constant ðcÞ itself is taking discrete values. This
forces the natural frequencies of the field oscillations to take discrete values (mnp)
indexed by three positive integers, namely m, n, and p. The solutions of the
waveguide problem yield discrete values of c, i.e., c m; n;xð Þ for a given frequency
x by applying boundary conditions to the electromagnetic fields on the sidewalls.
The corresponding field amplitudes are solutions to the 2-D Helmholtz equations
corresponding to the transverse Laplacian r2

?: These amplitudes are called “the
waveguide modes” and are of the form given below in Sect. 2.2.

2.2 Type of Modes (TE, TM, HEM)

EM waves are of four types given below:
Transverse electric and magnetic (TEM) mode

• Transverse electric (TE) mode
• Transverse magnetic (TM) mode
• Hybrid electric and magnetic (HEM) or HE odd and EH even mode

Modes propagation depends mainly on following configuration:

1. Excitation
2. Dimensions
3. Coupling
4. Medium
5. Point of excitation
6. Input impedance

Cross-polarization solution can be the outcome of modes. They can be merged,
separated and mixed depending upon the requirements. Half Fourier analysis can be
used to describe modes of propagation and excitation. Even and odd modes can be
studied. They can be analyzed with magnetic dipole moments. They help to predict
far field radiation patterns. Modulated bandwidth and gain control can be achieved.
High gain at higher modes can be used for hardware implementations. Device
dimensions can be minimized by proper selection of modes for resonant frequen-
cies. In case of milli metric (mm) wave, device size can be enlarged for easy
hardware development or hardware implementation. The solution is based on
waveguide method when boundaries have been all six electrical walls. The solution
is based on solution of Maxwell’s equations and then restricted to given boundary
conditions for confined modes of EM waves.
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2.3 Solutions of Helmholtz Equation

Helmholtz equation solution with source

r� H ¼ J þ @D
@t

ð2:1Þ

D ¼ �E

B ¼ lH ¼ r� A

H ¼ 1
l

r� Að Þ

Considering the sources to be natural time harmonic

E ¼ Emejxt ð2:2aÞ

H ¼ Hme
jxt ð2:2bÞ

Now,

r� E ¼ � @B
@t

ð2:3Þ

or

r� E ¼ �jxlH ¼ �jx r� Að Þ

r � E þ jxAð Þ ¼ 0 ð2:4Þ

Using vector identity

r� �røeð Þ ¼ 0

E þ jxA ¼ �røe

E ¼ �jxA�røe

Using the vector identity

r� r� Að Þ ¼ r r� Að Þ � r2A ð2:5Þ
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Now,

r� ðlHÞ ¼ r r� Að Þ � r2A

or

lðr � HÞ ¼ r r� Að Þ � r2A

From Maxwell’s fourth equation,

r� H ¼ J þ jx�E

or

r� B
l
¼ J þ jx�E

or

r� B ¼ lJ þ jx�lE

or

r� r� Að Þ ¼ lJ þ jx�lE

or

r r� Að Þ � r2A ¼ lJ þ jx�lE

r r� Að Þ � r2A ¼ lJ þ jx�l �jxA�røeð Þ

or

rðr � AÞ � r2A ¼ lJ þ x2�lA� jxl� røeð Þ

or

r2Aþ k2A ¼ �lJ þ jxl� røeð Þ þ rðr � AÞ

or

r2Aþ k2A ¼ �lJ þr jxl�øe þ ðr � AÞð Þ

where k2 ¼ x2l�.
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Using Lorentz condition, i.e.,

r� A ¼ �jxeløe

or

øe ¼ � 1
jxle

r� Að Þ

r2Aþ k2A ¼ �lJ þrðjxl�øe � jxeløeÞ ð2:6Þ

Hence, r2Aþ k2A ¼ �lJ:

2.4 Rectangular Waveguide Analysis

Propagation in waveguide has been taken along z-axis, and all the four sidewalls of
waveguide are PEC; the fields computed are as follows:

