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Preface

Microwave dielectric resonator antenna (DRA) materials or ceramics were dem-
onstrated by Richtmeyer in 1939. Richtmeyer showed that these dielectric ceramics
can resonate. Theory of DRA was expanded by Okaya and Brash in 1960. More
experimental work on DRAs, done by Long in 1980, proved that DRAs can become
efficient radiators and can be used as antennas. S.A. Long experimentally imple-
mented DRAs of different shapes and sizes as a low-profile antenna.

Analysis and studies on characteristic equation, radiation patterns, and excitation
methodology made DRAs popular by providing a new avenue compared to tradi-
tional patch antennas suffering from low gain and low bandwidth. Aldo Petosa
made DRAs a very successful candidate as functional antennas. Both the limitations
of low gain and low bandwidth in patch antennas can be eliminated by the use of a
rectangular dielectric resonator antenna (RDRA) operating in higher modes and
hybrid modes.

The modes theory of RDRA gives an important analysis on current distribution,
impedance, and radiation patterns of an antenna. Modes form a real, orthogonal
basis function for currents on the antenna. These are defined by boundary value
problems using eigenvalues and eigenvectors. The scope of this book has been
restricted to RDRAs, however, the concept can be extended to other geometries. In
RDRAs, once the excitation is given, the total distributed current on the antenna
structure becomes a weighted sum of eigen currents or a superposition of various
modes at any instant of time.

Resonant modes in RDRAs can be classified as dominant and higher modes.
Dominant modes correspond to lowest resonant frequency. These are called as TE,
TM, and HEM modes. E and H field formats inside the RDRA at any instant of time
at a known frequency are termed as resonant modes. Modes excitation is directly
related to the surface current densities of the structure due to applied RF current.
This current gets converted into modal fields based on Maxwell’s equations. These
fields are restricted by RDRA boundary conditions. Reflection and refraction of
electromagnetic waves takes place because of dielectric interface at the boundary.

The generation of higher modes generally depends on RF excitation, device
dimensions, permittivity of dielectric material and coupling techniques used in
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design of the antenna. The higher-order modes and hybrid modes have much
flexibility and design space in RDRA for different applications, but the excitation
techniques are complex. Rectangular DRA has a high degree of design flexibility
due to two aspect ratios (a/d and b/d), low cost, simplicity, and ease of fabrication.
It can retrofit to the existing patch antenna technology for gain improvements.

Researchers have long felt the need for a rigorous theoretical analysis on reso-
nant modes of RDRA, and resonators have become a demanding field for industry
and academia. This is because knowledge of resonant modes gives physical insight
to the antenna designer, based on which input impedance and radiation character-
istics can be predicted. We hope that this book will help to fill the gap.

The investigations and theory developed are based on applying waveguide
theory models. Propagation of electromagnetic fields has been taken along z-axis,
i.e., exp(�c z). Initially, these are exploited via the Maxwell’s curl equations and
then manipulating them to express the transverse components of the fields in terms
of the partial derivatives of the longitudinal components of the fields w.r.t. x and
y (i.e., the transverse coordinates).

Waveguide models of four different boundary conditions filled with homoge-
neous as well as inhomogeneous dielectric materials with linear and nonlinear
permittivity, permeability, and conductivity have been developed to determine TE
and TM propagating electromagnetic fields. These have resulted in different sine–
cosine combinations. TE modes generation required Hz fields as longitudinal fields
and Ex, Ey, Hx, and Hy fields as transverse fields.

If input excitation is applied along x-axis as partial fields, y-axis will have fixed
variation and z-axis will have desired variation in propagating fields. For example,
TE d13. Similar cases can be developed for TM modes so as to propagate Ez fields
as longitudinal and Ex, Ey, Hx, and Hy as transverse fields. Hz field will get vanished
because of boundary conditions.

An equivalent but computationally simpler way to pass on from waveguide
physics to resonator physics is to just replace (c) by (� @

@z) in all the waveguide
formulae that express the tangential field components in terms of the longitudinal
components. This is done after solving the full 3D Helmholtz equations using
separation of variable as x, y, z.

r2 þ x2

c2

� �
Ez

Hz

� �
¼ 0

The discrete modes ω(mnp) enable us to visualize the resonator as collection of
L, C oscillators with different L, C values. The outcome of all this analysis enables
us to write down the E and H fields inside the resonator, as superposition of four
and three vector-valued basis functions.
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E x; y; z; tð Þ ¼
X1
mnp¼1

Re C mnpð Þejx mnpð ÞtwE
mnp

x; y; zð Þ
n o

þ
X1
mnp¼1

Re D mnpð Þejx mnpð Þt�/E

mnp
x; y; zð Þ

n o

and

H x; y; z; tð Þ ¼
X1
mnp¼1

Re C mnpð Þejx mnpð ÞtwH
mnp

x; y; zð Þ
n o

þ
X1
mnp¼1

Re D mnpð Þejx mnpð Þt�/H

mnp
x; y; zð Þ

n o

We note that there are only two sets {C(mnp)} and {D(mnp)} of linear com-
bination of coefficients using from the Ez and Hz expansions. The vector-valued
complex functions are as follows:

wE
mnp

; �/
E

mnp
;wH

mnp
; �/

H

mnp
2 R3

where R is autocorrelation and contain components fcos; sing � fcos; sing �
fcos; sing functions and hence for m0; n0; p0ð Þ 6¼ m; n; pð Þ, each function of the set,
where m, n, p are integers.

wE
mnp

; �/
E

mnp
;wH

mnp
; �/

H

mnp

n o

is orthogonal to each function of the set:

wE
m0n0p

; �/
E

m0n0p
;wH

mnp
; �/

H

m0n0p0

n o

w.r.t. the measure of dx dy dz over surface of RDRA [0, a] × [0, b] × [0, d], where

a, b, and d are RDRA dimensions. The exact form of the function �/
E
; �/

H
;wE;wH

depends on the nature of RDRA boundaries.
Excitation of RDRA plays very important role for modal analysis. To calculate

the amplitude coefficients {C(mnp)} and {D(mnp)}, we assume that at z = 0, an

excitation EðeÞ
x x; y; tð Þ or EðeÞ

y x; y; tð Þ is applied for some time say t ε [0, T] and then
removed, as usually is done in L, C oscillators. Then, the Fourier components in this
excitation corresponding to the frequencies {ωmnp} are excited, and their solutions
are the oscillations for t > T. The other Fourier components decay within the
resonator.
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{Cmnp, Dmnp} magnitude components can be determined based on principle of
orthonormality:

X
mnp

Re
�
C mnpð Þejx mnpð ÞtwE

mnpXðx; y; 0Þ
�

þRe D mnpð Þejx mnpð Þt �/E

mnpX
x; y; 0ð Þ

� �
¼ EðeÞ

x ðx; y; tÞ

and X
mnp

Re C mnpð Þejx mnpð ÞtwE
mnp Y ðx; y; 0Þ

� �

þ Re D mnpð Þejx mnpð Þt �/E

mnp Y
x; y; 0ð Þ

� �
¼ EðeÞ

y ðx; y; tÞ

By using orthogonality of {wE
mnpXðx; y; 0Þ, �/

E

mnpX
ðx; y; 0Þ}; for different (m, n),

we write p fixed and likewise of {wE
mnp Y ðx; y; 0Þ;�/

E

mnp Y
ðx; y; 0Þ}; in addition, we

need to use Kolmogorov–Arnold–Moser (KAM) type of time averaging to yield:

C mnpð ÞwE
mnp X x; y; 0ð Þ þ D mnpð Þ�/E

mnp X
x; y; 0ð Þ

¼ lim

T ! 1
1
2T

ZT
�T

E eð Þ
x x; y; tð Þe�jx mnpð Þtdt

and likewise

C mnpð ÞwE
mnp Y x; y; 0ð Þ þ D mnpð Þ�/E

mnp Y
x; y; 0ð Þ

¼ lim

T ! 1
1
2T

ZT
�T

E eð Þ
Y x; y; tð Þejx mnpð Þtdt

In this book, RDRA resonant modes theoretical as wells as practical aspects have
been investigated along with rigorous mathematical analysis for TE, TM, and HEM.
Higher modes generation and control of resonant modes have been experimented.
Shifting of dominant mode toward higher modes and vice versa is desired phenom-
enon for reconfigurability, merging of neighboring resonant modes have been
exploited with simulation results. Use of higher modes for practical applications in
antennas has been described. Merging of neighboring modes significantly increased
antenna bandwidth. The device miniaturization using high-permittivity materials has
been described. The devising control on modes has imparted reconfiguration of
operating frequency, beam pattern, beam width, polarization, gain, and bandwidth.
Higher modes radiation pattern, sensitivity analysis by changing dimensions, and
permittivity analysis by changing permittivity have been mathematically modeled, and
each is supported with simulated and experimental results. Selecting and cancelling a
particular resonant mode has also been described. The concept of modes has been
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supported with practically implemented case studies. Devising control on resonant
modes in RDRA can be used for software-defined radios and military applications,
where frequent change of antenna parameters is operational requirement. For auto-
mation on modes control, microcontrollers equipped with lookup table can be used.

The modes have been modeled by R, L, C networks. Antenna far fields patterns
and impedance have been computed and measured. Analysis on hybrid modes in
RDRA has been discussed. Hybrid modes are complex to determine. Their math-
ematical formulations have been described. These modes are diversified.

The excitation of hybrid modes is complex, and their effective control can
revolutionize the antenna technology. Detailed study of mathematical modeling of
hybrid modes has been described. Hybrid modes are more popular for azimuthally
field variations. The transcendental equation and characteristic equation for RDRA
modes are used for determining propagation constants and then resonant frequency.

The solution of resonant modes can be obtained using the following:

(a) Hz and Ez fields are expressed as umnp(x, y, z), vmnp(x, y, z) and xmnp based on
solving Maxwell’s equations with given boundary conditions.

(b) At z = 0, surface (x, y) excitation with applied surface current density is

Jsx x; y; tð Þ; Jsy x; y; tð Þ� �
(c) Surface current density is equated with generated magnetic fields

Jsðx; y; dÞ ¼ Jsx; Jsy
� � ¼ ð̂z� HÞ ¼ �Hy;Hx

� �� 	
;

at z = 0; amplitude coefficients (Dmnp and Cmnp) are obtained on expansion of
Hz is terms Dmnp, and Ez terms as Cmnp.

(d) Equate tangential component of Ez at boundary, i.e., Eyjz¼0 to zero, and
compute the coefficients Dmnp for Hz and Cmnp of Ez.

(e) Excited by ωmnp and arbitrary feed position in xy plane ðx0; y0Þ /0; h0ð Þ

H? ¼
X
mnp

Re ~Dmnpe
jx mnpð Þt

n o
r?~umnp x; y; zð Þ

" #

�
X
mnp

Re ~Cmnpe
jx mnpð Þt

n o
r?~umnp x; y; zð Þ

and similarly E?.

Depending on the boundary conditions, four cases have been developed.
In RDRA, these four walls are assumed as perfect magnetic conductors and top and
bottom walls are taken as perfect electric conductors.

umnp ¼ sin sin sin ¼ Ez

vmnp ¼ cos cos cos ¼ Hz
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Sidewalls and top walls all are perfect electric conductors

umnp ¼ sin sin cos ¼ Ez

vmnp ¼ sin sin sin ¼ Hz

Sidewalls and top walls all are perfect magnetic conductors

umnp ¼ cos cos sin ¼ Ez

vmnp ¼ sin sin cos ¼ Hz

Top and bottom walls are perfect magnetic conductors, and all four sidewalls are
PEC

umnp ¼ cos cos cos ¼ Ez

vmnp ¼ sin sin sin ¼ Hz

Transcendental equation is used to solve propagation constants, i.e., kx, ky, and kz.
The propagation constant gives rise to resonant frequency with the help of charac-
teristic equation. These wave numbers kx, ky, and kz are in x, y, and z-directions,
respectively. The free space wave number is k0. The resonant frequency can be
determined from combined solution of transcendental equation and characteristic
equation of rectangular DRA. Time-averaged electric energy = time-averaged
magnetic energy

erk
2
0 ¼ k2x þ k2y þ k2z

e0k
2
0 ¼ k2x þ k2y þ k

02
z

k
0
z 6¼ pp=d

tanðkzdÞ ¼ kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20ðer � 1Þ � k2z

q ;

the final result of transcendental equation is thus achieved.
The contents of this book are the outcome of our research work on RDRA

higher-order resonant modes. In this book, analyses have been restricted to rect-
angular resonators higher modes, however, the concept can be extended to other
geometry resonators, such as cylindrical, conical, and hemispherical. With this
book, we hope to fill the gap for rigorous theoretical analysis on RDRA resonant
modes. The work is supported with live projects data and their case studies. This
book should be very useful for antenna designers, both in research and development
and for practical implementations. This book is written in a simple and reader
friendly manner and can be easily understood with an initial knowledge of basic
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electromagnetic theory. All the chapters are self-reliant, and no initial specialization
is required to understand the contents. We hope that this book will help open the
design space for a new class of antenna implementations.

This book is organized into 12 chapters including rigorous theoretical analysis of
modes along with case studies and design data annexure. Introduction along with
history of RDRA is given in Chap. 1. Introduction of resonant modes is explained
in Chap. 2. Mathematical derivations for modes and the generation of TE/TM
modes have been discussed in Chap. 3. Chapter 4 presents the derivation of RDRA
transcendental equations. In Chap. 5, mathematical description of amplitude coef-
ficients of even and odd modes is presented. Chapter 6 contains radiation param-
eters and mathematical explanations of RDRA. Chapter 7 describes derivations of
higher-order resonant modes and their applications for high-gain antenna designs.
Chapter 8 explains the effect of angular variation on excitation to produce various
types of radiation patterns to meet military requirements. Chapter 9 discusses
sensitivity analysis and mathematical modeling of radiation pattern solutions in
RDRA. Chapter 10 presents the excitation of hybrid modes in RDRA and their
possible applications. Chapter 11 covers inhomogeneous solution along with
measurements. Basic RDRA resonant frequency formulations, materials required,
and their sources are given in the annexures. Complete and detailed solutions of
RDRA have been explained in case studies. Design data are provided in the
annexures. Chapter 12 discusses case studies.

New Delhi, India Rajveer S. Yaduvanshi
Harish Parthasarathy
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Chapter 1
Rectangular DRA Fundamental
Background

Abstract This chapter introduces rectangular dielectric resonator antenna.
Working mechanism of rectangular DRA (RDRA) has been explained. Survey
work along with citations on related works based on the available literature has
been described. RDRA as a new candidate in the field of antennas whose com-
parison has been made with existing patch antennas. Their advantages have been
listed. Mathematical solution of one-dimensional resonator has been derived.

Keywords RDRA (rectangular DRA) � Working mechanism � Survey �
Characteristics � Advantages � One-dimensional resonator

1.1 Introduction

Antenna is usually visualized as metallic device for radiating and receiving elec-
tromagnetic waves. It is an interface (transducer) between space and communica-
tion device. For wireless communication system or radar system, antenna is used to
couple radio energy from transmitter to space in transdirection, and space to
receiver in receive direction. Antennas are frequency dependent. The design of
antenna corresponds to specific bandwidth and resonant frequency. These are
purely designed as per requirements. The antenna rejects all signals beyond their
bandwidth. An antenna is an integral part of any wireless communication. Hence,
its development must be in synchronization with communication system. There
have been revolutionary developments in communication systems since last dec-
ades. The emergent requirements are being felt in antenna development. The
Gigabytes of data transmission at very high speeds are today’s communication
requirements. To match today’s advanced communications requirements, rectan-
gular DRA (RDRA) is the most suitable candidate. Rectangular dielectric resonator
antenna is new kind of antenna, which is different from traditional metal or patch
antenna. The patch or metal antennas generally suffer from low bandwidth, high
conducting loss and low gain. RDRA has high gain and wide bandwidth antenna.
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1.2 History of DRA

Dielectric resonator antenna is a microwave antenna consists of block of ceramics
material having permittivity greater than 10 F/m. In 1939, R.D. Richtmeyer showed
that non-metalized dielectric material objects can resonate and function as an
antenna, these are called as dielectric resonator antenna [1, 2]. There were no
practical applications of these DRAs until 1960. Dielectric resonator antenna was
first introduced by S.A. Long in 1980 [3]. Since then, vast research has been carried
out for analysis of DRA material properties, and their effective use as DRA. Various
shapes and excitation methods for DRA have been developed. Many research
papers have been published in reputed journals by researcher such as Kishk [4], Lee
[5], Leung [6], Luk [7], Mongia [8], Shum [9], Junker [4], Antar [10], and Petosa
[11] till date. No rigorous theoretical analysis for RDRA is available in the literature
so for. It is felt that if good literature along with sound mathematical analysis on
RDRA is made available, it can benefit the society in large. Only few books are
available on introduction of DRA, but no book is available for sound theoretical
analysis supported with mathematical computations of RDRA.

1.3 Working Mechanism of RDRA

The electromagnetic waves were generated by rapid oscillations of electrons in
atoms causes acceleration or deaccelerations which become electromagnetic wave
radiation. The radio waves are introduced into ceramics forming resonator as shown
in Fig. 1.1 from RF transmitter circuits. These RF waves bounce back and forth
between resonator walls, thus forming standing waves, hence stores electrical
energy. Oscillating current introduces oscillating magnetic fields, H fields, and
oscillating electric fields, E fields. The time-varying field radiates away from
antenna into space due to accelerrating currents. The walls of ceramic formed
partially transparent magnetic walls, and the magnetic energy leaks through these
transparent walls due to fringing effect. Thus, radio power is radiated into space.

Let RDRA having dimensions a, b, d lengths is excited by external electric fields
Eix(x, y) and Eiy(x, y) in x, y plane. The equivalent circuit as shown in Fig. 1.2 is

Fig. 1.1 Ceramics rectangular DRA with a, b, and d dimensions
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drawn based on the electrical properties of this ceramic RDRA. This results into
longitudinal Ez and Hz fields. The probe currents are equated with RDRA radiating
currents as per principle of conservation of energy. In other words, time-average
(KAM) electric energies inside the RDRA are equated with time-average magnetic
energies. Figure 1.2 presents RDRA equivalent RLC circuit for computing quality
factor of RDRA.

Z
V

Ej j2dV ¼
Z
V

Hj j2dV ; ð1:1Þ

h2mn ¼ c2 þ h2; ð1:2Þ

where c ¼ jpp
d .

These fields are computed using Helmholtz equations, taking into account of
source and RDRA boundaries. Mathematical solution of transverse and longitudinal
fields is obtained by half-wave and full-wave Fourier analysis, taking inside
medium and outside medium into consideration.

Figure 1.3 is shown as RDRA placed on infinite ground plane. The image theory
can be applied to this RDRA for reducing its height. Varying sinusoidal in time,
energy flow in particular direction can be treated as power radiated per unit solid
angle (energy per unit area per unit time).

Fig. 1.3 RDRA with ground
plane

Fig. 1.2 RDRA equivalent
RLC circuit
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1.4 Antenna Radiation Parameters

Antenna radiation parameters are as follows:

• Antenna radiation pattern
• Power
• Gain
• Polarization
• Impedance
• Efficiency radiation

1.5 Advantage of RDRA

• Lower conduction losses due to use of dielectric material;
• Most suitable at microwaves and millimeter waves;
• Compact in size and portable;

• Dimensions of RDRA are of the order of
kgffiffiffiffi
er

p ; choosing higher er RDRA size

can be reduced significantly.
• Ease of fabrication;
• No frequency drift due to change in temperature;
• High-power handling capability;
• High gain and high bandwidth;
• Can be integrated with MIMC;
• RDRA has advantage of two aspect ratios. Hence, various modes can be gen-

erated by varying any of the aspect ratio;
• Simple coupling schemes;
• Bandwidth can be variable by choosing dielectric constant; and
• High Q factor.

1.6 Resonant Modes

In RDRA, resonant modes represent the radiating phenomena with the help of
E and H field patterns. These fields inside RDRA are presented azimuthally. With
the knowledge of modes, radiation characteristics of an antenna can be predicted.
The designer can get insight of antenna design and hence can provide correction in
the antenna design. Resonant modes are real current vectors. These modes are
found by orthogonal Fourier basis functions. These are generated based on the
current distribution on the surface of antenna due to field perturbations. These can
be classified as TE or TM modes. The loss tangent ðdÞ introduced is due permit-
tivity of the material. The principle conservation of energy is applied, in which,
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time-average electrical energy is equated to magnetic energy at any instant of time
to compute radiated fields. RDRA is excited by input radio frequency currents at
proper impedance match at input port. The transverse components are defined in
terms of longitudinal components and vice versa. The modal field equations are
developed using Fourier basis functions of cosine or sine terms appearing based on
the RDRA boundary conditions, i.e., six walls of RDRA can be PMC, PEC, or any
combination of these PMC and PEC walls. Hence, resonant modes bring physical
insight into the radiating phenomena taking place inside the RDRA. The resonant
modes form a set of orthogonal functions to compute total current on the surface of
RDRA.

Figure 1.4 shows the resonant modes configuration generated into RDRA. Wave
can only propagate if wave vector k > kc, where kc is cutoff frequency. The lowest
resonance is called dominant mode.

This is solved and the solution consists of a superposition of a source (particular
solution) term and a homogeneous term (i.e., general solution of the homogeneous

Fig. 1.4 Resonant modes in
yz plane
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part). Two constants in the homogeneous part are determined by applying the
vanishing boundary conditions on Hz and Ez at top and bottom surfaces, i.e., at
z = 0, d.

1.7 Characterization of Resonant Modes

The radiation can be identified as magnetic dipoles. Any function can be decom-
posed or separated by projecting that function into basis function, i.e., inner product
with basis function

F1;F2h i ¼
Zb

a

F1ð~rÞF2 ~rð ÞdR; ð1:3Þ

The resonance modes are E and H field patterns inside the RDRA. Figure 1.5 has
shown that electric fields are always associated with magnetic fields and vice versa.
These can be three types, i.e., TE, TM, and HEM modes. The amplitude coefficients
and phase of RDRA are Cmnp;wmnp and Dmnp;/mnp: Ez and Hz fields are based on
the orthonormality. These can be determined by applying principle of orthonor-
mality. The characteristics equations of RDRA are given as follows:

erk
2
0 ¼ k2x þ k2y þ k2z ; ð1:4Þ

where k0 is free space wave and kx; ky; kz are propagation constants in x-, y-, and
z-directions, respectively. Also, k20 ¼ x2

0l0e0; hence, resonant frequency in free
space can be determined based on the free space wave number. To determine
propagation constants, i.e., kx; ky and kz, knowledge of transcendental equation is
required. The transcendental equation is developed for RDRA when fields are
propagating in z-direction and given below as

kz tan kz
d
2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � 1ð Þk20 � k2z

q
; ð1:5Þ

Fig. 1.5 Electric fields and magnetic fields are associated
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The solution resonant frequency of RDRA can be determined depending upon
the resonant mode generated, i.e., TE111;TM111;TE11d;TE1d1; and TE11d. Fields
are expanded into summation of their modal functions, which may be by Cmnp and
Dmnp amplitude coefficients. Applying continuity equation across regional inter-
faces tangential fields, current distribution along surfaces of an antenna can be
computed as Je, i.e., current density. Input impedance Zin and radiation pattern Prad

can be computed based on the current distribution. Eigenvectors or Eigen functions
are formed as characteristic modes. Modes are orthogonal over source region.
Ez electric fields produced by Jn characteristic currents on the surfaces. These
modes are mainly dependent on the RDRA boundary and excitation.

Electrical walls of RDRA:

Etan ¼ n� E ¼ 0; ð1:6Þ

Hnor ¼ n � H ¼ 0; ð1:7Þ

Magnetic walls of RDRA:

Htan ¼ n� H ¼ 0; ð1:8Þ

Enor ¼ n � E ¼ 0; ð1:9Þ

The solution of resonant modes shall vary in terms of sine and cosine as these are
dependent on PEC and PMC walls of RDRA. Ez and Hz fields can be determined
as linear combinations of these functions sin or cosine in xy plane and z-component
of source, to get these propagation constant. Propagating fields in particular
direction x or y or z is assumed to be continuous inside and outside the RDRA.
While taking into account inside the resonator both, reflected as wells as propa-
gating fields are available, outside the RDRA only outgoing field components are
taken and reflected component is negated. This solves the transcended equation for
RDRA. The modal characteristics of antenna give rise to fields, i.e., resonant
modes. These are also known as eigenvector and eigenvalues. Eigenvectors are
current amplitudes Cmnp and Dmnp, and eigenvalues are resonant frequencies xmnp.
The resonant frequency can be given as follows:

frð Þm; n; p ¼ c
2p

ffiffiffiffiffi
el

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
a

� �2
þ np

b

� �2
þ pp

d

� �2
r

; ð1:10Þ

This book contents are lucid, simple, and pedagogical.
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1.8 Magnetic Dipole Moment

The radiation in RDRA is taking place due to short magnetic dipole formation.

d ¼
X

e � r; ð1:11Þ

where

d dipole moment
e charge
r distance between two charges

d ¼ d
dt

X
e � r ¼

X
e � v; ð1:12Þ

d:: ¼ d
dt

X
e � v; ð1:13Þ

Hence, charges can radiate only if they move with acceleration. There will be no
radiation even if they move with fixed or uniform velocity.

1.9 Spring Resonator of Length L

As shown in Fig. 1.6, one single string of AB length is applied with external
excitation to produce oscillations. These oscillations will give rise to resonant
frequency of the resonator.

x00 tð Þ þ x2
0xðtÞ ¼ C2e

jxt; ð1:14Þ

x tð Þ ¼ C1e
jxt

ðx2
0 � x2ÞC1 ¼ C2, where C1 and C2 are constants and f is the function of length L.

Fig. 1.6 Simple spring resonator
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Hence, C1 ¼ C2
x2

0�x2

x tð Þ ¼ C2e jxt

x2
0�x2, if x0 ¼ x; then, x(t) will be 1.

Now, x ¼ x0 þ d; when d is small deviation,

¼ C2e jxt

x0 þ xð Þ x0 � xð Þ ; ð1:15Þ

Hence, the solution of spring resonator in one dimension is given as follows:

¼ C2e jxt

d 2x0ð Þ

@2

@x2
� 1
c2

@2

@t2

� �
f x; tð Þ ¼ 0; at boundaries

f 0; tð Þ ¼ 0 and f L; tð Þ ¼ 0

Taking Fourier Transform of above equation,

@2

@x2
þ x2

c2

� �
f̂ x;xð Þ ¼ 0; ð1:16Þ

Writing above terms in sine and cosine form, we have

C1 sin
xx
c

� �
þ C2 cos

xx
c

� �
¼ 0 or f̂ 0;xð Þ ¼ 0 or f̂ L;xð Þ ¼ 0

sin xL
c

� � ¼ 0. Hence, kL ¼ np; sine values to be zero.

x ¼ kc ¼ npc
L

; when n ¼ 1; 2; 3. . . where k ¼ x=c; ð1:17Þ

String length 2L, dominant frequency x1, length L, dominant frequency is 2x1.
Length is 2L/3, dominant frequency 3x1; Eqs. (1.1)–(1.17) used in this chapter

presented the mathematical concept of topic.

References

1. Harrington RF (1961) Time harmonic electromagnetic fields. Wiley, New York
2. Richtmyer RD (1939) Dielectric resonator. J Appl Phys 10:391–398
3. Wakino K, Tamura H, Sudo T (1987) Dielectric resonator materials and their applications.

Microw J 6:133–148
4. Junker GP, Kajfez D, Kishk AA, Lisson AW (1995, May 11) Effect of aperture filling on slot

coupled dielectric resonator antennas operating in HEM11 mode. Electron Lett 31(10):774–775

1.9 Spring Resonator of Length L 9



5. Lee RQ, Simons RN (1994) Bandwidth enhancement of dielectric resonator antennas. In:
IEEE antennas and propagation society international symposium, Seattle, WA, June 1994,
pp 1500–1503

6. Luk KM, Leung KW, Chow KY (1997) Bandwidth and gain enhancement of a dielectric
resonator antenna with the use of stacking element. Microw Opt Technol Lett 14(4):215–217

7. Leung KW, Chow KY, Luk KM, Yung EKN (1997) Excitation of dielectric resonator antenna
using a soldered through probe. Electron Lett 33(5):349–350

8. Mongia RK, lttipiboon A, Cuhaci M, Roscoe D (1994) Radiation Q-factor of rectangular
dielectric resonator antennas theory and experiment. In: IEEE antennas and propagation
society international symposium, Seattle, WA, pp 764–767, June 1994

9. Shum SM, Luk KM, Leung WK, Wa K (1994) Mutual impedance of hemisphere dielectric
resonator antennas. IEEE Trans Antennas Propagat 42(12):1652–1654

10. Antar YMM, Chang D, Sequin G, Henry B, Keller MG (1998, Oct 5) Modified wave guide
model (MWGM) for rectangular dielectric resonator antennas. Microw Opt Technol Lett 19
(2):158–160

11. Petosa A, littipiboon A, Cuhaci M, Larose R (1996) Bandwidth improvement for a micro strip
fed series array of dielectric resonator antennas. Electron Lett 32(7):608–609

10 1 Rectangular DRA Fundamental Background



Chapter 2
Rectangular DRA Resonant Modes
and Sources

Abstract Basics of resonant modes have been described. Their mathematical
analysis for generation of different resonant modes have been presented in this
chapter. Realization of resonant modes based on MATLAB has also been worked.
Modes are generated by applying voltage source. Various types of resonant modes
have been described along with all possible applications.

Keywords Cavity resonator � Resonant modes � Type of modes � Wave guide
analysis � Mathematical description of resonant modes � Simulated work

2.1 Introduction

In the early 1960s, Okaya and Barash [1] reported the first ever DRA in the form of
a single-crystal TiO2. Since then, no rigorous theoretical analysis has been devel-
oped so far in the literature to evaluate the resonant modes in Rectangular DRA.
Based on Cherenkov principle of radiations, an external electric field brings the
charges of the molecules of the dielectric into a certain ordered arrangement in
space and creates acceleration phenomenon in dielectric material itself. The
dielectric polarization P is equal to the total dipole moment induced in the volume
of the material by the electric fields. In most cases, the magnitude of polarization is
directly proportional to the intensity of the electric field at a given point of a
dielectric. The relative permittivity is related to the dielectric susceptibility.
A dielectric resonator is defined as “object of dielectric material which functions as
a resonant cavity by means of reflections at the dielectric air interface.” The
discontinuity of the relative permittivity at the resonator surface allows a standing
electromagnetic wave to be supported in its interior at a particular resonant fre-
quency, thereby leading to maximum confinement of energy within the resonator.

Certain fields distribution or modes will satisfy Maxwell’s equations and
boundary conditions. Resonant modes are field structures that can exist inside the
DRA. Modes are the pattern of motion which repeat itself sinusoidally. Infinite
number of modes can excited at same time. Any motion is superposition or
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weighted sum of all the modes at any instant of time by combining amplitudes and
phases. As in the case of all resonant cavities, there are many possible resonant
modes that can be excited in dielectric resonators. The boundary conditions are
n · H = 0; where H denotes the electric field intensity and n denotes the normal to
the surface of the resonator.

And, n × E = 0, is not necessarily satisfied at all the surfaces of the RDRA by all
the modes. Different resonant modes have distinct electromagnetic field distribu-
tions within the DRA, and each mode may provide a different radiation pattern.

Operation of DRA is based on the process that if excitation is applied, then a
high magnetic field is created inside the dielectric object placed on a ground plane.
Phenomena which occur like a charge particle passing to the field create the
physical environment like any metal ball passing through liquid. Thus, there will be
change in the field, contraction, and expansion, which causes fringing effect. This
way dielectric object starts to radiate. Another phenomenon that occurs is that there
might be reflection of the field from sidewalls of dielectric object due to change in
the refractive index of the medium. The dielectric object acts as an oscillator.

Theory of characteristic modes can be applied in the design of antenna or DRA.
These modes give insight into physical phenomenon taking place inside device in
terms of current vectors as maxima and minima. This helps to locate the feeding
point and desired dimension of RDRA.

In 1968, modes were introduced by Garbacz and later by Harrington. Inagaki
gave simpler theory on modes for radiation mechanism in an antenna. It requires lot
of computation, for loading quality factor, double feeding to improve bandwidth,
and circular polarization. Characteristic modes are current modes or eigenvectors,
which are the solution of characteristic equation. These are orthogonal functions
that can predict total current on surfaces of body of the antenna. Also, desired mode
can be excited for specific radiating pattern. Excitation of mode mainly depends on
feeding arrangement, geometry of the device, and dielectric material used. In time
domain, varying electric field can produce magnetic fields and vice versa. By
applying RF, excitation currents in RDRA get converted into surface current
density distributed over the surfaces, i.e., RF excitation with proper impedance
match can generates J. This probe current produced magnetic vector potential “A.”
The radiated magnetic fields are presented in the form E-electric field intensity
using Lorentz gauge transformation. An antenna can propagate electromagnetic
fields, if wave vector k > kc. The cutoff wave vector kc determines the cutoff
frequency. There can be dominant resonant frequency or higher-order resonant
frequency. The propagation takes place along x-axis if propagation constant k[ np

b .
There will not be any propagation if k� np

b , as it will lead to formation of standing
waves. Similar conditions persist for propagation along y-axis and z-axis.
Maxwell’s equations define the behavior of electromagnetic wave propagation,
while the solution of Maxwell equation is defined by Helmholtz equation. The
radiated power is given by Parseval’s power theorem. Half-wave Fourier analysis is
used to determine the time domain behavior of antenna radiations. The magnitude
and phase of the radiated field is given by Poynting vector (S = E × H). The image
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theorem can be applied for antenna size reduction. It can be implemented by
extending ground plane to an isolated RDRA. Resonance in RDRA is created due
to formation of standing waves inside the device. Frequency xmnp is the spectral
solution of an antenna, and this can determine the base half-wave Fourier analysis.
Principle of orthonormality is used to determine radiation parameters by equating
electric time average energy equal to magnetic time average energy by KAM
(Kalmogorov–Arnold–Moser).

At any instant of time, n number of modes exist. The particular mode can be
excited by increasing weighted amplitude of desired mode. More than one mode
can also be excited into RDRA. Blocking modes can take place if Ez and Hz fields
of same frequency are available in RDRA at any instant of time. Hence, mode
spectrum will result into corresponding resonant frequency generation. Wave
propagation can be defined by Helmholtz equation. The Maxwell’s equation
describes the behavior of electromagnetic fields and forms the basis of all EM
classical phenomena. The size of antenna can be reduced to half by image theorem,
converting isolated cavity into infinite ground plane. Dielectric resonator antenna is
formed with high permittivity substrate. The abrupt change in permittivity due to
change in medium forms standing waves. These waves establish resonance as they
bounce back and forth in-between two walls due to fields perturbation. Modes are
spectral resolution of electromagnetic fields of waves radiated by the RDRA. Modal
excitation mainly depends on:

(a) Position of probe;
(b) Magnitude of probe current; and
(c) Phase of input current.

To compute resonant modes, vector principle of orthonormality on half-wave
Fourier analysis has been applied, i.e., radiated magnetic energies time averaged are
compared with applied electrical energies time averaged in the case of resonator
antennas. More number of modes along z-axis in RDRA can be generated either by
increasing electrical height “d” of RDRA or by increasing resonant frequency of
DRA. Figure 2.1 depicts the prototype RDRA with moat under fabrication.

Fig. 2.1 RDRA prototype with neat sketch
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Depending on the nature of the surfaces, different linear combinations of the �c
modes are formed. The propagation constant ðcÞ itself is taking discrete values. This
forces the natural frequencies of the field oscillations to take discrete values (mnp)
indexed by three positive integers, namely m, n, and p. The solutions of the
waveguide problem yield discrete values of c, i.e., c m; n;xð Þ for a given frequency
x by applying boundary conditions to the electromagnetic fields on the sidewalls.
The corresponding field amplitudes are solutions to the 2-D Helmholtz equations
corresponding to the transverse Laplacian r2

?: These amplitudes are called “the
waveguide modes” and are of the form given below in Sect. 2.2.

2.2 Type of Modes (TE, TM, HEM)

EM waves are of four types given below:
Transverse electric and magnetic (TEM) mode

• Transverse electric (TE) mode
• Transverse magnetic (TM) mode
• Hybrid electric and magnetic (HEM) or HE odd and EH even mode

Modes propagation depends mainly on following configuration:

1. Excitation
2. Dimensions
3. Coupling
4. Medium
5. Point of excitation
6. Input impedance

Cross-polarization solution can be the outcome of modes. They can be merged,
separated and mixed depending upon the requirements. Half Fourier analysis can be
used to describe modes of propagation and excitation. Even and odd modes can be
studied. They can be analyzed with magnetic dipole moments. They help to predict
far field radiation patterns. Modulated bandwidth and gain control can be achieved.
High gain at higher modes can be used for hardware implementations. Device
dimensions can be minimized by proper selection of modes for resonant frequen-
cies. In case of milli metric (mm) wave, device size can be enlarged for easy
hardware development or hardware implementation. The solution is based on
waveguide method when boundaries have been all six electrical walls. The solution
is based on solution of Maxwell’s equations and then restricted to given boundary
conditions for confined modes of EM waves.
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2.3 Solutions of Helmholtz Equation

Helmholtz equation solution with source

r� H ¼ J þ @D
@t

ð2:1Þ

D ¼ �E

B ¼ lH ¼ r� A

H ¼ 1
l

r� Að Þ

Considering the sources to be natural time harmonic

E ¼ Emejxt ð2:2aÞ

H ¼ Hme
jxt ð2:2bÞ

Now,

r� E ¼ � @B
@t

ð2:3Þ

or

r� E ¼ �jxlH ¼ �jx r� Að Þ

r � E þ jxAð Þ ¼ 0 ð2:4Þ

Using vector identity

r� �røeð Þ ¼ 0

E þ jxA ¼ �røe

E ¼ �jxA�røe

Using the vector identity

r� r� Að Þ ¼ r r� Að Þ � r2A ð2:5Þ
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Now,

r� ðlHÞ ¼ r r� Að Þ � r2A

or

lðr � HÞ ¼ r r� Að Þ � r2A

From Maxwell’s fourth equation,

r� H ¼ J þ jx�E

or

r� B
l
¼ J þ jx�E

or

r� B ¼ lJ þ jx�lE

or

r� r� Að Þ ¼ lJ þ jx�lE

or

r r� Að Þ � r2A ¼ lJ þ jx�lE

r r� Að Þ � r2A ¼ lJ þ jx�l �jxA�røeð Þ

or

rðr � AÞ � r2A ¼ lJ þ x2�lA� jxl� røeð Þ

or

r2Aþ k2A ¼ �lJ þ jxl� røeð Þ þ rðr � AÞ

or

r2Aþ k2A ¼ �lJ þr jxl�øe þ ðr � AÞð Þ

where k2 ¼ x2l�.
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Using Lorentz condition, i.e.,

r� A ¼ �jxeløe

or

øe ¼ � 1
jxle

r� Að Þ

r2Aþ k2A ¼ �lJ þrðjxl�øe � jxeløeÞ ð2:6Þ

Hence, r2Aþ k2A ¼ �lJ:

2.4 Rectangular Waveguide Analysis

Propagation in waveguide has been taken along z-axis, and all the four sidewalls of
waveguide are PEC; the fields computed are as follows:

Hx Ex

Hy Ey

Hz Ez

Ez x; y; zð Þ ¼
X1
m;n¼1

C m; nð Þ sin mpx
a

� �
sin

npy
b

� �
expð�cmnzÞ; ð2:7aÞ

Ez;y ¼ @Ez

dy
;

Ez;x ¼ @Ez

dx

Hz x; y; zð Þ ¼
X1
m;n¼1

D m; nð Þ cos mpx
a

� �
cos

npy
b

� �
expð�cmnzÞ ð2:7bÞ

Form Maxwell’s equations

Curl E ¼ r� E ¼ �jxlH ¼ �B; t ð2:8aÞ

Curl H ¼ r� H ¼ �jx�E ¼ J þ D; t ð2:8bÞ

Solution of above equations is based on separation of variables solving LHS of both
sides first

2.3 Solutions of Helmholtz Equation 17



r� E ¼
i j k
@
@x

@
@y

@
@z

Ex Ey Ez

������
������ ¼ i

@Ez

@y
� @Ey

@z

� �
� j

@Ez

@x
� @Ex

@z

� �
þ k

@Ey

@x
� @Ex

@y

� �

ð2:9aÞ

r � H ¼
i j k
@
@x

@
@y

@
@z

Hx Hy Hz

������
������ ¼ i

@Hz

@y
� @Hy

@z

� �
� j

@Hz

@x
� @Hx

@z

� �
þ k

@Hy

@x
� @Hx

@y

� �

ð2:9bÞ

Comparing with RHS in both equations and getting value of Hx, Hy, Hz from (2.9a)
and Ex, Ey, Ez from (2.9b) we get

Hx ¼ 1
�jxl

@Ez

@y
� @Ey

@z

� �
; Ex ¼ 1

jx�
@Hz

@y
� @Hy

@z

� �
; ð2:10aÞ

Hy ¼ 1
jxl

@Ez

@x
� @Ex

@z

� �
; Ey ¼ 1

�jx�
@Hz

@x
� @Hx

@z

� �
; ð2:10bÞ

Hz ¼ 1
�jxl

@Ey

@x
� @Ex

@y

� �
; Ez ¼ 1

jx�
@Hy

@x
� @Hx

@y

� �
; ð2:10cÞ

Ez;y þ cEy ¼ �jxlHx

cEx þ Ez;x ¼ jxlHy

Hz;y ¼ @Hz

dy

Hz;x ¼ @Hz

dx

Similarly,

Hz;y þ cHy ¼ j ¼ jx�Ex

cEx þ Hz;x ¼ �jx�Ey

These above equations can be placed in matrix form

jx� �c
c �jxl

� �
Ex

Hy

� �
¼ Hz;y

�Ez;x

� �
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and

jx� x
c �jxl

� �
Ey

Hx

� �
¼ �Hz;x

Ez;x

� �

On manipulating them

Ey

Hx

� �
¼ jxl �c

�c jx�

� � �Hz;x

Ez;y

� �

Hence, on simplification

Ey ¼ jxl
h2m;n

Hz;x � c
h2m;n

Ez;y

Ex ¼
X
m;n

jxl
D m; nð Þ np

b

	 

cos mpx

a

	 

sin npy

b

	 

e �cmnzð Þ� �

h2m;n

þ
X

c
C m; nð Þ mp

a

	 

cos mpx

a

	 

sin npy

b

	 

e �cmnzð Þ� �

h2m;n
;

¼
X
m;n

jxl
D m; nð Þ np

b

	 
þ cC m; nð Þ mp
a

	 
�
h2m;n

cos
mpx
a

� �
sin

npy
b

� �
e �cmnzð Þ

�
ð2:11Þ

Similarly, we can compute

c2m;n þ k2 ¼ h2m;n; k2 ¼ l�x2

h2m;n ¼
mp
a

� �2
þ np

b

� �2
cmn ! propagation constant

Eix m; nð Þ ¼ 2
ab

Za
0

Zb
0

Eix x; yð Þ cos mpx
a

� �
sin

npy
b

� �
dxdy

¼ jxl np
b

	 

D m; nð Þ þ cm;nC m; nð Þ mp

a

	 

h2m;n

;

ð2:12aÞ

Eiy m; nð Þ ¼ 2
ab

Za
0

Zb
0

Eiy x; yð Þ sin mpx
a

� �
cos

npy
b

� �
dxdy

¼ � jxl
h2m;n

D m; nð Þ mp
a

� �
þ cm;nC m; nð Þ npb

h2m;n

 !
;

ð2:12bÞ
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Eix m; nð Þ
Eiy m; nð Þ
� �

¼
mp
a

cm;n
h2m;n

np
b

jxl
h2m;n

� cm;n
h2m;n

np
b � jxl

h2m;n
mp
a

" #
C m; nð Þ
D m; nð Þ
� �

Hence, C m; nð Þ;D m; nð Þ amplitude coefficients can be computed, when the
boundary conditions are given as:

x ¼ 0; a
y ¼ 0; b
z ¼ 0; d

8<
:

9=
;

Incident waves at input of waveguide are Eix x; yð Þ, Eiy x; yð Þ

Eix x; yð Þ ¼
X
m;n

jxlD m; nð Þ np
b

	 
þ cm;nC m; nð Þ mp
a

	 

h2m;n

cos
mpx
a

� �
sin

npy
b

� �h i
;

ð2:13aÞ

Eiy x; yð Þ ¼
X
m;n

jxlD m; nð Þ mp
a

	 
þ cm;nC m; nð Þ np
b

	 

h2m;n

sin
mpx
a

� �
cos

npy
b

� �h i
:

ð2:13bÞ

2.5 Two-Dimensional Resonator

Solution is obtained by the application of Helmholtz equation.

@2w x; y; tð Þ
@x2

þ @2w x; y; tð Þ
@y2

� 1
c2

@2w x; y; tð Þ
@t2

¼ 0 ð2:14Þ

Applying boundary conditions in rectangular plane,

w 0; y; tð Þ ¼ w a; y; tð Þ ¼ 0

w x; 0; tð Þ ¼ w x; b; tð Þ ¼ 0

Let input excitation be some tension T

rdxdy
@2w
@t2

¼ @

@x
T � dy @w

@x

� �
dxþ @

@y
T � dx @w

@y

� �
dy ð2:15Þ

Y 00

Y
¼ �k2y ;

X 00

X
¼ �k2x ;
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@2w
@t2

� c2r2w ¼ 0 ð2:16Þ

Using separation of variables:

w x; y; tð Þ ¼ X xð ÞY yð ÞT tð Þ ð2:17Þ

�x2 ¼ T 00 tð Þ
T tð Þ ¼ c2

X 00 xð Þ
X xð Þ þ Y 00 yð Þ

Y yð Þ
� �

let

X xð Þ ¼ sin kxxð Þ

Y yð Þ ¼ sin kyy
	 


k2x þ k2y ¼
x2

c2

where kx and ky can be written as:

kx ¼ mp
a

; ky ¼ np
b

ð2:18Þ

Frequency can be written as: x mnð Þ ¼ cp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmaÞ2 þ ðnbÞ2

q
:

2.6 Basic Mathematical Representation of Resonant
Modes

r2Ax þ k2Ax ¼ 0; ð2:19Þ

kr ≫ 1 far field pattern
kr ≪ 1 near field pattern

where Az is the magnetic vector potential and k is the wave vector or wave number
along z-axis.

Az ¼ ðC1 cos kxxð Þ þ C1 sin kxxð ÞÞðC3 cos kyy
	 


þ C4 sinðkyyÞÞ C5 cosðkzzÞ þ C6 sinðkzzÞð Þ;
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Az ¼ l
4p

Z
J z0ð Þ e

jkR

R
d3z0; ð2:20Þ

kc ¼ 2p
k
; k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
¼ x2�l; where k is the wave number:

The wave number can be defined as rate of change of phase w.r.t. distance in the
direction of propagation. Resonant frequency x ¼ xmnp in RDRA and its
mathematical expression is given below:

frð Þm; n; p ¼ cffiffiffiffi
er2p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
a

� �2
þ np

b

� �2
þ pp

d

� �2r
; ð2:21Þ

where m; n; p are the half-wave field variations along x, y, z directions.

H ¼ r� A

E ¼ �rø� dA
dt

; scalar and magnetic vector potential from Lorentz Gauge

conditions:
S ¼ E � H�ð Þ; S is Poynting vector energy flow or fluxð Þ:
Z ¼ Prad

jIj2 ¼ input Impedance:

Ex;Ey;Ez;Hx;Hy;Hz are electric and magnetic fields

L
I

cos
npx
a

� �
; sin

npx
a

� �n o
� L

I
cos

mpy
b

� �
; sin

mpy
b

� �n o
; ð2:22Þ

where L denotes linear components. It turns out that depending on the nature of
wall surfaces (PEC or PMC), four possible linear combinations can appear
(cos� sin; sin� cos; sin� sin; and cos� cos).

In rectangular DRA, we’ve got to applying in additional boundary conditions on
top and bottom surfaces to be the linear combinations as compared to waveguide.

C1expfð�c m; n;xð Þzg þ C2exp þc m; n;xð Þzf g

and these cases are c m; n;xð Þ ¼ pp
d ; when p ¼ 1; 2; 3. . . and have two possible

linear combinations of sin ppz
d

	 

and cos ppz

d

	 

:

Thus, the possible frequencies x obtained by solving c m; n;xð Þ ¼ pp
d ; then

comes out to be:

x m; n; pð Þ ¼ p
m2

a2
þ n2

b2
þ p2

d2

� �1=2
: ð2:23Þ
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An equivalent but computationally simpler way to pass on from waveguide
physics to resonator physics is to just replace c by � @

@z in all the waveguide
formulae that express the tangential field components in terms of the longitudinal
components. This is done after solving the full 3-D Helmholtz equations using
separation of variable in x, y, z.

r2 þ x2

c2

� �
Ez

Hz

� �
¼ 0 ð2:24Þ

The discrete modes xmnp enable us to visualize the resonator as collection of L,
C oscillators with different L, C values. The outcome of all this analysis enables us
to write down the E and H fields inside the resonator, as superposition of four, three
vector-valued basis functions.

E x; y; z; tð Þ ¼
X1
mnp¼1

Re Cmnpe
jx mnpð ÞtwE

mnp
x; y; zð Þ

n o

þ
X1
mnp¼1

Re Dmnpe
jx mnpð Þt�/E

mnp
x; y; zð Þ

n o
;

ð2:25Þ

and

H x; y; z; tð Þ ¼
X1
mnp¼1

Re C mnpð Þe jx mnpð ÞtwH
mnp

x; y; zð Þ
n o

þ
X1
mnp¼1

Re D mnpð Þe jx mnpð Þt�/H

mnp
x; y; zð Þ

n o
;

ð2:26Þ

We note that there are only two sets fCmnpg and fDmnpg of linear combination of
coefficients from the Ez and Hz expansions. The vector-valued complex functions

are wE
mnp

, �/
E

mnp
wH
mnp

�/
H

mnp
�R3 (where R is autocorrelation) and contains compo-

nents fcos; sing � cos; sinf g � fcos; sing; functions and hence for m0n0p0ð Þ 6¼
mnpð Þ; each function of the set:

wE
mnp

; �/
E

mnp
; wH

mnp
; �/

H

mnp

n o
;

is orthogonal to each functions of the set:

wE
m0n0p

; /
E

m0n0p
; wH

mnp
; /

H

m0n0p

n o
;

w.r.t. the measure of dx dy dz over [0, a] × [0, b] × [0, d].
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The exact form of the function �/
E
; �/

H
; wE; wH depends on the nature of the

boundaries. The next problem addressed can be on excitations of RDRA. To cal-
culate the amplitudes’ coefficients {Cmnp} and {Dmnp}, we assume that at z = 0,

excitations EðeÞ
x x; y; tð Þ or EðeÞ

y x; y; tð Þ are applied for some time say t 2 [0, T] and
then removed. Then, the Fourier components in this excitation corresponding to the
frequencies xfðmnpÞg are excited and their solutions are the oscillations, while the
waveguide for t > T. The other Fourier components decay within the resonator.

{Cmnp, Dmnp} are the components of the form:

EðeÞ
x x; y; tð Þ ¼

X
mnp

Re CðmnpÞe jx mnpð ÞtwE
mnp xðx; y; 0Þ

� �

þ Re D mnpð Þe jx mnpð Þt�/E

mnp x
x; y; 0ð Þ

� � ð2:27Þ

and

EðeÞ
y x; y; tð Þ ¼

X
mnp

Re C mnpð Þe jx mnpð ÞtwE
mnp yðx; y; 0Þ

� �

þ Re D mnpð Þe jx mnpð Þt�/E

mnp y
x; y; 0ð Þ

� �
;

ð2:28Þ

By using, orthogonality of fwE
mnp x x; y; 0ð Þ; �/E

mnp x
x; y; 0ð Þg. For different (m, n),

we write p to be fixed and likewise of fwE
mnp y x; y; 0ð Þ; �/E

mnp y
x; y; 0ð Þg:

In addition, we need to use KAM type of time averaging to yield field
components:

C mnpð ÞwE
mnp x x; y; 0ð Þ þ D mnpð Þ�/E

mnp x
x; y; 0ð Þ

¼ lim
T ! 1

1
2T

ZT
�T

E eð Þ
x x; y; tð Þe�jx mnpð Þtdt: ð2:29Þ

and likewise

C mnpð ÞwE
mnp y x; y; 0ð Þ þ D mnpð Þ�/E

mnp y
x; y; 0ð Þ

¼ lim
T ! 1

1
2T

ZT
�T

E eð Þ
y x; y; tð Þe jx mnpð Þtdt: ð2:30Þ
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2.7 Voltage Source Model

This method of excitation can be compared with connecting a voltage or current
source to an LC circuit for sometimes and then switching it off. After a sufficiently
long time, all frequencies in the LC circuit decay away except the frequency 1ffiffiffiffiffi

LC
p .

We can more generally compare a resonator with the material medium having
non-zero conductivity. Thus, the medium is characterized by the triplet (�; b; rÞ
which corresponds to an array of (C, L, R) = RLC circuits.

Such a resonator is analyzed in the same way replacing � by �0 ¼ �� jr
x, i.e.,

complex permittivity depending on frequency. The resonant frequencies x mnpð Þ
now have a non-zero imaginary part corresponding to decay of the field with time.
Their frequencies and fields may also be determined by applying separation of
variables with boundary conditions to the Helmholtz equations.

½r2 � jxlðrþ jx�Þ	 Ez

Hz

� �
¼ 0; ð2:31Þ

To have sustained oscillations in such a resonator, we must never switch off the
excitation. We may for example apply a surface current source at z ¼ d0, where
0\d0
d: Letting Jsx x; y;xð Þ and Jsy x; y;xð Þ be this surface current excitations in
the Fourier domain, the current density corresponds to this is given as:

Je x; y; z;xð Þ ¼ ðJsx x; y;xð ÞX̂ þ Jsy x; y;xð ÞŶ d z� d0ð Þ; ð2:32Þ

This current is computed by substituting into the Maxwell curl equations

CurlE ¼ �jxlH;

CurlH ¼ Je þ rþ jx�ð ÞE; divH ¼ 0

The method of solution is to express it as the sum of a general solution to the
homogeneous equations, i.e., with Je = 0 and a particular solutions for Je 6¼ 0. The
general solutions to the homogeneous problem are the same as earlier explained,
i.e., containing only the frequencies fxðmnpÞg. Particular solution to the
Je 6¼ 0 inhomogenousð Þ problem is obtained by taking the curl of the second
equation and substituting the fields into third equation to obtain

r2H ¼ �r� Je þ jxl rþ jx�ð ÞH; ð2:33Þ
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We express a particular solution to this equation by setting

X1
m;n¼1

L1 m; n;xð Þ expð�c mnxð Þzð Þumnðx; y;xÞ

þ b1 m; n;xð Þ exp c mnxð Þzð Þvmn x; y;xð Þ for d� z[ d; ð2:14Þ
ð2:34aÞ

Hp x; y; z;xð Þ ¼
X1
m;n¼1

ðL2 m; n;xð Þ exp� c mnxð ÞzÞumnðx; y;xÞ

þ b2 m; n;xð Þ exp c mnxð Þzð Þvmn x; y;xð Þ for 0� z\d; ð2:15Þ
ð2:34bÞ

Here, x is a continuous variable, unlike fxðmnpÞg, umn x; y;xð Þ and vmn x; y;xð Þ
are multiples (x-dependent) of

L cos
mpx
a

� �
; sin

npx
a

� �n o
� L cos

mpy
p

� �
; sin

mpy
p

� �� �

To meet the boundary conditions on the sidewalls, if z = 0, d; if the walls are PEC,
Hpz ¼ 0; when z = 0, d. That gives use

Hpz x; y; z;xð Þ ¼
X
m;n

L m; n;xð Þ sin h c m; n;xð Þ z� dð Þf gumnz x; y;xð Þ; d\z� d;

ð2:35Þ

and

Hpz x; y; z;xð Þ ¼
X
m;n

b m; n;xð Þ sin h c m; n;xð ÞzÞf gumnz x; y;xð Þ; 0� z\d;

ð2:36Þ

The fields Hp? x; y; z;xð Þ are easily determined from these equations in the
region z > d and z < d by differentiating them w.r.t. x, y, z; wherever c comes in the
multiple w.r.t. expð�czÞ, we replace it by � @

@z etc.
In this way, we get

Hpx x; y; z;xð Þ ¼
X1
m;n¼1

L1 m; n;xð Þwmnx x; y; z;xð Þ; for z[ d; ð2:37aÞ

and

Hpy x; y; z;xð Þ ¼
X1
m;n¼1

L2 m; n;xð Þwmny x; y; z;xð Þ; for z\d; ð2:37bÞ
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where, wmnx x; y; z;xð Þ and wmny x; y; z;xð Þ are obtained by differentiating

umnz x; y;xð Þ sin h c m; n;xð Þ z� dð Þf g w.r.t. x; y; z:

Likewise for z\d, we have expression of the form

Hpx x; y; z;xð Þ ¼
X1
m;n¼1

b m; n;xð Þ�/E

mnp x
x; y; z;xð Þ; ð2:38aÞ

and

Hpy x; y; z;xð Þ ¼
X1
m;n¼1

b m; n;xð Þ�/E

mnp y
x; y; z;xð Þ; ð2:38bÞ

The coefficients L m; n;xð Þ and b m; n;xð Þ are obtained from the boundary
conditions

ẑ� Hjz¼dþ�Hjz¼d�
	 
 ¼ Jsjz¼dþ:

Hence, current density

J ¼ Jsx x; y;xð ÞX̂ þ Jsyðx; y;xÞŶ : ð2:39Þ

2.8 Resonant Modes Generation

The Fig. 2.2 presents how the generated modes look like. This will be able to tell us
the number of resonant modes in particular direction. The transverse components of
EM waves are expressed as Ex;Ey;Hx;Hy: If propagation of wave is along
z-direction, Ez;Hz fields are the longitudinal components. These fields are modal
solutions, solved based on Helmholtz equations using standard boundary condi-
tions. The RDRA is basically a boundary value problem. The linear combinations
of sine and cosine terms give rise to TE and TM modes. The generation of various
kinds of modes in an antenna and propagation is very critical issue; it need through
study. Now, rewriting Helmholtz equation for source-free medium (Fig. 2.3)

Fig. 2.2 Rectangular resonator
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r2Wþ k2W ¼ 0;

Here, k is the wave number and k2 ¼ k2x þ k2y þ k2z and, W ¼ Wx �Wy �Wz

1
Wx

@

@x

� �2

W ¼ �k2x ð2:40aÞ

1
Wy

@

@y

� �2

W ¼ �k2y ð2:40bÞ

1
Wz

@

@z

� �2

W ¼ �k2z ð2:40cÞ

Solving above function and keeping propagation in +z-direction only, we get

W or Hz or Ez ¼ A sin kx � xþ B cos kx � xð Þ C sin ky � yþ D cos ky � y
	 
� �

e�jkzz

From boundary conditions, we get

Hz ¼
X
m;n

Cmn cos
mpx
a

� �
cos

npy
b

� �n o
e �jkzz; Cmn Fourier Coefficients; ð2:41aÞ

Ez ¼
X
m;n

Dmn sin
mpx
a

� �
sin

npy
b

� �n o
e �jkzz; Dmn Fourier Coefficients; ð2:41bÞ

Let c ¼ �jkz and m, n are integers and a, b are dimensions;

c2 þ x2l� ¼ k2x þ k2y ¼
mp
a

� �2
þ np

b

� �2

k2z ¼ x2l�� mp
a

� �2
þ np

b

� �2� �

Fig. 2.3 Resonant modes
generated in RDRA by HFSS.
a TEx

d12, b TEx
d14, c TEx

d16
modes
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Hence, EM wave will propagate in z-direction if

x2l�� mp
a

� �2
þ np

b

� �2� �
[ 0

This gives cutoff frequency as

xc ¼ 1ffiffiffiffiffi
l�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mp
a

� �2
þ np

b

� �2� �s

It means, waveguide will support all waves having ω greater than xc to propagate.
Now, rewriting Hz and Ez

Hz ¼
X
m;n

Cmn cos
mpx
a

� �
cos

npy
b

� �n o
e �jkzz ð2:42Þ

Ez ¼
X
m;n

Dmn sin
mpx
a

� �
sin

npy
b

� �n o
e �jkzz ð2:43Þ

Here, Cmn and Dmn are the coefficients of Fourier cosine and sine series.

cm;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2m;n � x2le

q

Hence, Cmn andDmn gives us relative amplitudes and phase. Hence, we get solution
of possible amplitudes and phase of wave propagating through rectangular wave-
guide called as modes of propagation.

2.9 MATLAB Simulated Results

Results of resonant frequency obtained on various sizes RDRA’s using HFSS have
been placed in Table 2.1. The MATLAB programs are being developed for modes
graphical view. Resonant modes and resonant frequencies are being obtained based
on formulations. The programs and simulated results are given below:
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The graph shown in Fig. 2.4 represents inverse relationship between height and
resonant frequency as k-wavelength is inversely proportional to resonant frequency
fr. MATLAB simulation shown in Fig. 2.5 represents number of modes generated
in x, y, z directions. The mathematical expression on the topic is expressed in
Eqs. (2.1)–(2.31).

Table 2.1 RDRA HFSS fr

S. No. Permittivity Dimension (a × b × h) mm Resonant frequency

1 10.0 14.3 × 25.4 × 26.1 3.5

2 10.0 14 × 8 × 8 5.5

3 10.0 15.24 × 3.1 × 7.62 6.21

4 20.0 10.2 × 10.2 × 7.89 4.635

5 20.0 10.16 × 10.2 × 7.11 4.71

6 35.0 18 × 18 × 6 2.532

7 35.0 18 × 18 × 9 2.45

8 100.0 10 × 10 × 1 7.97
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Fig. 2.4 Simulated resonant frequency plot for excited modes
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Fig. 2.5 Resonant modes 3D in RDRA in xyz plane
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Chapter 3
Mathematical Analysis of Rectangular
DRA

Abstract This chapter, mathematical analysis of electromagnetic fields in rectan-
gular dielectric resonator antenna (RDRA) has been introduced. The investigations
are based on the first applying waveguide theory, then converting it to resonator by
replacing �c to d/dz. Initially, these fields are exploited using the Maxwell curl
equations, then manipulating them to express the transverse components of the
fields in terms of partial derivatives of the longitudinal components of the fields
with respect to x and y axis (i.e., the transverse coordinates). Waveguide models of
four rectangular DRAs with specified boundary conditions with linear permittivity
have been realized.

Keywords Electromagnetic fields mathematical modeling � Resonator �
Waveguide � Homogeneous medium � Boundary conditions � Surface interface

In this chapter, mathematical analysis of electromagnetic fields in rectangular
dielectric resonator antenna (RDRA) has been introduced. The investigations are
based on first applying waveguide theory, then converting it to resonator by
replacing �c to d/dz. Through out this book, electromagnetic field propagation has
been taken along z-axis, i.e., exp(−γz). Initially, these fields are exploited using the
Maxwell curl equations, then manipulating them to express the transverse com-
ponents of the fields in terms of partial derivatives of the longitudinal components
of the fields with respect to x and y axis (i.e., the transverse coordinates).
Waveguide models of four different rectangular DRAs with specified boundary
conditions with homogeneous material having linear permittivity have been
mathematically modeled. The fields are realized to determine TE and TM modes of
propagating fields. These have resulted into different sine–cosine combinations.
Propagation of these fields have been split as inside the RDRA and outside RDRA.
The interfacing surface is having two different dielectrics. The solution is developed
as transcendental equation, which purely characterized rectangular DRA frequency
and propagating fields in terms of propagation constants and dominant resonant
frequency. TE modes generation required Hz as longitudinal fields and Ex, Ey, Hx,
and Hy as transverse fields. Excitation is applied along x-axis as partial fields, y-axis
will have fixed variation, and z-axis will have desired variation in propagating

© Springer India 2016
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Resonator Antennas, DOI 10.1007/978-81-322-2500-3_3
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fields, for example, TE d13 and TE d43. Similar cases can be developed for other
modes, so as to propagate Ez fields as longitudinal and Ex, Ey, Hx, and Hy as
transverse fields. In this case, Hz shall get vanished because of boundary conditions.
Resonant modes, i.e., amplitude coefficient of these fields Cmnp and Dmnp inside the
DRA can be determined by comparing magnetic energies equal to electrical ener-
gies based on principle orthonormality or law of conservation. The derivation for
the quality factor and radiation pattern have been developed for deeper antenna
analysis.

3.1 Rectangular DRA with Homogeneous Medium

In Rectangular DRA as shown in Fig. 3.1, top and bottom walls of RDRA are PMC
and rest of the other walls are PEC. On magnetic walls (PMC), n · E = 0, where
E denotes the electric field intensity and n denotes the normal to the surface of
the resonator. Similarly, n ×H = 0 is not necessarily satisfied at all the surfaces of the
DRA by all the modes. Different resonant modes shall have different electromagnetic

Fig. 3.1 a Rectangular DRA with aperture-coupled feed. b RDRA with input excitation
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field distribution inside the RDRA, and each mode may provide a different resonant
frequency and radiation pattern, i.e., eigen vector and eigen frequency.
Excitation-based resonant modes can generate desired radiation pattern for different
coverage requirements. By making use of this mechanism, internal as well as
associated external fields distribution can be obtained.

Rectangular DRA is better choice due to flexible aspect ratio, i.e., b/a or d/
a options can generate different modes. The existence of two independent aspect
ratios in a rectangular DRA offers better design flexibility. Assuming the ground
plane to be infinitely large, image theory is applied to replace the isolated RDRA by
a grounded resonator of half-size. In this RDRA, two of the six surfaces of the
resonator are assumed to be perfect magnetic walls, while the remaining four are
assumed to be perfect electric walls. Electromagnetic theory is then applied to study
its theoretical analysis, and later three more cases have been developed based on the
different boundary conditions. For example, the fields undergo one half-wave
variation along the dimension ‘a’ and remains constant along dimension ‘b’. They
undergo less than a half-wave variation along z-axis, i.e., variation along DRA
height ‘d’. The resonant mode is therefore identified as TEz

10d. The propagation
direction has been assumed in z-direction. TEz

310 resonant fields undergo three
half-wave variations along length of DRA ‘a’ and one half-wave variation along
breadth ‘b’, and no variation along height ‘d’. To adapt these formulae to an DRA,
we note that the propagation constants along z can be �c with the linear combi-
nations of coefficients chosen, so as to meet the boundary conditions at z = 0 and
z = d, i.e., the top and bottom surfaces of the RDRA, which have been taken as PEC
(permanent electrical conducting) walls. On a PEC, the tangential components
(n × E = 0) of the electric field and the normal component (n · H = 0) of the
magnetic fields get vanished. While on a PMC wall, by directly, the normal
component of the electric field (n · E = 0) and the tangential components
(n × H = 0) of the magnetic field get vanished.

To compute resonant modes, vector principle of orthonormality on half-wave
Fourier analysis has been applied, i.e., radiated magnetic energies are compared
with applied electrical energies in RDRA. More number of modes along z-axis in
RDRA can be generated either by increasing electrical height ‘d’ of RDRA or by
increasing excitation resonant frequency. Given below are the two rectangular
DRAs with different configurations shown in Fig. 3.1.

In Fig. 3.1, PMC and PEC walls’ configuration is labeled. The mathematical
solution is developed based on this configuration. The boundary conditions of
interface walls shall form linear combinations of sine–cosine terms. Accordingly,
they will decide whether transverse electric fields or magnetic fields will vanish.
Propagation of longitudinal fields shall depend on the direction of excitation.
Excitation of resonant modes in rectangular boundaries are easier as compared to
cylindrical. Transcendental equation and characteristics equations have been
developed for rectangular DRA. This has provided complete solution of resonant
frequency and propagation constants.
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3.2 Rectangular DRA Mathematical Modeling

In this chapter, four different solutions are presented, each RDRA is associated with
different boundaries. The resultant field formed the resonant modes of different
kinds.

Figure 3.2 described E and H fields pattern forming resonant modes, i.e.,
dominant or higher-order excited modes inside the RDRA.

3.2.1 Model-1

(a) Here, top and bottom walls are assumed as PMC and rest of the other four walls
are PEC as per Fig. 3.1.

Given top and bottom surfaces of RDRA as PMC at z ¼ 0; d;

) n� H ¼ 0

n � E ¼ 0;

Hy ¼ Hx ¼ 0;

Ez ¼ 0;

Rest of the other four walls are PEC.

n� E ¼ 0;

n � H ¼ 0;

x ¼ 0; a;

Ey ¼ Ez ¼ 0;

Hx ¼ 0;

Fig. 3.2 E and H fields pattern inside RDRA
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At,

y ¼ 0; b;

Ex ¼ Ez ¼ 0;

Hy ¼ 0;

From separation of variables (Refer Chap. 2),

Ex ¼ 1

jx� 1þ c2

k2

� � @Hz

@y
� 1
jxl

@2Ez

@z@x

� �
ð3:1Þ

Ey ¼ 1

jx� 1þ c2

k2

� � � 1
jxl

@2Ez

@z@y
� @Hz

@x

� �
ð3:2Þ

Hx ¼ �1

jxl 1þ c2

k2

� � @Ez

@y
� 1
jx�

@2Hz

@z@x

� �
ð3:3Þ

Hy ¼ �1

jxl 1þ c2

k2

� � 1
jx�

@2Hz

@z@y
� @Ez

@x

� �
ð3:4Þ

Solution of second-order differential equation is given as,

wz ¼ X xð ÞY yð ÞZðzÞ

where

X xð Þ ¼ A1 sin kxxþ A2 cos kxx ð3:5Þ

Y yð Þ ¼ A3 sin kyyþ A4 cos kyy ð3:6Þ

Z zð Þ ¼ A5 sin kzzþ A6 cos kzz ð3:7Þ

TE mode Ez ¼ 0 and Hz 6¼ 0ð Þ

wHz
¼ X xð ÞY yð ÞZðzÞ

substituting Ez ¼ 0 in Eq. (3.2) to get, Ey

Ey ¼ C0 � @Hz

@x

� �
;
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or,

Ey ¼ C0X 0 xð ÞY yð ÞZ zð Þ;

Now

X 0 xð Þ ¼ A1 cos kxx� A2 sin kxx;

But at

x ¼ 0; a; Ey ¼ 0;

) 0 ¼ A1 cos kx0� A2 sin kx0;

or,

A1 ¼ 0 and kx ¼ mp
a

;

Similarly from Eq. (3.1)

Ex ¼ C0 @Hz

@y

� �
;

or,

Ex ¼ C0X xð ÞY 0 yð ÞZðzÞ:

Now

Y 0 yð Þ ¼ A3 cos kyy� A4 sin kyy;

At,

y ¼ 0; b; Ex ¼ 0;

) 0 ¼ A3 cos ky0� A4 sin ky0;

or,

A3 ¼ 0 and ky ¼ np
b
;
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From above equation,

Hx ¼ C0 � 1
jx�

@2Hz

@z@x

� �
;

or,

Hx ¼ C0X 0 xð ÞY yð ÞZ 0 zð Þ;

Now

Z 0 zð Þ ¼ A5 cos kzz� A6 sin kzz;

At,

z ¼ 0; d Hx ¼ 0;

) A5 cos kz0� A6 sin kz0 ¼ 0;

A5 ¼ 0 and kz ¼ pp
d
;

Hence,

Hz ¼ A2A4A6 cos
mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
ð3:8Þ

Using Eqs. (3.1)–(3.4), and (3.8), we get

Hx ¼ C00A2A4A6
mp
a

� � pp
d

� �
sin

mp
a

x
� �

cos
np
b
y

� �
sin

pp
d
z

� �
;

Hy ¼ C00A2A4A6
np
b

� � pp
d

� �
cos

mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
;

Ey ¼ C00A2A4A6
mp
a

� �
sin

mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
;

Ex ¼ C00A2A4A6
np
b

� �
cos

mp
a

x
� �

sin
np
b
y

� �
cos

pp
d
z

� �
;

Similarly, for TM mode Hz ¼ 0 and Ez 6¼ 0ð Þ

wEz
¼ X xð ÞY yð ÞZ zð Þ;
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At,

x ¼ 0; a;

Ez ¼ 0;

A1 sin kx0þ A2 cos kx0 ¼ 0;

) A2 ¼ 0 and kx ¼ mp
a

;

Also, at

y ¼ 0; b;

Ez ¼ 0;

A3 sin ky0þ A4 cos ky0 ¼ 0;

A4 ¼ 0; and ky ¼ np
b

At,

z ¼ 0; d;

Ez ¼ 0;

) A5 sin kz0þ A6 cos kz0 ¼ 0;

A6 ¼ 0 and kz ¼ pp
d
;

Hence,

Ez ¼ A1A3A5 sin
mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
ð3:9Þ

Using Eqs. (1.1)–(1.4), and (1.9), we get

Ex ¼ C00A1A3A5
mp
a

� � pp
d

� �
cos

mp
a

x
� �

sin
np
b
y

� �
cos

pp
d
z

� �
;

Ey ¼ C00A1A3A5
np
b

� � pp
d

� �
sin

mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
;

Hy ¼ C00A1A3A5
mp
a

� �
cos

mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
;

Hx ¼ C00A1A3A5
np
b

� �
sin

mp
a

x
� �

cos
np
b
y

� �
sin

pp
d
z

� �
;
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3.2.2 Model-2

(b) Top and bottom walls are PEC and rest of the other walls are PMC:
Assuming the top and bottom surface plane be at z ¼ 0; d;

n� E ¼ 0;

n � H ¼ 0;

Ey ¼ Ex ¼ 0;

Hz ¼ 0;

Rest of the other walls are PMC

n� H ¼ 0;

n � E ¼ 0;

At,

x ¼ 0; a;

Hy ¼ Hz ¼ 0;

Ex ¼ 0;

At,

y ¼ 0; b;

Hx ¼ Hz ¼ 0;

Ey ¼ 0;

We also know that

Ex ¼ 1

jx� 1þ c2

k2

� � @Hz

@y
� 1
jxl

@2Ez

@z@x

� �
; ð3:10Þ

Ey ¼ 1

jx� 1þ c2

k2

� � � 1
jxl

@2Ez

@z@y
� @Hz

@x

� �
; ð3:11Þ

Hx ¼ �1

jxl 1þ c2

k2

� � @Ez

@y
� 1
jx�

@2Hz

@z@x

� �
; ð3:12Þ
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Hy ¼ �1

jxl 1þ c2

k2

� � 1
jx�

@2Hz

@z@y
� @Ez

@x

� �
; ð3:13Þ

Now, the solution of second-order differential equation is given as

wz ¼ X xð ÞY yð ÞZðzÞ;

where

X xð Þ ¼ A1 sin kxxþ A2 cos kxx; ð3:14Þ

Y yð Þ ¼ A3 sin kyyþ A4 cos kyy; ð3:15Þ

Z zð Þ ¼ A5 sin kzzþ A6 cos kzz; ð3:16Þ

TE mode Ez ¼ 0 and Hz 6¼ 0ð Þ

wHz
¼ X xð ÞY yð ÞZ zð Þ;

At,

x ¼ 0; a;

Hz ¼ 0;

A1 sin kx0þ A2 cos kx0 ¼ 0;

A2 ¼ 0;

and

kx ¼ mp
a

;

Also, at

y ¼ 0; b;

Hz ¼ 0;

A3 sin ky0þ A4 cos ky0 ¼ 0;

A4 ¼ 0;

and

ky ¼ np
b
;
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At,

z ¼ 0; d;

Hz ¼ 0;

A5 sin kz0þ A6 cos kz0 ¼ 0;

A6 ¼ 0;

and

kz ¼ pp
d
;

Hence,

Hz ¼ A1A3A5 sin
mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
; ð3:17Þ

Using Eqs. (1.1)–(1.4), and (1.8), we get

Hx ¼ C00A1A3A5
mp
a

� � pp
d

� �
cos

mp
a

x
� �

sin
np
b
y

� �
cos

pp
d
z

� �
;

Hy ¼ C00A1A3A5
np
b

� � pp
d

� �
sin

mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
;

Ey ¼ C00A1A3A5
mp
a

� �
cos

mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
;

Ex ¼ C00A1A3A5
np
b

� �
sin

mp
a

x
� �

cos
np
b
y

� �
sin

pp
d
z

� �
;

TM mode Hz ¼ 0 and Ez 6¼ 0ð Þ

wEz
¼ X xð ÞY yð ÞZ zð Þ;

From Eq. (3.2) after substituting Hz ¼ 0, we get

Ey ¼ C0 � 1
jxl

@2Ez

@z@y

� �
;

Ey ¼ C0X xð ÞY 0 yð ÞZ 0 zð Þ;

Now

Y 0 yð Þ ¼ A3 cos kyy� A4 sin kyy;

3.2 Rectangular DRA Mathematical Modeling 43

http://dx.doi.org/10.1007/978-81-322-2500-3_1
http://dx.doi.org/10.1007/978-81-322-2500-3_1
http://dx.doi.org/10.1007/978-81-322-2500-3_1


At,

y ¼ 0; b; Ey ¼ 0;

0 ¼ A3 cos ky0� A4 sin ky0;

A3 ¼ 0 and ky ¼ np
b
;

Similarly, from the above equations,

Ex ¼ C0 � 1
jxl

@2Ez

@z@x

� �
;

Ex ¼ C0X 0 xð ÞY yð ÞZ 0ðzÞ;
X 0 xð Þ ¼ A1 cos kxx� A2 sin kxx;

x ¼ 0; a;

Ex ¼ 0;

0 ¼ A1 cos kx0� A2 sin kx0;

A1 ¼ 0;

and

kx ¼ mp
a

;

Also, from above equations,

Z 0 zð Þ ¼ A5 cos kzz� A6 sin kzz;

At,

z ¼ 0; d; Ex ¼ 0;

) 0 ¼ A5 cos kz0� A6 sin kz0;

or,

A5 ¼ 0 and kz ¼ pp
d
;

Hence,

Ez ¼ A2A4A6 cos
mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
; ð3:18Þ
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Using Eqs. (3.11–3.14) and (3.18), we get

Ex ¼ A2A4A6
mp
a

� � pp
d

� �
sin

mp
a

x
� �

cos
np
b
y

� �
sin

pp
d
z

� �
;

Ey ¼ A2A4A6
np
b

� � pp
d

� �
cos

mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
;

Hx ¼ A2A4A6
np
b

� �
cos

mp
a

x
� �

sin
np
b
y

� �
cos

pp
d
z

� �
;

Hy ¼ A2A4A6
mp
a

� �
sin

mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
;

3.2.3 Model-3

(c) Solution of RDRA, when all six walls are PEC (perfect electrical walls):
Using Maxwell equations:

r� E ¼ �jxB ¼ �jxlH;

r� H ¼ jx�E;

r� E ¼ �jxlH;

x̂ ŷ ẑ
@
@x

@
@y

@
@z

Ex Ey Ez

�������
������� ¼ �jxlH;

x̂
@Ez

@y
� @Ey

@z

� �
þ ŷ

@Ex

@z
� @Ez

@x

� �
þ ẑ

@Ey

@x
� @Ex

@y

� �
¼ �jxlH;

On comparing ðx; y; zÞ components both the sides

@Ez

@y
� @Ey

@z
¼ �jxlHx; ð3:19Þ

@Ex

@z
� @Ez

@x
¼ �jxlHy; ð3:20Þ

@Ey

@x
� @Ex

@y
¼ � jxlHz; ð3:21Þ

Similarly, using r� H ¼ jx�E; We get

@Hz

@y
� @Hy

@z
¼ jx�Ex; ð3:22Þ
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@Hx

@z
� @Hz

@x
¼ jx�Ey; ð3:23Þ

@Hy

@x
� @Hx

@y
¼ jx�Ez; ð3:24Þ

Comparing above equations,

Ex ¼ 1
jx�

@Hz

@y
þ 1
jxl

@2Ex

@z2
� @2Ez

@x@z

� �� �
; ð3:25Þ

Ex þ 1
k2

@2Ex

@z2
¼ 1

jx�
@Hz

@y
� 1
jxl

@2Ez

@x@z

� �
; ð3:26Þ

Ex 1þ c2

k2

� �
¼ 1

jx�
@Hz

@y
� c
jxl

@Ez

@x

� �
;

Ey, Hx, and Hy are expressed in Ez and Hz fields:

Ey 1þ c2

k2

� �
¼ 1

jx�
�c
jxl

@Ez

@y
� @Hz

@x

� �
;

Hx 1þ c2

k2

� �
¼ � 1

jxl
@Ez

@y
� c
jx�

@Hz

@x

� �
;

Hy 1þ c2

k2

� �
¼ � 1

jxl
c

jxl
@Hz

@y
� @Ez

@x

� �

Separation of variables with given boundary conditions, solution is obtained.

w ¼ X xð ÞY yð ÞZ zð Þ;
¼ A1 sin kxxþ A2 cos kxxð Þ A3 sin kyyþ Ay sin kyy

	 

A5 sin kzzþ A6 cos kzzð Þ;

TM mode of propagation, Hz ¼ 0;
Boundary conditions
Electrical walls ! Etan ¼ 0 ¼ n� E;

! Hn ¼ 0 ¼ n � H;
At, x = 0;

Ez ¼ X xð Þ ¼ Az cos 0ð Þ; so A2 must be zero:

y ¼ 0;Y yð Þ ¼ Ay cos 0ð Þ; A4 must be zero:
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For standing wave in direction of z,
Therefore,

@

@z
Z zð Þ ¼ 0;

A5 cos kzzð Þ � A6 sin kzzð Þ ¼ 0;

Therefore, at

z ¼ 0; d;

A5 must be zero;

Hence, we are left with

Ez ¼ A1;A3;A5; sin kxx sin kyy cos kzz;

Next, boundary conditions are
At,

x ¼ a;

X xð Þ ¼ A1 sin kxa ¼ 0;

kx ¼ mp
a

;

At,

Y ¼ b; Y yð Þ ¼ A2 sin kyd ¼ 0;

ky ¼ np
b
;

At,

z ¼ 0 z zð ÞA4 sin kzd ¼ 0;

kz ¼ pp
d
;
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As, we know that

k20 ¼ k2x þ k2y þ k2z ;

Ex ¼ 1

jx� 1þ y2

k2

� � @Hz

@y
� 1
jxl

@2Ez

@x@z

� �
;

Ez ¼ 0;

Ex ¼ 1

k2 1þ y2

k2

� � A1A3A5kxkz cos kxx sin kyy sin kzz
	 


;

Ey ¼ 1

jx� 1þ y2

k2

� � � @Hz

@x
� 1
jxl

@2Ez

@y@z

� �
;

Ey ¼ �A1A3A5ky

k2 1þ y2

k2

� � kz sin kxx cos kyy sin kzz
	 


;

Hx ¼ �1

jxl 1þ y2

k2

� � @Ez

@y
� 1
jx�

@2Hz

@x@z

� �
;

¼ �kyA1A3A5

x2l� 1þ y2

k2

� � sin kxx cos kyy cos kzz
	 


;

Hy ¼ �1

jxl 1þ y2

k2

� � 1
jx�

@2Hz

@y@z
� @Ez

@x

� �
;

¼ �kzkxA1A3A5

x2l� 1þ y2

k2

� � cos kxx sin kyy cos kzz
	 


;

Hy ¼ kxA1A3A5

jxl 1þ y2

k2

� � cos kxx sin kyy cos kzz
	 


;

For, TE mode

w ¼ A1 sin kxxþ A2 cos kxð Þ A3 sin kyyþ Ay sin ky
	 


A5 sin kzzþ A6 cos kzzð Þ;

For PEC walls, electric field components are assumed to be varying with Hz in
direction of (x, y, z)
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Ex ¼ C0 @
@y

Hz

¼ C0X xð ÞY 0 yð ÞZ zð Þ;
y ¼ 0; b;

Y 0 yð Þ ¼ A3 cos kyy� A4 sin kyy ¼ 0;

A3 ¼ 0;

ky ¼ np
b
;

Similarly, Ey ¼ C00 @
@x

Hz;

A1 ¼ 0;

kx ¼ mp
a

;

Z zð Þ ¼ A5 sin kzzþ A6 cos kzz;

At,

z ¼ 0; d;

A6 ¼ 0;

kz ¼ pp
d
;

Hz ¼ A2A4A5 cos kxx cos kyy sin kzz;

Therefore,

Ex ¼ 1

j�x 1þ y2

k2

� � A2A4A5 cos kxx sin ky sin kzð Þ;

Ey ¼ �A2A4A5kx

j�x 1þ y2

k2

� � sin kxx cos kyy sin kzz
	 


;

Hx ¼ kxkzA1A3A5

k2 1þ y2

k2

� � sin kxx cos kyy cos kzz
	 


;

Hy ¼ �kzkyA1A3A5

x2l� 1þ y2

k2

� � cos kxx sin kyy cos kzz
	 


;
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3.2.4 Model-4

(d) When all the six walls of RDRA are assumed to be PMC (permanent magnetic
walls),

wz ¼ X xð ÞY yð ÞZ zð Þ where wz is wave function in x, y, and z direction as space.