Hx Ex

Hy Ey

Hz Ez

Ez x; y; zð Þ ¼
X1
m;n¼1

C m; nð Þ sin mpx
a

� �
sin

npy
b

� �
expð�cmnzÞ; ð2:7aÞ

Ez;y ¼ @Ez

dy
;

Ez;x ¼ @Ez

dx

Hz x; y; zð Þ ¼
X1
m;n¼1

D m; nð Þ cos mpx
a

� �
cos

npy
b

� �
expð�cmnzÞ ð2:7bÞ

Form Maxwell’s equations

Curl E ¼ r� E ¼ �jxlH ¼ �B; t ð2:8aÞ

Curl H ¼ r� H ¼ �jx�E ¼ J þ D; t ð2:8bÞ

Solution of above equations is based on separation of variables solving LHS of both
sides first
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r� E ¼
i j k
@
@x

@
@y

@
@z

Ex Ey Ez

������
������ ¼ i

@Ez

@y
� @Ey

@z

� �
� j

@Ez

@x
� @Ex

@z

� �
þ k

@Ey

@x
� @Ex

@y

� �

ð2:9aÞ

r � H ¼
i j k
@
@x

@
@y

@
@z

Hx Hy Hz

������
������ ¼ i

@Hz

@y
� @Hy

@z

� �
� j

@Hz

@x
� @Hx

@z

� �
þ k

@Hy

@x
� @Hx

@y

� �

ð2:9bÞ

Comparing with RHS in both equations and getting value of Hx, Hy, Hz from (2.9a)
and Ex, Ey, Ez from (2.9b) we get

Hx ¼ 1
�jxl

@Ez

@y
� @Ey

@z

� �
; Ex ¼ 1

jx�
@Hz

@y
� @Hy

@z

� �
; ð2:10aÞ

Hy ¼ 1
jxl

@Ez

@x
� @Ex

@z

� �
; Ey ¼ 1

�jx�
@Hz

@x
� @Hx

@z

� �
; ð2:10bÞ

Hz ¼ 1
�jxl

@Ey

@x
� @Ex

@y

� �
; Ez ¼ 1

jx�
@Hy

@x
� @Hx

@y

� �
; ð2:10cÞ

Ez;y þ cEy ¼ �jxlHx

cEx þ Ez;x ¼ jxlHy

Hz;y ¼ @Hz

dy

Hz;x ¼ @Hz

dx

Similarly,

Hz;y þ cHy ¼ j ¼ jx�Ex

cEx þ Hz;x ¼ �jx�Ey

These above equations can be placed in matrix form

jx� �c
c �jxl

� �
Ex

Hy

� �
¼ Hz;y

�Ez;x

� �
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and

jx� x
c �jxl

� �
Ey

Hx

� �
¼ �Hz;x

Ez;x

� �

On manipulating them

Ey

Hx

� �
¼ jxl �c

�c jx�

� � �Hz;x

Ez;y

� �

Hence, on simplification

Ey ¼ jxl
h2m;n

Hz;x � c
h2m;n

Ez;y

Ex ¼
X
m;n

jxl
D m; nð Þ np

b

	 

cos mpx

a

	 

sin npy

b

	 

e �cmnzð Þ� �

h2m;n

þ
X

c
C m; nð Þ mp

a

	 

cos mpx

a

	 

sin npy

b

	 

e �cmnzð Þ� �

h2m;n
;

¼
X
m;n

jxl
D m; nð Þ np

b

	 
þ cC m; nð Þ mp
a

	 
�
h2m;n

cos
mpx
a

� �
sin

npy
b

� �
e �cmnzð Þ

�
ð2:11Þ

Similarly, we can compute

c2m;n þ k2 ¼ h2m;n; k2 ¼ l�x2

h2m;n ¼
mp
a

� �2
þ np

b

� �2
cmn ! propagation constant

Eix m; nð Þ ¼ 2
ab

Za
0

Zb
0

Eix x; yð Þ cos mpx
a

� �
sin

npy
b

� �
dxdy

¼ jxl np
b

	 