Or ¼ A1 sin kxxþ A2 cos kxxð Þ A3 sin kyyþ A4 cos kyy
	 


A5 sin kzzþ A6 cos kzzð Þ
ð3:27Þ

where A1–A6 are constants and (A1 sin kxx + A2 cos kxxÞ is solution of second-order
differential equation in x direction, i.e., X(x).

When all six walls are PMC, the rectangular DRA solution is

Htan ¼ n� H ¼ 0;

Hnor ¼ n � E ¼ 0;

Applying boundaries,
At,

x ¼ 0; a ) Hy and Hz ¼ 0;Ex ¼ 0;

At,

y ¼ 0; b ) Hx and Hz ¼ 0;Ey ¼ 0;

At,

z ¼ 0; d ) Hx and Hy ¼ 0;Ez ¼ 0;

TE mode of propagation Ez ¼ 0;Hz 6¼ 0ð Þ
Using boundary conditions
At,

x ¼ 0; a; Hz ¼ 0 ) A2 ¼ 0 and kx ¼ mp
a

;

At,

y ¼ 0; b; Hz ¼ 0 ) A4 ¼ 0 and ky ¼ np
b
;
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Now,

Hx ¼ C00 @
2Hz

@x@z
¼ C00X 0 xð ÞY yð Þz0 zð Þ

z0 zð Þ ¼ A5 cos kzz� A6 sin kzz

At,

z ¼ 0; d ) d ) Hx ¼ 0;

) Hx ¼ 0 ) A5 ¼ 0; kz ¼ pp
d
;

Hence,

Hz ¼ A1A3A6 sin
mpx
a

� �
sin

npy
b

� �
cos

ppz
d

� �
ð3:28Þ

TM mode of propagation Ez 6¼ 0;Hz ¼ 0ð Þ
We again look for the conditions, when Hz = 0, i.e., to get the value of Ez

Hz ¼ C0@Ez

@y

¼ C0X xð ÞY y0ð ÞZ zð Þ;
Y 0 yð Þ ¼ A3 cos kyy� A4 sin kyy;

Hx ¼ 0 at Y ¼ 0; b;

) A3 ¼ 0 at ky ¼ np
b
;

ð3:29Þ

Similarly,

Hy ¼ C00 @Ez

@x
;

C00X 0 xð ÞY y0ð ÞZ zð Þ;
X 0 xð Þ ¼ A1 cos kxx� A2 sin kxx;

) Hy ¼ 0 at x ¼ 0; a;

) A1 ¼ 0;

kx ¼ mp
a

;

3.2 Rectangular DRA Mathematical Modeling 51



At,

z ¼ 0; d ) Ez ¼ 0;

) A5 ¼ 0 and kz ¼ pp
d
;

At,

z ¼ 0; d ) Ez ¼ 0;

) A5 ¼ 0 and kz ¼ pp
d
;

Hence,

Ez ¼ A2A4A5 cos
mpx
a

� �
cos

npy
b

� �
sin

ppz
d

� �
: ð3:30Þ

3.2.5 Basic Theory

Depending on the nature of the surfaces, different linear combinations of the �c
modes are formed. The propagation constant cð Þ itself is taking discrete values. This
forces the natural frequencies of the field oscillations to take discrete values mnpð Þ,
indexed by three positive integers m, n, and p. The solutions of the waveguide
problem yield discrete values of c, i.e., c m; n;xð Þ for a given frequency x by
applying boundary conditions to the electromagnetic fields on the side walls. The
corresponding field amplitudes are solutions to the 2-D Helmholtz equations
corresponding to the transverse Laplacian r2

?: These amplitudes are called “the
waveguide modes” and are of the form

L
I

cos
npx
a

� �
; sin

npx
a

n on o
� L

I
cos

mpy
b

� �
; sin

mpy
b

n on o

where L denotes linear components. It turns out that, depending on the nature of
wall surfaces (PEC or PMC), four possible linear combinations can appear
cos� sin; sin� cos; sin� sin; and cos� cosð Þ.
In rectangular DRA, we have got to applying in additional boundary conditions

on top and bottom surfaces to be the linear combinations as compared to the
waveguide.

C1 exp �cðm; n;xð Þzf g þ C2 exp þc m; n;xð Þzf g

and these cases are c m; n;xð Þ ¼ pp
d ; when p ¼ 1; 2; 3. . . and have two possible

linear combinations of sin ppz
d

	 

and cos ppz

d

	 

.
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Thus, the possible frequencies x obtained by solving c m; n;xð Þ ¼ pp
d and then

comes out to be

x m; n; pð Þ ¼ p
m2

a2
þ n2

b2
þ p2

d2

� �1=2

An equivalent but computationally simpler way to pass on from waveguide
physics to resonator physics is to just replace c by � @

@z in all the waveguide
formulae that express the tangential field components in terms of the longitudinal
components. This is done after solving the full 3-D Helmholtz equations using
separation of variable in x, y, and z.

r2 þ x2

c2

� �
Ez

Hz

� �
¼ 0

The discrete modes x mnpð Þ enable us to visualize the resonator as collection of
L, C oscillators with different L, C values. The outcome of all this analysis enables
us to write down the E and H fields inside the resonator, as superposition of four or
three vector-valued basis functions.

E x; y; z; tð Þ ¼
X1

m;n;p¼1

Re C mnpð Þe jx mnpð ÞtwE
mnp

x; y; zð Þ
n o

þ
X1

m;n;p¼1

Re D mnpð Þe jx mnpð Þt�/E

mnp
x; y; zð Þ

n o ð3:31Þ

and

H x; y; z; tð Þ ¼
X1

m;n;p¼1

Re C mnpð Þe jx mnpð Þt wH
mnp

x; y; zð Þ
n o

þ
X1

m;n;p¼1

Re D mnpð Þe jx mnpð Þt�/H

mnp
x; y; zð Þ

n o ð3:32Þ

We note that there are only two sets of amplitude coefficients {C(mnp)} and
{D(mnp)} of linear combination of coefficients using from the Ez andHz expansions.

The vector-valued complex functions are wE
mnp

; �/
E

mnp
; wH

mnp
; �/

H

mnp
�R3 (where R is

autocorrelation) and contains components cos; sinf g � cos; sinf g � cos; sinf g;
functions and hence for m0n0p0ð Þ 6¼ mnpð Þ; each function of the set

wE
mnp

; �/
E

mnp
; wH

mnp
; �/

H

mnp

n o
;
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is orthogonal to each functions of the set

wE
m0n0p

; �/
E

m0n0p
;wH

mnp
; �/

H

m0n0p0

n o
;

w.r.t. The measure of dx dy dz over [0, a] × [0, b] × [0, d];

The exact form of the function �/
E
; �/

H
;wE;wH depends on the nature of the

boundaries. The next problem addressed can be on excitations of RDRA. To cal-
culate the amplitude coefficients {C(mnp)} and {D(mnp)}, we assume that at z = 0,

an excitation EðeÞ
x x; y; tð Þ or EðeÞ

y x; y; tð Þ is applied for some time say t 2 [0, T] and
then removed. Then, the Fourier components in this excitation corresponding to the
frequencies x mnpð Þf g are excited and their solutions are the oscillations, while the
waveguide for t > T. The other Fourier components decay within the resonator.

{C(mnp), D(mnp)} are components of the form,

EðeÞ
x x; y; tð Þ ¼

X
m;n;p

Re CðmnpÞð Þe jx mnpð ÞtwE
mnp x x; y; 0ð Þ

þ Re DðmnpÞe jx mnpð Þt �/E

mnp x
x; y; 0

n o ð3:33Þ

and

EðeÞ
y x; y; tð Þ ¼

X
m;n;p

Re CðmnpÞð Þe jx mnpð ÞtwE
mnp y x; y; 0ð Þ

þ Re DðmnpÞe jx mnpð Þt�/E

mnp y
x; y; 0ð Þ

n o ð3:34Þ

By using orthogonality of wE
mnp x x; y; 0ð Þ; �/E

mnp x
x; y; 0ð Þ

n o
, for different (m, n), we

can write p to be fixed and likewise of wE
mnp y x; y; 0ð Þ; �/E

mnp y
x; y; 0ð Þ

n o
;

In addition, we need to use KAM (Kolmogorov–Arnold–Moser) type of time
averaging to yield

CðmnpÞwE
mnp x x; y; 0ð Þ þ DðmnpÞ�/E

mnp x
x; y; 0ð Þ

¼ lim

T ! 1
1
2T

ZT
�T

E eð Þ
x x; y; tð Þe�jx mnpð Þtdt
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and likewise

CðmnpÞwE
mnp y x; y; 0ð Þ þ DðmnpÞ�/E

mnp y
x; y; 0ð Þ

¼ lim

T ! 1
1
2T

ZT
�T

E eð Þ
y x; y; tð Þe jx mnpð Þtdt
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Chapter 4
Mathematical Analysis of Transcendental
Equation in Rectangular DRA

Abstract Mathematical analysis of transcendental equation in rectangular DRA
has been derived. Transcendental equation of rectangular DRA provides complete
solution of propagation constants, i.e., kx, ky, and kz. The propagation constant gives
rise to resonant frequency with the help of characteristic equation. The wave
numbers kx, ky, and kz are in x, y, and z direction, respectively. The free space wave
number is k0. The exact solution of RDRA resonant frequency can be determined
from combined solution of transcendental equation and characteristic equation.
These equations have unique solution. RDRA depends upon boundary conditions.
MATLAB-based simulation has been worked for RDRAs. They have been depicted
with examples. This chapter has given a complete design solution of rectangular
DRAs.

Keywords Mathematical analysis � Transcendental equation � Rectangular DRA �
Propagation constant � Eigen vectors � Effective electrical length � Characteristic
equation

Transcendental equation of rectangular DRA provides complete solution of prop-
agation constants, i.e., kx, ky, and kz. The propagation constant gives rise to resonant
frequency with the help of characteristic equation. The wave numbers kx, ky, and kz
are in x, y, and z direction, respectively. The free space wave number is k0. The
exact solution of RDRA resonant frequency can be determined from combined
solution of transcendental equation and characteristic equation. These equations
have unique solution if RDRA boundary conditions are fixed. For example, top and
bottom walls are PMC and rest of the four walls is PEC and vice versa, only two
different transcendental equations will be developed.

To get this solution, Hz fields and derivative of Hz fields need to be solved. They
are solved for continuous propagating fields conditions. The fields are assumed
continuous at interface of RDRA. The RDRA along with eigen vectors is shown in
Fig. 4.1a, b.

CASE#1 RDRA solution:
See Fig. 4.2.

© Springer India 2016
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3_4
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Fig. 4.1 a Rectangular DRA. b Eigen currents (current vectors) versus wavelength

Fig. 4.2 RDRA under defined boundaries
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To derive transcendental equation, the fields inside the resonator and outside the
resonator are required.

tan kzdð Þ ¼ kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r � 1ð Þk02 � kz2

q transcendental equationð Þ ð4:1Þ

�rk0
2 ¼ kx

2 þ ky
2 þ kz

2 wave equationð Þ ð4:2Þ

kx ¼ mp=a ð4:3aÞ

ky ¼ np=b ð4:3bÞ

kz ¼ pp=d ð4:3cÞ

where a, b, and d are dimensions; m, n, and p are the indices.
TEδ11, TE1δ1, and TE11δ are dominant modes.
The solution of resonant frequency can be had if solution of ky propagation

constant is obtained from characteristic equation, �rk02 ¼ kx2 þ ky2 þ kz2, and then
substituted in transcendental equation to compute resonant frequency f0.
Boundary condition
Propagation constant, c2mn ¼ k02 þ hmn2

k ¼ 2p=k ¼ x
ffiffiffiffiffi
l�

p ¼ x=c; Z
E2dV ¼

Z
H2dV

Time average electric energy = time average magnetic energy

�rk0
2 ¼ kx

2 þ ky
2 þ kz

2 ð4:4Þ

�0k0
2 ¼ kx

2 þ ky
2 þ kz

02 ð4:5Þ

kz ¼ pp=d

Subtracting Eq. (4.1) from Eq. (4.2), we get

kz
02 � kz

2 ¼ �0k0
02 � �rk0

2

kz
02 � kz

2 ¼ �0l0x
2 � �rl0x

2

Taking value of �0 ¼ 1 and l0 ¼ l, we get

kz
02 � kz

2 ¼ x2lð1� �rÞ ð4:6Þ
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4.1 Case-1: Top and Bottom Walls as PMC and Rest
of the Four Walls are PEC

See Fig. 4.3.
Assuming that the top and bottom surface plane be at z ¼ 0; d to be PMC

) n� H ¼ 0

And

n � E ¼ 0

or,

Hy ¼ Hx ¼ 0

Ez ¼ 0

Rest of the other walls is PEC

) n� E ¼ 0

And

n � H ¼ 0

At

x ¼ 0; a Ey ¼ Ez ¼ 0

Hx ¼ 0

Fig. 4.3 RDRA with boundaries

60 4 Mathematical Analysis of Transcendental …



At

y ¼ 0; b Ex ¼ Ez ¼ 0

Hy ¼ 0

We also know

Ex ¼ 1

jx� 1þ c2

k2

� � @Hz

@y
� 1
jxl

@2Ez

@z@x

� �
ð4:7aÞ

Ey ¼ 1

jx� 1þ c2

k2

� � � 1
jxl

@2Ez

@z@y
� @Hz

@x

� �
ð4:7bÞ

Hx ¼ �1

jxl 1þ c2

k2

� � @Ez

@y
� 1
jx�

@2Hz

@z@x

� �
ð4:7cÞ

Hy ¼ �1

jxl 1þ c2

k2

� � 1
jx�

@2Hz

@z@y
� @Ez

@x

� �
ð4:7dÞ

Now, the solution of second-order differential equation is given as follows:

wz ¼ X xð ÞY yð ÞZðzÞ

where

X xð Þ ¼ A1 sin kxxþ A2 cos kxx ð4:8aÞ

Y yð Þ ¼ A3 sin kyyþ A4 cos kyy ð4:8bÞ

Z zð Þ ¼ A5 sin kzzþ A6 cos kzz ð4:8cÞ

For TE mode Ez ¼ 0 and Hz 6¼ 0ð Þ

wHz
¼ X xð ÞY yð ÞZ zð Þ

After putting Ez ¼ 0; we get

Ey ¼ C0 � @Hz

@x

� �
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or,

Ey ¼ C0X 0 xð ÞY yð ÞZ zð Þ

Now

X 0 xð Þ ¼ A1 cos kxx� A2 sin kxx

But at

x ¼ 0; a Ey ¼ 0

) 0 ¼ A1 cos kx0� A2 sin kx0

or,

A1 ¼ 0 and kx ¼ mp
a

Similarly,

Ex ¼ C0 @Hz

@y

� �

or,

Ex ¼ C0X xð ÞY yð ÞZðzÞ

Now

Y 0 yð Þ ¼ A3 cos kyy� A4 sin kyy

But at

y ¼ 0; b Ex ¼ 0

) 0 ¼ A3 cos ky0� A4 sin ky0

or,

A3 ¼ 0 and ky ¼ np
b

from

Hx ¼ C0 � 1
jx�

@2Hz

@z@x

� �
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or,

Hx ¼ C0X 0 xð ÞY yð ÞZ 0 zð Þ

Now

Z 0 zð Þ ¼ A5 cos kzz� A6 sin kzz

At

z ¼ 0; d Hx ¼ 0

) A5 cos kz0� A6 sin kz0 ¼ 0

A5 ¼ 0 and kz ¼ pp
d

Hence,

Hz ¼ A2A4A6 cos
mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
ð4:9Þ

Using Eqs. (4.1)–(4.4), and (4.8a)–(4.8c), we get

Hx ¼ C00A2A4A6
mp
a

� � pp
d

� �
sin

mp
a

x
� �

cos
np
b
y

� �
sin

pp
d
z

� �
ð4:10aÞ

Hy ¼ C00A2A4A6
np
b

� � pp
d

� �
cos

mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
ð4:10bÞ

Ey ¼ C00A2A4A6
mp
a

� �
sin

mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
ð4:10cÞ

Ex ¼ C00A2A4A6
np
b

� �
cos

mp
a

x
� �

sin
np
b
y

� �
cos

pp
d
z

� �
ð4:10dÞ

Now, evaluate Ex and Hz at the boundary walls of the dielectric waveguide.
As we know that at the PMC wall, the tangential component of magnetic field

and normal component of electric field are equal to “zero” at the interface z = 0, d.
Hence,

Hx;Hy ¼ 0

and

Ez ¼ 0

Also, for propagation to be possible, we need two normal components of E andH.
Thus, we take Ex and Hy:

Now, the propagating wave is continuous at the interface, i.e., Ex ¼ E0
x:
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Therefore,

A cos
mp
a

x
� �

sin
np
b
y

� �
C1e

jkzz þ C2e
�jkzz

� � ¼ A cos
mp
a

x
� �

sin
np
b
y

� �
C0
2e

�jk0zz

ð4:11Þ

or,

C1e
jkzz þ C2e

�jkzz ¼ C0
2e

�jk0zz ð4:12Þ

But at z = 0, only the inside waveform exists.
Therefore,

C1e
jkzz þ C2e

�jkzz ¼ 0

Now substituting the value of z = 0, we get

C1 þ C2 ¼ 0

or; C1 ¼ �C2
ð4:13Þ

As Hz is continuous at the interface z = d,

Hz ¼ H0
z and

@Hz

@x
¼ @H0

z

@x

From Eq. (4.9),

Hz ¼ B cos
mp
a

x
� �

cos
np
b
y

� �
cos kzzð Þ ð4:14aÞ

and

H0
z ¼ B cos

mp
a

x
� �

cos
np
b
y

� �
cos k0zz

� � ð4:14bÞ

Equating Eqs. (4.14a) and (4.14b), we get

B cos
mp
a

x
� �

cos
np
b
y

� �
C1e

jkzz þ C2e
�jkzz

� � ¼ B cos
mp
a

x
� �

cos
np
b
y

� �
C0
2e

�jk0zz
� �

or,

C1e
jkzz þ C2e

�jkzz ¼ C0
2e

�jk0zz ð4:15Þ
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From Eq. (4.15), i.e., C1 ¼ �C2, we get, at z ¼ d;

2jC1 sinðkzdÞ ¼ C0
2e

�jkzd ð4:16Þ

Now, equating the derivative of Hz; we get

jkz C1e
jkzz � C2e

�jkzz
� � ¼ �jk0zC

0
2e

�jk0zz ð4:17Þ

or,

2kzC1cosðkzdÞ ¼ �k0zC
0
2e

�jk0zz:

Dividing equation (4.16) by (4.17)

j tan kzd
kz

¼ �1
k0z

ð4:18aÞ

Squaring both sides and substituting the value of k2z from Eq. (4.3c),

kz
02 ¼ k2z � x2lð�r � 1Þ

and substituting l ¼ 1: We get,

tanðkzdÞ ¼ kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20ð�r � 1Þ � k2z

q ð4:18bÞ

The above equation is the required transcendental equation.

4.2 Case-2

For transcendental equation, we need to compute the fields inside the resonator and
outside it.

tan kzdð Þ ¼ kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r � 1ð Þk20 � k2z

q ð4:19Þ

where �rk20 ¼ k2x þ k2y þ k2z (characteristic wave equation)

kx ¼ mp
a

ð4:20aÞ
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ky ¼ np
b

ð4:20bÞ

kz ¼ pp
d

ð4:20cÞ

where a, b, and d are dimensions; m, n, and p are modes.
TEδ11, TE1δ1, and TE11δ are dominant modes.

Boundary condition
Propagation constant, c2mn ¼ k20 þ hmn2 where k ¼ 2p

k ¼ x
ffiffiffiffiffi
l�

p ¼ x
c :

From the energy conservation principle,

Z
E2dV ¼

Z
H2dV :

i.e., time average electric energy = time average magnetic energy.

When top and bottom walls are PMC, rest of the other walls is PEC
Assuming that the top and bottom surface plane be at z ¼ 0; d

) n� H ¼ 0

And

n � E ¼ 0

or,

Hy ¼ Hx ¼ 0

Ez ¼ 0

Rest of the other walls is PEC

) n� E ¼ 0

And

n � H ¼ 0

At

x ¼ 0; a Ey ¼ Ez ¼ 0

Hx ¼ 0
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At

y ¼ 0; b Ex ¼ Ez ¼ 0

Hy ¼ 0

We also know

Ex ¼ 1

jx� 1þ c2

k2

� � @Hz

@y
� 1
jxl

@2Ez

@z@x

� �
ð4:21aÞ

Ey ¼ 1

jx� 1þ c2

k2

� � � 1
jxl

@2Ez

@z@y
� @Hz

@x

� �
ð4:21bÞ

Hx ¼ �1

jxl 1þ c2

k2

� � @Ez

@y
� 1
jx�

@2Hz

@z@x

� �
ð4:21cÞ

Hy ¼ �1

jxl 1þ c2

k2

� � 1
jx�

@2Hz

@z@y
� @Ez

@x

� �
ð4:21dÞ

Now, the solution of second-order differential equation is given as follows:

wz ¼ X xð ÞY yð ÞZðzÞ ð4:22Þ

where

X xð Þ ¼ A1 sin kxxþ A2 cos kxx

Y yð Þ ¼ A3 sin kyyþ A4 cos kyy

Z zð Þ ¼ A5 sin kzzþ A6 cos kzz

For TE mode ðEz ¼ 0 and Hz 6¼ 0Þ

wHz
¼ X xð ÞY yð ÞZðzÞ

Ez ¼ 0

we get

Ey ¼ C0 � @Hz

@x

� �
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or,

Ey ¼ C0X 0 xð ÞY yð ÞZ zð Þ

Now

X 0 xð Þ ¼ A1 cos kxx� A2 sin kxx

But at

x ¼ 0; a Ey ¼ 0

) 0 ¼ A1 cos kx0� A2 sin kx0

or,

A1 ¼ 0 and kx ¼ mp
a

Similarly,

Ex ¼ C0 @Hz

@y

� �

or,

Ex ¼ C0X xð ÞY 0 yð ÞZ zð Þ

Now

Y 0 yð Þ ¼ A3 cos kyy� A4 sin kyy

But at

y ¼ 0; b Ex ¼ 0

) 0 ¼ A3 cos ky0� A4 sin ky0

or,

A3 ¼ 0 and ky ¼ np
b

Hx ¼ C0 � 1
jx�

@2Hz

@z@x

� �
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or,

Hx ¼ C0X 0 xð ÞY yð ÞZ 0 zð Þ

Now

Z 0 zð Þ ¼ A5 cos kzz� A6 sin kzz

At

z ¼ 0; d Hx ¼ 0

) A5 cos kz0� A6 sin kz0 ¼ 0

A5 ¼ 0 and kz ¼ pp
d

Hence,

Hz ¼ A2A4A6 cos
mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
ð4:23Þ

Using Eqs. (4.1)–(4.4), and (4.8a)–(4.8c), we get

Hx ¼ C00A2A4A6
mp
a

� � pp
d

� �
sin

mp
a

x
� �

cos
np
b
y

� �
sin

pp
d
z

� �
ð4:24aÞ

Hy ¼ C00A2A4A6
np
b

� � pp
d

� �
cos

mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
ð4:24bÞ

Ey ¼ C00A2A4A6
mp
a

� �
sin

mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
ð4:24cÞ

Ex ¼ C00A2A4A6
np
b

� �
cos

mp
a

x
� �

sin
np
b
y

� �
cos

pp
d
z

� �
ð4:24dÞ

Above equations can also be written as follows:

Hx ¼ kxkz
jxl0

sinðkxxÞ cosðkyyÞ sinðkzzÞ

Hy ¼ kykz
jxl0

cosðkxxÞ sinðkyyÞ sinðkzzÞ

Ey ¼ �kx sinðkxxÞ cosðkyyÞ cosðkzzÞ
Ex ¼ ky cosðkxxÞ sinðkyyÞ cosðkzzÞ

Hz ¼
k2x þ k2y
jxl0

cosðkxxÞ cosðkyyÞ cosðkzzÞ

Since Hz is continuous, i.e.,
dHz

dz 6¼ 0;
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H0
z ¼

k2x þ k2y
jxl0

cosðkxxÞ cosðkyyÞ cosðk0zzÞ

Now, Hy can be written as follows:

Hy ¼ kykz
jxl0

cosðkxxÞ sinðkyyÞðC1e jkzd � C2e�jkzdÞ

But

Hy ¼ 0 at d ¼ 0

C1 � C2 ¼ 0

or,

C1 ¼ C2

dHy

dz
¼ A0jkz cosðkxxÞ sinðkyyÞðC1e

jkzd þ C2e
�jkzdÞ

or,

dHy

dz
¼ C1jkz cosðkxxÞ sinðkyyÞðe jkzd þ e�jkzdÞ

or,

dHy

dz
¼ C12jkz cosðkxxÞ sinðkyyÞ cosðkzdÞ

H0
y ¼ C0

1 cosðkxxÞ sinðkyyÞe�jk0zd outside the cavity

For Hz to be continuous,

dHy

dz
¼ dH0

y

dz

or,

C12jkz cosðkxxÞ sinðkyyÞ cosðkzdÞ ¼ �jk0zC
0
1 cosðkxxÞ sinðkyyÞe�jk0zd
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or,

2C1kz cosðkzdÞ ¼ �k0zC
0
1e

�jk0zd ð4:25Þ

From above equations, we have

Ex ¼ ky cos kxxð Þ sin kyy
� �

C1e
jkzd þ C2e

�jkzd
� �

At

d ¼ 0; Ex ¼ 0;

so,

C1 þ C2 ¼ 0

or,

C1 ¼ �C2

) Ex ¼ ky cos kxxð Þ sin kyy
� �

C1 e jkzd � e�jkzd
� �

or,

Ex ¼ 2jC1ky cos kxxð Þ sin kyy
� �

sin kzdð Þ

Also

E0
x ¼ ky cos kxxð Þ sin kyy

� �
cos k0zz

� �
or,

E0
x ¼ C0

1ky cos kxxð Þ sin kyy
� �

e�jkzd

For Hz to be continuous,

Ex ¼ E0
x

or,

jC1ky cosðkxxÞ sinðkyyÞ sinðkzdÞ ¼ C0
1ky cosðkxxÞ sinðkyyÞe�jkzd

or,

2jC1 sinðkzdÞ ¼ C0
1e

�jkzd ð4:26Þ
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Dividing Eq. (4.16) by Eq. (4.25), we get

2C1j sinðkzdÞ
2C1kz cosðkzdÞ ¼

�C0
1e

�jkzd

k0zC
0
1e

�jk0zd

or,

j tan kzd
kz

¼ �1
k0z

or,

j tan kzd ¼ � kz
k0z

On squaring and putting k0z
2 ¼ k2z þ x2l0ð1� �rÞ

tan2 kzd ¼ � k2z
k2z þ x2l0ð1� �rÞ

or,

tan2 kzd ¼ k2z
x2l0 �r � 1ð Þ � k2z

tan kzd ¼ kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r � 1ð Þk20 � k2z

q ð4:27Þ

With the help of transcendental equation, we can find the propagation factor. Also
with the help of this equation, we can obtain resonant frequency.

CASE#3
For transcendental equation, we need to compute the fields inside the resonator and
outside it.

kz tanðkzdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r � 1ð Þk20 � k2z

q
;

�rk
2
0 ¼ k2x þ k2y þ k2z ;

and

kx ¼ mp=a ð4:28aÞ

ky ¼ np=b ð4:28bÞ
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kz ¼ pp=d ð4:28cÞ

where a, b, and d are dimensions; m, n, and p are the indices.

TEδ11, TE1δ1, TE11δ are dominant modes.

Boundary conditions
Propagation constant, c2mn ¼ k20 þ h2mn

k ¼ 2p=k ¼ x
ffiffiffiffiffi
l�2

p ¼ x=c;

Z
E2dV ¼

Z
H2dV

Time average electric energy = time average magnetic energy

�0�rk
2
0 ¼ k2x þ k2y þ k2z ð4:29aÞ

�0k
2
0 ¼ k2x þ k2y þ k02z ð4:29bÞ

k0z 6¼ pp=d

Subtracting Eq. (4.1) from Eq. (4.2), we get

k02z � k2z ¼ �0k
02
0 � �0�rk

2
0

k02z � k2z ¼ �0l0x
2 � �0�rl0x

2

Taking the value of �0 ¼ 1 and l0 ¼ l;we get

k02z � k2z ¼ x2l�0 ð1� �rÞ ð4:30Þ

When top and bottom walls are PEC, rest of the other walls is PMC.
Now,
Assuming that the top and bottom surface plane be at z ¼ 0; d

) n� E ¼ 0

and

n � H ¼ 0

or,
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Ey ¼ Ex ¼ 0

Hz ¼ 0

Rest of the other walls is PMC

) n� H ¼ 0

And

n � E ¼ 0

At

x ¼ 0; a Hy ¼ Hz ¼ 0

Ex ¼ 0

At

y ¼ 0; b Hx ¼ Hz ¼ 0

Ey ¼ 0

We also know

Ex ¼ 1

jx� 1þ c2

k2

� � @Hz

@y
� 1
jxl

@2Ez

@z@x

� �
ð4:31aÞ

Ey ¼ 1

jx� 1þ c2

k2

� � � 1
jxl

@2Ez

@z@y
� @Hz

@x

� �
ð4:31bÞ

Hx ¼ �1

jxl 1þ c2

k2

� � @Ez

@y
� 1
jx�

@2Hz

@z@x

� �
ð4:31cÞ

Hy ¼ �1

jxl 1þ c2

k2

� � 1
jx�

@2Hz

@z@y
� @Ez

@x

� �
ð4:31dÞ

Now, the solution of second-order differential equation is given as follows:

wz ¼ X xð ÞY yð ÞZ zð Þ
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where

X xð Þ ¼ A1 sin kxxþ A2 cos kxx

Y yð Þ ¼ A3 sin kyyþ A4 cos kyy

Z zð Þ ¼ A5 sin kzzþ A6 cos kzz

(i) For TE mode Ez ¼ 0 and Hz 6¼ 0ð Þ

wHz
¼ X xð ÞY yð ÞZ zð Þ

At

x ¼ 0; a Hz ¼ 0;

or,

A1 sin kx0þ A2 cos kx0 ¼ 0

) A2 ¼ 0 and kx ¼ mp
a

Also at

y ¼ 0; b Hz ¼ 0

or,

A3 sin ky0þ A4 cos ky 0 ¼ 0

) A4 ¼ 0 and ky ¼ np
b

At

z ¼ 0; d Hz ¼ 0

) A5 sin kz0þ A6 cos kz0 ¼ 0

A6 ¼ 0 and kz ¼ pp
d

Hence,

Hz ¼ A1A3A5 sin
mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
ð4:32Þ
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Using Eqs. (4.1)–(4.4), and (4.8a)–(4.8c), we get

Hx ¼ C00A1A3A5
mp
a

� � pp
d

� �
cos

mp
a

x
� �

sin
np
b
y

� �
cos

pp
d
z

� �
ð4:33aÞ

Hy ¼ C00A1A3A5
np
b

� � pp
d

� �
sin

mp
a

x
� �

cos
np
b
y

� �
cos

pp
d
z

� �
ð4:33bÞ

Ey ¼ C00A1A3A5
mp
a

� �
cos

mp
a

x
� �

sin
np
b
y

� �
sin

pp
d
z

� �
ð4:33cÞ

Ex ¼ C00A1A3A5
np
b

� �
sin

mp
a

x
� �

cos
np
b
y

� �
sin

pp
d
z

� �
ð4:33dÞ

Now, evaluate Hx and Hz at the boundary walls of the dielectric waveguide.
As we know that at the PEC wall, the tangential component of electric field and

normal component of magnetic field is equal to “zero” at the interface z ¼ 0; d:
Hence,

Ex;Ey ¼ 0

and

Hz ¼ 0

Also, for propagation to be possible, we need two normal components of E and H.
Thus we take Ey and Hx:

Now, the propagating wave is continuous at the interface, i.e., Hx ¼ H0
x:

Therefore,

A cos
mp
a

x
� �

sin
np
b
y

� �
ðC1e

jkzz þ C2e
�jkzzÞ ¼ A cos

mp
a

x
� �

sin
np
b
y

� �
C0
2e

�jk0zz

or,

C1e jkzz þ C2e�jkzz ¼ C0
2e

�jk0zz ð4:34Þ

But at z ¼ 0, only the inside waveform exists.
Therefore,

C1e
jkzz þ C2e

�jkzz ¼ 0

Now, substituting the value of z ¼ 0; we get

C1 þ C2 ¼ 0
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or,

C1 ¼ �C2 ð4:35Þ

As Hz is continuous at the interface z ¼ d:
Therefore,

Hz ¼ H0
z and

@Hz

@x
¼ @H0

z

@x

Hz ¼ B sin
mp
a

x
� �

sin
np
b
y

� �
sin kzzð Þ ð4:36aÞ

and

H0
z ¼ B sin

mp
a

x
� �

sin
np
b
y

� �
sin k0zzð Þ ð4:36bÞ

Equating Eqs. (i) and (ii), we get

B sin
mp
a

x
� �

sin
np
b
y

� �
ðC1e

jkzz � C2e
�jkzzÞ ¼ B sin

mp
a

x
� �

sin
np
b
y

� �
C0
2e

�jk0zz

or,

C1e
jkzz � C2e

�jkzz ¼ C0
2e

�jk0zz

From Eq. (1b), i.e., C1 ¼ �C2; we get, at z ¼ d;

2C1 cosðkzdÞ ¼ C0
2e

�jkzd ð4:37Þ

Now, equating the derivative of Hz; we get

jkzðC1e
jkzz þ C2e

�jkzzÞ ¼ �jk0zC
0
2e

�jk0zz

or,

2jkzC1 sinðkzdÞ ¼ �k0zC
0
2e

�jk0zz ð4:38Þ

Dividing equation (iv) by (iii), we get

jkz tan kzd ¼ �k0z
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Squaring both sides and substituting the value of k02z from Eq. (4.3c), we get

k0z ¼ k2z � x2lð�r � 1Þ

and substituting l ¼ 1, we get isolated DRA case as:

kz tanðkzdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r � 1ð Þk20 � k2z

q
ð4:39aÞ

DRA with ground plane case as:

kz tanðkzd=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r � 1ð Þk20 � k2z

q
ð4:39bÞ

Hence, the solution of transcendental equation is completely obtained.

4.3 MATLAB Simulation Results

The same can be seen if MATLAB simulation is obtained as given below:

Relationship between delta distance and its impact on
resonant frequency is shown in Fig. 4.4.

The resonant frequency is increasing as the delta length is increasing as shown in
Fig. 4.4. Also, radiation lobe is increasing as the number of resonant mode is
increasing as shown in Fig. 4.5.

clear

clear all

er=9.8;

c=3*10^8;

d=10*10^-3;

for p=1:1:10

f=c*p*(sqrt(1+tan(p*pi/2).^2))/2*d*(sqrt(er-1));

end

plot(p,f);

title('pvsf')

xlabel('p-------->>>');

ylabel('f-------->>');

grid on;
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Radiation Lobes: RDRA dimensions are given to compute resonant modes
using MATLAB.

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fr
eq

u
en

cy
--

--
--

--
>>

>

pdelta---------->>>

frequency vs pdelta

frequency vs pdelta

Fig. 4.4 Frequency versus delta distance
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MATLAB Program for Ez field

Fig. 4.5 Radiation lobes of radiation pattern in RDRA

m=5;

n=4;

p=3;

a=10;

b=5;

c=2;

x=linspace(-5,5,51);

y=linspace(-2.5,2.5,51);

z=linspace(-1,1,51);

[xi,yi,zi] = meshgrid(x,y,z);

Ez= (cos(m*pi*xi/a).*cos(n*pi*yi/b)).*sin(p*pi*zi/c);

Ez= Ez.^2;

Ez= sqrt(Ez);

xslice = -4.5; yslice = -2.5; zslice =1;

slice(xi,yi,zi,Ez,xslice,yslice,zslice)

colormap hsv
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MATLAB program for transcendental equation and resonant frequency of
RDRA:

The MATLAB-simulated resonant modes in Figs. 4.6, 4.7, 4.8, 4.9, 4.10, 4.11
and 4.12 have been drawn, and resonant frequency using transcendental equation is
placed in table form.
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y-axis
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z-axis

TE12z

Fig. 4.6 Resonant modes in xy plane

d=9;

w=6;

h=7.6;

c=3e8;

cons=9.8;

syms y real

kx=pi/d;

kz=pi/2/h;

ko=sqrt((kx^2+y^2+kz^2)/cons);

f=real(y*tan(y*w/2)-sqrt((cons-1)*ko^2-y^2));

ky=fzero(inline(f),[0,(pi/w)-0.01]);

fresonance = c/2/pi*sqrt((kx^2+ky^2+kz^2)/cons)/1e7;
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Solved examples of RDRA resonant frequency:

Example 1 Calculate the dimension of “d” in RDRA:
For TE111 mode when

�r ¼ 100

a ¼ 10mm

b ¼ 10mm

fr ¼ 7:97GHz

TE22z
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Fig. 4.7 Resonant modes in xy plane
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Fig. 4.8 Resonant modes in RDRA in xy plane
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Fig. 4.9 Resonant modes in RDRA in xy plane
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Fig. 4.10 Resonant modes 3D in RDRA in xyz plane
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Fig. 4.11 TE 341 resonant modes

Fig. 4.12 TE 323 resonant modes
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Solution Resonant frequency:

fr ¼ c
2

ffiffiffiffi
�r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
a

2 þ n
b

2 þ p
d

2
r

7:97� 109 ¼ 3� 108

2
ffiffiffiffiffiffiffiffi
100

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1002 þ 1002 þ 1

d

2
s

531:33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20000þ 1

d

2
s

1
d
¼ 512:167

d ¼ 1:95mm

Example 2 RDRA with following data:

�r ¼ 35

a ¼ 18mm

b ¼ 18mm

fr ¼ 2:45GHz

Solution

fr ¼ c
2

ffiffiffiffi
�r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
a

2 þ n
b

2 þ p
d

2
r

2:45� 109 ¼ 3� 108

2
ffiffiffiffiffi
35

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000
18

2

þ 1000
18

2

þ 1
d

2
s

9337:222 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1000
18

2	 

þ 1
d

2
s

1
d
¼ 56:252

d ¼ 17:77mm

Example 3 Calculate the resonant frequency for
TE111 mode using the given data of RDRA:

�r ¼ 10

a ¼ 14mm

b ¼ 8mm

d ¼ 8mm
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Solution

fr ¼ c
2

ffiffiffiffi
�r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
a

2 þ n
b

2 þ p
d

2
r

fr ¼ 3� 108

2
ffiffiffiffiffi
10

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000
14

2

þ 1000
8

2

þ 1000
8

2
s

fr ¼ 9:04GHz

Example 4

�r ¼ 10

a ¼ 14mm

b ¼ 8mm

d ¼ 16mm

Solution

fr ¼ c
2

ffiffiffiffi
�r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
a

2 þ n
b

2 þ p
d

2
r

fr ¼ 3� 108

2
ffiffiffiffiffi
10

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000
14

2

þ 1000
8

2

þ 1000
16

2
s

fr ¼ 7:44GHz

Example 5 Calculate the resonant frequency for the TE11d mode using the given
data:

�r ¼ 10

a ¼ 14mm

b ¼ 8mm

d ¼ 8mm

Solution

fr ¼ c
2

ffiffiffiffi
�r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
a

2 þ n
b

2 þ d
d

2
s

fr ¼ 3� 108

2
ffiffiffiffiffi
10

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000
14

2

þ 1000
8

2

þ 0

s

fr ¼ 6:82GHz
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Example 6

�r ¼ 10

a ¼ 14mm

b ¼ 8mm

d ¼ 16mm

Solution

fr ¼ c
2

ffiffiffiffi
�r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
a

2 þ n
b

2 þ p
d

2
r

fr ¼ 3� 108

2
ffiffiffiffiffi
10

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000
14

2

þ 1000
8

2

þ 0

s

fr ¼ 6:82GHz

4.4 Resonant Frequency of RDRA for Experimentations

The RDRAs can be prototyped with various materials and sizes as per the
requirements.

Table 4.1 consists of list of RDRA materials, permittivity, dimensions, and
computed resonant frequency.

Example 7 Compute resonant frequency when RDRA dimensions are 10 × 10 ×
10 mm3 and dielectric constant of material used is 10.

frð Þm; n; p ¼ c
2p

ffiffiffiffiffi
�l

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
a

� �2
þ np

b

� �2
þ pp

d

� �2
r

Resonant frequencies in isolated case are 49.7 and 25.8 GHz with ground plane
(Table 4.2).
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Table 4.1 RDRA materials, permittivity, dimensions, and computed resonant frequency

S.
no.

Material Permittivity RDRA dimension
(a × b × h) mm

Resonant
frequency
simulated by
HFSS

Resonant
frequency
calculated

Countis Laboratories
1. MgO–SiO2–TiO2

(CD-9)
9.8 9 × 6 × 7.6 7.43 7.6757

2. MgO–SiO2–TiO2

(CD-9)
9.8 14.3 × 25.4 × 26.1 3.5 3.7430

3. MgO–CaO–TiO2

(CD-20)
20.0 10.16 × 10.2 × 7.11 4.71 4.6215

4. MgO–CaO–TiO2

(CD-20)
20.0 10.16 × 7.11 × 10.2 4.55 4.5941

5. MgO–CaO–TiO2

(CD-20)
20.0 10.2 × 10.2 × 7.89 4.635 4.4833

6. MgO–CaO–TiO2

(CD-100)
100.0 10 × 10 × 2 4.57 4.2158

7. MgO–CaO–TiO2

(CD-100)
100.0 10 × 10 × 1 7.97 7.7587

8. MgO–CaO–TiO2

(CD-100)
100.0 12.7 × 12.7 × 1 7.72 7.6628

9. MgO–CaO–TiO2

(CD-100)
100.0 5 × 10 × 1 8.85 8.1828

10. MgO–CaO–TiO2

(CD-100)
100.0 10 × 5 × 1 8.5 8.0147

Emerson & Cuming Microwave Products N.V.
11. Magnesium

titanate
(ECCOSTOCK@)

10.0 14 × 8 × 8 5.5 5.6117

12. Magnesium
titanate
(ECCOSTOCK@)

10.0 14.3 × 25.4 × 26.1 3.92 3.7055

13. Zirconia
(ECCOSTOCK@)

20.0 10.16 × 10.2 × 7.11 4.71 4.6215

14. Zirconia
(ECCOSTOCK@)

20.0 10.16 × 7.11 × 10.2 4.55 4.5941

15. Zirconia
(ECCOSTOCK@)

20.0 10.2 × 10.2 × 7.89 4.635 4.4833

16. Strontium titanate
(ECCOSTOCK@)

100.0 10 × 10 × 2 4.57 4.2158

17. Strontium titanate
(ECCOSTOCK@)

100.0 10 × 10 × 1 7.97 7.7587

18. Strontium titanate
(ECCOSTOCK@)

100.0 12.7 × 12.7 × 1 7.72 7.6628

19. Strontium titanate
(ECCOSTOCK@)

100.0 5 × 10 × 1 8.85 8.1828

(continued)
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Table 4.1 (continued)

S.
no.

Material Permittivity RDRA dimension
(a × b × h) mm

Resonant
frequency
simulated by
HFSS

Resonant
frequency
calculated

20. Strontium titanate
(ECCOSTOCK@)

100.0 10 × 5 × 1 8.5 8.0147

Morgan Advanced Materials
21. CaMgTi (Mg, Ca

titanate)
(D20)

20.0 10.16 × 10.2 × 7.11 4.71 4.6215

22. CaMgTi (Mg, Ca
titanate)
(D20)

20.0 10.16 × 7.11 × 10.2 4.55 4.5941

23. CaMgTi (Mg, Ca
titanate)
(D20)

20.0 10.2 × 10.2 × 7.89 4.635 4.4833

24. ZrTiSn (Zr, Sn
titanate)
(D36)

37.0 18 × 18 × 9 2.45 2.1617

Temex Components & Temex Telecom, USA
25. Zr Sn Ti Oxide

(E2000)
37.0 18 × 18 × 9 2.45 2.1617

Trans-Tech Skyworks Solutions, Inc.
26. BaZnCoNb

(D-83)
35.0–36.5 18 × 18 × 6 2.532 2.7081

27. BaZnCoNb
(D-83)

35.0–36.5 18 × 6 × 18 2.835 2.3947

T-CERAM, RF & Microwave
28. E-11 10.8 15.2 × 7 × 2.6 11.6 10.379

29. E-11 10.8 15 × 3 × 7.5 6.88 7.0937

30. E-11 10.8 15.24 × 3.1 × 7.62 6.21 6.9440

31. E-20 20.0 10.16 × 10.2 × 7.11 4.71 4.6215

32. E-20 20.0 10.16 × 7.11 × 10.2 4.55 4.5941

33. E-20 20.0 10.2 × 10.2 × 7.89 4.635 4.4833

34. E-37 37.0 18 × 18 × 9 2.45 2.1617

TCI Ceramics, Inc.
35. DR-36 36.0 18 × 18 × 6 2.532 2.7081

36. DR-36 36.0 18 × 6 × 18 2.835 2.3947
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MATLAB program and simulation effective length due to fringing effect:

Effective increased length computations due to fringing effect:

Program 1

%%Dimensions of DRA
%%length
d=[14.3,14.0,15.24,10.2,10.16,18,18,10];
%%width
w=[25.4,8,3.1,10.2,10.2,18,18,10];
%%height
h=[26.1,8,7.62,7.89,7.11,6,9,1];
%%Mode
m=1;
n=1;

%%Dimensions of RDRA
%%length
d=[14.3,14.0,15.24,10.2,10.16,18,18,10];
%%width
w=[25.4,8,3.1,10.2,10.2,18,18,10];
%%height
h=[26.1,8,7.62,7.89,7.11,6,9,1];
%%Mode
m=1;
n=1;
p=1;
c=3e8;
cons=[10.0,10.0,10,20,20,35,35,100];
syms y real
for i=drange(1:8)
kx(i)=pi/d(i);
kz(i)=pi/2/h(i);
ko=sqrt((kx(i).^2+y.^2+kz(i).^2)/cons(i));
f=real(y.*tan(y*w(i)/2)-sqrt((cons(i)-1)*ko.^2-y.^2));
ky(i)=fzero(inline(f),[0,(pi/w(i))-0.01]);
%%Resonant frequency
fre(i)=c/2/pi*sqrt((kx(i).^2+ky(i).^2+kz(i).^2)/cons(i))*1e3;
Effwidth(i)=pi/ky(i);
factor(i)=Effwidth(i)./w(i);
perchangwidth(i)=((Effwidth(i)-w(i))/w(i))*100;
end
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Results:

p=1;
c=3e8;
cons=[10.0,10.0,10,20,20,35,35,100];
syms y real
for i=drange(1:8)
kx(i)=pi/d(i);
kz(i)=pi/2/h(i);
ko=sqrt((kx(i).^2+y.^2+kz(i).^2)/cons(i));
f=real(y.*tan(y*w(i)/2)-sqrt((cons(i)-1)*ko.^2-y.^2));
ky(i)=fzero(inline(f),[0,(pi/w(i))-0.01]);
%%Resonant frequency
fre(i)=c/2/pi*sqrt((kx(i).^2+ky(i).^2+kz(i).^2)/cons(i))*1e3;
Effwidth(i)=pi/ky(i);
factor(i)=Effwidth(i)./w(i);
perchangwidth(i)=((Effwidth(i)-w(i))/w(i))*100;
end
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Program 2

Results:

m=1;
n=1;
p=1;
E_r=10;
a=15.24e-03;
b=3.1e-03;
d=7.62e-03;
c=3e+08;
kx=m*pi/a;
ky=n*pi/b;
kz=p*(pi/d)/2;
ko=sqrt(kx^2+ky^2+kz^2)/sqrt(E_r);
fo=(c*ko/pi)/2;
foghz=fo/(1e+09);
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Program 3

MATLAB programs taking parameters a, b, d same and comparing
frequency using:
Program 1: Characteristic equation

Output:

m=1
n=1
p=1
E_r=10
a=14.3e-03
b=25.4e-03
d=26.1e-03
c=3e+08
k_x=m*pi/a
k_y=n*pi/b
k_z=p*(pi/d)/2
k_o=sqrt(k_x^2+k_y^2+k_z^2)/sqrt(E_r)
f_o=(c*k_o/pi)/2
f_oGHz=f_o/1e+09
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Program 4

Transcendental equation for same dimensions:

Output:

m=1;
n=1;
p=1;
E_r=10;
a=14.3e-03;
b=25.4e-03;
d=26.1e-03;
c=3e+08;
syms y real
kx=pi/a;
kz=pi/d/2;
ko=sqrt(kx^2+y^2+kz^2)/sqrt(E_r);
f=real(y*tan(y*b/2)-sqrt((E_r-1)*ko^2-y^2));
ky=fzero(inline(f),[0,(pi/b)-0.01]);
fre=c/2/pi*sqrt((kx^2+ky^2+kz^2)/E_r)*1e3;
effwidth=pi/ky;
factor=effwidth/b;
perchangwidth=((effwidth-b)/b)*100;
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Program 5

MATLAB programs taking parameters a, b, d same and comparing
frequency using:
Characteristic equation

Output:

Where a=17mm
b=25mm
c=10mm

m=1;
n=1;
p=1;
E_r=10;
a=17e-03;
b=25e-03;
d=10e-03;
c=3e+08;
k_x=m*pi/a;
k_y=n*pi/b;
k_z=p*(pi/d)/2;
k_o=sqrt(k_x^2+k_y^2+k_z^2)/sqrt(E_r);
f_o=(c*k_o/pi)/2;
f_oGHz=f_o/1e+09;
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Program 6

Transcendental equation

m=1;
n=1;
p=1;
E_r=10;
a=17e-03;
b=25e-03;
d=10e-03;
c=3e+08;
syms y real
kx=pi/a;
kz=pi/d/2;
ko=sqrt(kx^2+y^2+kz^2)/sqrt(E_r);
f=real(y*tan(y*b/2)-sqrt((E_r-1)*ko^2-y^2));
ky=fzero(inline(f),[0,(pi/b)-0.01]);
fre=c/2/pi*sqrt((kx^2+ky^2+kz^2)/E_r)*1e3;
effwidth=pi/ky;
factor=effwidth/b;
perchangwidth=((effwidth-b)/b)*100;
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Program 7

MATLAB programs taking parameters a,b,d same and comparing
frequency using:
Characteristic equation

Output:

m=1
n=1
p=1
E_r=10
a=14.3e-03
b=25.4e-03
d=26.1e-03
c=3e+08
k_x=m*pi/a
k_y=n*pi/b
k_z=p*(pi/d)/2
k_o=sqrt(k_x^2+k_y^2+k_z^2)/sqrt(E_r)
f_o=(c*k_o/pi)/2
f_oGHz=f_o/1e+09
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Program 8

Transcendental equation

Output:

m=1;
n=1;
p=1;
E_r=10;
a=14.3e-03;
b=25.4e-03;
d=26.1e-03;
c=3e+08;
syms y real
kx=pi/a;
kz=pi/d/2;
ko=sqrt(kx^2+y^2+kz^2)/sqrt(E_r);
f=real(y*tan(y*b/2)-sqrt((E_r-1)*ko^2-y^2));
ky=fzero(inline(f),[0,(pi/b)-0.01]);
fre=c/2/pi*sqrt((kx^2+ky^2+kz^2)/E_r)*1e3;
effwidth=pi/ky;
factor=effwidth/b;
perchangwidth=((effwidth-b)/b)*100;
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Program 9
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Program 10
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Q:No: 1 Develop transcendental equation for moat-shaped RDRA.
Q:No: 2 Compute propagation constants in x-, y-, and z-directed propagated

RDRAs, when feed probe is given. Compute its resonant frequency
when RDRA dimensions are 5 × 5× 3 mm3 and dielectric constant used
is 20.

102 4 Mathematical Analysis of Transcendental …



Chapter 5
Mathematical Analysis of RDRA
Amplitude Coefficients

Abstract Mathematical analysis of amplitude coefficients in rectangular DRA
(RDRA) have been evaluated. Rigorous theoretical analysis has been developed for
different resonant modes inside RDRA. The resonance phenomenon and its
potential use as radiator have been described. The dielectric polarization P is equal
to the total dipole moment induced in the volume of the material by the electric
field. The discontinuity of the relative permittivity at the resonator surface allows a
standing electromagnetic wave to be supported in its interior at a particular resonant
frequency, thereby leading to maximum confinement of energy within the reso-
nator. Certain field distributions or modes will satisfy Maxwell’s equations and
boundary condition. Mathematical solution to get amplitude coefficients Cmnp along
with its phase coefficients has been obtained. These are also known as eigenvector.

Keywords Amplitude coefficients � Resonant modes � Radiation lobes � Fourier
transform � Discrete solution � PMC (perfect magnetic conducting) � PEC (perfect
electrical conducting) � Dominant mode � Higher-order modes

5.1 Introduction

Rigorous theoretical analysis has been developed for resonant modes in rectangular
DRA (RDRA). RDRA resonance phenomenon and its potential, as a radiator have
been long back described. Accordingly, external electric fields bring the charges of
the molecules of the dielectric into a certain ordered arrangement in space. The
dielectric polarization P is equal to the total dipole moment induced in the volume
of the material by the electric field. The discontinuity of the relative permittivity at
the resonator surface allows a standing electromagnetic wave to be supported in its
interior at a particular resonant frequency, thereby leading to maximum confine-
ment of energy within the resonator. Certain field distributions or modes will satisfy
Maxwell’s equations and boundary conditions. Resonant modes are field structures
that can exist inside the RDRA. The RDRA prototype is shown in Fig. 5.1.

© Springer India 2016
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3_5
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5.2 Amplitude Coefficients Cmnp

Time domain fields can be written as follows: Ez x; y; z; tð Þ ¼P
mnp ReðCmnpejx mnpð Þtumnp x; y; zð ÞÞ, using orthonormality.
In discrete form,

X
m;n;p

jCmnpjumnp x; y; zð Þ cos x xmnp
� �

t þW mnpð Þ� �

The probe current can be expressed as:

Ez ðx; y; d; tÞ ¼
Z

Gðx; yÞ jxlIdlðx2 þ y2Þ
4p x2 þ y2 þ d2
� �3=2 eðjxt�x

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p
ÞI xð Þejxt dx

where G(x,y) are the constant terms associated with current.

Resonator current ¼
X
p

Cmnp

�� �� ffiffiffi
2
d

r
sin

ppd
d

� �
cos x mnpð Þt þW mnpð Þð Þum;n x; yð Þ;

Probe current ¼
Z

G x; yð Þ jxlIdlðx2 þ y2Þ
4p x2 þ y2 þ d2
� �3=2I xð Þejktdx

e jxt�x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p
þwmnp

� �� �
ðum;n x; yð Þdx dy ;

Fig. 5.1 Homogenous
dielectric RDRA on ground
plane
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The probe current must be equal to the resonator current due to principle of
orthonormality.

E x; y; z; tð Þ ¼
X1
mnp¼1

Re CðmnpÞejx mnpð Þt wE
mnp

x; y; zð Þ
n o

þ
X1
mnp¼1

Re DðmnpÞejx mnpð Þt�/E

mnp
x; y; zð Þ

n o

H x; y; z; tð Þ ¼
X1
mnp¼1

Re CðmnpÞejx mnpð Þt wH
mnp

x; y; zð Þ
n o

þ
X1
mnp¼1

Re DðmnpÞejx mnpð Þt�/H

mnp
x; y; zð Þ

n o

E? ¼ � c
h2

r?Ez � jxl
h2

r? Hzx ẑ

From duality

H? ¼ � c
h2

r?Hz � jx�
h2

r? Ezx ẑ

From above two equations, we obtain Ex and Ey fields as given below:

Ex ¼ mpx
a

a0ðmnpÞ cos mpx
a

� 	
sin

npy
b

� 	
� np

b
b0 mnpð Þ cos mpx

a

� 	
sin

npy
b

� 	
;

Ey ¼ npy
b

a0ðmnpÞ sin mpx
a

� 	
cos

npy
b

� 	
� mp

a
b0 mnpð Þ cos mpx

a

� 	
sin

npy
b

� 	
;

and

Ez ¼
X
m;n;p

Re½CðmnpÞejx mnpð Þt
ffiffiffi
2
d

r
sin

ppd
d

� �
um;n x; yð Þ

Ez ¼
Z

jxlIdlðx2 þ y2Þ
4p x2 þ y2 þ d2
� �3=2e�jxc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p
: I xð Þejktdx

Here, I xð Þ is the Fourier transform of source current, i.e., I(t) is the probe current

IðxÞ ¼ 1
2

X
mnp

I mnpð Þj j dðx� x mnpð ÞÞejø mnpð Þ þ ejø mnpð Þdðxþ x mnpð ÞÞ
 �
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Ez x; y; z; tð Þ ¼ ldl x2 þ y2ð Þ
4p x2 þ y2 þ d2
� �3=2 x mnpð Þ I mnpð Þj j sin x mnpð Þ t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ d2

p
c

þ / mnpð Þ
 ! !

¼ Cmnp

�� jumn x; yð Þ cos x mnpð Þt þ w mnpð Þð Þ
ffiffiffi
2
d

r
sin

ppd
d

� �

Hence, Cmnp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðmnpÞ2þaðmnpÞ2ffiffi

2
pffiffi
d

p sin ppd
dð Þ

h i2s
; amplitude coefficient

w mnpð Þ ¼ tan�1 amnp cos / mnpð Þð Þ þ bmnp sin / mnpð Þð Þ
amnp sin / mnpð Þð Þ � bmnp cos / mnpð Þð Þ

" #
; Phase

This completely solves the problem of RDRA resonant modes’ coefficients in
homogeneous medium.

5.3 RDRA Maxwell’s Equation-Based Solution

Maxwell’s equations with J electric and M magnetic sources:

r� E ¼ �jxlH �M; að Þ

r � H ¼ J þ jx�E; bð Þ

r � E ¼ qv
e
; r� H ¼ qm

l
;

where qv is the electric charge density, and qm is the magnetic charge density.

For consistency;�jxer� H �r�M ¼ 0;

r� J þ jxer� E ¼ 0;

i:e: r�M þ jxqm ¼ 0;r� J þ jxq ¼ 0;

namely conservation of electric and magnetic charge:

r� r� Eð Þ ¼ �jxlr� H �r�M;

taking curl on both sides

or r r� Eð Þ � r2E ¼ �jxl J þ jx�Eð Þ � r �M;

or r2 þ k2
� �

E ¼ rq
e

þ jxlJ þr� H ¼ s electric sourceð Þ; cð Þ
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i.e., E satisfies the Helmholtz equation with source.

Likewise; r� r� Hð Þ ¼ r � J þ jxer� E

or r r� Hð Þ � r2H ¼ r� J þ jxe �jxlH �Mð Þ
or r2 þ k2

� �
H ¼ rqm

l
þ jxeM �r� J ¼ f

magnetic source due to probeð Þ; dð Þ

Hence, H also satisfies Helmholtz equation with source. Rectangular cavity reso-
nator sidewalls are the perfect magnetic conductors (PMC) and top and bottom
surfaces are the perfect electric conductors (PEC). Applying these boundary con-
ditions, we get the following equation:

Hz ¼ 0; where x ¼ 0; a or y ¼ 0; b

So,

Hz x; y; zð Þ ¼
X

m;n� 1

/mn zð Þumnðx; yja; bÞ ð5:1Þ

where

umn x; yja; bð Þ ¼ 2ffiffiffiffiffi
ab

p sin
mpx
a

� 	
sin

npy
b

� 	
ð5:2Þ

as we know,

H 0ð Þ
z x; y; zð Þ ¼ Cmn 2ffiffiffiffiffi

ab
p sin

mpx
a

� 	
sin

npy
b

� 	
sin

ppz
d

� 	

Let

fz x; y; zð Þ ¼
X
mn� 1

fzmn zð Þumn½x; yja; b� ð5:3Þ

r2 þ k2
� �

Hz ¼
X
mn

/00
mn zð Þ þ ðk2 � h2½m; nja; b�/mnðzÞÞumn½x; yja; b�

¼ fz ) /00
mn zð Þ þ k2 � h2½m; nja; b�/mn zð Þ� �

¼ fzmn zð Þ
ð5:4Þ

where k2 ¼ x2l�; and h2 x; yja; b½ � ¼ p2 m
a

� �2þ n
b

� �2� 	
;
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Hz ¼ 0; for z ¼ 0; d; completely determines ømn zð Þ

from (1),
Taking Laplace Transform of (5.4);

S2/mn sð Þ � S/mn 0ð Þ � /0
mn 0ð Þ þ c2z m; n½ �bømn sð Þ þ f̂zmn sð Þ

So,

bømn sð Þ ¼ f̂zmn sð Þ
s2 þ c2z ½m; n�

þ Sømn 0ð Þ � ø0mn
S2 þ c2z ½m; n�

ð5:5Þ

where c2z m; n½ � ¼ k2 � h2½m; nja; b�:
Thus,

bømn zð Þ ¼ 1
cz m; n½ �

Zz
0

sin cz m; n½ � z� nð Þ� �
fzmn nð Þdn

þ C1 sin cz½m; n�z
� �þ C2 cosðcz m; n½ �zÞ

ømn 0ð Þ ¼ ømn dð Þ ¼ 0 ) C2 ¼ 0;

C1 ¼ �1
cz m; n½ � sinðcz m; n½ �dÞ

Zd
0

sinðcz m; n½ � d � nð Þfzmn nð ÞdnÞ

So,

ømn zð Þ ¼ �1
cz m; n½ � � sin cz m; n½ �d� � sin cz m; n½ �d� � Zz

0

sin cz m; n½ � z� nð Þ� �
fzmn nð Þdn

� sin cz m; n½ �z� � Zd
0

sin cz m; n½ � d � nð Þ� �
fzmn nð Þdn

In the limit k2 ! p2 m
a

� �2þ n
b

� �2þ p
d

� �2� 	
; we have, c2z m; n½ � ! pp

d

� �2 and we get;

ømn zð Þ ! d
pp

Zz
0

sin
pp
d
ðz� nÞ

� 	
fzmn nð Þdn� sin

ppz
d

� 	
lim
k!pp

d

R d
0 sin pp

d ðd � nÞ� �
fzmn nð Þdn

sin kdð Þ

8<
:

9=
;

ð5:6Þ
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The limit in ∞ showing resonance, when

k2 ¼ p2
m
a

� 	2
þ n

b

� 	2
þ p

d

� 	2� �

Let

fmn zð Þ ¼
X1
r¼1

fzmnr

ffiffiffi
2
d

r
sin sin

rpt
d

� 	
ð5:7Þ

Then

Zd
0

sin
pp
d
ðd � nÞ

� 	
fzmn nð Þdn

¼
ffiffiffi
2
d

r X
r

fzmnr

Zd
0

sin
pp
d
ðd � nÞ

� 	
sin

rpn
d

� �
dn

ð5:8Þ

¼ ð�1Þpþ1

ffiffiffi
2
d

r X
r

fzmnr

Zd
0

sin knð Þ sin rpn
d

� �
dn

¼ ð�1Þpþ1

ffiffiffi
2
d

r X
r

fzmnr � 1
2

Zd
0

cos k� rp
d

� 	
n

� 	
� cos kþ rp

d

� 	
n

� 	
dn

¼ 1
2
ð�1Þpþ1

ffiffiffi
2
d

r X
r

fzmnr
sin k� rp

d

� �
d

� �
k� rp

d

� � � sin kþ rp
d

� �
d

� �
kþ rp

d

� �
" #

ð5:9Þ

Here k propagation parameter ¼ kz � pp
d

Thus,

1
sin kdð Þ

Zd
0

sin k d � nð Þð Þ fzmn nð Þdn

¼ 1
2
ð�1Þpþ1

ffiffiffi
2
d

r X
r

fzmnr
1

sin kdð Þ
sin kdð Þð�1Þr

k� rp
d

� � � sin kdð Þð�1Þr
kþ rp

d

� �
" #

¼ 1ffiffiffiffiffi
2d

p ð�1Þpþ1
X
r

ð�1Þrfzmnr 1
k� rp

d

� �� 1
kþ rp

d

� �
" #

¼ ð�1Þpþ1ffiffiffiffiffi
2d

p
X
r

ð�1Þrfzmnr
2rp
d

k2 � rp
d

� �2� 	
2
4

3
5

ð5:10Þ
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Writing k ¼ pp
d þ d d ! 0ð Þ; we get;

1
sin kdð Þ

Zd
0

sin k d � nð Þð Þ fzmn nð Þdn

� ð�1Þpþ1ffiffiffiffiffi
2d

p ð�1Þp fzmnp
d

¼ � 1

d
ffiffiffiffiffi
2d

p fzmnp Dominant termð Þ
ð5:11Þ

Hence,

ømn zð Þ � d
pp

Zz
0

sinðkðz� nÞÞ
X
r� 1

fzmnr

ffiffiffi
2
d

r
sin

rpn
d

� �
dn þ sin

ppz
d

� 	 1

d
ffiffiffiffiffi
2d

p fzmnp

8<
:

9=
;

ð5:12Þ

Now

Zz
0

sin k z nð Þð Þ sin rpn
d

� �
dn ¼ 1

2

Zz
0

cos kz� kþ rp
d

� 	
n

� 	
� cos kz� k� rp

d

� 	
n

� 	h i
dn

¼ 1
2

sin rpz
d

� �þ sinðkzÞ� �
kþ rp

d

� � � sin rpz
d

� �� sinðkzÞ� �
k� rp

d

� �
" #

¼ 1
2

sin rpz
d

� �þ sin ppz
d þ dz
� �� �

pðpþrÞ
d þ d

� sin rpz
d

� �� sin ppz
d þ dz
� �� �

pðp�rÞ
d þ d

� 	
2
4

3
5

ð5:13Þ

There is no dominant term here, i.e., if �Oð1dÞ, where O-order.

Hence, for k2 ¼ p2 m
a

� �2þ n
b

� �2� 	
þ pp

d þ d
� �2

ømn zð Þ � d
pp

1

d
ffiffiffiffiffi
2d

p fzmnp sin
ppz
d

� 	� �

¼ 1
ppd

ffiffiffi
d
2

r
fzmnp sin

ppz
d

� 	 ð5:14Þ
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Likewise, propagation in x direction can be taken as:

r2 þ kð Þ2
� 	

Hx ¼ fx

Hxðx; y; zÞ ¼
X
m;n

øxmn~umnðy; zjb; dÞ

Let, fxð~x; y; zÞ ¼
X
m;n

fxmn xð Þ~umnðy; zjb; dÞ

where ~umnðy; zjb; dÞ ¼ 2ffiffiffiffi
bd

p sin mpy
b

� �
cos npy

b

� �
; orthogonal 2D half wave Fourier basis

function.
Then,

ø00xmn xð Þ þ k2 � h2½m; njb; d�� �
øxmn xð Þ ¼ fxmn xð Þ

Hence, general solution can be given as follows:

øxmn xð Þ ¼ 1
cx m; n½ �

Zx
0

sin cx m; n½ � x� nð Þð Þfxmn nð Þ

þ C1 cos cx m; n½ �xð ÞC2 sin cx m; n½ �xð Þ ð5:15Þ

Likewise,

Hyðx; y; zÞ ¼
X
m;n

øymn yð Þumnðx; zja; dÞ

fyðx; y; zÞ ¼
X
m;n

fymn yð Þumnðx; zja; dÞ

with
ø00ymn yð Þ þ k2 � h2½m; nja; d�� �

uymn yð Þ ¼ fymn yð Þ

and with the boundary conditions:

Ex ¼ 0 where x ¼ 0; a or z ¼ 0; d;

Ey ¼ 0 where y ¼ 0; b or z ¼ 0; d;

The general solution for øymn yð Þ is given as follows:

øymn yð Þ ¼ 1
cy½m; n�

Zy
0

sin cy m; n½ � z� nð Þ� �
fymn nð Þdn

þ D1 cosðcy m; n½ �yÞ þ D2 sinðcy m; n½ �yÞ
ð5:16Þ
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Here, cx m; n½ � ¼ ðk2 � h2½m; njb; d�Þ1=2

cy m; n½ � ¼ ðk2 � h2½m; nja; d�Þ1=2

The equation

r� H ¼ J þ jx�E

gives

jx�Ex ¼ Hz;y � Hy;z � J

jx�Ey ¼ Hx;z � Hz;x � J

We assume that J on the walls is zero. Then, the boundary conditions yields

Hz;y � Hy;z ¼ 0; where x ¼ 0; a;

Hx;z � Hz;x ¼ 0; where y ¼ 0; b

Recall that Hz has been completely determined.

5.4 RDRA Inhomogeneous Permittivity and Permeability

e ¼ e0 1þ dpXe x; yð Þ� � ð5:17Þ

l ¼ l0 1þ dpXm x; yð Þ� � ð5:18Þ

At some known frequency x and dp as perturbation parameter, the solution has
been worked out using perturbation techniques to determine shift in the frequency.

As per Maxwell’s equation,

r� E ¼ �jxlH

r� H ¼ jxeE

where boundary conditions are given as follows:

0 � x � a ¼ W

0 � y � b ¼ L

0 � z � d ¼ h
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Due to duality E ! H;H ! �E; and l $ e:
Sidewalls have been taken as PMC (magnetic conductor walls) and top and

bottom as PEC (perfect electrical conductor).

Htan ¼ 0; on side walls

Hx;Hy ¼ 0; when y ¼ 0; b

Hy;Hx ¼ 0; when x ¼ 0; d

Ex;Ey ¼ 0; when z ¼ 0; d

E ¼ E x; yð Þe�cz ð5:19Þ

H ¼ H x; yð Þe�cz ð5:20Þ

Propagation constant is given as:
h20 ¼ c2 þ x2l0�0;¼ c2 þ k2; when k2 ¼ x2l0�0

EX ¼ c
�h2

Ez0x � jxl
h2

Hz0y ð5:21Þ

EY ¼ c
�h2

Ez0y � jxl
h2

Hz0x ð5:22Þ

HX ¼ c
�h2

Hz0x � jx�
h2

Ez0y ð5:23Þ

HY ¼ c
�h2

Hz0y � jx�
h2

Ez0x ð5:24Þ

Top and bottom walls are perfect electric conditions so that

Ex;Ey ¼ 0; when z ¼ 0; d

E	E x; yð Þexp �czð Þ; 	H � H x; yð Þexp �czð Þ

E ¼ E? þ Ezẑ; H ¼ H? þ Hzẑ:

r ¼ r? þ ẑ
@

@z
¼ r? � cẑ

r?Ez � ẑ� cẑ� E? ¼ �jxl H?ð Þ ð5:25Þ

E ¼ E? þ Ezẑ; H ¼ H? þ Hzẑ: ð5:26Þ

r?Hz � ẑ� cẑ� H? ¼ jx�E?; ð5:27Þ
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r? � H? ¼ j w � Ezẑ ð5:28Þ

Taking ẑ� of (5.25) gives

r?Ez þ cE? ¼ �jxlẑ� H? ð5:29Þ

Equations (5.11) and (5.13) can be changed as:

jx � c
�c jxl

� 
E?

Ẑ � H?

� 
¼ r?Hz � ẑ

r? Ez

� 
ð5:30Þ

E?
ẑ� H?

� 
¼

�jxl �c
c jx�

� 
r?Hz � Ẑ
r?Ez

� 
x2l�þ c2

E? ¼ �c
h2

r?Ez � jxl
h2

r?Hz � ẑ ð5:31Þ

ẑ� H? ¼ c
h2

r?Hz � ẑþ jxl
h2

r?Ez ð5:32Þ

h2 ¼ h2 x; yð Þ ¼ c2 þ x2l x; yð Þe x; yð Þ ¼ h20 þ k20dv x; yð Þ;

where h20 ¼ c2 þ x2l0e0; k
2 ¼ x2l0e0 ¼ c2 þ k2

v x; yð Þ ¼ ve x; yð Þ þ vm x; yð Þ þ d� ve x; yð Þvm x; yð Þ

Taking ẑ of (5.32) gives

� c
h2

� 	
r?Hz þ jxe

h2
ẑ�r?Ez ¼ H? ð5:33Þ

from Eqs. (5.31) and (5.33),

EX ¼ c
�h2

Ez;x � jxl
h2

Hz;y

EY ¼ c
�h2

Ez;y þ jxl
h2

Hz;x

HX ¼ c
�h2

Hz;x þ jx�
h2

Ez;y

Hy ¼ c
�h2

Hz;y � jx�
h2

Ez;x
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From Eqs. (5.25) and (5.26),

r? � c
h2

r?Ez þ jxl
h2

r?Hz � Ẑ

� �
� jxlHzẑ ¼ 0 ð5:34Þ

or ẑ�r?
c
h2

� 	
;r?Ez

� 	
� r?;

jxl
h2

r?Hz

� �
� jxlHz ¼ 0

or

r2
?Hz þ h2Hz þ r?

jxl
h2

� �
;r?Hz

� �
� h2

jxl
� h2

jxl
Ẑ � r?

c
h2

� 	
;r?Ez

� 	
¼ 0

or

r2
? þ h20

� �
Hz þ d k2XHzd

�1 log
l
h2

� 	
þ r?;r?Hzð Þ þ ck2

jxlh2
r?X1r?Ezð Þ

� �
¼ 0

ð5:35Þ

Now, we retain only 0 ðdÞ terms.

v	 ve þ vm
vm
h2

	 vm
h20

ck2

jxlh2
	 ck2

jxlh20

and (5.35) becomes

r2
? þ h20

� �
Hz þ d k2 v Hz

� þ ðr?vm � �2r?v
h20

;r?HzÞ

þ ck2

jxl0h
2
0
ðr?; vr?EzÞg ¼ 0

ð5:36Þ

By duality

E ! H; H ! �E; ve $ vm

�0 $ l0; v $ v
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we get from (5.36)

r2
? þ h20

� �
Ez þ d k2vEz þ ðr?ve�

k2

h20
r?v;EzÞ þ ðr?ve�

k2

h20
r?v;EzÞ

�

� ck2

jx�0h20
r?v;r?Hzð Þ

�
¼ 0

ð5:37Þ

Boundary conditions are given as:

Hz ¼ 0; x ¼ 0; a and Y ¼ 0; b Hz ¼ 0; Z ¼ 0; d

HX ¼ 0; Y ¼ 0; b HY ¼ 0; x ¼ 0; a EX ¼ 0; x ¼ 0; a

EX ¼ EY ¼ 0; Z ¼ 0; d EY ¼ 0 y ¼ 0; b

Equations (5.28) and (5.29) are the own fundamental equations, let h20 ¼ k:
Let

k ¼ k 0ð Þ
m;n þ d� k 1ð Þ þ 0 d2

� �
Ez ¼ Eð0Þ

z þ dEð1Þ
z þ 0 d2

� � ð5:38Þ

Hz ¼ Hð0Þ
z þ dHð1Þ

z þ 0 d2
� � ð5:39Þ

if there is non-homogeneity !

k 0ð Þ
n;m ¼ p2

m2

a2
þ n2

b2

� �

r2
? þ kð0Þn;m

� 	
Eð0Þ
z ¼ 0

r2
? þ kð0Þn;m

� 	
Hð0Þ

z ¼ 0 ð5:40Þ

By Eqs. (5.36) and (5.37) 0 d0
� �� �

Hð0Þ
x ¼ �c

k0m;n
Hð0Þ

z;x þ jx�0

k0m;n
Eð0Þ
z;y

Since

H 0ð Þ
Z ¼ 0; when Y ¼ 0; b H 0ð Þ

z;x ¼ 0; when y ¼ 0; b
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Then

H 0ð Þ
x ¼ 0; when y ¼ 0; b ! E 0ð Þ

z;Y ¼ 0; when Y ¼ 0; b

Likewise

E 0ð Þ
z;X ¼ 0; when X ¼ 0; a

Thus,

H 0ð Þ
z ¼ Cmn sin

mpx
a

� 	
sin

npy
b

� 	
� 2ffiffiffiffiffi

ab
p ð5:41Þ

E 0ð Þ
z ¼ Dmn cos

mpx
a

� 	
cos

npy
b

� 	
� 2ffiffiffiffiffi

ab
p ð5:42Þ

If z-dependent is taken into account, then H 0ð Þ
z ;E 0ð Þ

z must be multiplied by exp 
czð Þ
according to Eq. (5.34),

E 0ð Þ
x ¼ � �c

k0m;n
� jxl0

k0m;n
H 0ð Þ

z;Y

and E 0ð Þ
x ¼ 0; when z ¼ 0; d; and H 0ð Þ

z ¼ 0; when z ¼ 0; d.
We get E 0ð Þ

z;X ¼ 0; when z ¼ 0; d then,

E 0ð Þ
z x; y; zð Þ ¼ Dmn

2ffiffiffiffiffi
ab

p cos
mpx
a

� 	
cos

npy
b

� 	
sin

ppd
d

� �
ð5:43Þ

c ¼ jpp
d

; p ¼ 1; 2; 3:

Since Hð0Þ
z ¼ 0; when z ¼ 0; d;

H 0ð Þ
z x; y; zð Þ ¼ Cmn 2ffiffiffiffiffi

ab
p sin

mpx
a

� 	
sin

npy
b

� 	
sin

ppz
d

� 	
ð5:44Þ

Frequency of oscillations:

x ¼ xmnp

c2 þ x2l0�0 ¼ kð0Þmn

or x ¼ pffiffiffiffiffiffiffiffiffi
l0�0

p m
a

� 	2
þ n

a

� 	2 p
d

� 	2� �1=2

:
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5.5 RDRA with Probe Current Excitation

The rectangular cavity has dimensions a, b, and d as shown in Fig. 5.2. Sidewalls
are taken as magnetic conductors (PMC), and top and bottom surfaces are as PEC;
theoretical fields (modes) solution has been worked under boundary conditions with
a square-type feed probe for excitation.

EX ;Ey ¼ 0; top and bottom plane being electric walls.
EX ;Ey ¼ 0; sidewalls being magnetic walls.

Hz x; y; z; tð Þ ¼
X
mnp

C m; n; pð Þ 2ffiffiffiffiffi
ab

p sin
mpx
a

� 	
sin

npy
b

� 	
sin

ppz
d

� 	
fcosðx m; n; pð Þt

þ / m; n; pð ÞÞ

where m, n, and p are the integers (half wave variations in particular direction, i.e.,
x, y, z directions, respectively); a, b, and d are the dimensions (width, length, and
height) of the RDRA, C m; n; pð Þ and / m; n; pð Þ are the magnitude and phase
coefficients of Hz and D m; n; pð Þ and w m; n; pð Þ for Ez.

Let, orthogonal 2D half wave Fourier basis function ¼ 2ffiffiffiffi
ab

p sin mpx
a

� �
sin npy

b

� � ¼
umnðx; yÞ for convenience.

Ez x; y; z; tð Þ ¼
X
mnp

d m; n; pð Þ 2ffiffiffiffiffi
ab

p cos
mpx
a

� 	
cos

npy
b

� 	
cos

ppz
d

� 	
cosx m; n; pð Þt þ w m; n; pð Þf g

Let, 2ffiffiffiffi
ab

p cos mpx
a

� �
cos npy

b

� � ¼ vmnðx; yÞ for convenience = orthogonal 2D half wave

Fourier basis function.

From Lorentz Gauge conditions, Ez ¼ �jxAz � @�/
@z

Therefore, the magnetic vector potential can be given as below in discrete form
after taking Fourier transform of Az.

d  

a 

b                                     

Fig. 5.2 RDRA with square
feed probe inserted in
a × b plane
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Âz x; y; z;xð Þ ¼ l
4p ÎðxÞ dle

�jxrc

r ; where dl ¼ probe length

Div Â ¼ @ÂZ
@z ; need to be computed.