D m; nð Þ þ cm;nC m; nð Þ mp

a

	 

h2m;n

;

ð2:12aÞ

Eiy m; nð Þ ¼ 2
ab

Za
0

Zb
0

Eiy x; yð Þ sin mpx
a

� �
cos

npy
b

� �
dxdy

¼ � jxl
h2m;n

D m; nð Þ mp
a

� �
þ cm;nC m; nð Þ npb

h2m;n

 !
;

ð2:12bÞ
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Eix m; nð Þ
Eiy m; nð Þ
� �

¼
mp
a

cm;n
h2m;n

np
b

jxl
h2m;n

� cm;n
h2m;n

np
b � jxl

h2m;n
mp
a

" #
C m; nð Þ
D m; nð Þ
� �

Hence, C m; nð Þ;D m; nð Þ amplitude coefficients can be computed, when the
boundary conditions are given as:

x ¼ 0; a
y ¼ 0; b
z ¼ 0; d

8<
:

9=
;

Incident waves at input of waveguide are Eix x; yð Þ, Eiy x; yð Þ

Eix x; yð Þ ¼
X
m;n

jxlD m; nð Þ np
b

	 
þ cm;nC m; nð Þ mp
a

	 

h2m;n

cos
mpx
a

� �
sin

npy
b

� �h i
;

ð2:13aÞ

Eiy x; yð Þ ¼
X
m;n

jxlD m; nð Þ mp
a

	 
þ cm;nC m; nð Þ np
b

	 

h2m;n

sin
mpx
a

� �
cos

npy
b

� �h i
:

ð2:13bÞ

2.5 Two-Dimensional Resonator

Solution is obtained by the application of Helmholtz equation.

@2w x; y; tð Þ
@x2

þ @2w x; y; tð Þ
@y2

� 1
c2

@2w x; y; tð Þ
@t2

¼ 0 ð2:14Þ

Applying boundary conditions in rectangular plane,

w 0; y; tð Þ ¼ w a; y; tð Þ ¼ 0

w x; 0; tð Þ ¼ w x; b; tð Þ ¼ 0

Let input excitation be some tension T

rdxdy
@2w
@t2

¼ @

@x
T � dy @w

@x

� �
dxþ @

@y
T � dx @w

@y

� �
dy ð2:15Þ

Y 00

Y
¼ �k2y ;

X 00

X
¼ �k2x ;
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@2w
@t2

� c2r2w ¼ 0 ð2:16Þ

Using separation of variables:

w x; y; tð Þ ¼ X xð ÞY yð ÞT tð Þ ð2:17Þ

�x2 ¼ T 00 tð Þ
T tð Þ ¼ c2

X 00 xð Þ
X xð Þ þ Y 00 yð Þ

Y yð Þ
� �

let

X xð Þ ¼ sin kxxð Þ

Y yð Þ ¼ sin kyy
	 


k2x þ k2y ¼
x2

c2

where kx and ky can be written as:

kx ¼ mp
a

; ky ¼ np
b

ð2:18Þ

Frequency can be written as: x mnð Þ ¼ cp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmaÞ2 þ ðnbÞ2

q
:

2.6 Basic Mathematical Representation of Resonant
Modes

r2Ax þ k2Ax ¼ 0; ð2:19Þ

kr ≫ 1 far field pattern
kr ≪ 1 near field pattern

where Az is the magnetic vector potential and k is the wave vector or wave number
along z-axis.

Az ¼ ðC1 cos kxxð Þ þ C1 sin kxxð ÞÞðC3 cos kyy
	 


þ C4 sinðkyyÞÞ C5 cosðkzzÞ þ C6 sinðkzzÞð Þ;
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Az ¼ l
4p

Z
J z0ð Þ e

jkR

R
d3z0; ð2:20Þ

kc ¼ 2p
k
; k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
¼ x2�l; where k is the wave number:

The wave number can be defined as rate of change of phase w.r.t. distance in the
direction of propagation. Resonant frequency x ¼ xmnp in RDRA and its
mathematical expression is given below:

frð Þm; n; p ¼ cffiffiffiffi
er2p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
a

� �2
þ np

b

� �2
þ pp

d

� �2r
; ð2:21Þ

where m; n; p are the half-wave field variations along x, y, z directions.