Now, if we insert this probe at the location defined below into the cavity to find
the fields pattern, we get:

l2
2
\jx� a

2
j\ a

2
;

l2
2
\jy� b

2
j\ b

2

Then, the magnetic vector potential will be

@Âz

@z
¼ lÎdl

4�p
@

@z
e�jkr

r

� �
¼ l̂idl

4� p
cos h
r2

� jk cos h
r

� �
e�jkr ¼ � jx

c2
�̂/

and scalar potential will be

�̂/ ¼ lÎdljc2

4� px
cos h

1
r2

� jk
r

� �
e�jkr ¼ l̂idlc2

4� px
z
r3

� jkz
r2

� �
e�jkr

Differentiating �̂/ w.r.t. z

@ �̂/

@z
¼ l̂idlc2

4px
1
r3

þ 3z2

r5
� jk
r2

� 2jkz2

r4
þ z

r3
� jkz

r2

� � �jkz
r

� �� �
e�jkr ð5:45Þ

when; Êz ¼ �jxÂz � @/̂
@z ; substituting

@ �̂/
@z in Êz,

Êz ¼ �jxlÎdl
4pr

� lÎdlc2

4px
1
r3

þ 3z2

r5
� jk
r2

� 2jkz2

r4
� jkz2

r4
� k2z2

r3

� �� 
e�jkr ð5:46Þ

If we take h ¼ p
2 ; z ¼ 0

If we take h ¼ p
2
; z ¼ 0

Êz ¼ xclÎdl
4pk

�jk2

r
� 1

r3
þ 3 d2

r5
� jk
r2

� 2jkd2

r4
� jkd2

r4
� k2d2

r3

� �� 

Also,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ d2

q
k2r2
r ¼ 1

r, for r ¼ k ¼ 2p=k:
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Coulomb component of electric field is dominant in this inductive zone r2 � d2

given that d � r:
Minimum of r � l2 and Maximum of r ¼ a; bð Þ;

kr � 1

Hence,

Êz � lcÎdl
4pkr3

and � lc2dl
4pr3jx

Î xð Þ;

Ez t; x; ydð Þ � dl

4p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� 	3
Z t

0

IðsÞds � QðtÞdl
4p�r3

ð5:47Þ

Charge flowing through the resonator is Q tð Þ ¼ R t0 IðsÞds or equivalently

¼ Î xð Þ
jx ¼ Q̂ xð Þ;
Here,

Q tð Þdl
4p�ðx2 þ y2Þ32

�
X
mnp

D m; n; pð Þvmn x; yð Þ sin ppd
d

� �
cos x m; n; pð Þt þ w m; n; pð Þð Þ

and

Q tð Þ
4p�ðx2 þ y2Þ32

¼
X
mnp

C m; n; pð Þvmn x; yð Þ pp
d
cos x m; n; pð Þt þ c m; n; pð Þð Þ

For complete solution, we need to compute D m; n; pð Þ and w m; n; pð Þ coefficients
for Hz fields and C m; n; pð Þ and c m; n; pð Þ for Ez fields. The D m; n; pð Þ and
C m; n; pð Þ are the desired resonant modes. For region,

l2
2
\jx� a

2
j\ a

2

l2
2
\jy� b

2
j\ b

2

Q tð Þ
4p�

Z Z
vmn x; yð Þ
ðx2 þ y2Þ32

dxdy ¼
X
p

D m; n; pð Þpp
d

cos x m; n; pð Þt þ w m; n; pð Þð Þ

ð5:48Þ

aþ l2
2

\x\a; 0\x\
a� l2
2

� �
\ bþ l2

2
\y\b [ 0\y

b� l2
2

� �
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hcos xtð Þ cos xtð Þi ¼ 1
2

hsin xtð Þ cos xtð Þi ¼ 0

D m; n; pð Þpp
2d

cos w m; n; pð Þð Þ ¼ 1
4p�

hQ tð Þ cos x m; n; pð Þtð Þi
Z

vmn x; yð Þ
ðx2 þ y2Þ32

dxdy

�D m; n; pð Þpp
2d

sin w m; n; pð Þð Þ ¼ 1
4p�

hQ tð Þ sin x m; n; pð Þtð Þi
Z

vmn x; yð Þdxdy
ðx2 þ y2Þ32

Hence,

D m; n; pð Þ ¼ 2d=pp sin w m; n; pð Þð Þ 1
4p�

hQ tð Þ sin x m; n; pð Þtð Þi
Z

vmn x; yð Þdxdy
ðx2 þ y2Þ32

 !
:

ð5:49Þ

5.6 RDRA Resonant Modes Coefficients in Homogeneous
Medium

The basic Maxwell’s theory can be applied with boundary conditions to express
RDRA resonant fields as superposition of these characteristics frequencies. RDRA is
shown in Fig. 5.3. umn depends on input excitation = orthogonal Fourier basis
function, hmn resonant mode (cut off frequency), k propagation constant. The gen-
eration of modes or characteristics frequencies x mnpð Þ due to electromagnetic fields
oscillations inside the cavity resonator has been described. Orthogonal Fourier basis
function um;n x; yð Þ ¼ 2ffiffiffiffi

ab
p sin mpx

a

� �
sin npy

b

� �
; x mnpð Þ is the characteristic frequency

and w mnpð Þ is the phase of current applied. The rectangular cavity resonator is
excited at the center with an antenna probe carrying current i(t) of some known

Fig. 5.3 RDRA with ground
plane
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frequency x mnpð Þ. This generates the field Ez inside the cavity of the form given
below:

k2 þ c2mn ¼ h2mn

hence,

k2 ¼ h2mn þ
p2p2

d2

Ez x; y; z; tð Þ ¼
X
m;n;p

Re
Z

Cmnp e
jx mnpð Þt umnp x; y; zð Þ;

or
P
m;n;p

Cmnp

�� ��umnp x; y; zð Þ cos x mnpð Þt þ w mnpð Þð Þ;

Ez ðx; y; d; tÞ ¼
Z

Gðx; yÞ jxlIdlðx2 þ y2Þ
4p x2 þ y2 þ d2
� �3=2 eðjxt�x

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p
Þ � I xð Þejxtdx

where G(x,y) are the constant terms associated with the current.
Equating RDRA probe current fields with the antenna-radiated current fields at

z ¼ d;
Radiated currents:

¼
X
p

Cmnp

�� �� ffiffiffi
2
d

r
sin

ppd
d

� �
cos x mnpð Þt þ / mnpð Þ um;n x; yð Þ� �

;

Due to orthonormality, probe currents will be equal to radiated fields.
Probe currents:

¼
Z

Gðx; yÞ jxlIdlðx2 þ y2Þ
4p x2 þ y2 þ d2
� �3=2I xð Þejktdx e jxt�x

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p
þwmnp

� �
um;n x; yð Þ

� �
dxdy

It is clear that these two expressions have to be equal due to energy conservation.
The probe current can be defined as:

IðxÞ ¼ 1
2

X
mnp

I mnpð Þj j dðx� x mnpð Þejø mnpð ÞÞ þ ejø mnpð Þd x� x mnpð Þð Þ
h i

The antenna probe current must contain only the resonator characteristics fre-
quencies x mnpð Þ. The radiated and input currents are equated as:
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X
p

¼ Cmnp

�� �� ffiffiffi
2
d

r
sin

ppd
d

� �
cos ðx mnpð Þt þ / mnpð Þð Þum;n x; yÞð Þ

¼
Z

Gðx; yÞ jxlIdlðx2 þ y2Þ
4p x2 þ y2 þ d2
� �3=2:I xð Þejktdxðe jxt�x

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p
þwmnp

� �
um;n x; yð Þdxdy;

probe current = radiated current; thus Cmnp can be completely determined.
Hence, we can conclude that modes generation is due to the dipole moment in

cavity resonator, mostly depend on size, dimensions of device, excitation type,
coupling, and point of excitation.

5.7 RDRA Modes with Different Feed Position

Let us take z ¼ d, i.e., very small probe length inserted into RDRA resonator at

point of insertion a=2;
b=2; d

� 	
or x� a=2;

y� b=2; d
� 	

; where d—length of

insertion.
ðHx;Hy;Ex;EyÞ, transverse fields; (Ez and Hz) longitudinal fields

Ez ¼
X
mnp

umnp x; y; zð ÞRe Cmnpe
jxmnpt

� �

where umnp x; y; zð Þ ¼ 23=2ffiffiffiffiffiffi
abd

p sin mpx
a

� �
sin npy

b

� �
sin ppz

d

� �¼Ez; (when top and bottom

walls are PMC, rest all four walls are PEC).
Appling boundary conditions on transparent sidewalls (on all four sides of

RDRA or resonator) and top and bottom planes as electrical walls, we get Hz ¼ 0,
for magnetic walls; and Ez ¼ 0, for electrical walls; fields to be computed are

ðEz;HzÞ—longitudinal fields;

Ez x; y; z; tð Þ ¼
X
mnp

Re
Z

Cmnpe
jx mnpð Þtumnp x; y; zð Þ

At z ¼ 0; Ez;Ex;Ey all will be zero

Ez ¼
P

mnp Re Cmnpejx mnpð Þt
 � ffiffi
2
d

q
sin ppd

d

� 	
umn x; yð Þ; this is the Ez field in the reso-

nator at z ¼ d. It must be equated to the corresponding field generated by the
antenna probe, i.e., for the above two expressions to be equal, the antenna probe
currents must contain frequencies only from the set fx mnpð Þg:

Where umn x; yð Þ ¼ 2ffiffiffiffi
ab

p sin mp
a

� �
sin np

b

� �
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Ez will exist little above from z ¼ 0 plane; Ez ¼
R jxlIdle

ffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2�jkp

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p I xð Þdx; where
I xð Þ is the Fourier transform of i(t)

Ez ¼ �jxAz � @/
@z

div�A ¼ lIdl
4p

�jk cos hð Þe�jkr ð5:50Þ

kc2

x
¼ � jx

c2
/

Hence, scalar potential / ¼ lI cos
4pr ejkr

@/
@z

¼ lI cos h
4pr

�jk cos hð Þe�jkr

¼ jklI cos 2h
4pr

e�jkr
ð5:51Þ

Ez ¼ � jxlIdl
4pr

e�jkr þ jxclIdl cos 2h
4pr

e�jkr

Hence,

Ez will be
jxlIdl sin2 h

4pr
e�jkr

where

cos h ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ d2

p

sin2 h ¼ x2 þ y2

x2 þ y2 þ d2

Ez jz¼ ¼ d
X
mnp

Re½C mnpð Þejx mnpð Þt �
ffiffiffi
2
d

r
sin

ppd
d

� �
um;n x; yð Þ ð5:52Þ

Ez ¼
Z

jxlIdlðx2 þ y2Þ
4p x2 þ y2 þ d2
� �3=2e�jxc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p
� I xð Þejktdx ð5:53Þ
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Here, IðxÞ is the Fourier transform of source current, i.e., IðtÞ probe current

I xð Þ ¼ 1
2

X
mnq

I mnpð Þj j d x� x mnpð Þð Þ½ ejø mnpð Þ

þ ejø mnpð Þd x� x mnpð Þð Þ�
IðxÞ ¼ 1

2

X
mnq

I mnpð Þj j d x� x mnpð Þð Þ½ ejø mnpð Þ

þ ejø mnpð Þd x� x mnpð Þð Þ�
IðxÞ ¼

Z
cos x mnpð Þtð Þe�jxtdt

When x mnpð Þ ¼ p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a2 þ n2
b2 þ p2

d2

q
, probe current magnitude and phase IðxÞ ¼P

m;np I mnpð Þj j cosðx mnpð Þt þ / mnpð ÞÞ ø mnpð Þ is the phase of current at fre-
quency x mnpð Þ.

Ez x; y; z; tð Þ

¼ ldl x2 þ y2ð Þ
4p x2 þ y2 þ d2
� �3=2 x mnpð Þ I mnpð Þj j sin x mnpð Þ t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ d2

p
c

þ / mnpð Þ
 ! !

¼ Cmnj jumn x; yð Þ cosx mnpð Þt þ w mnpð Þð Þ
ffiffiffi
2
d

r
sin

ppd
d

� �
:

ð5:54Þ

5.8 R, L, C Circuits and Resonant Modes

The information contained in eigenvalue or eigenvector of modes can impart the
knowledge of antenna radiation behavior, surface current distribution, input
impedance, and its feeding point location. Combinations of feeding configuration
and dimensions can generate or excite various modes. Thus, modes can be effec-
tively used in design control of an antenna. Surface current and geometry of an
antenna give eigenfunctions or eigenvectors. Closed-loop currents of eigenvectors
that present inductive nature are the magnetic fields. Horizontal and vertical
eigenvectors are noninductive are electric fields. These electric fields are produced
by supplied probe currents. Number of lobes in radiation pattern gets increased if
mode number or order of mode is increased and vice versa. The modal excitation
coefficients shall depend on position, magnitude, and phase of the applied probe
current. The effective current is superposition of all modes excited. The eigenvalue
is most important because its magnitude tells effectiveness of radiation or reactive
power and modes are the solution of characteristics equation. Smaller magnitude of
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eigenvalue is more efficient. Positive eigenvalue is the magnetic energy storing
mode, and if modes are negative, it stores electric energy. The eigenvalue variation
versus frequency gives information about resonance and radiation nature.
Excitation angle can have impact on antenna quality factor. The excited mode will
adjust the phase of the reflected currents. Orthogonality of modes can be used to
produce circular polarization in the RDRA. Figure 5.4 represents the equivalent
RLC circuit of RDRA, resonant modes excited, and corresponding magnetic
dipoles. Figure 5.5 depicts the even and odd modes generation. Figure 5.6 presents
RDRA HFF model along with its equivalent RLC circuit. Figures 5.7 and 5.8 are
RLC circuits which are used for derivation of resonant frequency and impedance.

Fig. 5.4 a RLC circuit, b resonance higher modes, c magnetic dipoles

Fig. 5.5 Higher-order even and odd modes

Fig. 5.6 a RDRA model and b equivalent RLC circuit
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R, L, C equivalent circuit: An antenna can be represented as R, L, C circuitry with
natural frequencies xc and forced resonance due to excitation eigen-valued xmnp

� �
has been determined along with eigenvector Jmnp. Separation of all frequencies will
be the out come of modes. The second-order differential equation is the general
solution of equivalent antenna (R, L, C) circuit. Fourier solution will provide a
discrete solution of resonance. Je is excitation current or probe current and c is an
propagation constant c ¼ aþ jbð Þ. L, C circuit will introduce non-homogeneous or
inhomogeneous matter, x2 will be replaced in this case by x2l���c is replaced by
~c introducing decay. Hðf Þ

z represents forced resonance mode.

L q
:: þ q

C
þ R _q ¼ vsðtÞ

where q
:: ¼ d2q

dt2

XL ¼ jxL; XC ¼ 1
jxC

Fig. 5.7 RLC circuit

Fig. 5.8 Series RLC circuit
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Taking Fourier Transform

ðjxLÞ2 þ 1
C
þ jxR

� �
Q xð Þ ¼ Vs xð Þ

Q ðxÞ ¼ Vs xð Þ
ðjxLÞ2 þ 1

c þ jxR

q tð Þ ¼
Zþ1

�1

Q xð Þejxtdx
2p

R ¼ 0

ðxLÞ2 ¼ 1
xc

x ¼ 1ffiffiffiffiffiffi
LC

p

Jse x; y; zð Þ ¼ Jsx x; yð Þd z� d0ð Þx̂þ Jsy x; yð Þd z� d0ð Þŷ

where Js is the current surface density, and Je is the electron currentZ
Jsdz ¼ Jsx x; y;xð Þx̂þ Jsy x; y;xð Þ

From Maxwell’s equation,

r� H ¼ Je þ rþ jx�ð ÞE
r� E ¼ �jxlH

�r2E ¼ �jxl rþ jx�ð ÞE þ Je
r2Ez ¼ c2 xð ÞEz

When

c xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxlðrþ jx�Þ

p
¼ a xð Þ þ jbðxÞ

Similarly, we can compute

r2Hz ¼ c2 xð ÞHz

Boundary conditions are applied

Hz ¼ 0; x ¼ 0; a; or y ¼ 0; b; z ¼ 0; d

Ex ¼ 0; x ¼ 0; a; when z ¼ 0; d;Ey ¼ 0; y ¼ 0; b; z ¼ 0; d;
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Fields propagating is Hz for TE mode

Hz x; y; z;xð Þ ¼
X 2

ffiffiffi
2

pffiffiffiffiffiffiffiffi
abd

p sin
npx
a

� 	
sin

mpy
b

� 	
sin

ppd
d

� �
Re C mnpð Þ exp jx nmpð Þtð Þ
� 	

r2 � c2 xð Þ� �
Ez ¼ 0

c and ~c are two propagation constants

ðr2 � c2 xð ÞÞEz ¼ 0

ðr2 � c2 xð ÞÞE? ¼ Je
�r2H ¼ r� Je þ rþ jx�ð Þ �jxljHð Þ
r2 � c2 xð Þ� �

H ¼ �r� Je
ðr2 � c2 xð ÞÞE? ¼ Je
r2 � ~c2
� �

Hx ¼ Jsyd
0 z� d0ð Þ

r2 � ~c2
� �

Hy ¼ �Jsxd
0 z� d0ð Þ

~c2 xð Þ þ p2
n2

a2
þ m2

b2
þ p2

d2

� �
¼ 0

jxl rþ jx�ð Þ þ p2
n2

a2
þ m2

b2
þ p2

d2

� �
¼ 0

� ~c2 ðx mnpð ÞÞ ¼ x2l�� jxlr ¼ p2
n2

a2
þ m2

b2
þ p2

d2

� �
x mnpð Þ ¼ xReal mnpð Þ þ jxImg mnpð Þ
ejx mnpð Þt ¼ ejxReal mnpð Þte�xImg mnpð Þt

x2l� ! x2l�� jxlr ¼ �~c2ðxÞ
ðJsxy x; y xð Þ � Jsyx x; y xð Þd z� d0ð Þ ¼

X
Jz n;m; p;xð Þunmp x; y; zð Þ

J n;m; p;x½ � ¼
Za
0

Zb
0

ðJsxy x; y;xð Þ � Jsyx x; y;xð Þ � 2
ffiffiffi
2

pffiffiffiffiffiffiffiffi
abd

p sin
npx
a

� 	
sin

mpy
b

� 	
sin

d0pp
d

� �
dxdy

ð5:55Þ

r2 � ~c2 xð Þ� �
Hz ¼

X
mnp

Jz½mnp;x�umnp x; y; zð Þ

H fð Þ
z ¼

X
mnp

Hz mnp;x½ �umnp x; y; zð Þ;
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When H fð Þ
z is the forced resonant mode, then

Jz nmp;x½ � ¼ ½p2 n2

a2
þ m2

b2
þ p2

d2

� �
þ ~c2 xð Þ�Hz½nmp;x�

H fð Þ
z x; y; z xð Þ ¼

X
mnp

Jz nmp;x½ �umnp x; yð Þ
~c2 xð Þ � ~c2 x nmpð Þð Þ

where

vmnp ¼ 2
ffiffiffi
2

pffiffiffiffiffiffiffiffi
abd

p cos
npx
a

� 	
cos

mpy
b

� 	
cos

ppz
d

� 	
¼ Hz

Jsyðx; y;xÞd0 z� d0ð Þ ¼
X

Jy½mnp;x�vmnp x; y; zð Þ

Hence, current density

Jy n;m; p;x½ � ¼
Za
0

Zb
0

Zd
0

JSy x; y;xð Þd0 z� d0ð Þvmnp x; y; zð Þdxdydz

This completes the general solution of R, L, C circuit.

5.9 Resonant Modes Based on R, L, C Circuits

r?Hz � ẑ�c ẑ� H? ¼ Je þ rþ jx�ð ÞE? ð5:56Þ

r?Ez � ẑ�c ẑ� E? ¼ �jxlH? ð5:57Þ

ẑ� r?Ez � ẑ�c ẑ� E?ð Þ ¼ ẑ� �jxlH?ð Þ

r?Ez þ cE? ¼ �jxl ẑ� H? ð5:58Þ

Eliminate ẑ� H? from Eqs. (5.56) and (5.58)

r?Ez þ cE? ¼ �jxl
c

r?Hz � ẑ� Je � rþ jxeð ÞE?ð Þ:

c2 � ~c2 xð Þ� �
E? ¼ �jxl r?Hz � ẑþ jxl Je � c r?Ez
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Hence,

E? ¼ �jxl
c2 � ~c2ðxÞ r?Hz � ẑþ jxl

c2 � ~c2ðxÞ Je � cr?Ez

c2 � ~c2ðxÞ

Parallel RLC Circuits solution:

Iiþ L
di
dt

þ 1
c

Z
i dt ¼ V

On differentiating

L
di2

d2t
þ R

di
dt

þ 1
c
¼ 0

Second-order linear, homogeneous differential equation dividing by L both sides
gives the following:

di2

d2t
þ R

L
di
dt

þ 1
LC

¼ 0

Taking Laplace transform

S2 þ R
L
Sþ 1

LC
¼ 0

S ¼ �R
L



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
L

� �2�4� 1
LC

q
2

S1 ¼ �R
L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
L

� �2� 2ffiffiffiffiffi
LC

p
� 	2r
2

S2 ¼ �R
L
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
L

� �2� 2ffiffiffiffiffi
LC

p
� 	2r
2

Series RLC circuit
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Let

k ¼ � R
2L

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2L

� �2

� 1
Lc

� �2
s

S1 ¼ kþ x2

S2 ¼ k� x1

Hence, solution of differential equation can be written as:

I ¼ A1e
s1t þ Aze

s2t

Here, A1 and A2 are the magnitude of currents
Now

Care 1
R
2L

� �2

[
1
Lc

Care 2
R
2L

� �2

\
1
Lc

Care 3
R
2L

� �2

¼ 1
Lc

V ¼ Riþ Ldi
dt

þ 1
C

Z
i dt

Taking Laplace transformation

V
s
¼ RI sð Þ þ LsI sð Þ þ I sð Þ

sC

I sð Þ ¼ V

s Rþ Lsþ 1
sC


 �
I sð Þ ¼ V

Rsþ Ls2 þ 1
C
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Since,

s1;2 ¼
�R=L


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
L

� �2�4=LC
q
2

I sð Þ ¼ V

L s2 þ Rs
L þ 1

LC


 � ¼ V
L s1 � s2ð Þ

1
s� s1

� 1
s� s2

� 

Taking Laplace inverse of equation

IðtÞ ¼ 1

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
L2 � 4

LC

q es1t � 1

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
L2 � 4

LC

q es2t

Example 5.1 Series RLC circuit solution

v ¼ R� i tð Þ þ L
diðtÞ
dt

1
C

Z t

0

i tð Þ � dt

Taking Laplace transform on both the sides gives

v
s
¼ IðsÞ � Rþ L s� I sð Þ � i 0ð Þ½ � þ 1

C � s
I sð Þ ½i 0ð Þ ¼ 0�

v
s
¼ IðsÞ Rþ L� sþ 1

C � s

� 

v ¼ IðsÞ R� sþ L� s2 þ 1
C

� 

Roots of the equation are as follows:

L� s2 þ R� sþ C�1 ¼ 0
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S ¼ �R
2L



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2L

� �2

� 1
LC

s

Let s1 ¼ s ¼ �R
2L

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2L

� �2

� 1
LC

s

and s2 ¼ �R
2L

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2L

� �2

� 1
LC

s

Now; s1 þ s2 ¼ �R
L

and s1s2 ¼ 1
LC

v ¼ IðsÞ � L½s2 � s� ðs1 þ s2Þ þ s1s2�
v ¼ IðsÞ � L½s s� s1ð Þ � s2ðs� s1Þ�
v ¼ IðsÞ � L½ðs� s1Þðs� s2Þ�

IðsÞ ¼ v
L
� 1
ðs� s1Þðs� s2Þ

Using partial fraction solution, we get

IðsÞ ¼ v
Lðs1 � s2Þ �

1
ðs� s1Þ �

1
ðs� s2Þ

� 

Taking inverse Laplace transform on both the sides

i tð Þ ¼ v
Lðs1 � s2Þ � es1t � es2t½ �

s1 � s2 ¼ R
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L

C

r

i tð Þ ¼ v

R
ffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L

C

q � es1t � es2t½ �

Let; A1 ¼ �A2 ¼ v

R
ffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L

C

q
i tð Þ ¼ A1e

s1t þ A2e
s2t
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Chapter 6
Mathematical Analysis of Radiation
Pattern of RDRA

Abstract In this chapter, detailed study using mathematical analysis for radiation
pattern of RDRA has been described. RF excitation with proper impedance match
can generate J-current density into surfaces of RDRA, which leads to produce
A-magnetic vector potential and finally E-electric intensity or H-magnetic field
intensity. Acceleration or deceleration of charge carriers causing current is
mandatory phenomenon for radiations. Wave can only propagate if wave vector
k > kc, where kc is cutoff frequency. The lowest resonance can be termed as
dominant mode and second and third resonances are higher-order modes.
Propagation constant kx ¼ np=a, and propagation takes place if kx [ np=a, while
no propagation takes place if kx\np=a. Thus, standing waves inside the resonator
are formed and energy storing will take place. Hence, mode spectrum will result
into corresponding resonant frequency generation. Wave propagation can be well
defined by Helmholtz equation. The Maxwell’s equations describe the behavior of
electromagnetic fields and form the basis of all EM classical phenomena. Prad

(power radiated) can be evaluated using Parseval’s power theorem. The radiated
power is produced by oscillating dipole moments. The current varying in time can
be analyzed by Fourier analysis. If medium is inhomogeneous, wave possesses
exponential growth or decay in some direction. Thus, Poynting vector “S” shall
give the magnitude and phase of the radiated fields in particular direction.

Keywords Impedance match � Current density � Magnetic vector potential �
Power radiated � Poynting vector � Persvals power theorem � Moat-shaped DRA

6.1 Introduction

RF excitation with proper impedance match can generate J-current density into
surfaces of RDRA, which leads to produce A-magnetic vector potential and finally
E-electric intensity. Acceleration or deceleration of charge carriers causing current
is mandatory phenomenon for radiations. Wave can only propagate if wave vector
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k > kc, where kc is cutoff frequency and the lowest resonance can be termed as
dominant mode and second and third resonances are higher-order modes.
Propagation constant kx ¼ np=a. Propagation takes place if kx [ np=a, while no
propagation takes place kx\np=a. Standing waves inside the resonator are formed
and energy storing will take place. Hence, mode spectrum will result into corre-
sponding resonant frequency generation due to equivalent RLC circuit formation.
Wave propagation can be well defined by Helmholtz equation. The Maxwell’s
equations describe the behavior of electromagnetic fields and form the basis of all
EM classical phenomenon. Prad (power radiated) can be evaluated using Parseval’s
power theorem. The radiated power is produced by oscillating dipole moments. The
current varying in time can be analyzed by Fourier analysis. If medium is inho-
mogeneous, wave possesses exponential growth or decay in some direction. Thus,
Poynting vector “S” shall give the magnitude and phase of the radiated fields in
particular direction.

Finally, the radiation pattern produced by the surface electric and magnetic
current densities on the RDRA surfaces is computed. PEC walls, the surface electric
current density is Js ¼ n̂� E.

Then, the far-field magnetic vector and electric vector potentials are determined
by the usual reactance potential formulae as follows:

A x; rð Þ ¼ l
4p

e�jkr

r

Z
s

Js x; r
0ð Þ exp jkr̂ � r0ð Þ dsðr0Þ; ð6:1aÞ

and

F x; rð Þ ¼ �

4p
e�jkr

r

Z
s

Ms x; r
0ð Þ exp jkr̂ � r0ð Þ dsðr0Þ: ð6:1bÞ

Lorentz force conditions are applied to determine the far-field electric scalar and
magnetic scalar potentials as follows:

/
e
x; rð Þ ¼ j

x�l
div A x; rð Þ

¼ k
x�l

r̂;A x; rð Þð Þ
ð6:2aÞ

/
m
x; rð Þ ¼ j

x�l
div F x; rð Þ

¼ k
x�l

r̂;F x; rð Þð Þ
ð6:2bÞ

The far-field electric and magnetic fields (i.e., up to Order ðr�1Þ) are then
determined as follows:
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E ¼ �r �/
e
� jxAþ 1

�
r� F; ð6:3Þ

H ¼� 1
l
r� A�r/

m
� jxF;

¼ jk2

x�l
r̂ r̂;Að Þ � jxA/

jk
�
r̂ � F;

¼� jxA?/m
jk
�
r̂ � F;

ð6:4Þ

where

A? ¼ Ahĥþ A//̂;

H? ¼ jk
l
r̂ � A� jxF1;

Finally, we derive expression for the Poynting vector as follows:

S ¼ 1
2
RefE � H�g:

Up to order 1
r2
� �

i.e., value 1/r2 is taken into account from where, the RDRA
radiation resistance is evaluated:

1
2
I2Rr ¼ lim

r!1

Z
S � r̂ � r2 � dX;

when I is the input current to the RDRA, Rr or RrðxÞ is radiation resistance and
depends on the frequency.

6.2 Radiation Pattern of RDRA Due to Probe Current
i(t) and Probe Length dl

lI dl
!
e�jkr

4pr
¼ A

!
; where A is magnetic vector potential ð6:5Þ

From Helmholtz equation ~A
�� ��

E ¼ �jx~A
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Radiated power can be given as follows:

Ej j2
2g

¼ x2 ~A
�� ��2
2g

;

ffiffiffi
l
�

r
¼ g ¼ characteristic impedance:

~A ¼ l
4p

Z
Volume

J r0;xð Þe�jk r�r0j j
r � r0j j d3r0; at source: ð6:6Þ

We know that radiation pattern can be defined by the electrical field intensity
Eh;E/:

Eh ¼ �jxAh and Ah ¼ ĥ � A

Antenna surface current density can be expressed as follows:

J r0;xð Þ ¼
X
mnp

Js mnp; r
0½ �ejx mnpð Þt; where; r ¼ x; y; zð Þ ð6:7Þ

The magnetic vector potential in terms of J can be written as follows:

A ¼ l
4p

X
mnp

Z
Js mnp; r

0½ �ejx mnpð Þ t� r�r0j j
c

� �
r � r0j j ds r0ð Þ; where; ds is surface of RDRA

¼ l
4p

ejkn

r � r0j j
X
mnp

Z
s

Js mnp; r
0½ �ejx mnpð Þr̂�r0ds r0ð Þ

ð6:8Þ

H/ ¼ Eh=g; Hh ¼ �E/
�
g:

Hence radiated power can be given as:

Prad ¼ 1
2g

Ehj j2 þ E/

�� ��2� �

ĥ ¼ x̂ cosu cos hþ ŷ sinu cos h� ẑ sin h
/̂ ¼ �x̂ sinuþ ŷ cosu

	

Eh ¼ l
4pr2

Re
X
mnp

Z
s

Jsx½mnp; r0� cosu cos hþ Jsy mnp;r0½ � sin/ cos h� Jsz mnp;r0½ � sin h
n o

expðjx mnpð Þ
c

gðx0 cos/ sin hþ y0 sin/ sin hþ z0 cos hÞ ds r0ð Þ� ejx mnpð Þt;

ð6:9aÞ
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Eu ¼ Re
X
mnp

Z
s

�Jsx mnp; r0ð Þ sin/þ Jsy mnp;r0½ � cos/
n o

ej
x mnpð Þ

c

x0 cosu sin hþ y0 sin/ sin hþ z0 cos hð Þ ds r0ð Þ ejx mnpð Þtds r0ð Þ:
ð6:9bÞ

Radiated power Prad, x, y, z component wise, can thus be defined as follows:

Px ½̂rjmnp� ¼
Z
s

Jsx mnp; r0ð �ejx mnpð Þr̂�r0
c ds r0ð Þ ð6:10aÞ

Py ½̂rjmnp� ¼
Z
s

Jsy mnp; r0ð �ejx mnpð Þr̂�r0
c ds r0ð Þ ð6:10bÞ

Pz ½̂rjmnp� ¼
Z
s

Jsz mnp; r
0ð �ejx mnpð Þr�r0

c ds r0ð Þ ð6:10cÞ

r̂ðh;/Þ ¼ x̂ cos/ sin hþ ŷ sin/ sin hþ ẑ cos h:

Let s = mnp for convenience then

Eh ¼ Re
X
s

Px r̂ sj½ � � cos/ cos hþ Py r̂js½ � sin/ cos h� Pz r̂js½ � sin h
 �
ejx sð Þt

¼ Re
X
s

Eshe
jx sð Þt ð6:11Þ

where s ¼ mnpð Þ ¼
000
001
010

2
4

3
5 and so on till s ¼ 111½ �, similarly

E/ ¼ Re
X
s

ð�Px r̂js½ � sin/þ Py r̂js½ �cos/Þejx sð Þt ð6:12Þ

6.2.1 Radiation Pattern

Now, power radiation pattern can be defined as follows:

Ehj j2þ E/

�� ��2
2g

¼ 1
2

X
s

Eshe
jx sð Þt þ Es/e

jx sð Þt
� �( )

� 1
2

X
s

Hshe
jx sð Þt þ

X
s

Hs/e
jx sð Þt

( ) ð6:13Þ
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¼ 1
4

X
s

Es � H�
m ej xs�xmð Þt þ

X
s

E�
s � Hm ej xm�xsð Þt

 !

¼ 1
4

X
s

Esh � H�
sø þ E�

sø � Hsh
� 

¼ 1
2
Re
X
s

Esh � H�
sø

� �

¼ 1
2

Eshĥþ Eøø̂
� �

� E�
sh

g
/̂� Esø

g
ĥ

� �

¼
X
s

Eshj j2
2g

r̂ þ Esøj j2
2g

r̂;

ð6:14Þ

6.3 Poynting Vector

Poynting vector is defined as radiated power flux per unit solid angle or power
radiated in particular direction in specified angular zone.

H ¼ r� A

E ¼ �rø� dA
dt ; scalar and magnetic vector potential from Lorentz gauge

conditions.
S ¼ E � H�ð Þ; S is Poynting vector (energy flow or flux).

Z ¼ Prad

jIj2 ¼ Input impedance

S � r̂ ¼ 1
2g

X
mnp

xðsÞ2 Pxj ðr̂ sj Þ cos/ cos hþ Py r̂ sjð Þ sin/ cos h� Pz r̂ sjð Þ sin h 2
��h

þ xðsÞ2 Pxj ðr̂ sj Þ sin/� Py r̂ sjð Þ cos/ 2
�� i ð6:15Þ

S � r̂ r; h;/ð Þ ¼ 1
2g

X
mnp

xðmnpÞ2 Pxðh;/j jmnpÞ cos/ cos hf

þ Py h;/ mnpjð Þ sin/ cos h� Pz h;/ mnpjð Þ sin h 2
��

þ Pxðh;/j jmnpÞ sin/� Py h;/ mnpjð Þ cos/ 2
�� �

ð6:16Þ
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6.4 Moat-Shaped RDRA Radiation Pattern

Moat-shaped RDRA is shown in Fig. 6.1a with x, y, and z coordinates, and feed is
given at a/2 position.

In Fig. 6.1b, rectangular moat-shaped RDRA is covered with r copper plate to
reduce resonant frequency.

E(t, x, y, z) is electric field intensity of RDRA to be computed in time domain
and E(ω, x, y, z) in frequency domain having a, b, and d dimensions, excited with
feed probe at a

2 ;
a
2 ; 0 point by I0cosxt RF current.

A ¼ Azẑ (due to RF excitation current I0 cosxt along length d inserted into the
RDRA).

Hence, magnetic vector potential can be written as follows:

Azðx; x; y; zÞ ¼ lI0
4p

Zd
0

e�jkjr�a=2x̂�b=2ŷ�nẑj

jr � a=2x̂� b=2ŷ� nẑjdn; ð6:17Þ

Fig. 6.1 a Moat-shaped RDRA. b RDRA moat cover with rectangular copper plate to reduce
resonant frequency
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Let C ¼ l
4p ; k ¼ x=c and n = variable probe length.

Az ¼ CI0

Zd
0

expf�jk ðx� a=2Þ2 þ ðy� a=2Þ2 þ ðz� nÞ2
� �

ðx� a=2Þ2 þ ðy� a=2Þ2 þ ðz� nÞ2
� �1=2

9>=
>;dn ð6:18Þ

Far-field approximation can be determined as follows:

Az ¼ CI0e�jkr

r
Pðh0; ø0Þ; ð6:19Þ

where Pðh0; ø0Þ is radiation pattern.
Here, it is assumed that probe is very small as compared to RDRA.

ðx� a=2Þ2 þ ðy� a=2Þ2 þ ðz� nÞ2

¼ ðx� a=2Þ2 þ y� a=2
� �2þz2 � 2zn

ðx� a=2Þ2 þ y� a=2
� �2þz2 � d2

r ¼ ðx� a=2Þ2 þ ðy� a=2Þ2 þ z2
� �1=2

where r = distance from the points (x, y, z) in the center of the feed probe
a=2;

a=2; 0
� �

ðx� a=2Þ2 þ ðy� a=2Þ2 þ ðzÞ2
� �1=2

¼ ðr2 � 2znÞ1=2 ¼ rð1� zn�
r02Þ ¼ r � zn=r0:

Hence, magnetic vector potential due to source inside RDRA can be computed
as follows:

Az ¼CI0e�jkr0

r0

Zd
0

exp
jkzn
r0

	 �
dn; where I0 probe RF current:

¼CI0e�jkr0

r0

exp jkzn=r0

� �
jkz=r0

� � n ¼ d

n ¼ 0

����
���� i.e., variable probe length:

¼CI0
r0

e�jkr0
exp jkzd=r0

� �
� 1

jkz=r0

� �

¼CI0
r0

e�jkr0
exp jkzd=2r0

� �
2j sin kzd=2r0

� �
jkz=r0

� �

ð6:20Þ
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Az ¼ 2CI0 exp �jk r0 � zd=2r0

� �n o sin kzd=2r0

� �
kz

where, z ¼ r cos h:

Azðx; x; y; zÞ ¼ CI0 exp �jkr0ð Þ exp
jkd
2 cos h0
� �

sin kd cos h0
2

� �
kr0 cos h0

ð6:21Þ

here, (r, θ, Φ) are spherical polar coordinates of (x, y, z) so as to relate a=2;
a=2; 0

� �
,

the probe insertion point. Hence, magnetic vector potential can be expressed as
follows:

E t; x; y; zð Þ ¼ x

r30
P h0ð Þj jsin xt � kr0 þW h0ð Þð Þ x�a=2

� �2þ y� a=2
� �2� �

þ x� a
2

� �
zx̂

þ �x y� a=2
� �

z
� �

r03
P h0ð Þj j sinð xt � kr0 þW h0ð Þð ÞÞ

	 �
ŷ

ð6:22Þ

B t; x; y; zð Þ ¼ � k x� a
2

� �
r20

P h0ð Þj jsin xt � kr0 þW h0ð Þð Þŷ

þ k y� a
2

� �
r02

P h0ð Þj jsin xt � kr0 þW h0ð Þð Þx̂

¼ k
P h0ð Þ
r02

sin xt � kr0 þW h0ð Þð Þ y� a
2

� �
x̂þ x� a

2

� �
ŷ

� �
ð6:23Þ

Finally, we derive expression for the Poynting vector as follows:

S ¼ 1
2
RefE � H�g

Up to O 1
r2
� �

from where the radiator resistance is evaluated as

1
2
I2Rr ¼ lim

r!1

Z
S � r̂ � r2 � dX

where I is the input current to the RDRA. Rr or RrðxÞ depends on the frequency.
Hence, this completes the solution for radiation pattern of RDRA.
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6.5 Quality Factor of RDRA

The quality factor Q of the RDRA can be evaluated by comparing the power
radiated Prad ¼ 1

2 I
2Rr with the average electromagnetic energy (W) stored with the

RDRA as follows:

W xð Þ ¼ 1
4

Z
0;a½ �� 0;b½ ��½0;c�

ð�ðE;E�ÞÞ þ l H;H�ð Þ dx dy dz ð6:24Þ

The average energy stored per unit cycle with the RDRA is

P xð Þ ¼ W xð Þ
2p=x

¼ x
2p

W xð Þ ð6:25Þ

The quality field factor of the RDRA is thus

Q xð Þ ¼ 2xW xð Þ
I xð Þj j2 �Rr xð Þ ;

where x corresponds to resonant frequency.
The quality factor of a resonant mode measures how sharp its resonance is. As

per conservation of energy, Z
Ej j2dv ¼

Z
Hj j2dv

(time) average magnetic energy will be equal to electric energy inside the resonator.
The time-averaged energy dissipated in the walls of RDRA in unit time can be

calculated as of energy into walls from the electromagnetic fields in the cavity
normal component of energy based on the boundary conditions as energy flux
density as follows:

S ¼ C
8p

� �
ReðE � H�Þ ð6:27Þ

Hence, total energy dissipated is given by

c
8p

I
Re Hj j2df

Change in resonant frequency due to dielectric material used in RDRA:
The resonant frequency is reduced by

ffiffiffiffiffi
l�

p
If x ! x

ffiffiffiffiffi
l�

p
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xa;xb are orthogonal frequencies, and Ea and Eb are orthogonal fields.
x0

2 x00j j = quality factor (Q), x0 is real frequency, and x00 is imaginary frequency.

Complex freq x ¼ x0 þ jx00

Z
Ea � Eb�dv ¼

Z
Ha � Hb�dv ¼ 0

Resonator filled with non-absorbing dielectric, for which � and l differ from
unity by replacing x by x

ffiffiffiffiffi
l�

p
and E by �E, and H by lH.

The (time) average energy flux through surface is

S ¼ c
8p

Re Et � H�
t

� � ð6:28Þ

where S ¼ c
4p

E � Hð Þ.
If Q of heat evolved per unit time and volumes

Q ¼ x
4p

�00E2 ¼ þl00H2
� �

ð6:29Þ

Bar denotes time-average exciting frequency, must be exactly equal to the chosen
resonance frequency, and is required to establish field configuration inside res-
onator. This results in dissipation of energy in the cavity walls and dielectric filling
of the cavity resonator. A measure of the sharpen of response of the cavity to
external excitation is quality of the cavity. This is defined as 2p times the ratio of
the time-averaged energy stored in the cavity to the energy dissipated.

Q ¼ x0
stored energyfWðxÞg
power lossðI � I � RrÞ ð6:30Þ

Fig. 6.2 Rectangular RDRA
moat
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where x0—Resonant frequency oscillations of fields are damped and time depen-
dent. Change in frequency Dx to occur based on superposition of frequencies:

x ¼ x0 þ Dx

E tð Þ ¼ 1ffiffiffiffiffiffi
2p

p Z1

�1
E xð Þe�jxtdx

Q. No. 1 Compute resonant frequency and propagation constant of given RDRA
shown in Fig. 6.2 and also compute quality factor of a RDRA having dimensions
10 × 10 × 10 mm3 with dielectric constant 10 and probe current 10 mA.
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Chapter 7
Rectangular DRA Higher-Order Modes
and Experimentations

Abstract In this chapter, rectangular DRA higher-order modes have been realized
by mathematical modeling. Resonant modes are seen with experimentations in
anechoic chamber. These resonant modes impart physical insight into the radiating
phenomenon of the antenna. Knowledge of modes can be boon to the antenna
designer. If antenna resonant modes are known, radiation parameters can be steered.
There are two types of modes and they are dominant and higher-order modes. The
dominant mode corresponds to the lowest resonant frequency. These higher-order
modes can be generated either by increasing electrical length of RDRA or by
applying higher excitation frequency. The resonant frequencies of the modes are
represented by eigenvalues and currents by eigenvectors. Radiating behavior of the
antenna can be predicted by modes. They can also help to determine input exci-
tation point. Moreover, having in mind the current distribution of the modes, the
geometry of the antenna can be modified. The aspect ratio is the important
parameter in RDRA. Devising control on aspect ratio can alter resonant frequency,
gain, and bandwidth. RDRA has two fold design flexibility because of two aspect
ratios. The resonant modes of RDRA can be described with an equivalent
sequential RLC circuit having different sequential LC values. Thus, they form many
series-tuned resonant circuits. The superposition of these modes generally give rise
to resulting or weighted resonant frequency. The top-loading RDRA has been
completely modeled. Antenna gain and bandwidth enhancement techniques
have been worked out with examples.