H ¼ r� A

E ¼ �rø� dA
dt

; scalar and magnetic vector potential from Lorentz Gauge

conditions:
S ¼ E � H�ð Þ; S is Poynting vector energy flow or fluxð Þ:
Z ¼ Prad

jIj2 ¼ input Impedance:

Ex;Ey;Ez;Hx;Hy;Hz are electric and magnetic fields

L
I

cos
npx
a

� �
; sin

npx
a

� �n o
� L

I
cos

mpy
b

� �
; sin

mpy
b

� �n o
; ð2:22Þ

where L denotes linear components. It turns out that depending on the nature of
wall surfaces (PEC or PMC), four possible linear combinations can appear
(cos� sin; sin� cos; sin� sin; and cos� cos).

In rectangular DRA, we’ve got to applying in additional boundary conditions on
top and bottom surfaces to be the linear combinations as compared to waveguide.

C1expfð�c m; n;xð Þzg þ C2exp þc m; n;xð Þzf g

and these cases are c m; n;xð Þ ¼ pp
d ; when p ¼ 1; 2; 3. . . and have two possible

linear combinations of sin ppz
d

	 

and cos ppz

d

	 

:

Thus, the possible frequencies x obtained by solving c m; n;xð Þ ¼ pp
d ; then

comes out to be:

x m; n; pð Þ ¼ p
m2

a2
þ n2

b2
þ p2

d2

� �1=2
: ð2:23Þ
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An equivalent but computationally simpler way to pass on from waveguide
physics to resonator physics is to just replace c by � @

@z in all the waveguide
formulae that express the tangential field components in terms of the longitudinal
components. This is done after solving the full 3-D Helmholtz equations using
separation of variable in x, y, z.

r2 þ x2

c2

� �
Ez

Hz

� �
¼ 0 ð2:24Þ

The discrete modes xmnp enable us to visualize the resonator as collection of L,
C oscillators with different L, C values. The outcome of all this analysis enables us
to write down the E and H fields inside the resonator, as superposition of four, three
vector-valued basis functions.

E x; y; z; tð Þ ¼
X1
mnp¼1

Re Cmnpe
jx mnpð ÞtwE

mnp
x; y; zð Þ

n o

þ
X1
mnp¼1

Re Dmnpe
jx mnpð Þt�/E

mnp
x; y; zð Þ

n o
;

ð2:25Þ

and

H x; y; z; tð Þ ¼
X1
mnp¼1

Re C mnpð Þe jx mnpð ÞtwH
mnp

x; y; zð Þ
n o

þ
X1
mnp¼1

Re D mnpð Þe jx mnpð Þt�/H

mnp
x; y; zð Þ

n o
;

ð2:26Þ

We note that there are only two sets fCmnpg and fDmnpg of linear combination of
coefficients from the Ez and Hz expansions. The vector-valued complex functions

are wE
mnp

, �/
E

mnp
wH
mnp

�/
H

mnp
�R3 (where R is autocorrelation) and contains compo-

nents fcos; sing � cos; sinf g � fcos; sing; functions and hence for m0n0p0ð Þ 6¼
mnpð Þ; each function of the set:

wE
mnp

; �/
E

mnp
; wH

mnp
; �/

H

mnp

n o
;

is orthogonal to each functions of the set:

wE
m0n0p

; /
E

m0n0p
; wH

mnp
; /

H

m0n0p

n o
;

w.r.t. the measure of dx dy dz over [0, a] × [0, b] × [0, d].
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The exact form of the function �/
E
; �/

H
; wE; wH depends on the nature of the

boundaries. The next problem addressed can be on excitations of RDRA. To cal-
culate the amplitudes’ coefficients {Cmnp} and {Dmnp}, we assume that at z = 0,

excitations EðeÞ
x x; y; tð Þ or EðeÞ

y x; y; tð Þ are applied for some time say t 2 [0, T] and
then removed. Then, the Fourier components in this excitation corresponding to the
frequencies xfðmnpÞg are excited and their solutions are the oscillations, while the
waveguide for t > T. The other Fourier components decay within the resonator.

{Cmnp, Dmnp} are the components of the form:

EðeÞ
x x; y; tð Þ ¼

X
mnp

Re CðmnpÞe jx mnpð ÞtwE
mnp xðx; y; 0Þ

� �

þ Re D mnpð Þe jx mnpð Þt�/E

mnp x
x; y; 0ð Þ

� � ð2:27Þ

and

EðeÞ
y x; y; tð Þ ¼

X
mnp

Re C mnpð Þe jx mnpð ÞtwE
mnp yðx; y; 0Þ

� �

þ Re D mnpð Þe jx mnpð Þt�/E

mnp y
x; y; 0ð Þ

� �
;

ð2:28Þ

By using, orthogonality of fwE
mnp x x; y; 0ð Þ; �/E

mnp x
x; y; 0ð Þg. For different (m, n),

we write p to be fixed and likewise of fwE
mnp y x; y; 0ð Þ; �/E

mnp y
x; y; 0ð Þg:

In addition, we need to use KAM type of time averaging to yield field
components:

C mnpð ÞwE
mnp x x; y; 0ð Þ þ D mnpð Þ�/E

mnp x
x; y; 0ð Þ

¼ lim
T ! 1

1
2T

ZT
�T

E eð Þ
x x; y; tð Þe�jx mnpð Þtdt: ð2:29Þ

and likewise

C mnpð ÞwE
mnp y x; y; 0ð Þ þ D mnpð Þ�/E

mnp y
x; y; 0ð Þ

¼ lim
T ! 1

1
2T

ZT
�T

E eð Þ
y x; y; tð Þe jx mnpð Þtdt: ð2:30Þ
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2.7 Voltage Source Model

This method of excitation can be compared with connecting a voltage or current
source to an LC circuit for sometimes and then switching it off. After a sufficiently
long time, all frequencies in the LC circuit decay away except the frequency 1ffiffiffiffiffi

LC
p .

We can more generally compare a resonator with the material medium having
non-zero conductivity. Thus, the medium is characterized by the triplet (�; b; rÞ
which corresponds to an array of (C, L, R) = RLC circuits.

Such a resonator is analyzed in the same way replacing � by �0 ¼ �� jr
x, i.e.,

complex permittivity depending on frequency. The resonant frequencies x mnpð Þ
now have a non-zero imaginary part corresponding to decay of the field with time.
Their frequencies and fields may also be determined by applying separation of
variables with boundary conditions to the Helmholtz equations.

½r2 � jxlðrþ jx�Þ	 Ez

Hz

� �
¼ 0; ð2:31Þ

To have sustained oscillations in such a resonator, we must never switch off the
excitation. We may for example apply a surface current source at z ¼ d0, where
0\d0
d: Letting Jsx x; y;xð Þ and Jsy x; y;xð Þ be this surface current excitations in
the Fourier domain, the current density corresponds to this is given as:

Je x; y; z;xð Þ ¼ ðJsx x; y;xð ÞX̂ þ Jsy x; y;xð ÞŶ d z� d0ð Þ; ð2:32Þ

This current is computed by substituting into the Maxwell curl equations

CurlE ¼ �jxlH;

CurlH ¼ Je þ rþ jx�ð ÞE; divH ¼ 0

The method of solution is to express it as the sum of a general solution to the
homogeneous equations, i.e., with Je = 0 and a particular solutions for Je 6¼ 0. The
general solutions to the homogeneous problem are the same as earlier explained,
i.e., containing only the frequencies fxðmnpÞg. Particular solution to the
Je 6¼ 0 inhomogenousð Þ problem is obtained by taking the curl of the second
equation and substituting the fields into third equation to obtain

r2H ¼ �r� Je þ jxl rþ jx�ð ÞH; ð2:33Þ
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We express a particular solution to this equation by setting