Keywords Aspect ratio � RLC circuit � Tuned cavity � Weighted sum � Resonant
frequency � Eigen frequency � Design flexibility � Top-loading RDRA � Gain and
bandwidth enhancement
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7.1 Introduction to Higher Modes

Resonant modes impart physical insight into the radiating phenomenon of the
antenna. Knowledge of modes can be boon to the antenna designer. If antenna
resonant modes are known, radiation parameters can be steered. Any of the
antennas have two types of modes. They are dominant and higher-order modes. The
dominant mode corresponds to the lowest resonant frequency. Other than dominant
frequency, all higher resonant frequencies are higher-order modes. These
higher-order modes can be generated either by increasing electrical length of RDRA
or by applying higher excitation frequency.

The resonant frequencies of the modes are represented by eigenvalues and
currents by eigenvectors. Radiating behavior of the antenna can be predicted by
modes. They can also help to determine input excitation point. Moreover, having in
mind the current distribution of the modes, the geometry of the antenna can be
modified. The aspect ratio is the important parameter in RDRA. Devising control on
aspect ratio can alter resonant frequency, gain, and bandwidth. RDRA has two fold
design flexibility because of two aspect ratios.

The resonant modes of RDRA can be described with an equivalent sequential
RLC circuit having different sequential LC values. Thus, they form many
series-tuned resonant circuits. The superposition of these modes generally gives rise
to resulting or weighted resonant frequency. The modes are defined as E andH fields
pattern inside a device, whose EM wave propagation is governed by Maxwell’s
equations under certain boundary conditions. RF input excitation currents get dis-
tributed on RDRA surfaces. Thus, weighted sum of eigen currents or superposition
of all these currents inside device is the resultant mode at any instant of time.

The resonant modes are state of excited fields at any instant inside the device,
generally classified as transverse electric (TE), transverse magnetic (TM) and
hybrid electromagnetic (HEM), dominant modes and higher modes. TE modes will
have only Hz component as propagating fields. TM modes will have only Ez

component as propagating fields. These propagating fields are longitudinal fields.
HEM has hybrid mode and will have both Ez and Hz components simultaneously as
propagating fields at any instant of time. These field perturbations form a particular
excited resonant mode in the device.

In the literature, stacking of the RDRA has been used for enhancement in the
directivity of the antenna by Petosa [1]. This can be achieved by devising proper
control on higher-order modes. Higher modes correspond to higher resonant fre-
quency and higher antenna gain. RDRA higher-order modes and hybrid modes are
useful and provide design space to antenna designers, but configure complex fields
structure. The generation of higher modes mainly depends on RF excitation, device
dimensions, dielectric material, perturbation, and coupling used in RDRA.

An aperture-coupled microstrip slot feed RDRA is discussed in this chapter. This
has the advantage of isolating the feeding network from the radiating element. Aspect
ratio can be changed by changing the RDRA dimensions a, b, and d. This will have
impact on resonant modes, and thus, change in resonant frequency will take place.
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The number of half-wave variations corresponding to x, y, and z directions can alter
the operating mode. Once the dimensions of RDRA are fixed, modes can also be
altered by excitation frequency. Operating frequency of RDRA has inverse rela-
tionship with permittivity of the material. The device size can be minimized by using
higher permittivity material. Figure 7.1 shows the resonant mode structure.

RDRA shown in Fig. 7.1a has been made with alternate layers of RT-Duroid and
FR-4 dielectric materials having permittivity 10.2 and 4.4. These dielectric mate-
rials are easily available. The fabrication is also simple. The dimensions of these
sheets are 6 × 6 × 10 mm3 and 6 × 6 × 0.8 mm3, respectively. Figure 7.1b shows
resonant modes. Figure 7.1c shows how these dipoles are broken by introducing air
between these stacking layers. Figure 7.1d presents mode merging due to proper
dipole control, i.e., merging these modes by removing one stacking layer and
creating airspace between these dipoles. This has enhanced the antenna gain.
Figure 7.1e shows higher-order modes in RDRA. Figure 7.2 presents prototype
RDRA with VNA feed probe. Figure 7.3 shows modes or field pattern. Figures 7.4
and 7.5 show odd and even modes. Figure 7.6 represents structure, and Fig. 7.7
represents gain plot. Figure 7.8 shows microstripline used in RDRA feed.
Figure 7.9 shows RDRA with top loading. Figure 7.10 shows H and E fields

Fig. 7.1 a RDRA higher modes. b RDRA mode generated. c RDRA mode control due to dipole
moment. d S11 of RDRA with mode merging. e Higher-order modes field configuration
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Fig. 7.2 RDRA excitation by aperture-coupled slot

Fig. 7.3 EH fields pattern or resonant modes

Fig. 7.4 Odd number of modes

Fig. 7.5 Even number of modes
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Fig. 7.6 Structure of RDRA

Fig. 7.7 Slot position versus gain

Length of strip s   length of stub

Lumped port

W (slot)

Fig. 7.8 Slot and microstrip feed

Fig. 7.9 Top-loaded RDRA with a, b, and d = h dimensions

Fig. 7.10 a H field distribution inside RDRA and b E field distribution inside RDRA
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distributions inside RDRA. Figure 7.11 shows the plot of return loss at f = 11 GHz
and radiation pattern. Figure 7.12 shows TE111 mode at a frequency of 10 GHz.
Figures 7.13, 7.14, 7.15 and 7.16 show resonant modes and Fig. 7.17 TE113 mode
at a frequency of 10 GHz. Figure 7.18 shows TE115 mode at a frequency of 12 GHz.
Figure 7.19 depicted TE117 resonant mode at frequency 15 GHz. Figures 7.20, 7.21,
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Fig. 7.11 a Return loss at f = 11 GHz and b radiation pattern showing 5.16 dB gain of the antenna
at f = 12 GHz
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Fig. 7.12 TE111 mode at frequency 10 GHz. a H field distribution, b E field distribution, c return
loss, d gain
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Fig. 7.14 TE115 mode at frequency 15 GHz. a H field distribution, b E field distribution, c gain
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Fig. 7.13 TE113 mode at frequency 12 GHz. a H field distribution, b E field distribution, c return
loss, d gain
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7.22, 7.23, 7.24, 7.25, 7.26, 7.27, 7.28, 7.29, 7.30, 7.31 and 7.32 show parameter
measured in anechoic chamber and HFSS simulated results. Working is mentioned
below each figures.

Resonant modes take the real orthogonal basis for currents on the antenna
surfaces.

In this chapter, mechanism for mode generation and their possible control in
RDRA are discussed. These are validated with simulated and experimental results
using prototype models. Figure 7.2 shows the prototype of RDRA. VNA probes are
connected in order to take measurements. Top-loading RDRA is used for genera-
tion of higher-order modes. These higher-order modes are of even and odd types. If
RDRA design is isolated even as well as odd modes will be available, i.e., both
even as well as odd modes will be present in isolated DRA case. RDRA once
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Fig. 7.15 Gain versus
frequency plot

Fig. 7.16 Spacing adjustment between short magnetic dipoles placed at the center of each mode
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extended with ground plane, only odd modes will be generated, because even
modes get grounded. Thus, ground plane canceled out even modes. The E and
H fields patterns are shown in Fig. 7.3.

Higher-order even and odd modes are shown in Figs. 7.4 and 7.5. These modes
can further be identified as TE/TM/HEM.

If H field is propagating, then it is TE mode. By contrary, if E field is propa-
gating, then it is TM mode. Also, when both types of fields, E and H, are excited
simultaneously, then it is HEM mode. HEM modes are most advantageous but have
complex structure. The detailed analysis of hybrid modes is described later in
Chap. 10. Resonant modes can be shifted, merged, and independently controlled by
different techniques. Increasing RDRA electrical length and input excitation fre-
quency can generate higher-order modes into RDRA.
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Fig. 7.17 TE113 mode at frequency 10 GHz. a H field distribution, b E field distribution, c return
loss, d gain
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7.2 Resonant Frequency and RDRA Structure

Table 7.1 consists of RDRA specifications for prototype.
The structure of the antenna is shown in Fig. 7.6. Slot and microstrip are shown

in Figs. 7.7 and 7.8. The feed is aperture-coupled. The substrate rectangular plane
of 50 × 50 mm with a thickness of 0.6 mm was used. FR4 was used as RDRA
substrate, and RDRA with a dielectric constant (permittivity) of 10.2 was placed on
top of the substrate. The width of the microstrip used was 1.15 mm. Slot dimen-
sions were 6 mm in length and 1 mm in width. RDRA dimensions were
6 × 6 × 5 mm3.
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Fig. 7.18 TE115 mode at frequency 12 GHz. a H field distribution, b E field distribution, c gain
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Fig. 7.19 TE117 mode at frequency 15 GHz. a H field distribution, b E field distribution, c gain
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7.2.1 Fields in Rectangular DRA

TEδ11 resonant mode in rectangular DRA the fields can be defined using dielectric
waveguide model depending upon given boundry conditions

Hx ¼
ðk2x þ k2y Þ
jxl0

cosðkxxÞ cosðkyyÞ cosðkzzÞ ð7:1Þ

Hy ¼
ðkykxÞ
jxl0

sinðkxxÞ sinðkyyÞ cos kzzð Þ ð7:2Þ

Hz ¼
ðkzkxÞ
jxl0

sinðkxxÞ cosðkyyÞ sin kzzð Þ ð7:3Þ

Ex ¼ 0

Ey ¼ kz cosðkxxÞ cosðkyyÞ sin kzzð Þ ð7:4Þ

Ez ¼ �ky cosðkxxÞ sinðkyyÞ cos kzzð Þ ð7:5Þ

So by solving these equations, we get transcendental equation as follows:
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Fig. 7.21 TE115 mode at frequency 9.5 GHz. a H field distribution, b E field distribution, c return
loss, d gain
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kx tan
kxd
2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � 1ð Þk20 � k2x

q
ð7:6Þ

The resonant frequency and propagation constant can be determined from the
transcendental equation.

The characteristic equation is as follows:

k2x þ k2y þ k2z ¼ erk
2
0 ð7:7Þ

So, the resonant frequency can be obtained for grounded RDRA as follows:

fmnp ¼ c
2

ffiffiffiffi
er

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
a

� �2
þ n

b

� �2
þ p

2d

� �2
r

: ð7:8Þ

Frequency for isolated RDRA is given as follows:
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Fig. 7.22 TE117 mode at frequency 10.5 GHz. a H field distribution, b E field distribution, c gain
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Fig. 7.23 TE1,1,11 mode at frequency 15 GHz. a H field distribution, b E field distribution, c gain
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fmnp ¼ c
2

ffiffiffiffi
er

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
a

� �2
þ n

b

� �2
þ p

d

� �2
r

; ð7:9Þ

kx, ky, and kz can be determined by using characteristic equation. Propagation
constant k0 can be determined in terms of kx. Transcendental equation can be solved
for k0z using kx. This solution can be obtained using MATLAB for fixed value of n,
p, and d. kx will now contain a′ in place of a. a′ is the extended electrical length due
to fringing effects. Hence, kx is the complete solution of transcendental equation.

Example 1 Let us determine the resonant frequency for dominant and higher-order
modes of RDRA with given dimensions and dielectric constant:

Fig. 7.25 Prototype development of RDRA

Fig. 7.26 Radiation pattern H field measurements under anechoic chamber
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Fig. 7.27 Radiation pattern E field measurements under anechoic chamber

Fig. 7.28 Azimuthal radiation pattern measurements inside anechoic chamber
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Fig. 7.29 Elevation radiation pattern

Fig. 7.30 Ready for measurement
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Fig. 7.31 RDRA mounted with wooden block for measurement

Fig. 7.32 RDRA inside anechoic chamber for measurement
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fr ¼ c=2ffiffiffiffi
er
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7.3 Modes (Resonant) Mathematical Solution

Rectangular dielectric resonator antennas (RDRAs) have received lots of attention
in the last two decades due to several attractive characteristics, such as design
flexibility, high gain, and wide bandwidth. RDRA has two different aspect ratios (b/
a, d/a), high radiation efficiency, light weight, and low profile. In contrast, patch
antenna has low gain, less bandwidth, and design flexibility.

The resonant modes are E and H fields pattern. They can be expressed as
follows:

Ez ¼
X
mnp

umnp x; y; zð Þ Re ðCmnp ejxmnptÞ; where; Cmnp are amplitude coefficients:

ð7:10Þ

where

Table 7.1 Specifications of
RDRA and design dimensions

S. No. Element Dimension (mm)

1 Ground plane 20 × 30

2 Substrate 20 × 30 × 0.8

3 RDRA 4.6 × 9 × 10.8

4 Width of microstrip 2.4

5 Length of stub and microstrip 18.693

6 Ground slot (l × w) 3.743 × 0.404
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umnp x; y; zð Þ ¼ 23=2ffiffiffiffiffiffiffiffi
abd

p cos
mpx
a

� �
cos

npy
b

� �
sin

ppz
d

� �
; orthogonal Fourier basis function:

ð7:11Þ

Cmnp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðmnpÞ2 þ aðmnpÞ2ffiffi

2
pffiffi
d

p sin ppd
d

� �h i2
vuuut ; amplitude coefficient: ð7:12Þ

w mnpð Þ ¼ tan�1 amnp cos / mnpð Þð Þ þ bmnp sin / mnpð Þð Þ
amnp sin / mnpð Þð Þ � bmnp cos / mnpð Þð Þ

" #
; Phase: ð7:13Þ

7.4 Top-Loading RDRA

This chapter is developed based on new approach using a top-loading excited
RDRA as shown in Fig. 7.9, for generating higher-order modes. The even as well as
odd modes can be generated even with ground plane. It has also been studied that
even modes (in z-direction) were short-circuited, when RDRA was placed on a
ground plane. Short magnetic dipoles are basis for generation of these resonant
modes. Nearly, λ/3, λ/2, and λ heights of the dielectric resonator generated TEδ11,
TEδ13 and TEδ15 (0 < δ ≤ 1) modes. The gain is found to be increasing in higher
modes. This is also evident from the findings that gain of RDRA starts decreasing or
reducing even in higher modes, when magnetic dipoles start overlapping. This
overlapping of dipoles can be seen when the wavelength used is very small.

Top loading excited both even and odd modes. Simulations have shown that 1st
and 3rd resonances got shifted toward 2nd resonance, when the space ‘s’ between
top and bottom RDRAs varies. Merging of neighboring resonance modes could be
done using this method. This is an excellent phenomenon, which can be used for
bandwidth enhancement. This merging of bands helped to increase the antenna
bandwidth. Thus, existing patch antenna gain and bandwidth can also be increased
by using the concept of higher-order modes. Blocking or shifting of any modes has
become possible in RDRA.

E and H fields perturbations in RDRA can be introduced by carrying out small
changes in the structure, or this can be obtained by input excitation currents. This
perturbation gets converted into eigenvector or eigenvalues. The perturbations are
proportional to eigenvector and resonant mode. The number of modes is directly
related to number of lobes occuring in radiation patterns. There are twoways in which
the number of modes can be increased in RDRA: One is by increasing the RDRA
dimensions a, b, and d, and the other is by increasing the input excitation frequency.
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7.5 Simulated HFSS Results

From Fig. 7.10, it is evident that single resonant mode, as one half-wave variation
take place in x-direction.

The gain of the antenna got enhanced due to increase of RDRA height. TE111

mode resonant frequency is 10 GHz, TE113 mode frequency is 12 GHz and TE115

frequency is 15 GHz. Figure 7.12 shows the magnetic and electric field distributions
inside RDRA. The return loss and radiation pattern are shown in that figure.

It has been seen from Fig. 7.13 that gain has been enhanced. Figure 7.14 shows
TE115 mode, which has higher resonant frequency. Figure 7.15 shows gain versus
frequency plot. Figure 7.16 depicts the spacing between short magnetic dipoles.

The above results obtained from the analysis of RDRA carried out revealed that
higher-order modes offer high gain until dipole overlapping does not take place.
The decrease in gain due to overlapping of short magnetic dipoles takes place. This
will happen when there is a less spacing between two short magnetic dipoles.
Hence, minimum spacing between short magnetic dipoles must be equal to 0.4λ. If
the spacing between short magnetic dipoles is less than this limit, then the gain will
be reduced. This is depicted by simulations in Fig. 7.14. TE113 gain has been
reduced even at TE115 as shown in Fig. 7.18. Now, if we obtain TE115 mode with
increase in RDRA height, then more gain can be obtained. This is the reason why
gain at TE115 is less than TE113 as shown in Figs. 7.14 and 7.15.

At h ¼ k=2

When h = 15 mm, three modes got generated, i.e., TE113, TE115, and TE117 cor-
responding to 10, 12, and 15 GHz, respectively. It is clear that gain has been
decreased at higher modes due to the reason explained earlier that spacing between
short dipoles placed at the center of the field is less than 0.4 λ. At frequency 10 GHz
inside RDRA, there is proper spacing between these dipoles; hence, the gain is
maximum. Various excited modes are shown in Figs. 7.16, 7.17, 7.18, 7.19, 7.20,
7.21, 7.22 and 7.23 are excited, i.e., resonant modes in RDRA. Their results have
also been taken on S11 plots.

h ¼ k

Here, the height of RDRA has been chosen as h = 30 mm, and mode was
operating at 10.5 GHz. The highest gain was due to the same concept of spacing of
short magnetic dipoles. From Figs. 7.17, 7.18, 7.19 and 7.20, very important fact is
noticed that when spacing between short magnetic dipoles was reduced, then the
order of mode becomes high, while the power of main lobe was distributed to side
lobes. Thus, the gain of the antenna was reduced at higher mode if the spacing is
less than 0.4 λ.

In the above figures, generation of higher modes, limitation, and their effect on
antenna gain have been clearly shown.
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7.6 Modes at Varying Heights of RDRA

The comparison between three RDRA’s of different heights have been made. It was
noticed that RDRA having less height and operating at lower mode offers less gain
but higher bandwidth. On increasing the height of RDRA, the gain of the antenna is
found to be higher along with directivity, thus narrowing the beam width.
Figure 7.24 shows that gain is increasing, when the height of RDRA is increased.

7.7 Distortions Due to Overlap of Dipole Moment

RDRA of height λ/3, λ/2, and λ operating around 11–15 GHz consists of TE111,
TE113, and TE115 modes. This fulfills the requirement of separation of magnetic
fields by spacing 0.4 λ. But when RDRA with same height operates at higher
frequency, then the spacing between dipoles is reduced. The power of main lobe is
distributed to the side lobes, which creates the loss of antenna power and gain.
Hence, any desired resonant modes inside the device can be excited for desired
radiation pattern at known resonant frequency. The higher modes amplitude coef-
ficients equation has been developed. Modes can be used to visualize corresponding
radiation pattern and polarization of the antenna. Modes give physical insight into
eigenvalue for determining resonant frequency and feeding point for 50 Ω
impedance.

7.8 Prototype and Anechoic Chamber Experimentations

Prototype RDRA was made, and it was tested inside the anechoic chamber using
VNA. Results for radiation pattern and other antenna parameters have been taken
and are shown in Figs. 7.26, 7.27, 7.28, 7.29, 7.30, 7.31 and 7.32. Each figure is
captioned below for the results.

It was seen in RDRA of particular height, more number of higher-order mode
can be excited by applying another excitation on the top loaded RDRA as shown in
Fig 7.3. The reduced spacing ‘s’ between top and bottom RDRAs, merged even
modes, thus increased bandwidth of the antenna. The RDRA under top loading
converted few odd modes to nearest even mode. Thus, both even and odd modes
were made available due to top loading. Thus, spacing ‘s’ seems to control band-
width of RDRA. High gain, miniaturization, high bandwidth, directive antenna can
be designed by having proper control or maneuvering resonant modes.

The design of this antenna offers wide scope of achieving wide bandwidth along
with high gain. The application of this antenna includes satellite tracking, air traffic
control Wi-fi, Wi-max, and mobile communication.
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By developing control on modes, we can control beam width of antenna and can
restrict the reception of signal to a particular area and hence it can be used for
military applications. Presently, we face the problem of TV signal reception during
rainy season, due to the absorption of signal by rain drops due to signal being single
polarized either TE or TM. This can be minimized by application of dual polarized
or hybrid antenna. The other application could be miniaturization of antenna. By
keeping the dimensions of antenna fixed, the mode of antenna can be changed by
changing the permittivity of RDRA and thereby changing the frequency. To
automate the mode generation, microcontroller-based lookup table can generate
possible combinations of bandwidth, gain, and frequency.

7.9 Adjacent Modes Combination for Broadband
Applications

The merging of adjacent bands or neighboring modes of RDRA can be used for
enhancement of the bandwidth. By varying the aspect ratio, three resonant bands
can be obtained for useful operation as shown in Fig. 7.33.

The dimensions ofRDRAare given inTable 7.2. Figure 7.33b shows the return loss
of the antenna with three bands resonating at 2.89 GHz at dominant mode, i.e., TE111

mode and at 3.61 GHz for TE121 mode and at 4.6 GHz for TE131. Figure 7.34 showsH
and E fields distributions inside RDRA. The direction of the electric field is indicated
by arrow.

Figure 7.35 depicted that the lower gain at lower mode and high gain at higher
modes.

7.10 Effect of Air Gap Between RDRA and Ground Plane

The effect of the air gap between ground plane and RDRA is shown in Fig. 7.36.
Table 7.3 shows the variation in the resonant bands of the antenna. Effect of
introducing the gap between RDRA and ground plane is depicted in Fig. 7.36.
Results obtained by simulation along with the results obtained by calculations
clearly indicate the effect of air gap. The modes are spreading as the frequency of
the modes is shifted in forward direction with respect to increase in the gap.

Tables 7.1, 7.2, 7.3, 7.4, 7.5 and 7.6 are the results tabulated for various
simulations.
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7.11 Effect of Asymmetrical Wells Inside RDRA

When two asymmetrical wells are inserted, then these modes start to merge together
and all the bands are shifted. This is shown by return loss graph in Fig. 7.38.
Comparison between asymmetrical wells and without asymmetrical wells has been
made. This is to note that by adding wells, higher frequency bands get shifted more
as compared to lower frequency bands as shown in Fig. 7.40. Dimensions of the
structure are shown in Table 7.4. The results were taken for various values of width
of well as 0.5, 1.1, 2.0 mm respectively are shown in Fig. 7.38.

7.12 Effect of Moat Insertion Inside RDRA

In this way of merging of modes takes place when air gap is inserted in the structure
of RDRA as shown in Fig. 7.41 then we get broader bandwidth. Plot for reflection
coefficient in Fig. 3.9 shows clearly the effect of moat in the structure. All the
dimensions of the structure are shown in Table 7.3.

Table 7.2 Simulated and
calculated resonant
frequencies of the modes in
DR

Mode/gap Results G = 0 G = 0.01 G = 0.02

TE111 Simulated 2.89 2.83 2.88

Calculated 2.84 2.85 2.87

TE112 Simulated 3.67 3.83 Omitted

Calculated 3.69 3.71 3.74

TE113 Simulated 4.64 4.72 4.81

Calculated 4.62 4.69 4.73
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Fig. 7.33 a Top view of the DR. b Return loss

170 7 Rectangular DRA Higher-Order Modes and Experimentations

http://dx.doi.org/10.1007/978-81-322-2500-3_3


7.13 Effect of a/b and d/b Aspect Ratio

The effect of length and width of RDRA is such that if we increase the dimensions
then there can be large number of modes generated. The effect of a/b and d/b ratio
has been speculated in the manner such that when the ratio a/b is increased, the
modes come closer to each other and merged, and when the ratio d/b is increased,
resonant frequencies of all modes are diverged. Further, if the ratio d/b is reduced,
then the modes are merged. So here, we increased the a/b ratio and reduced the d/
b ratio, and then we pointed aristocratically that intensified changes like modes have
been merged to increase the bandwidth of the device. The important thing to note is
that mode TE112 has been merged, and there are the resonant frequencies of modes
TE111 and TE113 only. Figure 7.31 reflects the effect of the overall process.

Fig. 7.34 Magnetic and electric field distributions inside DR. a H field TE111 mode, b E field
TE111 mode, c H field TE112 mode, d E field TE112 mode, e H field TE113 mode, f E field TE113

mode
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Figures 7.35, 7.36, 7.37, 7.38, 7.39, 7.40, 7.41, 7.42, 7.43 and 7.44 presented effect
on change in aspect ratios. Tables 7.3 and 7.4 indicated design parameters.
Tables 7.5 and 7.6 show resonant modes.
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Table 7.3 Modes and their
resonant frequencies

Mode Resonant frequency (GHz) Gain (dB)

TE111 4.56 5.2

TE112 4.96 –

TE113 5.56 8.78
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Table 7.4 Dimensions of all the structures

Dimension

Parameter/structure Aperture-coupled
DR

DR with two
asymmetrical
wells

DR after increasing in
a/b and decreasing in
d/b ratio

DR with moat

Ground plane and
substrate (mm) and
permittivity

70 × 70 and FR_4
epoxy (4,4)

70 × 70 and
FR_4 epoxy
(4,4)

70 × 70 and FR_4
epoxy (4,4)

70 × 70 and
FR_4 epoxy
(4,4)

DR (mm) 28 × 9 × 10 28 × 9 × 10 30 × 19 × 4 30 × 19 × 4
Inner
dimensions:
16.5 × 10 × 4
Moat gap
(mm):
Gi = 0.1,
G2 = 5.3,
G3 = G4 = 0.2

Microstrip (mm) 35 × 1.15 38 × 1.15 37 × 1.15 40 × 1.15

Slot (mm) 10 × 2 10 × 2 7 × 1 13.5 × 2

Ds (mm) 8 7 12 13

Ls (mm) 6 6 4 5

Table 7.5 Comparison among all the structures

Comparison between all the structures

Parameter/structure Aperture-coupled
DR

DR with two
Asymmetrical
Wells

DR after
Increasing in
a/b and
decreasing in
d/b ratio

DR with Moat

Modes and
frequency (GHz)

TE111(2.92),
TE112(3.70),
TE113(4.64)

TE111(2.92),
TE112(3.70),
TE113(4.64)

Modes are
merged with
each other,
gain is
enhanced, and
the bandwidth
is increased

Modes are
merged with
each other, gain
is enhanced, and
the bandwidth is
increased
drastically

Gain (dB) 1.7 2.1 3 4.8

Bandwidth (GHz) Less Less Bandwidth is
enhanced by
merging the
modes

Bandwidth is
enhanced and is
larger, and
modes have the
closer resonant
frequency to
each other
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Table 7.6 RDRA simulated resonant modes’ parameters

Height
h (mm)

Excitation at top of
the DR

Generated
Mode

Frequency
f (GHz)

Gain
(dB)

Bandwidth
(GHz)

5 No TEx
d11 11.3 5.6 10.1–12.0

Yes TEx
d11 11.8 4.8 9.5–17.7

TEx
d12 15 4.5

10 No TEx
d11 10 5 9.25–12.1

– – 5 12.81–14.85

TEx
d15 13.7 7 16.5–17.1

Yes TEx
d14 13 6 9.4–16.8

15 No TEx
d13 10 9.1 9.48–11.4

TEx
d17 16 5.6 15.8–16.4

– – 6 18.4–18.6

Yes TEx
d14 11.7 5 9.3–17.6

TEx
d16 13.7 4.3

TEx
d18 16.7 4.5

30 No TEx
d;1;5 9.8 8.2 9.30–11.85

TEx
d;1;11 12.56 6 12.45–12.70

TEx
d;1;15 15.95 5.8 15.70–16.20

TEx
d;1;17 17 5.9 16.90–17.25

– – 6 18.20–18.50

Yes TEx
d;1;6 10.83 5 9.35–17.1

TEx
d;1;12 13.58 5.1

TEx
d;1;14 14.88 4.7

TEx
d;1;16 15.7 5.1
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Fig. 7.37 Structure after insertion of two asymmetrical wells
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Fig. 7.39 Merging of second band in first and field distributions. a Hx field at f = 2.9 GHz, b E
field at f = 2.9 GHz, c Hx field at 3.6 GHz, d E field at 3.6 GHz
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Fig. 7.41 Structure of the antenna after insertion of moat inside RDRA and field distribution at
frequency 4.56 GHz

7.13 Effect of a/b and d/b Aspect Ratio 177



(a) (b)

4.00 4.50 5.00 5.50 6.00 6.50 7.00

Freq [GHz]

-22.50

-20.00

-17.50

-15.00

-12.50

-10.00

-7.50

-5.00

-2.50

0.00
dB

(S
(1

,1
))

_1

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00

Freq [GHz]

-7.50

-5.50

-3.50

-1.50

0.50

2.50

3.75

dB
(G

ai
nT

ot
al

)

m1

Name X Y

m1 4.7559 2.9000

Fig. 7.42 a Frequency response showing return loss. b Gain of the antenna over frequency

Freq [GHz]

-16.00

-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

dB
(S

(1
,1

))

4.00 4.50 5.00 5.50 6.00 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00

Freq [GHz]

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

S
11

 [d
B

]

- - - - with moat

Fig. 7.43 Return loss and comparison with the structure with moat

4.00 4.50 5.00 5.50 6.00

Freq [GHz]

-15.00

-10.00

-5.00

0.00

5.00

10.00

dB
(G

ai
nT

ot
al

)

m1

m2
m3

Name X Y

m1 5.4983 8.7898
m2 4.5686 5.2020
m3 4.9699 4.0093

Fig. 7.44 Gain after
increasing a/b ratio and
decreasing d/b ratio

178 7 Rectangular DRA Higher-Order Modes and Experimentations



It is found that merging of modes can be very advantageous for broadband
applications. The aspect ratio plays very important role in this phenomenon.
Excitation applied at top of the RDRA converted odd modes into nearby even
modes.
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Chapter 8
RDRA Angular Excitation Mathematical
Model and Resonant Modes

Abstract This chapter narrates angular excitation mathematical modeling of
RDRA. The shift in radiation pattern and resonant modes have been realized based
of angular shift in input. Slot is the source of input voltage to RDRA. Slot size and
orientation effects loading of RDRA. The resonant characteristics of a RDRA are
dependent on shape, DRA volume and excitation. The excitation current can be
defined in terms of magnetic vector potential “A” based on applied current densities
“J”. This “A” can be expressed in terms of E and H fields or as “S” Poynting vector.

Keywords Slot � Angular variation � Change in radiation pattern � Resonating
modes � Power flux � HFSS � VNA � Hardware model � Anechoic chamber

8.1 Introduction

Slot is the source of input to RDRA. Slot size and orientation is responsible for
loading of RDRA. The angular orientation of slot has been investigated in this
chapter with simulations and experimentation. The resonant characteristics of a
RDRA depend upon the shape and size of the (volume) dielectric material along
with feeding style. It is to be appreciated that in a RDRA, it is the dielectric material
that resonates when excited by the feed. This phenomenon takes place due to
displacement currents generated in the dielectric material. The excitation current
can be defined in terms of magnetic vector potential “A” based on the current
densities “J” inside the resonator, at any far-field point. This “A” can be expressed
in terms of E and H fields. Later, this is expressed as “S” Poynting vector. Now the
flux described can be treated with boundary conditions to find Radiated power Prad

into space. Figure 8.1 presented RDRA excited at slot angle. Figures 8.1 and 8.2 are
HFSS model of RDRA. In Fig. 8.3, slot is shifted with certain amount of angle. If
two slots are placed at 90°, circular polarization will take place. If one slot area is
larger than the other, then LHCP (left-hand circular polarization) or RHCP
(right-hand circular polarization) will take place. Figure 8.4 RDRA is excited at 45°
angle. Figures 8.5, 8.6 and 8.7 presented radiation pattern at slot angles. Using two

© Springer India 2016
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3_8
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cross slots circular polarization can be integrated. If two slot of different lengths are
used then due to differential signal LHCP and RHCP can be generated. This
indicates that a mechnism for polarization cantrol can become possible if these
slots are arranged in a particular manner.

Fig. 8.1 RDRA with slot at an angle (ø0;/0), a, b, and d are dimensions

Fig. 8.2 Let rectangular DRA excited by slot at an angle ðhi;/iÞ

Fig. 8.3 Slot at an angle (øi;/i) shifted to left
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The detailed description of radiation phenomenon is given below. The resonator
RDRA radiates from the fringing fields. The resonator acts as tuned sequential RLC
circuits having different values of LC or resonant cavity with an electric field
perpendicular to the resonator, that is, along the Z-direction. The magnetic field has

Fig. 8.4 RDRA angular excitation left side (30°–40°)
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Fig. 8.5 Radiation pattern at an angle (30�–40� to the left)
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vanishing tangential components at the four side walls. The four extended edge
surfaces around RDRA serve as the effective radiating apertures. These fringing
fields extend over a small distance around the side walls and can be replicated as
fields Ex that are tangential to the substrate surface. The only tangential aperture
field on these walls is E = Ez, because the tangential magnetic fields vanish by the

Fig. 8.6 Angular excitations in RDRA to the right side
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Fig. 8.7 Radiation pattern when slot is shifted to the right
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boundary conditions. The ground plane can be eliminated using the image theory,
resulting in doubling the aperture magnetic currents, that is, J = n × E. Hence, the
effective tangential fields can be expressed in terms of the field Ez. Now, radiated
power pattern can be compared with the modes generated inside the resonator. The
surface current density can be the main source of E–H fields pattern when applied
with boundary conditions inside the resonator. This can be correlated with far-field
pattern. The physics of this radiation is based on the fringing effect due to dipole
moments. First derivative is velocity fields, and then, the second derivative on
dipole moments can be termed as acceleration, which is main source of radiations.
Hence, steering of the resonant modes mainly depends on excitation. Ez, Hz, or both
Ez and Hz fields at any instant of time can define TM, TE and HEM modes.

8.2 Angular Shift in Excitation

Let aperture-coupled microstrip with slot and stub (feed) is situated in xy plane of
RDRA at bottom part and slot placed at an angle ðhi;/iÞ as shown in Fig. 8.1. The
resonator modes and radiation pattern generated have been investigated as follows:

1. Hz;Ez fields are longitudinal. These have been expressed in terms of
orthonormality with signals umnp x; y; zð Þ and vmnp x; y; zð Þ at frequency xmnp

based on the Maxwell’s equations with given boundary conditions of RDRA.
2. At z = 0; surface (x, y) excitation is applied with slot and surface current density

Jsx x; y; tð Þ; Jsy x; y; tð Þ� �
is developed into RDRA.

3. The surface electric current density is equated with generated magnetic fields
into RDRA:

Js ðx; y; dÞ ¼ Jsx; Jsy
� � ¼ ðn̂� HÞ ¼ �Hy; Hx

� �� �
;

at z = 0; amplitude coefficients are obtained on expansion of Hz, Ez in terms of
Cmnp and Dmnp.

4. Equating tangential component of Ez at boundary, i.e., Eyjz¼0
to zero, the

amplitude coefficients Dmnp for Hz and Cmnp of Ez are expressed.
5. Feed position in xy plane can be defined as follows:

x0; y0ð Þ /0; h0ð Þ

6. f ðx; yÞ ¼
1 x0 � x � dlðlengthÞ

yj j � W widthð Þ
0 otherwise

8<
:

9=
;

7. Excitation current in time domain can be expressed as:

Js x; y; z; tð Þ
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where ῃ is the

angle of variation in excitation.

Here, we apply excitation through slot dl at some specific angle. Later, shift in the
position of slot is provided. Change in radiation pattern or resonant modes is inves-
tigated with mathematical equation, simulations and experimentations on RDRA.

lI dl
!
e�jkr

4pr
¼ ~A; where A is magnetic vector potential ð8:1Þ

A ¼ V �
Z

E dl

E ¼ �jx �~A

Radiated power

Ej j2
2g

¼ x2 ~A
�� ��2
2g

;

ffiffiffi
l
�

r
¼ g ¼ impedance: ð8:2Þ

~A ¼ l
4p

Z
Volume

J r0;xð Þe�jk r�r0j j
r � r0j j d3r0; at source: ð8:3Þ

We know that radiation pattern can be defined by Eh; E/

Eh ¼ �jxAh and Ah ¼ ĥ � A

Antenna current density can be expressed as follows:

J � ðr0; xÞ ¼
X
mnp

Js mnp; r
0½ � ejx mnpð Þt ð8:4Þ

The magnetic vector potential in terms of J can be written as follows:

A ¼ l
4p

X
mnp

Z
Js½mnp; r0�ejx mnpð Þ t� r�r0j j

c

� �
r � r0j j ds r0ð Þ; ds is surface

¼ l
4p

ejkn

r � r0j j
X
mnp

Z
s

Js mnp; r
0½ �ejx mnpð Þr̂�r0ds r0ð Þ

ð8:5Þ

Eh; E/; H/ ¼ Eh=g; Hh ¼ �E/
�
g:
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Radiated power can be given as follows:

Prad ¼ 1
2g

Ehj j2þ E/

�� ��2	 

ð8:6Þ

ĥ ¼ x̂ cosu cos hþ ŷ sinu cos h� ẑ sin h

/̂ ¼� X̂ sinuþ Ŷ cosu

(

Eh ¼ l
4pr2

Re
X
mnp

Z
s

Jsx½mnp; r0� cosu cos hf

þJsy mnp; r0½ � sin/ cos h� Jsz mnp; r0½ � sin h
o

exp jx
ðmnpÞ

c

� �
ðX 0 cos/ sin hþ Y 0 sin/ sin hþ Z 0 cos hÞds r0ð Þ� ejx mnpð Þt

ð8:7Þ

Eu ¼Re
X
mnp

Z
�Jsx mnp; r0ð Þ sin/þ Jsy mnp; r0½ � cos/
n o

ej
xðmnpÞ

c ðX 0 cosu sin hþ Y 0 sin/ sin hþ z0 cos hÞds r0ð Þejx mnpð Þtds r0ð Þ ð8:8Þ

Radiated power Prad can thus be defined as:

Px r̂j mnp½ � ¼
Z
s

Jsx mnp; r0ð Þejx mnpð Þr̂�r0
c ds r0ð Þ ð8:9aÞ

Py r̂j mnp½ � ¼
Z
s

Jsyðmnp; r0Þej
x mnpð Þr̂:r0

c ds r0ð Þ ð8:9bÞ

Pz r̂j mnp½ � ¼
Z
s

Jszðmnp; r0Þej
x mnpð Þr̂:r0

c ds r0ð Þ ð8:9cÞ

r̂ðh;/Þ ¼ X̂ cos/ sin hþ Ŷ sin/ sin hþ Ẑ cos h:

Let
s ¼ mnp for convenience; then

Eh ¼ Re
X
s

Px r̂ sj½ � � cos/ cos hþ Py r̂js½ � sin/ cos h� Pz½r̂js� sin hgejx sð Þt
n o

¼ Re
X
s

Eshe
jx sð Þt ð8:10Þ
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where s ¼ mnpð Þ ¼
000
001
010

2
4

3
5 and so on till s ¼ 111½ �: Similarly

E/ ¼ Re
X
s

ð�Px r̂js½ � sinuþ Py r̂js½ � cos /Þejx sð Þt ð8:11Þ

Hence, Radiation Pattern of RDRA: Power flux per unit solid angle will describe
the pattern. Power radiation pattern can be defined as follows:

Ehj j2þ E/

�� ��2
2g

¼ 1
2

X
s

Eshe
jx sð Þt þ Es/e

jx sð Þt
 !( )

� 1
2

X
s

Hshe
jx sð Þt þ

X
s

Hs/e
jx sð Þt

 !( )

¼ 1
4

X
s

Es � H�
me

j xs�xmð Þt þ
X
s

E�
s � Hme

j xm�xsð Þt
 !

¼ 1
4

X
s

Esh � H�
sø þ E�

sø � Hsh

 �
¼ 1
2
Re
X
s

Esh � H�
sø

� �

¼ 1
2

Eshĥþ Eøø̂
	 


� E�
sh

g
û� Esø

g
ĥ

� �

¼
X
s

Eshj j2
2g

r̂ þ Esøj j2
2g

r̂

ð8:12Þ

Poynting vector

S � r̂ ¼ 1
2g

X
xðsÞ2 Pxðr̂j jsÞ cos/ cos hþ Py r̂ sjð Þ sinu cos h� Pz r̂ sjð Þ sin hj2
h

þ xðsÞ2 Pxðr̂j jsÞ sinu� Py r̂ sjð Þ cosu��2i ð8:13Þ

Radiated power per unit solid angle or Poynting vector

S � r̂ r; h;/ð Þ ¼ 1
2g

X
mnp

xðmnpÞ2 Pxðh;/j jmnp) cos/ cos hf

þ Py h;/ mnpjð Þ sin/ cos h� Pz h;/ mnpjð Þ sin h 2
��

þ Pxðh;/j jmnpÞ sin/	 Py h;/ mnpjð Þ cos/ 2
�� �

ð8:14Þ
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8.3 Radiation Pattern Based on Angle ðø0;/0Þ Variation
in xy Plane

Let ~D mnpð Þ ¼ pp
d
D̂mnp

h2mn
ejwmnp

~Cmnp ¼ �

h2mn
ej / mnpð Þ�p=2ð ÞĈmnp

H? ¼
X
mnp

Re f~Dmnpe
jxðmnpÞtgr?~umnp x; y; zð Þ

" #X
mnp

Re ~Cmnpe
jx mnpð Þt

n o
r?~umnp x; y; zð Þ

ð8:15Þ

Probe orientation

n̂ h0; /0ð Þ ¼ x̂ cos/0 sin h0 þ ŷ sin/0 sin h0 þ ẑ cos/0

n̂� H ¼ Js

h2mn ¼ c2 þ k2 ¼ nxx̂þ nyŷþ nzẑ

c ¼ 	 jpp
d

; for all wave guide and

let c ¼ d
@z

; jx ¼ d
dt
; for all cavity resonator

dl cos h0 ¼ d; Probe length

Matrix-based computations are as follows:

Ez E?
Hz H?