X1
m;n¼1

L1 m; n;xð Þ expð�c mnxð Þzð Þumnðx; y;xÞ

þ b1 m; n;xð Þ exp c mnxð Þzð Þvmn x; y;xð Þ for d� z[ d; ð2:14Þ
ð2:34aÞ

Hp x; y; z;xð Þ ¼
X1
m;n¼1

ðL2 m; n;xð Þ exp� c mnxð ÞzÞumnðx; y;xÞ

þ b2 m; n;xð Þ exp c mnxð Þzð Þvmn x; y;xð Þ for 0� z\d; ð2:15Þ
ð2:34bÞ

Here, x is a continuous variable, unlike fxðmnpÞg, umn x; y;xð Þ and vmn x; y;xð Þ
are multiples (x-dependent) of

L cos
mpx
a

� �
; sin

npx
a

� �n o
� L cos

mpy
p

� �
; sin

mpy
p

� �� �

To meet the boundary conditions on the sidewalls, if z = 0, d; if the walls are PEC,
Hpz ¼ 0; when z = 0, d. That gives use

Hpz x; y; z;xð Þ ¼
X
m;n

L m; n;xð Þ sin h c m; n;xð Þ z� dð Þf gumnz x; y;xð Þ; d\z� d;

ð2:35Þ

and

Hpz x; y; z;xð Þ ¼
X
m;n

b m; n;xð Þ sin h c m; n;xð ÞzÞf gumnz x; y;xð Þ; 0� z\d;

ð2:36Þ

The fields Hp? x; y; z;xð Þ are easily determined from these equations in the
region z > d and z < d by differentiating them w.r.t. x, y, z; wherever c comes in the
multiple w.r.t. expð�czÞ, we replace it by � @

@z etc.
In this way, we get

Hpx x; y; z;xð Þ ¼
X1
m;n¼1

L1 m; n;xð Þwmnx x; y; z;xð Þ; for z[ d; ð2:37aÞ

and

Hpy x; y; z;xð Þ ¼
X1
m;n¼1

L2 m; n;xð Þwmny x; y; z;xð Þ; for z\d; ð2:37bÞ
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where, wmnx x; y; z;xð Þ and wmny x; y; z;xð Þ are obtained by differentiating

umnz x; y;xð Þ sin h c m; n;xð Þ z� dð Þf g w.r.t. x; y; z:

Likewise for z\d, we have expression of the form

Hpx x; y; z;xð Þ ¼
X1
m;n¼1

b m; n;xð Þ�/E

mnp x
x; y; z;xð Þ; ð2:38aÞ

and

Hpy x; y; z;xð Þ ¼
X1
m;n¼1

b m; n;xð Þ�/E

mnp y
x; y; z;xð Þ; ð2:38bÞ

The coefficients L m; n;xð Þ and b m; n;xð Þ are obtained from the boundary
conditions

ẑ� Hjz¼dþ�Hjz¼d�
	 
 ¼ Jsjz¼dþ:

Hence, current density

J ¼ Jsx x; y;xð ÞX̂ þ Jsyðx; y;xÞŶ : ð2:39Þ

2.8 Resonant Modes Generation

The Fig. 2.2 presents how the generated modes look like. This will be able to tell us
the number of resonant modes in particular direction. The transverse components of
EM waves are expressed as Ex;Ey;Hx;Hy: If propagation of wave is along
z-direction, Ez;Hz fields are the longitudinal components. These fields are modal
solutions, solved based on Helmholtz equations using standard boundary condi-
tions. The RDRA is basically a boundary value problem. The linear combinations
of sine and cosine terms give rise to TE and TM modes. The generation of various
kinds of modes in an antenna and propagation is very critical issue; it need through
study. Now, rewriting Helmholtz equation for source-free medium (Fig. 2.3)