� �

Hx ¼ Jsy
Hy ¼ �Jsx
H? ¼ Hxx̂þ Hyŷ

Ez ¼
X
mnp

Re Cmnpumnp x; y; zð Þ �
expðjxmnptÞ ð8:16Þ

H? ¼ �c
h2mnp

r?Hz þ jx�
h2mnp

r?Ez � ẑ ð8:17Þ
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Hz ¼ umn x; yð Þ exp jppz
d

� �
ð8:18Þ

Hz ¼ umn x; yð ÞCðmnpÞej x mnpð Þt�jppz
dð Þ

Hz ¼ Re Cmnpumn x; yð Þe	j x mnpð Þt�jppz
dð Þn o

Hz ¼Re C1 mnpð Þumn x; yð Þejðx mnpð Þt�jppz
d Þ

n o
þ Re C2 mnpð Þumn x; yð Þe�jðx mnpð Þtþjppz

d Þ
n o ð8:19Þ

H? ¼ 1
h2mn

d
dz

r?Hz x; y; z; tð Þ
" #

þ �

h2mn

@

@t
r?Ezðx; y; z; tÞ

� �
ð8:20Þ

Hence

Ez x; yz; tð Þ ¼
X
mnp

Cmnpumnp x; y; zð Þ cos xðmnpÞt þ uðmnpÞð Þ ð8:21aÞ

Hz x; yz; tð Þ ¼
X
mnp

Dmnpumnp x; y; zð Þ cos x mnpð Þt þ w mnpð Þð Þ ð8:21bÞ

8.4 Replacing Probe with Slot of Finite Dimensions
(Ls, Ws) at an Angle ðh0;/0Þ

We replace excitation probe to slot umnp and vmnp by ~umnp and ~vmnp

~umnp x; y; zð Þ ¼ 2
ffiffiffi
2

pffiffiffiffiffiffiffiffi
abd

p sin
mpx
a

	 

sin

npy
b

	 

sin

qpz
d

	 

ð8:22aÞ

~vmnp x; y; zð Þ ¼ 2
ffiffiffi
2

pffiffiffiffiffiffiffiffi
abd

p cos
mpx
a

	 

cos

npy
b

	 

cos

qpz
d

	 

ð8:22bÞ

Js x; y; dð Þ ¼ I½mnp�eg
0x mnpð Þt

x
; where g0 is an angle

H?jz¼d
¼
X
mnp

Re ~Dmnpe
jx mnpð Þt

n o
r?~vmnp x; y; zð Þ

�
X
mnp

Re ~Cmnpe
jx mnpð Þt

n o
r?~umnp x; y; zð Þ

ð8:23Þ
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n̂� H

Ex;Ey;Hx; Hy are the fields in terms of surface current density due to applied probe
current at an angle η′; Jsx; Jsy can be expressed as current density using Fourier
coefficients; Cmnp and Dmnp HyHx fields can be computed from ExEy fields; prop-
agation terms h2mn ¼ c2 þ k2

H? ¼ Imnp
x widthð Þ

ejg mnpð Þfx̂� sinð/0ð Þ cos /0ð ÞŷÞggðx; yÞ

H? ¼
X
mnp

Ref~Dmnpe
jx mnpð Þt 2

ffiffiffi
2

pffiffiffiffiffiffiffiffi
abd

p r? cos
mpx
a

	 

cos

npy
b

	 
n o
: ð8:24Þ

H?jz¼0
¼HX x; y; 0ð Þx̂þ HY x; y; 0ð Þŷ
¼ Jsy x; y; tð Þ � Jsx x; y; tð Þ� �

Jsy x; y; tð Þ ¼
X

Re ~Dmnpe
jx mnpð Þt

n o mp
a

	 
 2
ffiffiffi
2

pffiffiffiffiffiffiffiffi
abd

p sin
mpx
a

	 

cos

npy
b

	 


Za
0

Zb
0

Jsy x; y; tð Þ 2ffiffiffiffiffi
ab

p sin
mpx
a

	 

cos

npy
b

	 

dxdy

¼ Re ~Dmnpe
jx mnpð Þt

n o mp
a

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
d
sin

mpx
a

	 
r

Hence,

Jsy x; y; tð Þ ¼ Re fy x; yð Þejx mnpð Þt
n o

¼
Za
0

Zb
0

fy x; yð Þ 2ffiffiffiffiffi
ab

p
ffiffiffi
2
d

r
;

mp
a

	 

~Dmnp sin

mpx
a

	 

cos

npy
b

	 

dxdy ð8:25Þ

Now

~Dmnp ¼
ffiffiffi
2
d

r
a
mp

Za
0

Zb
0

fy x; yð Þ 2ffiffiffiffiffi
ab

p sin
mpx
a

	 

cos

npy
b

	 

dxdy ð8:26Þ

Hy ¼ �Jsx
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�Jsx x; y; tð Þ ¼ Hyjz¼0

¼
X
mnp

Re ~Dmnpe
jx mnpð Þt

n o
� np

b

	 
 2
ffiffiffi
2

pffiffiffiffiffiffiffiffi
abd

p cos
mpx
a

	 

cos

npy
b

	 

ð8:27Þ

Jsx x; y; tð Þ ¼ Re fx x; yð Þeþjx mnpð Þt
n o

~Dmnp ¼ 2
ab

ffiffiffi
2
d

r
b
np

Za
0

Zb
0

fx x; yð Þ cos
mpx
a

	 

cos

npy
b

	 

dxdy

Jsx x; y; tð Þ ¼
X
mnp

Reffxfx; yjmnpgejx mnpð Þt ð8:28Þ

Similarly; compute ~Dmnp:

Jsy x; y; tð Þ ¼
X
mnp

Reffyfx; yjmnpgejx mnpð Þt ð8:29Þ

8.5 HFSS Computed Radiation Pattern with Shifted
ðhi;/iÞ Slot Positions

Angular excitation at 45° and 30° left side.
Results of angular excitation on radiation pattern have been evaluated on HFSS

and shown in Fig. 8.5.
Angular shifts in excitation at 45° and 30° right side and radiation pattern are

shown in Fig. 8.7 and summarized are placed in Table 8.1.
Results of Radiation pattern when angular excitation is given to the right side

have been shown in Fig. 8.7.

Table 8.1 Summarized results

Frequency
in GHz

S11 in
dB

S11 in dB
slot
position
at 45o left

S11 in dB
slot position
45o right

S11 in dB
cross-slot

Gain
in dB

Gain
in dB
at left
45o

Gain
in dB
right
45o

Gain
(cross-slot)
in dB

8.45 −11.2 −11.6 −10.8 −11.5 1.5 3.75 2.7 1.5

12.81 −13.3 −12.4 −13.4 −12.2 1.1 1.0 1.1 1.2

16.64 −14.7 −18.1 −18.0 −15.9 1.5 1.8 1.6 3.0
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Table 8.1 described results of antenna parameters in tabular form. It has been
observed that angular variation in excitation has direct impact on the radiation
pattern as well as number of modes generated. This has been verified by the plots
given above. We have taken measurements of radiation pattern on varying slot of
feed at 30° and 45° to left and right from its original position. These plots have been
verified at two different frequencies. This completes the solution.

8.6 Experimentations

Figures 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, 8.14, 8.15 and 8.16 present the experimental
results of RDRA. Their significance is placed below each figure. The RDRA made
from acrylic glass sheets having dimensions of 9, 6 and 3 cm. The silicon oil having
e ¼ 2:2 was used as RDRA dielectric material. The resonant frequency of RDRA
was measured to 4.55 GHz. The measurements were taken at various angular
positions of the slot. Aperture-coupled feed RDRA is shown in Fig. 8.1. The feed
position was shifted to investigate RDRA S11 using VNA 40 GHz. The results are
shown in Figs. 8.2, 8.3, 8.4 and 8.5.

Fig. 8.8 RDRA under measurements with VNA
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Fig. 8.9 −28.23 dB measured S11 of RDRA at 4.63 GHz

Fig. 8.10 S11 RDRA with shifted slot resonant frequency 3.67
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Fig. 8.11 Smith chart showing proper Z11 of RDRA

Fig. 8.12 S11 at shifted slot frequency 3.57 GHz
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Fig. 8.13 Measurements of RDRA with aspect ratio changed

Fig. 8.14 RDRA aspect ratio changed
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Fig. 8.15 Shifted frequency observed (3.60 GHz)

Fig. 8.16 Aperture-coupled feed showing slot
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The results obtained with VNA have clearly shown shift in resonant frequency
due to feed orientation. It indicated that resonant modes are changing based on the
slot orientation. Hence, it is clearly evident that radiation pattern can be steered with
slot position in RDRA. If these results can be placed in look up table, then
microcontroller-based orientation can result into automated antenna. This auto-
mated antenna can be very useful for military applications. These cross slot can be
arranged in such a manner that circular polarization becomes possible in RDRA.
Also by varying lengths of cross slots, left hand or right hand polarization can be
achieved. The circular ploarization makes the signal robust and help to reduce
electromagnetic polution.
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Chapter 9
Sensitivity Analysis of Rectangular DRA

Abstract Sensitivity analysis of rectangular DRA depending on dielectric material,
and a, b, and d dimensions. These dimensions decides resonant frequency of
RDRA. The resonant modes are formed when realized with excitation. The resonant
frequency solution is worked with MATLAB and HFSS software. When these
dimensions are changed, resonant frequency of RDRA also changes. Variance
method has been tried out to evaluate error.

Keywords Isolated RDRA � Ground plane RDRA � Resonant frequency �
Sensitivity analysis � Variance � Error minimization

Rectangular DRAs of dielectric material having a, b, and d dimensional length have
been analyzed for frequency and resonant modes. RDRA is shown in Fig. 9.1.
These have been solved based on MATLAB and HFSS. Figure 9.2 presented
rectangular DRA with a, b, and d dimensions. Table 9.1 has shown RDRA
dimensions and their corresponding resonant frequencies. Figure 9.3 indicated
resonant modes with RDRA height. Plot of frequency versus length “a” variation is
shown in Figs. 9.4, 9.5 and 9.6. HFSS simulated modes in RDRA with S11
parameters are shown in Figs. 9.8 and 9.9 (Fig. 9.7).

da; db; dd are (small change in length) random variables, and computed func-
tions are f dmnp

� �
and xmnp. The variance functions are ra; rb; rd . These are mainly

dependent on a, b, and d. Taylor’s expansion is restricted to second-order variable.
Hence, da; db; dd are mapped in terms of ra; rb; rd using diagonal matrix. Cmnp;

Dmnp; are amplitude coefficients which depend on the RDRA a, b, or d.
Frequency relationship can be determined based on a, b and d length variation

as given below:

d
dd

;
d
db

;
dx mnpja; b; dð Þ

da

© Springer India 2016
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Fig. 9.1 Isolated RDRA

d 

b

a

Fig. 9.2 Rectangular DRA with a, b, and d dimensions

Table 9.1 RDRA dimensions

x (mm) y (mm) z (mm) εr Material used

RDRA a = 7
a = 6
a = 5

b = 7
b = 6
b = 5

d = 10
d = 15
d = 30

10 Sapphire

Substrate 20 30 0.5 3.38 Arlon25N(tm)

Ground plane 20 30 – – –

Microstrip feed line 15 1.11 – – –

DRA dimensions (mm) Resonant frequencies (GHz) simulated

a b d

7 7 10 f1 = 13.46

6 6 15 f2 = 13.85

5 5 30 f3 = 14.21
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Fig. 9.3 Resonant mode and RDRA height relationship

Fig. 9.4 Plot of frequency versus length “a” variation

Fig. 9.5 Plot of frequency versus length “b” variation
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Hz and Ez fields are expressed based on principle of orthogonality as:

Ezðx; y; z; tÞ ¼
X
mnp

Re ejx mnpð ÞtCðmnpÞ
� �

umnp x; y; zð Þ ð9:1aÞ

Hzðx; y; z; tÞ ¼
X
mnp

Re ejx mnpð ÞtCðmnpÞ
� �

vmnp x; y; zð Þ ð9:1bÞ

At z = 0, Ez field

Ez t; x; y; 0ð Þ ¼
X
mnp

Re ejx mnpð ÞtC mnpð Þ
� �

umnðxyÞ
ffiffiffi
2
d

r
ð9:2Þ

and

Hx;Hy ¼ �Jsy; Jsx

Cmnp;Dmnp are amplitude coefficients.

Fig. 9.6 Plot of frequency versus length “d” variation

Fig. 9.7 RDRA having three different heights for increasing resonant modes

Fig. 9.8 Modes’ pattern
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Fig. 9.9 Resonant frequency based on RDRA height
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We have computed

Cmnp ¼ 2
ffiffiffi
2

pffiffiffiffiffiffiffiffi
abd

p
Z

Jsx X; Yð Þ sin mpx
a

� �
sin

npy
b

� �
dxdy ð9:3Þ

Now if
a ! aþ da ða is increased to aþ daÞ
b ! bþ db ðb is increased to bþ dbÞ
d ! d þ dd ðd is increased to d þ ddÞ

We need to compute

C mnpjaþ da; bþ db; d þ ddð Þ

and similarly
x mnpjaþ da; bþ db; d þ ddð Þ

This can be approximated by mean variance method and Taylor’s expansion

N normal distribution with mean zero
σ variance function

To compute error

da
db
dd

2
4

3
5�N 0;

r2a 0 0
0 r2b 0
0 0 r2d

2
4

3
5

0
@

1
A

(By Taylor’s expansion)

C mnpjaþ da; bþ db; d þ ddð Þ ¼ Cðmnpja;b;dÞ þ dCðmnpÞ
da

daþ dCðmnpÞ
db

dbþ dCðmnpÞ
dd

dd

þ 1
2

d2CðmnpÞ
da2

da2 þ d2CðmnpÞ
db2

db2
�

þ d2CðmnpÞ
dd2

dd2

þ2
d2CðmnpÞ

dadb
dadbþ 2

d2CðmnpÞ
dadd

dadd þ 2
d2CðmnpÞ

dbdd
dbdb

�

ð9:4Þ

Hence, variance or error can be written as

hC mnpjaþ da; bþ db; d þ ddð Þ � C2
mnpja; b; dð Þi ¼

dC mnpð Þ
da

				
				
2

daj j2
D E

þ dC mnpð Þ
db

				
				
2

dbj j2
D E

þ dC mnpð Þ
dd

				
				
2

ddj j2
D E

¼ r2a
dC mnpð Þ

da

				
				
2

þ r2b
dC mnpð Þ

db

				
				
2

þ r2d
dC mnpð Þ

dd

				
				
2

ð9:5Þ
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Similarly, we can compute:

hx mnpjaþda;bþdb;dþddð Þ � x mnpja;b;dð Þi
Error value

xðmnpÞ þ dxðmnpÞ � dxj j2
D E

Error or variance:

¼ dx mnpð Þ
da

				
				
2

r2a þ
dx mnpð Þ

db

				
				
2

r2b þ
dx mnpð Þ

dd

				
				
2

r2d

x ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a2
þ n2

b2
þ p2

d2

r

The change in frequency based on RDRA change in dimension in x, y, and
z direction is given below:

@x
@a

¼
�m2p
a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

a2 þ n2
b2 þ p2

d2

q ð9:6aÞ

@x
@b

¼
�n2p
b3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

a2 þ n2
b2 þ p2

d2

q ð9:6bÞ

@x
@d

¼
�p2p
d3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

a2 þ n2
b2 þ p2

d2

q ð9:6cÞ

This gives the complete solution of RDRA sensitivity analysis. The higher-order
modes of a rectangular DRA were used to produce radiation patterns with enhanced
gain. The advantage of this approach is for enhancing gain. The maximum
achievable gain on mode m = 1, n = 7 to increase Directivity to 13.7 dBi.
Such DRA designed at 11 GHz with height 35 mm, this investigation focused on
rectangular DRAs, for excitation of the appropriate higher-order modes in RDRAs.
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9.1 MATLAB Simulation

Matlab Program for Sensitivity Analysis

clear all; 

clc; 

close all; 

c=3*10^8; 

m=1; 

n=1; 

p=1; 

E=10; 

a=5*10^-3:.1*10^-3:30*10^-3; 

b=10*10^-3; 

d=15*10^-3;  

for i=1:length(a) 

f(i)=c/(2*pi)*sqrt(E)*sqrt((m*pi/a(i))^2+(n*pi/b)^2+(pp*pi/(2*d)^2)); 

end  

a1=15*10^-3; 

d1=20*10^-3;  

b1=10*10^-3:.1*10^-3:40*10^-3; 
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9.2 HFSS Simulations

Now using HFSS software, we shall verify.
This gives the complete solution for RDRA sensitivity analysis.
It has been observed that resonant modes have been increasing based on increase

in dipole moment, i.e., modes are proportional to the height of RDRA.

for k=1:length(b1) 

f1(k)=c/(2*pi)*sqrt(E)*sqrt((m*pi/a1)^2+(n*pi/b1(k))^2+(pp*pi/(2*d1)^2)); 

end 

a2=10*10^-3; 

b2=5*10^-3; 

d2=10*10^-3:.1*10^-3:50*10^-3;   

for t=1:length(d2) 

f2(t)=c/(2*pi)*sqrt(E)*sqrt((m*pi/a2)^2+(n*pi/b2)^2+(pp*pi/(2*d2(t))^2)); 

end  

subplot(3,1,1);plot(a,f);title('plot a vs f when a is varying'); 

subplot(3,1,2);plot(b1,f1);title('plot b vs f when b is varying'); 

subplot(3,1,3);plot(d2,f2);title('plot d vs f when d is varying');  
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9.2.1 HFSS Result

See below Figs. 9.10, 9.11, 9.12, 9.13 and Table 9.2.

Fig. 9.10 HFSS models of RDRA

Fig. 9.11 Return loss versus frequency with dimensions a = 5 mm, b = 5 mm, d = 30 mm shows
Return loss 18 dBi at f = 10.95 GHz
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Fig. 9.12 Return loss versus frequency with dimensions a = 6 mm, b = 6 mm, d = 15 mm shows
return loss 24 dBi at f = 10.95 GHz

Fig. 9.13 Gain = 5.5 at f = 11 GHz for DRA 1

Table 9.2 Dimensions table

x (mm) y (mm) z (mm) εr Material used

RDRA a = 7
a = 6
a = 5

b = 7
b = 6
b = 5

d = 10
d = 15
d = 30

10 TMM10i

Substrate 20 30 0.5 3.38 Arlon25N(tm)

Ground plane 20 30 – – –

Microstrip feed line 19.2 1.1672 – – –

Lumped element 1.1672 0.5 – – –
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9.3 Radiation Pattern

See below Figs. 9.14 and 9.15.

Fig. 9.15 Gain = 9.5 at f = 11 GHz for DRA 3

Fig. 9.14 Gain = 8.2 at f = 11 GHz for DRA 2
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Chapter 10
Hybrid Modes in RDRA

Abstract In this chapter, new kind of resonant mode, i.e., hybrid mode in RDRA
(rectangular dielectric resonator antenna), is described using mathematical model-
ing. RDRA is excited by inserting RF feed probe or microstripline having finite
dimensions, carrying electric and magnetic currents at a given frequency. The
charge conservation equations then imply the presence of electric charge densities
and magnetic charge densities within the resonator. From Maxwell’s equations, we
derive vector Helmholtz equations for the electromagnetic fields. The vector
sources provide electric charge which gets converted into magnetic charge. In one
of the models, sidewalls of the resonator are perfect magnetic conductors, and top
and bottom surfaces are perfect electric conductors. Thus, the boundary conditions
on the fields are such that the tangential components of the magnetic field vanish on
sidewalls and the normal components of the magnetic field vanish at top and bottom
surfaces. The normal components of the electric field vanish on sidewalls. Hz can
therefore be expanded as linear combinations of sin functions in xy direction along
with z-component of the source. For the Hz, Helmholtz equation can be expanded
in terms of sin functions (assuming that these sources vanish on boundary), with
z-dependent coefficients.

Keywords Hybrid modes � Mathematical model � Normal component �
Tangential component � Conservation equation � Magnetic energy � Electrical
energy � Field diversity � Fourier basis function

10.1 Introduction

RDRA (rectangular dielectric resonator antenna) is excited by inserting RF feed
probe or microstripline having finite dimensions, carrying electric and magnetic
currents at a given frequency. The charge conservation equations then imply
the presence of electric charge densities and magnetic charge densities within the
resonator at that particular frequency. To completely solve for the fields with the

© Springer India 2016
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3_10
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resonator, we therefore set up four Maxwell’s equations taking into account mag-
netic and electric currents and charge densities. From these equations, we derive
vector Helmholtz equations for the electromagnetic fields with vector sources
determined from gradient and curl of the electric charge, magnetic charge, and
current densities. The sidewalls of the resonator are perfect magnetic conductors,
and top and bottom surfaces are perfect electric conductors. Thus, the boundary
conditions on the fields are such that the tangential components of the magnetic
field vanish on sidewalls and the normal components of the magnetic field vanish at
top and bottom surfaces. The normal components of the electric field vanish on
sidewalls. Hz can therefore be expanded as linear combinations of sin functions in
xy direction along with z-component of the source. For the Hz, Helmholtz equation
can be expanded in terms of sin functions (assuming that these sources vanish on
boundary), with z-dependent coefficients.

On substitution of these expressions into the Helmholtz equation for Hz, source
then gives us a second-order linear differential equation for the coefficient functions
of z in Hz with a source term. This is solved, and the solution consists of a
superposition of a source (particular solution or inhomogeneous solution) term and
a homogeneous term (i.e., general solution of the homogeneous part). In hybrid
modes, total solution is developed, i.e., homogeneous and inhomogeneous. Two
constants in the homogeneous part are determined by applying the vanishing
boundary conditions on Hz at top and bottom surfaces, i.e., at z = 0, d. Likewise
applying boundary conditions on the vanishing of the normal component of the
E field on the sidewalls, expressions are determined for Hx and Hy. Then, resonance
is seen, i.e., the electromagnetic field inside the resonator is proportional to 1

d, where
d is the frequency perturbations determined from Dirac delta functions. This
completely solves the problem of RDRA modes.

Hybrid modes can be generated by superposition of TE and TM modes inside
RDRA. In this case of RDRA, hybrid modes have been generated by using a probe
of finite dimension (d) is inserted into z direction and excitation of this probe
(d length) current is given to rectangular copper plane (x, y) as shown in Fig. 10.1
The current density can be determined based on KAM (Kolmogorov–Arnold–
Moser) time-averaging method and using d—Dirac delta function. The principle of
orthogonality is finally applied to determine Cmnp and Dmnp amplitude coefficients
of hybrid modes with fields in homogeneous and particular case. Here, particular
case will have inhomogeneous medium with source applied. Hz and Ez fields have
been computed simultaneously to generate hybrid modes and their coefficients.

Fig. 10.1 RDRA with copper x, y rectangular plane and feed d length
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Figure 10.1 indicates RDRA for generating hybrid modes. Figure 10.2 shows
wall configuration of rectangular DRA required for hybrid modes. The hybrid modes
offer high efficiency and polarization diversity. Frequency bandwidth can be con-
served by using polarization diversity. Maxwell’s equation is applied to find solution
of RDRA. The eigen functions are obtained by solving Helmholtz equation. The
transverse components of Ex, Ey, Hx, and Hy have been expressed in terms of
longitudinal components Ez and Hz. The RDRA has been excited with a RF feed
probe of finite radius and small length inserted through ground plane into RDRA
along z-axis. Surface current density on walls of resonator is produced due to
excitation given at feed point a

2 ;
b
2 ; z

� �
of rectangular resonator. The azimuthal

component of magnetic fields inside the resonator is introduced, which is also
equivalent to z-component of surface current density. The modal longitudinal
coefficients are Ez and Hz. The radiation pattern or power distribution among these
different eigen modes is controlled by current distribution inside the resonator. The
inner product or reaction term of eigen function will be equal to corresponding eigen
mode. It is because magnetic currents are equal to electric currents in an antenna, due
to orthonormality principle or conservation of energy methods. Some of these power
coefficients can be made zero by canceling a particular resonant mode or blocking a
particular eigen function. This is possible for TE and TM modes. The same fre-
quency is introduced inside the guide with phase opposite to each other. Extracting a
particular resonant mode is also possible if surface current density of that mode is
made large enough by input excitation. When we apply input excitation frequency
matching to the desired mode, weighted magnitude of that particular mode coeffi-
cient becomes large and corresponding mode gets excited in the RDRA. The mode
merging can also be made possible by introducing shift in more than two modes
toward a common desired point. Equal weightage of TE and TM at same fre-
quency with opposite phase can cancel the mode. Higher-order modes can also be
generated in RDRA as shown in Fig. 10.1. Higher modes can provide higher gain
and high directivity to prevent EM pollution in microwave devices.

Figure 10.3 shows circular polarization of EM waves. The transverse components
Ex, Ey, Hx, Hy are the components determined in terms of longitudinal components
Ez and Hz. These transverse fields satisfy Helmholtz equations, are expressible in
terms of u mnpð Þ ejx mnpð Þt and v mnpð Þ ejx mnpð Þt i.e., fourier basis functions. Ex, Ey, Hx,
Hy fields are also expressible in terms partial derivatives of u mnpð Þ, v mnpð Þ and

Fig. 10.2 Rectangular DRA
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hence if C mnpð Þ, D mnpð Þ denotes the linear combinational coefficients of u mnpð Þ;
v mnpð Þ for Ez, Hz, then the same coefficients appear in Ex; Ey; Hx; Hy. These
amplitude coefficients C mnpð Þ, D mnpð Þ can be determined by matching Hx, Hy at
z = 0, to the surface current density of RDRA when feed is at z = 0. If the surface
excitation at z = 0 has frequency component other than x mnpð Þ, say x, then the field
amplitude components corresponding to this excitation are determined from given
below terms. The source frequency, which is other than x mnpð Þ, introduces decay in
the resonator due to finite conductivity of the medium. Using the KAM theory of
averaging, the resonator extracts out only x mnpð Þ frequencies with amplitude.
Equivalently, if source contents are switched on for a finite duration and then
switched off, the only the dominant x mnpð Þ frequencies will be present in the
resonator. This situation is analogous to connecting a voltage source to an LC
oscillator for a finite duration and then switching it off. If, however, the source is not
switched off, then the other (non-dominant frequencies) will also be present and
these can be computed based on above-mentioned methods. The composite structure
having combination of PMC and PEC walls can generate hybrid modes (HEM).
The HEM can be further classified HE as odd hybrid modes and EH as even hybrid
modes. The applications for higher modes generation, mode shifting, mode merging,
and mode control can be made in antenna design. They can impart wide design space
in the field of antenna. These designs can be used in beam control and regulation.

10.2 Mathematical Model

Maxwell’s equations:
For magnetic fields:

r2 þ k2
� � Hx

Hy

Hz

0
@

1
A¼

r� Jð Þxðx; y; z;xÞ
ðr � JÞyðx; y; z;xÞ
ðr � JÞzðx; y; z;xÞ

0
@

1
A; ð10:1Þ

Fig. 10.3 Circular
polarization
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Similarly, for electric fields:
J current density
wn function
an, bn amplitude coefficients
umnp, vmnp Fourier basis function
hmn cut off frequency

Ex

Ey

Ez

0
B@

1
CA ¼

P
anwn þ

P
bnunP

anw
0
n þ

P
bnu0

nP
anw

00
n þ

P
bnu00

n

2
64

3
75 ¼

X
an

wn

w0
n

w00
n

2
64

3
75þ

X
bn

un

u0
n

u00
n

2
64

3
75

Ex

Ey

Ez

0
B@

1
CA ¼ 1

hðmnÞ2
@2umnp
@z@x

Cmnp;

ð10:2Þ

E ¼

P
mnp

Cmnp

h mnð Þ2
@2umnp
@x@z �P lDmnp

h mnð Þ2 jx m; n; pð Þ @2vmnp@y@zP
mnp

1
hðmnÞ2 Cmnp

@2umnp
@y@z þP l

h mnð Þ2 jxðm; n; pÞDmnp
@2vmnp
@x@z

Cmnp umnp

0
BBB@

1
CCCAejx mnpð Þt; ð10:3Þ

E x; y; z; tð Þ ¼ electric field component

¼
X
mnp

C mnpð Þ
wE
mnpx x; y; zð Þ

wE
mnpy x; y; zð Þ

wE
mnpz x; y; zð Þ

0
BB@

1
CCA ejx mnpð Þt

þ
X
mnp

D mnpð Þ
uE
mnpx x; y; zð Þ

uE
mnpy x; y; zð Þ

uE
mnpz x; y; zð Þ

0
BB@

1
CCA ejx mnpð Þt;

ð10:4Þ

with duality:

H x; y; z; tð Þ ¼ magnetic field component

¼
X
mnp

C mnpð Þ
wH
mnpx x; y; zð Þ

wH
mnpy x; y; zð Þ

wH
mnpz x; y; zð Þ

0
BB@

1
CCAejx mnpð Þt

þ
X
mnp

D mnpð Þ
/H
mnpx x; y; zð Þ

/H
mnpy x; y; zð Þ

/H
mnpz x; y; zð Þ

0
BB@

1
CCAejx mnpð Þt;

ð10:5Þ
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n̂ � H ¼ Js ¼ surface current density on walls;

Hsx x; y; 0ð Þ ¼ Jsy ðx; yÞ
Hsy x; y; 0ð Þ ¼ �Jsx ðx; yÞ:

Hence,

Jsy x; y; dtð Þ ¼ current density into RDRA

¼
X
mnp

C mnpð ÞwH
mnpx x; y; 0ð Þejx mnpð Þt

þ
X
mnp

D mnpð ÞuH
mnpx x; y; 0ð Þejx mnpð Þt;

ð10:6Þ

�Jsx x; y; dtð Þ ¼
X
mnp

C mnpð ÞwH
mnpy x; y; 0ð Þejx mnpð Þt

þ
X
mnp

D mnpð ÞuH
mnpy x; y; 0ð Þejx mnpð Þt:

ð10:7Þ

If d is the length of probe inserted into RDRA, wH; wE;/H;/E equations, we get
from Linear combinations of sine and cosine terms given below:

wH
mnpx x; y; 0ð Þ / cos � sin ðaÞ

wH
mnpy x; y; 0ð Þ / sin � cos ðbÞ

uH
mnpx x; y; 0ð Þ / sin � cos ðcÞ

uH
mnpy x; y; 0ð Þ / cos � sin ðdÞ

Amplitude coefficients can be determined from principle of orthonormality:

C mnpð Þ wH
mnpy x; y; 0ð Þ;wH

mnpy

D E
inner product or reaction terms can be written as

follows:

C mnpð Þ /H
mnpx ;w

H
mnpx

D E
þ D mnpð Þ /H

mnpx ;w
H
mnpx

D E
¼ lim

T!1
1
2T

ZþT

�T

Jsy x; y; tð Þ; wH
mnpx x; y; 0ð Þ

D E
e�jx mnpð Þtdt;

ð10:8Þ
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and

C mnpð Þ /H
mnpy ; w

H
mnpy

D E
þ D mnpð Þ /H

mnpy ; w
H
mnpy

D E
¼ lim

T!1
1
2T

ZþT

�T

hJsx x; y; tð Þ; wH
mnpy x; y; 0ð Þi e�jx mnpð Þtdt:

ð10:9Þ

These are the solutions of amplitude coefficients D mnpð Þ and C mnpð Þ using
time-averaging KAM method (Kolmogorov–Arnold–Moser).

These are the solutions of hybrid modes.

Helmholtz Equations

ðr2 � 1
c2

@
@t2Þw x; y; z; tð Þ ¼ 0; Helmholtz equation in time domain

ðr2 þ x2

c2 Þŵ x; y; z;xð Þ ¼ 0; Helmholtz equation in frequency domain

ŵ x; y; z;xð Þ ¼ X xð ÞY yð ÞZ zð Þ; separation of variables will be used

Solutions for RDRA on application of boundary conditions are as follows:

ðr2 þ k2ÞEz ¼ 0; TM mode
ðr2 þ k2ÞHz ¼ 0; TE mode
Hz ¼ 0; on all walls
Ex;Ey ¼ 0; z ¼ 0; d;
Ex ¼ 0; x ¼ 0; a;
Ey ¼ 0; x ¼ 0; b;

E? ¼ � 1
h2

@

@z
r?Ez� l

h2
@

@t
r?Hz � ẑ

� �
; Hybrid mode electric fields; ð10:10Þ

H? ¼ 1
h2

;
@

@z
r?Hz� l

h2
@

@t
r?Ez � ẑ

� �
; Hybrid mode electric fields: ð10:11Þ

Transverse components are as follows:

Ex ¼ � 1
h2

@2Ez

@x@t
� l
h2

@2Hz

@y@t
;

Ey ¼ � 1
h2

@2Ez

@y@z
þ l
h2

@2Hz

@x@t
;
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Boundary conditions are as follows:

@2Ez

@x@z
¼ 0; x ¼ 0; a;

@Ez

@x
¼ 0; x ¼ 0; a;

@Ez

@y
¼ 0; y ¼ 0; b:

There are three types of resonant modes at any known frequency x mnpð Þ:

TE; TM; HEM modes ! x mnpð Þ resonant modeð Þ:

@2Ez

@x@z
¼ 0; z ¼ 0; d;

@Ez

@z
¼ 0; z ¼ 0; d:

For homogeneous medium without source terms:

Ez ¼
X

C mnpð Þejx mnpð Þt u mnpð Þ x; y; z; tð Þ;
Hz ¼

X
D mnpð Þejx mnpð Þt v mnpð Þ x; y; z; tð Þ:

10.3 Modes in Homogeneous Medium with Source Terms

For homogeneous medium case

EðhomÞ x; y; z; tð Þ ¼
X

C mnpð Þejx mnpð ÞtwE
mnp

rð Þ þ
X

D mnpð Þejx mnpð ÞtwE
mnp

rð Þ;
ð10:12Þ

where r ¼ x; y; z

H homð Þ x; y; z; tð Þ ¼
X

C mnpð Þejx mnpð Þt wH
mnp

ðrÞ þ
X

D mnpð Þejx mnpð Þt wH
mnp

ðrÞ;
ð10:13Þ

Js x; yð Þ ¼ Jsx x; yð Þx̂þ Jsy x; yð Þŷ
J ! Js x; yð ÞdðzÞ
Js x; y;xð Þ
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Maxwell’s equation:

r� H ¼ J þ jx�E

r� E ¼ �jxlH

E or H can be calculated

�r2H ¼ r� J þ x2l�H

ðr2 þ k2ÞH ¼ �r� J with sourceð Þ;
H ¼ Hhom þ Hpart

Js x; y; zð Þ ¼ Jsy x; yð Þðd zð Þ � dÞ ¼ �Jy;z

ðr � JÞ ¼ Jz;y � Jy;z

ðr2 þ k2ÞHx ¼ �Jsy x; yð Þðd0ðzÞ � dÞ
ðr2 þ k2ÞHy ¼ �Jsx x; yð Þðd0ðzÞ � dÞ
r2 þ k2
� �

Hz ¼ ðJsyx � JsxyÞðd0 zð Þ � dÞ

Hence, we can compute

ðHx;Hy;HzÞðx; y; z;xÞ
vðmnpÞ ¼ sinðxÞ sinðyÞ sinðzÞ
uðmnpÞ ¼ cosðxÞ cosðyÞ cosðzÞ

Hz ¼ from E?;H? equations:

¼
X

Dsource m; n; p;xð Þvmnp rð Þ þ Csourceðm; n; p;xÞumnp rð Þ; ð10:14Þ

r2 þ k2
� �

Hz ¼
X
mnp

�x mnpð Þ2
c2

þ x2

c2

 !
� Czs m; n; p;xð ÞvmnpðrÞ: ð10:15Þ

Hybrid modes can be generated by introducing non-resonant terms. Set infinity
magnitude of coefficients for non-resonant frequency, and x and xðmnpÞf g: x are
non-resonant terms.

10.4 Current Density in RDRA

Jsx x; yð Þ ¼
X
mnp

x2 � x mnpð Þ2Cs mnp;xð Þv mnpð Þ x; y; dð Þ;

x is non-resonant frequency, and x mnpð Þ is resonant frequency
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¼ c2ðJsy;x x; yð Þ � Jsx;y x; yð Þ

Hence, integrating and multiplying dðzÞ � dð Þ

ðx2 � x mnpð Þ2Csource mnp;xð Þ

¼
Z0
a

Z0
b

c2 ðJsy;x x; y;xð Þ � Jsx;y x; y;xÞð Þv mnpð Þ x; y; dð Þdx dy; ð10:16Þ

Cs
zðmnpxÞ ¼

1

x2 � x mnpð Þ2
� �Z ðJsy;x x; y;xð Þ � Jsx;y x; y;xÞð Þv mnpð Þ x; y; dð Þdx dy:

ð10:17Þ

Similarly, we can compute C sð Þ
x C sð Þ

y terms which are the desired solutions of
hybrid resonant modes.

10.5 E and H Fields

E, H, fields:

r� E ¼ �jxlH

r� H ¼ jx�E þ J

�r2E ¼ �jxlðjx�Þ
E ¼ r� H � J

Jx�

hence, Cs
z mnpð Þ ¼ c2

ðx2�x2ðmnpÞÞ
R
Jsy;x x; y;xð Þ � Jsy;y x; y;xð Þvmnp x; y; dð Þ dx dy is the

solution of hybrid modes. Similarly, other hybrid mode coefficients can be worked
out.

Cs
x mnpð Þ dsx mnpð Þ

Cs
y mnpð Þ dsy mnpð Þ

Cs
z mnpð Þ dsz mnpð Þ

Thus, complete solution of hybrid modes has been obtained.
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10.6 Mathematical Modeling of Hybrid Modes

n� H ¼ Js on each wall

n� E ¼ Ms on each wall

The mathematical derivation of Hybrid modes is given below. This is purely
based on solution of Maxwell’s equation.

First, we develop solution of rectangular waveguide and switch to resonator. The
waveguide solution is very simple. Figure 10.4 indicates field configuration inside
RDRA.Thesewaveguide equationswill have both thefieldsHz andEz as given below:

r? � cẑð Þ � Ezẑþ E?ð Þ ¼ �jxl Hzẑþ H?ð Þ ð10:18Þ

r? � cẑð Þ � Hzẑþ H?ð Þ ¼ �jx� Ezẑþ E?ð Þ ð10:19Þ

r?Ez � ẑ� cẑ� E? ¼ �jxlH? ð10:20Þ

r?Hz � ẑ� cẑ� H? ¼ �jx�E? ð10:21Þ

r?Ez þ cE? ¼ �jxlẑ� H? ð10:22Þ

r?Ez þ cE? ¼ �jxl
c

ðr?Hz � ẑ� jx�E?Þ ð10:23Þ

Fig. 10.4 Resonating modes in RDRA
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r?Ez þ jxl
c

r?Hz � ẑ ¼ � x2l�
c

þ c

� 	
E?

c2 þ x2l� ¼ h2

Waveguide equations based on Helmholtz equations are as follows:

E? ¼ �c

h2
r?Ez � jxl

h2
r?Hz � ẑ ð10:24Þ

H? ¼ �c

h2
r?Hz þ jxl

h2
r?Ez � ẑ ð10:25Þ

Resonator equations are obtained by simply replacing ½c� by � d
dz

h i
:

E? ¼ � 1
h2

d
dz

r? Ez � l
h2

d
dt
r?Hz � ẑ ð10:26Þ

H? ¼ 1
h2

d
dz

r? Hz þ l
h2

d
dt
r? Ez � ẑ ð10:27Þ

r2 þ h2
� � Ez

Hz

� 	
¼ 0; Helmholtz equation

Boundary conditions in RDRA have been taken as, top and bottom walls of
resonator are PEC other four sides walls are PMC.

Hz ¼ 0; at x ¼ 0; a; and y ¼ 0; d; z ¼ 0; d;
Ex ¼ Ey ¼ 0; at z ¼ 0; d;
Hx ¼ 0; at y ¼ 0; b;
Hy ¼ 0; at x ¼ 0; a:

Standard fields are as follows:

Hz ¼
X

Re D mnpð Þejx mnpð Þtvmnp rð Þ
� �

ð10:28Þ

Ez ¼
X

Re C mnpð Þejx mnpð Þtumnp rð Þ
� �

ð10:29Þ

Standard orthogonal fields are as follows:

vmnp ¼ 2
ffiffiffi
2

pffiffiffiffiffiffiffiffi
abd

p sin
mpx
a

� �
sin

mpy
b

� �
sin

mpz
d

� �
ð10:30Þ
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umnp ¼ 2
ffiffiffi
2

pffiffiffiffiffiffiffiffi
abd

p cos
mpx
a

� �
cos

mpy
b

� �
cos

mpz
d

� �
ð10:31Þ

Equations (10.30) and (10.31) have been obtained from expansion of Helmholtz
equation by separation of variables method:

r2 þ h2
� �

Hz ¼ 0

Hence, h2 ¼ h2mn ¼ p2 m2

a2 þ n2

b2

� �
; this gives the resonant frequency of RDRA.