Fig. 2.2 Rectangular resonator
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r2Wþ k2W ¼ 0;

Here, k is the wave number and k2 ¼ k2x þ k2y þ k2z and, W ¼ Wx �Wy �Wz

1
Wx

@

@x

� �2

W ¼ �k2x ð2:40aÞ

1
Wy

@

@y

� �2

W ¼ �k2y ð2:40bÞ

1
Wz

@

@z

� �2

W ¼ �k2z ð2:40cÞ

Solving above function and keeping propagation in +z-direction only, we get

W or Hz or Ez ¼ A sin kx � xþ B cos kx � xð Þ C sin ky � yþ D cos ky � y
	 
� �

e�jkzz

From boundary conditions, we get

Hz ¼
X
m;n

Cmn cos
mpx
a

� �
cos

npy
b

� �n o
e �jkzz; Cmn Fourier Coefficients; ð2:41aÞ

Ez ¼
X
m;n

Dmn sin
mpx
a

� �
sin

npy
b

� �n o
e �jkzz; Dmn Fourier Coefficients; ð2:41bÞ

Let c ¼ �jkz and m, n are integers and a, b are dimensions;

c2 þ x2l� ¼ k2x þ k2y ¼
mp
a

� �2
þ np

b

� �2

k2z ¼ x2l�� mp
a

� �2
þ np

b

� �2� �

Fig. 2.3 Resonant modes
generated in RDRA by HFSS.
a TEx

d12, b TEx
d14, c TEx

d16
modes
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Hence, EM wave will propagate in z-direction if

x2l�� mp
a

� �2
þ np

b

� �2� �
[ 0

This gives cutoff frequency as

xc ¼ 1ffiffiffiffiffi
l�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mp
a

� �2
þ np

b

� �2� �s

It means, waveguide will support all waves having ω greater than xc to propagate.
Now, rewriting Hz and Ez

Hz ¼
X
m;n

Cmn cos
mpx
a

� �
cos

npy
b

� �n o
e �jkzz ð2:42Þ

Ez ¼
X
m;n

Dmn sin
mpx
a

� �
sin

npy
b

� �n o
e �jkzz ð2:43Þ

Here, Cmn and Dmn are the coefficients of Fourier cosine and sine series.

cm;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2m;n � x2le

q

Hence, Cmn andDmn gives us relative amplitudes and phase. Hence, we get solution
of possible amplitudes and phase of wave propagating through rectangular wave-
guide called as modes of propagation.

2.9 MATLAB Simulated Results

Results of resonant frequency obtained on various sizes RDRA’s using HFSS have
been placed in Table 2.1. The MATLAB programs are being developed for modes
graphical view. Resonant modes and resonant frequencies are being obtained based
on formulations. The programs and simulated results are given below:

2.8 Resonant Modes Generation 29



The graph shown in Fig. 2.4 represents inverse relationship between height and
resonant frequency as k-wavelength is inversely proportional to resonant frequency
fr. MATLAB simulation shown in Fig. 2.5 represents number of modes generated
in x, y, z directions. The mathematical expression on the topic is expressed in
Eqs. (2.1)–(2.31).

Table 2.1 RDRA HFSS fr

S. No. Permittivity Dimension (a × b × h) mm Resonant frequency

1 10.0 14.3 × 25.4 × 26.1 3.5

2 10.0 14 × 8 × 8 5.5

3 10.0 15.24 × 3.1 × 7.62 6.21

4 20.0 10.2 × 10.2 × 7.89 4.635

5 20.0 10.16 × 10.2 × 7.11 4.71

6 35.0 18 × 18 × 6 2.532

7 35.0 18 × 18 × 9 2.45

8 100.0 10 × 10 × 1 7.97
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Fig. 2.4 Simulated resonant frequency plot for excited modes
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Fig. 2.5 Resonant modes 3D in RDRA in xyz plane
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