Tensor product of linear combination can appear as given below:

Hz ¼ L cos
mpx
a

� �
cos

npx
a

� �
; cos

npx
a

� �
sin

mpx
a

� �
;

n
sin

mpx
a

� �
cos

npx
a

� �
; sin

npx
a

� �
sin

mpx
a

� �o

where L denotes linear combinations. It turns out that depending on the nature of
wall or surface (PEC or PMC), four possible linear combinations can appear
ðcos� sin; sin� cos; and sin� sin; cos� cosÞ. Also,

x2l�þ c2 ¼ h2mn

Hence,

Hz ¼ 0; when x ¼ 0; cos terms are ruled out from x:

Hz ¼ 0; when y ¼ 0; against cos terms are ruled out from y:

Hz ¼ sin
mpx
a

� �
sin

npy
b

� �
ðC1e

cmnz þ C2e
�cmnzÞ

Hz ¼ 0; when z ¼ 0; d

ðC1 þ C2Þ ¼ 0

ecmnd � e�cmndð Þ ¼ 0; b

C1 ¼ C2; sin cmndð Þ ¼ 0

cmn ¼ jbmn
bmnd ¼ pp

Hence,

bmn ¼
pp
d

Hz ¼ sin
mpx
a

� �
sin

npy
b

� �
sin

ppz
d

� �
ð10:32Þ
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x2l�� pp
d

� �2 ¼ h2mn; hence, resonant frequency can be determined as follows:

x
ffiffiffiffiffi
l�

p ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a2
þ n2

b2
þ p2

d2

s
;

Here, we note that resonant frequency in hybrid mode is same for TE and TM
modes.

Now

Hx ¼ 1
h2

@

@z
@Hz

@x
þ l

h2
@

@t
@Ez

@y
;

Hx ¼ 0; at y ¼ 0; b;

dHx

dx
¼ 0; at y ¼ 0; b;

dEz

dy
¼ 0; at y ¼ 0; b;

Ex ¼ 0;

Ey ¼ 0; z ¼ 0; d;

Hence,

Ex ¼ 1
h2

@

@z
@

@x
Ez � l

h2
@

@t
@Hz

@y
;

@2Ez

@x@z
¼ 0 at z ¼ 0; d

@Ez

@t
¼ 0 at z ¼ d

z-dependence of Ez is cos
ppz
d

� �
; Ex ¼ 0; when x ¼ 0; a;

Ez ¼ cos
mpx
a

� �
cos

npy
b

� �
cos

ppz
d

� �
ð10:33Þ

This is the way of getting Ez and Hz longitudinal components by the method of
separation of variables.
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10.7 General Solution of Hybrid Modes (HEM)

The investigations are based on first applying waveguide theory, it models
regarding the electromagnetic fields to vary with z-axis, i.e., these are exploited into
the Maxwell curl equations, then manipulating them to express the transverse
components of the fields in terms of partial derivatives of the longitudinal com-
ponents of the fields w.r.t. x and y axis (i.e., the transverse coordinates). Waveguide
models of four different rectangular DRAs with specified boundary conditions filled
with homogeneous material having linear permittivity have been mathematically
developed and realized to determine TE and TM modes’ propagating fields. These
have resulted in different sine–cosine combinations. Propagation of these fields
have been split as inside and outside of the RDRA with an interfacing surface
having two different permittivity. The solution is transcendental equation which
purely characterizes rectangular DRA resonant frequency and propagating fields.
The amplitude coefficient of these fields Cmnp and Dmnp inside the DRA can be
determined by comparing time-averaged magnetic energies equal to time-averaged
electrical energies by KAM method based on principle of orthonormality. The
transverse components Ex, Ey, Hx, Hy are the components determined in terms of
longitudinal components Ez, Hz. These transverse fields satisfy Helmholtz equa-
tions, are expressible in terms of u mnpð Þ ejx mnpð Þt and v mnpð Þ ejx mnpð Þt Fourier basis
function. Ex, Ey, Hx, Hy fields are also expressible in terms partial derivatives of
u mnpð Þ, v mnpð Þ, and hence if C mnpð Þ, D mnpð Þ denotes the linear combinational
coefficients of u mnpð Þ; v mnpð Þ for Ez, Hz, then the same coefficients appear in Ex,
Ey, Hx, Hy. These coefficients C mnpð Þ, D mnpð Þ can be determined by matching Hx,
Hy at z = 0 to the surface current density of RDRA, when feed is at z = 0. If the
surface excitation at z = 0 has frequency component other than x mnpð Þ, say x, then
the field amplitude components corresponding to this excitation are determined.
Both the fields Ez and Hz will remain excited at any instant of time in resonator, and
then, these modes can be termed as hybrid modes. Our solution is developed based
on homogeneous medium in the resonator.

Ez ¼
X

Re C mnpð Þejx mnpð Þt
n o

umnp rð Þ ð10:34Þ

Hz ¼
X

Re D mnpð Þejx mnpð Þt
n o

vmnp rð Þ ð10:35Þ

E? ¼
X 1

h2mn
Re Cmnpe

jx mnpð Þt
n o @

@z
r?umnp rð Þ

�

� l
h2mn

Re jx mnpð ÞD mnpð Þejx mnpð Þt
n o

r?vmnp rð Þ � ẑ
� �� ð10:36Þ
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E? ¼ x̂ Ex þ ŷ Ey;

H? ¼ x̂ Hx þ ŷ Hy;

r? ¼ x̂
@

@x
þ ŷ

@

@y
;

E ¼
Ex

Ey

Ez

0
@

1
A ¼

X
Cmnpe

jx mnpð ÞtWE
mnp rð Þ þ

X
D mnpð Þejx mnpð Þt/E

mnp
rð Þ ð10:37Þ

H ¼
Ex

Ey

Ez

0
@

1
A ¼

X
Cmnpe

jx mnpð ÞtWH
mnp rð Þ þ D mnpð Þejx mnpð Þt/H

mnp
rð Þ

h i
ð10:38Þ

WE
mnp rð Þ ¼

1
h2mn

@2

@x@z umnp
1
h2mn

@2

@x@z umnp
umnp

0
B@

1
CA

where WE
mnp is the electric field vector coming from the z-components of electric

field, i.e., TM mode.
And /E

mnp
is the electric field vector coming from the z-components of magnetic

field, i.e., TE mode.
Similarly, magnetic field vectors /H

mnp
rð Þ and WH

mnp rð Þ can be solved.

/H
mnp

rð Þ ¼
1
h2mn

@2

@x@z vmnp
1
h2mn

@2

@x@z vmnp
vmnp

0
BB@

1
CCA

/E
mnp

rð Þ ¼
�jlx mnpð Þ

h2mn
@
@y vmnp

jlx mnpð Þ
h2mn

@
@x vmnp

0

0
BB@

1
CCA
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and,

WH
mnp rð Þ ¼

jlx mnpð Þ
h2mnð Þ

�jlx mnpð Þ
h2mnð Þ

@
@y umnp
@
@x umnp

0

0
B@

1
CA

Hence, general hybrid equations can be written as follows:

E ¼
X

CmnpWE
mnp rð Þ þ D mnpð Þ/E

mnp
rð Þ

h i
e�jx mnpð Þt ð10:39Þ

H ¼
X

CmnpW
H
mnp rð Þ þ D mnpð Þ/H

mnp
rð Þ

h i
e�jx mnpð Þt ð10:40Þ

Solution of the RDRA can be developed by using these above two equations.
For this, we insert a probe of d length having R radius into rectangular DRA. This is
pointing toward z-axis.

Figure 10.5 gives a clear picture of RDRA with feed associated, and Fig. 10.6
shows the structure of cylindrical probe.

x ¼ a
2
þ R cos/;

y ¼ b
2
þ R sin/;

z ¼ 0:

Fig. 10.5 RDRA with feed

Fig. 10.6 Feed probe
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It is expressed based on Cartesian to cylindrical coordinates.
n̂� H ¼ Js: This is based on boundary conditions inside the RDRA.

q̂ Hzẑþ H//̂
� �

¼ Js

H/ẑ� Hz/̂ ¼ Js

and

H/
a
2
þ R cos/;

b
2
þ R sin/; z

� 	
¼ Jsz /; zð Þ ð0\z\d; 0\/\2pÞ

Hz
a
2
þ R cos/;

b
2
þ R sin/; z

� 	
¼ Js/ /; zð Þ

�Js/ /; z; tð Þ ¼
X

D mnpð Þvmnp a
2
þ R cos/;

b
2
þ R sin/; z

� 	
ejx mnpð Þt

H/
a
2
þ R cos/;

b
2
þ R sin/; z

� 	
¼ �Hx sin/þ Hy cos/

¼ Jsz /; zð Þ 0\z\d; 0\/\2pð Þ
¼ �Js/ /; zð Þ

Jsz /; z; tð Þ ¼ sin/
X

�cmnp
jlx mnpð Þ

h2mn

@vmnp
@y

a
2
þ R cos/;

b
2
þ R sin/; z

� 	�

� dðmnpÞ
h2mn

@2vmnp
@z@x

a
2
þ R cos/;

b
2
þ R sin/; z

	� �
eþjx mnpð Þt

þ cos/
X

Cmnp � jlx mnpð Þ
h2mn

� 	
@

@x
umnp

a
2
þ R cos/;

b
2
þ R sin/; z

� 	�

þDðmnpÞ
h2mn

@2vmnp
@z@x

a
2
þ R cos/;

b
2
þ R sin/; z

� 	�
eþjx mnpð Þt;

ð10:41Þ

�Js/ /; z; tð Þ ¼
X
mnp

Cmnpe
jx mnpð ÞtXmnp /; zð Þ;

where,

Xmnp /; zð Þ ¼ vmnp
a
2
þ R cos/;

b
2
þ R sin/; z

� 	
; ð10:42Þ
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Jsz /; z; tð Þ ¼
X
mnp

Cmnpg
ð1Þ
mnpð/; zÞ þ Dmnpg

ð2Þ
mnpð/; zÞejx mnpð Þt

where,

gð1Þmnp /; zð Þ ¼ �jx mnpð Þt l sin/
h2mn

@

@y
umnp

a
2
þ R cos/;

b
2
þ R sin/; z

� 	

gð2Þmnp /; zð Þ ¼ � sin/
h2mn

@2vmnp
@x@z

a
2
þ R cos/;

b
2
þ R sin/; z

� 	
e�jx mnpð Þt eXmnp /; zð Þ

Cmnp ¼ lim
T!1

� 1
2T

Z
Js/ /; z; tð Þ~Xmnp /; zð Þe�jx mnpð Þt dt d/ dz ð10:43Þ

tj j\T

0\/\2p

0\z\d

Z eXmnp /; zð Þ�� ��2 d/ dz

Cmnp

Z
gð1Þmnp /; zð Þ
��� ���2d/ dzþ Dmnp

Z
gð1Þmnp /; zð Þ gð2Þmnp /; zð Þ

� �
d/ dz

¼ lim
T!1

1
2T

Z
g 1ð Þ
mnp /; zð ÞJsz /; tð Þe�jx mnpð Þt d/ dz dt

tj j � T

ð10:44Þ

Cmnp

Z
gð1Þmnpð/; zÞ gð2Þmnpð/; zÞ d/ dz dt þ DðmnpÞ

Z
jgð2Þmnpð/; zÞj

2
d/ dz

� �

¼ lim
T!1

1
2T

Z
Jsz /; z; tð Þ gð2Þmnp /; zð Þe�jx mnpð Þtd/ dz dt

tj j\T

ð10:45Þ

If we keep Js/ ¼ 0, from Eqs. (10.23) and (10.24), we get C(mnp) and D(mnp).
The study of electric and magnetic fields for maxima and minima inside RDRA

introduces us to define mode number. By applying perturbations, higher modes can
be excited. The increase in the electrical length of the antenna on higher-order mode
causes higher antenna gain. Short and open boundaries are the basis of modes. The
half-wavelength resonant modes with odd numbers only will be excited when
ground plane is used as even modes get short-circuited due to ground plane. The
polarization of even and odd modes is opposite. The higher modes will have higher
resonant frequency. A number of higher modes also modify the radiation patterns,
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i.e., the modes’ number will be equal to number of lobes in final radiation pattern.
Highly directive patterns can be obtained at higher modes. Bandwidth of
higher-order modes will be decreased. HEM 1, 3, 5, 7… are odd modes that can be
written as HE. Similarly HEM 2, 4, 6, 8,… are even modes or EH mode. The care
must be taken to select this hybrid number n because it has a direct relationship with
the radiation pattern of far fields or beam shape. Gain of antenna can also decrease
abruptly due to dispersion at higher modes. This is introduced when the dipole
moment starts overlapping. Based on various solutions, hybrid modes can be
memorized for any particular mode with desired radiation patterns. Automated
applications using microcontroller can generate lookup table for desired radiation
patterns or beam pattern for any desired frequency as well as gain. Thus, hybrid
modes can be used for automated RDRA reconfigurability.

10.8 HFSS Results

Figures 10.7, 10.8, 10.9, 10.10, 10.11, 10.12 and 10.13 are results of simulated and
experimentations of RDRA. Type of result is mentioned in each picture.

Fig. 10.7 The excitation is given by TE and TM modes at the same time

Fig. 10.8 The excitation is given by TE and TM modes at the same time
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Fig. 10.9 The HE fields in RDRA
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10.9 Prototype RDRA Results

See Fig. 10.13.
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Chapter 11
Inhomogeneous Permittivity, Permeability,
and Conductivity Solution in Rectangular
DRA

Abstract Fields solution for inhomogeneous permittivity, permeability, and con-
ductivity in rectangular DRA was found. The solution is very complex. This is
based on the solution of rectangular waveguide filled with inhomogeneous per-
mittivity, permeability, and conductivity material. These amplitudes are called “the
waveguide modes” and are of the form cos–sin. Depending on the nature of wall
surfaces (PEC or PMC), four possible linear combinations can appear (cos–sin, sin–
cos, sin–sin, and cos–cos). The discrete modes enable us to visualize the resonator
as collection of L, C oscillators with different L, C values.

Keywords Inhomogeneous � Permittivity � Permeability � Linear combinations �
Sequential RLC circuits � Discrete modes � Complex solution

11.1 Introduction

Solution of rectangular waveguide with inhomogeneous permittivity, permeability,
and conductivity of the medium was found. These amplitudes are called “the
waveguide modes” and are of the form cos–sin and sin–cos which denotes linear
components. It turns out that depending on the nature of wall surfaces (PEC or PMC),
four possible linear combinations can appear (cos–sin, sin–cos, sin–sin, and cos–cos).
In a rectangular DRA, we’ve got to applying in additional boundary conditions on top
and bottom surfaces to be the linear combinations as compared to waveguide. They
have two possible linear combinations of sin cos. Thus, the possible frequencies
obtained by solving them comes out to be an equivalent, but computationally simpler
way topass on fromwaveguidephysics to resonator physics is to just replace by—in all
the waveguide formulae that express the tangential field components in terms of the
longitudinal components. This is done after solving the full 3-D Helmholtz equations
using separation of variable in x, y, z. The discrete modes enable us to visualize the
resonator as collection of L, C oscillators with differentL,C values. The outcome of all
these analyses enables us towrite down thefields inside the resonator, as superposition
of four or three vector-valued basis functions.

© Springer India 2016
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11.2 Mathematical Model

� x; yð Þ ¼ �0 1þ d � ve x; yð Þð Þ ð11:1aÞ

l x; yð Þ ¼ l0 1þ d � vm x; yð Þð Þ ð11:1bÞ

E rð Þ ¼ E x; yð Þexp �czð Þ
H rð Þ ¼ H x; yð Þexp �czð Þ

Curl E rð Þ ¼ �jxl x; yð ÞH rð Þ
ð11:1cÞ

Curl H rð Þ ¼ ðrþ jx�1Þ x; yð ÞE rð Þ

¼ jx�1 x; yð Þ 1� jr x; yð Þ
x�1 x; yð Þ

� �
E rð Þ ¼ jx� x; yð ÞE rð Þ ð11:1dÞ

We define

� x; yð Þ ¼ �1 x; yð Þ 1� jr x; yð Þ
x�1 x; yð Þ

� �
¼ �0 1þ d � ve x; yð Þð Þ

Note that ve and vm are the frequency dependent complex functions of ðx; x; yÞ
and by substituting into the Maxwell equations, it gives the following equations:

Ez;y þ cEy ¼ �jxlHx; ð11:3aÞ

�cEx � Ez;x ¼ �jxlHy; ð11:3bÞ

Ey;x � Ex;y ¼ �jxlHz; ð11:3cÞ

Hz;y þ cHy ¼ jx�Ex; ð11:4aÞ

cHx þ Hz;x ¼ �jx�Ey; ð11:4bÞ

Hy;x � Hx;y ¼ jx�Ez ð11:4cÞ

where Ex;Ey;Ez;Hx;Hy;Hz are the functions (complex) of X, Y, and frequency x
only. We can arrange the equations [i.e., (11.3a), (11.3b), (11.4a) and (11.4b)] as
follows:

c jxl
jx� c

� �
Ey

Hx

� �
¼ �Ez;y

�Hz;x

� �
;

jx� �c
c �jxl

� �
Ex

Hy

� �
¼ Hz;y

�Ez;x

� �
:
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Thus,

Ey

Hx

� �
¼ 1

h2
c �jxl

�jx� c

� � �Ez;y

�Hz;x

� �
;

Ex

Hy

� �
¼ 1

h2
�jxl c

�c jx�

� � �Ez;y

�Hz;x

� �
;

h2 ¼ h2 x; yð Þ ¼ c2 þ x2�l

¼ c2 þ x2�0l0 1þ dveð Þ 1þ dvmð Þ
¼ h20 þ k2d ve þ vmð Þ þ k2d2vevm

where

h20 ¼ c2 þ x2�0l0 ¼ c2 þ k2; k2 ¼ x2�0l0

Then,

Ex ¼ � 1
h2

cEz;x þ jxlHz;y
� �

;

Ey ¼ 1
h2

�cEz;y þ jxlHz;x
� �

;

Hx ¼ 1
h2

�cHz;x þ jx�Ez;y
� �

;

Hy ¼ � 1
h2

cHz;y þ jx�Ez;x
� �

Equations (11.3c) and (11.4c) then give the following equation:

�c
Ez;y

h2

� �
;X þjx

lHz;x

h2

� �
;X þc

Ez;x

h2

� �
;Y þjx

lHz;y

h2

� �
;Y þjxlHz ¼ 0 ð11:5aÞ

�c
Hz;y

h2

� �
;X þjx

�Ez;x

h2

� �
;X þc

Hz;x

h2

� �
;Y �jx

�Ez;y

h2

� �
;Y �jx�Ez ¼ 0 ð11:5bÞ

These can be expended as:

jxl
h2

DHz þ jxlHz þ jx
l
h2

� �
;X Hz;x þ l

h2

� �
;Y Hz;y

n o
þ c

1
h2

� �
;Y Ez;x � 1

h2

� �
;X Ez;y

� 	
¼ 0

ð11:6aÞ

and,
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jx�
h2

DEz þ jx�Ez þ jx
�

h2

� �
;X Ez;x þ �

h2

� �
;Y Ez;y

n o
þ c

1
h2

� �
;X Hz;y � 1

h2

� �
;Y Hz;x

� 	
¼ 0

ð11:6bÞ

or equivalently,

Dþ h2
� �

Ez þ h2

�

�

h2

� �
;X Ez;x þ �

h2

� �
;Y Ez;y

n o
þ ch2

jx�
1
h2

� �
;X Hz;y � 1

h2

� �
;Y Hz;x

� 	
¼ 0

ð11:7aÞ

Dþ h2
� �

Hz þ h2

l
l
h2

� �
;X Hz;x þ l

h2

� �
;Y Hz;y

n o

þ ch2

jxl
1
h2

� �
;Y Ez;x � 1

h2

� �
;X Ez;y

� 	
¼ 0

ð11:7bÞ

or in matrix notation with

ve þ vm ¼ v1 x; yð Þ; vevm ¼ v2 x; yð Þ ð11:7cÞ

this can be expended as:

Dþ h2
� � Ez

Hz

� �
þ k2d

v1 0

0 v1

� �
Ez

Hz

� �
þ k2d2

v2 0

0 v2

� �
Ez

Hz

� �

þ k2d2
v2 0

0 v2

� �
Ez

Hz

� �
ðlog �

h2

� �
; x

@

@x
Þ

þ ðlog �

h2

� �
;y

@

@y
;
�c
jx�

ðlog h2Þ; x @

@y
Þ þ c

jx�
ðlog h2Þ;y @

@x
�c
jxl

ðlog h2Þ;y @

@x

þ ðlog h2Þ;x @

@y
; ðlog l

h2

� �
;x

@

@x
þ ðlog l

h2

� �
;y

@

@y

Ez

Hz

� �
¼ 0

Note that h2 x; yð Þ ¼ h20 þ k2dv1 x; yð Þ þ k2d2v2 x; yð Þ:
We write c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 � h2

p
in (11.8) and then (11.8) can be expanded as:

Dþ h2
� � Ez

Hz

� �
þ k2d

v1 0
0 v1

� �
Ez

Hz

� �
þ k2d2

v2 0
0 v2

� �
Ez

Hz

� �
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f11 x; y; k; dð Þ @

@x
þ g11 x; y; k; dð Þ @

@y
;

�
f12 x; y; k; dð Þ @

@x
þ g12 x; y; k; dð Þ @

@y

f21 x; y; k; dð Þ @

@x
þ g21 x; y; k; dð Þ @

@y
; f22 x; y; k; dð Þ @

@x
þ g22 x; y; k; dð Þ @

@y

�
Ez

Hz

� �
¼ 0

where k ¼ �h20,

f11 x; y; k; dð Þ ¼ ðlog �

h2

� �
;x g11 x; y; k; dð Þðlog �

h2

� �
;y

f12 x; y; k; dð Þ ¼ c
jx�

log h2
� �

;y

g12 x; y; k; dð Þ ¼ �c
jx�

log h2
� �

;x

f21 x; y; k; dð Þ ¼ �c
jxl

log h2
� �

;y

g21 x; y; k; dð Þ ¼ c
jxl

log h2
� �

;x

f22 x; y; k; dð Þ ¼ log
l
h2

� �
;x

g22 x; y; k; dð Þ ¼ log
l
h2

� �
;y

We therefore define the matrix differential part as follows:

l k; dð Þ ¼ f11 @
@x þ g11 @

@y f12 @
@x þ g12 @

@y

f21 @
@x þ g21 @

@y f22 @
@x þ g22 @

@y

 !

where fab; Iab are the functions of x, y, k; d: It is early to see that for small d; fkb and
gkb can be expanded in power of d with the series state from d0.

In other words,

fab x; y; k; 0ð Þ ¼ 0;

gab x; y; k; 0ð Þ ¼ 0:

Writing therefore

fab x; y; k; dð Þ ¼ dfab1 x; y; kð Þ þ d2fab2 x; y; kð Þ þ Oðd3Þ

and likewise,

gab x; y; k; dð Þ ¼ dgab1 x; y; kð Þ þ d2gab2 x; y; kð Þ þ Oðd3Þ
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We have

l k; dð Þ ¼ F x; y; k; dð Þ @

@x
þ G x; y; k; dð Þ @

@y

¼ d F1 x; y; kð Þ @

@x
þ G1 x; y; kð Þ @

@y

� �

þ d2 F2 x; y; kð Þ @

@x
þ G2 x; y; kð Þ @

@y

� �
þ Oðd3Þ

where

F x; y; k; dð Þ ¼ fab x; y; k; dð Þ� �� �
1� a;b� 2j j

G x; y; k; dð Þ ¼ gab x; y; k; dð Þ� �� �
1� a;b� 2j j

F1 ¼ fab1
� �� �

; G1 ¼ fab1
� �� �

;

F2 ¼ fab2
� �� �

; G2 ¼ fab2
� �� �

;

Note that

F ¼ dF1 þ d2F2 þ Oðd3Þ
G ¼ dG1 þ d2G2 þ Oðd3Þ

Thus,

l k; dð Þ ¼ dl1ðkÞ þ d2l2ðkÞ þ Oðd3Þ

where

l1 kð Þ ¼ F1 x; y; kð Þ @

@x
þ G1 x; y; kð Þ @

@y

l2 kð Þ ¼ F2 x; y; kð Þ @

@x
þ G2 x; y; kð Þ @

@y

We define

v1 kð Þ ¼ l1 kð Þ þ k2v1 x; yð ÞI2;
v2 kð Þ ¼ l2 kð Þ þ k2v2 x; yð ÞI2;
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then

D� kð Þw x; yð Þ þ dv1 kð Þ þ d2v2 kð Þ� �
w x; yð Þ ¼ 0

With neglecting higher order terms of O d3
� �

; where

w x; yð Þ ¼ Ezðx; yÞ
Hzðx; yÞ

� �

The boundary conditions are Ez ¼ 0; where x = 0, a or y = 0, b,Hx = 0; where x = 0, a,
Hy ¼ 0; where y = 0, b. Using the expression for HxHy in terms of Ez;Hz and the
boundary conditions on Ez, it follows that the boundary conditions on H can be
replaced by Hz;x ¼ 0, where x = 0, a and Hz;y ¼ 0, where y = 0, b.

Where d ¼ 0; (the homogeneous case), w satisfies D� kð Þw ¼ 0:
We denote the solution to this by w 0ð Þ

mn x; yð Þ since application of the boundary
conditions leads to (after separation of variables)

w x; yð Þ ¼ A m; nð Þumn x; yð Þ
B m; nð Þvmn x; yð Þ
� �

where A m; nð Þ;B m; nð Þ are the complex constants and

umn x; yð Þ ¼ 2ffiffiffiffiffi
ab

p sin
mpx
a

� �
sin

npy
b

� �

vmn x; yð Þ ¼ 2ffiffiffiffiffi
ab

p cos
mpx
a

� �
cos

npy
b

� �

Note that,

umn; uklh i ¼
Za
0

Zb
0

umn x; yð Þukl x; yð Þdxdy

¼ dmkdnl
umn; uklh i ¼ dmkdnl
umn; uklh i ¼ 0

The general solution to the d ¼ 0 case (homogeneous medium) is

D� kð Þwð0Þ ¼ 0; k ¼ �h20
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With boundary condition, the equation can be written as:

w 0ð Þ x; yð Þ ¼ w 0ð Þ
ðx;yÞ x; yð Þ ¼ A m; nð Þumnðx; yÞ

B m; nð Þvmnðx; yÞ

� �

k ¼ k 0ð Þ
mn ¼ �h2 m; n½ � ¼ � mp

a

� �2
þ np

b

� �2� �

where m, n = 1, 2, …. The corresponding z-components of the electromagnetic field
are given as follows:

Ezðt; x; y; zÞ
Hzðt; x; y; zÞ

� �
¼
X1
m;n¼1

A m; nð Þumnðx; yÞ
B m; nð Þvmnðx; yÞ

� �
exp �cmnð Þz

¼
X1
m;n¼1

w 0ð Þ
m;n x; yð Þ

h i
exp �cm;nz
� �

The active z-component of electromagnetic fields in time at frequency x are
given as follows:

Ezðt; x; y; zÞ
Hzðt; x; y; zÞ

� �
¼ Re

X
mn

w 0ð Þ
mn x; yð Þ exp jxt � cmnzf g

( )

the x and y components of the electromagnetic fields are easily obtained for d ¼ 0:
Fields are easily obtained for d ¼ 0:

Ex x; y; zð Þ ¼ �
X
m;n

1
h20 m; n½ � cmnA m; nð Þum;n; x x; yð Þ� ��

þjxl0B m; nð Þvm;nXðx; yÞ expð�cm;nzÞ
	
;

Ey x; y; zð Þ ¼
X
m;n

1
h20 m; n½ � �cmnA m; nð Þum;n; x x; yð Þ� ��

þjxl0B m; nð Þvm;nYðx; yÞ expð�cm;nzÞ
	
;

Hx x; y; zð Þ ¼
X
m;n

1
h20 m; n½ � jx�0A m; nð Þum;n; x x; yð Þ� ��

�cmnB m; nð Þvm;nXðx; yÞ expð�cm;nzÞ
	
;

Hy x; y; zð Þ ¼ �
X
m;n

1
h20 m; n½ � jx�0A m; nð Þum;n; x x; yð Þ� ��

þcmnB m; nð Þvm;nYðx; yÞ expð�cm;nzÞ
	
;
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where

cmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 m; n½ � � k2

q
cmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð0Þmn � k2

q

Consider now d[ 0 and d is small. Then, we have to solve the following equation:

D� kð Þwþ dV1 kð Þ þ d2V2 k1ð Þw ¼ 0

Let

k ¼ k 0ð Þ þ dk 1ð Þ þ d2k 2ð Þ þ O d3
� �

;

w ¼ wð0Þ þ dk 1ð Þ þ d2k 2ð Þ þ O d3
� �

Then, we get on equality coefficient of d0; d; d2 separately

O d0
� � ffi D� k 0ð Þ

� �
w 0ð Þ ¼ 0;

O d1
� � ffi D� k 0ð Þ

� �
w 1ð Þ þ V1 k 0ð Þ

� �
wð0Þ � k 1ð Þwð0Þ

O d2
� � ffi D� k 0ð Þ

� �
w 2ð Þ þ V1 k 0ð Þ

� �
wð1Þ

þ V1 k 0ð Þ
� �

wð0Þ þ k 1ð ÞV 0
1 k 0ð Þ
� �

wð0Þ � k 1ð Þwð1Þ � k 2ð Þwð0Þ ¼ 0

The solution to O d0
� �

case has already been obtained:
For each m and n, we have two orthogonal solutions:

wð0Þ1
mn ¼ umnðx; yÞ

0

� �
and wð0Þ2

mn ¼ 0
vmnðx; yÞ

� �
:

These solutions are normalized as follows:Z
wð0ÞK
mn

 2dxdy ¼ 1; k ¼ 1; 2 where nk k2¼ nTn;

n 2 D
2

0\x\a; 0\y\b;

Both solutions have the same eigenvalues

w 0ð Þ
mn ¼ � mp

a

� �2
þ np

b

� �2� �
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We can set k 0ð Þ ¼ w 0ð Þ
mn in ðazÞ and also

w 0ð Þ
mn ¼ A

umn
0

� �
þ B

0

vmn

� �

¼ Aw 0ð Þ1
mn þ Bw 0ð Þ2

mn

To get

D� kð0Þmn

� �
wð1Þ � k 1ð Þw 0ð Þ

mn þ V1 kð0Þmn

� �
wð0Þ
mn ¼ 0

Taking the inner product with both wð0Þk
mn ; k ¼ 1; 2 gives the following equation:

�k 1ð ÞAþ w 0ð Þ1
mn ;V1 k 0ð Þ

mn

� �
w 0ð Þ
mn

D E
¼ 0;

�k 1ð ÞBþ w 0ð Þ2
mn ;V1 k 0ð Þ

mn

� �
w 0ð Þ
mn

D E
¼ 0:

This expands as:

w 0ð Þ1
mn ;V1 k 0ð Þ

mn

� �
w 0ð Þ1
mn

D E
w 0ð Þ1
mn ;V1 k 0ð Þ

mn

� �
w 0ð Þ2
mn

D E
w 0ð Þ2
mn ;V1 k 0ð Þ

mn

� �
w 0ð Þ1
mn

D E
w 0ð Þ2
mn ;V1 k 0ð Þ

mn

� �
w 0ð Þ2
mn

D E
0
@

1
A

x
A
B

� �
¼ kð1Þ A

B

� �

Thus, the given unperturbed of eigenvalues k 0ð Þ
mn split into two eigenvalues

k 0ð Þ
mn þ dkð1Þ.
Where kð1Þ can be any one of the two eigenvalues of the secular matrix (2 × 2)

w 0ð Þa
mn

;V1 k 0ð Þ
mn

� �
w 0ð Þb
mn

D E� �� �
1� a;b� 2

Let
Aa m; nð Þ
Ba m; nð Þ

� �
; a ¼ 1; 2 be the corresponding normalized eigenvalues:

Aa m; nð Þj j2þ Ba m; nð Þj j2¼ 1.
We denote the corresponding eigenvalues by k 1ð Þ

mn að Þ; a ¼ 1; 2.
The principal normalized eigenfunction of D corresponding to the eigenvalue

k 0ð Þ
mn is split into k 0ð Þ

mn þ dk 1ð Þ
mn að Þ; a ¼ 1; 2; and

k 0ð Þa
mn ¼ Aa m; nð Þumn x; yð Þ

Ba m; nð Þvmn x; yð Þ
� �

; a ¼ 1; 2;

respectively.
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The radiation of an antenna that feeds a waveguide is controlled through a robot
(dynamic or moving probe).

The antenna orientation at time t is specified by the vector

l̂ tð Þ ¼ R / tð Þ; h tð Þ;w tð Þð Þẑ DRðtÞẑ

where

R /; h;wð Þ ¼ Rz /ð Þ;Rx hð Þ;Rz wð Þ

i.e., /; h;wð Þ are the Euler angles. The antenna is a rigid body (like a top) that
carries a current density. Jðt; rÞ in its initial configuration. So, after some time the
volume current density within the antenna body is given by

Jb t; rð Þ ¼ J t;R tð Þ�1r
� �

; r �RðtÞðBÞ

where B is the antenna body space at the time t = 0, we wish to control the
orientation angles / tð Þ; h tð Þ;w tð Þð Þ, 0� t� T so that the radiation pattern of the
antenna is as close as possible to a given pattern. Let us say that the pattern is
specified by the vector potential Adðt; rÞ in space.

Then, the vector potential produced by the rotating antenna is as follows:

Adðt; rÞ ¼ l
4p

Z
R3

Jb t � jr�r0 j
c ; r0

� �
jr � r0j d3r0

¼ l
4p

Z
RðtÞðBÞ

Jb t � r�r0j j
c ;R�1 t � r�r0j j

c r0
� �� �

r � r0j j d3r0

¼ l
4p

Z
B

J t � r�RðtÞnj j
c ;R�1 t � r�RðtÞnj j

c r0
� �

RðtÞnð Þ
� �

r � RðtÞnj j d3n

The far-field vector potential pattern, i.e., rj j � nj j is given by

A t; rð Þ ¼ l
4pr

Z
B

J t � r
c
þ r̂;R tð Þnð Þ

c
;R�1 tð Þn� r

c

� �
d3n

We wish to track Ad t; rð Þ over the space-time region 0;T½ � � n where n 2 R3 is
in a region of space in the far-field zone.
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We assume that r is relatively constant in n (it is the distance of the center of n
from the origin).

Then, Z
½0;T ��X0

A t; rð Þ � Ad t; rð Þj j2dt sin h0dh0d/0

is to be minimized where X0 is the solid angle subtended at the origin by n shifting

our time or region by r
c; the quantity to be minimized is taking

l
4p

¼ 1
� �

Z
0;T½ ��X0

rAd t; rð Þ �
Z
B

Jðt þ R�1 tð Þr̂; nð Þ�
c;R

�1 tð Þnd3n
������

������
2

sin h0dh0d/0

where

r; h0;/0ð Þ ¼ r; ðh0;/0Þ 	 r̂

Ad t; rð Þ ¼ Ad t; r; h;/ð Þ r 
 constant

Note that R�1 tð Þ ¼ Rz �wðtÞð ÞRx �hðtÞð ÞRz �hðtÞð Þ.
Once the optimal trajectory /d tð Þ; hdðtÞwdðtÞf g has been determined by opti-

mizing this highly nonlinear functional, we decide how to apply machine torques
sd tð Þ; sdðtÞsdðtÞð Þf g; 0� t� T .
The rigid body carrying current so that the time sd tð Þ; sdðtÞsdðtÞð Þ; 0� t� Tf g is

as close the desired trajectory as possible.
The kinetic energy of the top is given in terms of its principal moments of inertia

by (gold’s term classical mechanism)

T ¼ 1
2
ðI1x2

1 þ I2x2
2 þ I3x2

3Þ

where

x1 ¼ _h coswþ _h sinw sin h;

x2 ¼ � _h sinwþ _h cosw sin h;

x3 ¼ _wþ _h cos h:
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For a symmetric top (body carrying current), I1 ¼ I2:
We get,

T ¼ 1
2
I1 _h2 þ _/2 sin2 h
� �

þ 1
2
I3 _wþ _/ cos h
� �2

Then, the Lagrangian after taking machine torque into account is given as:

L ¼ T � V þ s/ tð Þ _hþ sh tð Þ _hþ sw tð Þ _w

where V ¼ mgl cos h; l being the distance between the CM of the top and the origin.
The equation of motion is given as:

d
dt
@L
@ _/

¼ @L
@/

;
d
dt
@L
@ _h

¼ @L
@h

;
d
dt
@L
@ _w

¼ @L
@w

give

d
dt

I1 _/ sin2 hþ I3 cos h _wþ _h cos h
� �� �

¼ sw tð Þ;
d
dt

I1 _h
� �

¼ �I3 _/ sin hð _wþ _/ cos hÞ þ I1 _/
2 sin h cos hþ mgl sin hþ sh tð Þ;

d
dt
I3 _wþ _h cos h
� �

¼ sw tð Þ

We define

F/ tð Þ ¼
Z t

0

s/ sð Þds;

Fw tð Þ ¼
Z t

0

sw sð Þds;

and then, the equations of motion are as follows:

I1 _/
2 sin2 hþ I3 cos h _wþ _h cos h

� �
¼ F/ tð Þ ð11:8Þ

I3 _wþ _h cos h
� �

¼ Fw tð Þ ð11:9Þ

I1€hþ I3/ sin h _wþ _h cos h
� �

� I1 _/
2 sin h cos hmgl sin h ¼ s/ tð Þ ð11:10Þ

The total work done by the machine torque is given as:
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W ¼
ZT
0

s/ tð Þ _/ tð Þ þ sh tð Þ _h tð Þ þ sw tð Þ _w tð Þ
� �

dt

¼
Z

_F/ tð Þ _/ tð Þ þ sh tð Þ _h tð Þ þ _Fw tð Þ _w tð Þ
� �

dt

This must beminimized subject to the constraints robotic of the equation ofmotion
(11.8)–(11.10) and that the final orientation defined by / tð Þ; h tð Þ;w tð Þ is given.

Here, we calculate F/ tð Þ;FwðtÞ;FhðtÞ
� �

; 0� t� T and hence, sd tð Þ; sd tð Þ;ðf
sdðtÞÞ; 0� t� Tg by putting

/ tð Þ ¼ /dðtÞ
h tð Þ ¼ hd tð Þ
w tð Þ ¼ wdðtÞ

This gives us an algorithm for calculating the machine torque to be supplied over
the range [0, T], so that the top antenna follows a desired trajectory that will lead to
a radiation pattern that matches a given radiation pattern as closely as possible in a
given solid angle element X0 over a given time interval [0, T]. Another way to
design the machine torque is to minimize a weighted combination of the error
energy between the desired trajectories /d �ð Þ; hdð�Þ;wdð�Þf g and the actual trajec-
tory, and the total work done by the torques over the duration [0, T] is minimized as
follows:

S ¼ a
ZT
0

_F/ tð Þ _/ tð Þ þ sh tð Þ _h tð Þ þ _Fw tð Þ _w tð Þ
� �

dt þ b
ZT
0

ð/ tð Þ � /dðtÞÞ2 þ ðh tð Þ � hdðtÞÞ
� �2

þ ðw tð Þ � wdðtÞÞ2
� �

dt

where F/ tð Þ; shðtÞFwðtÞ are given in terms of /; h; wð Þ in above equation we can
write the equation as:

S ¼
ZT
0

n /; _/; €/; h; _h; €h;w; _w; €w
� �

dt

a; b are the weights a; b[ 0. The optimal trajectories /; h;wð Þ then satisfy the
Euler trajectories equations:
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d
dt

@n

@ _/
� d2

dt2
@n

@€/
¼ @n

@/
;

d
dt
@n

@ _h
� d2

dt2
@n

@€h
¼ @n

@h
;

d
dt

@n

@ _w
� d2

dt2
@n

@€w
¼ @n

@w
:

Now support that the electromagnetic field generated by an antenna falls on the
aperture z = 0, 0 < x < a, 0 < y < b, of a rectangular waveguide.

We wish to complete the fields inside the guide. Assuming the guide to have
constant permittivity and permeability, we get for the phase fields inside the guide
at a given frequency x,

Dþ h20
� � Ez x; yð Þ

Hz x; yð Þ

� �
¼ 0

h20 ¼ c2 þ x2�0l0 ¼ c2 þ k2

We have

Ex ¼ � 1
h20

cEz;x þ jxlHz;y
� �

Ey ¼ 1
h20

�cEz;y þ jxlHz;x
� �

Hx ¼ 1
h20

�cHz;x þ jx�Ez;y
� �

Hy ¼ � 1
h20

�cHz;y þ jx�Ez;x
� �

The general solution for the fields within the given satisfying boundary condi-
tions is (as we’ve seen earlier) given by

Ez x; y; zð Þ
Hz x; y; zð Þ

� �
¼
X1
m;n¼1

A m; nð Þumn x; yð Þ
B m; nð Þvmn x; yð Þ

� �
e�cmnz

umn x; yð Þ ¼ 2ffiffiffiffiffi
ab

p sin
mpx
a

� �
sin

npy
b

� �
;

vmn x; yð Þ ¼ 2ffiffiffiffiffi
ab

p cos
mpx
a

� �
cos

npy
b

� �
cmn ¼ cmn xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 m; n½ � � x2l0�0

q

where h20 m; n½ � ¼ p2 m2

a2 þ n2
b2

� �
:
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When an electromagnetic field is incident on the surface z = 0 of the guide, let
E0x x; yð Þð Þ; E0y x; yð Þ� �

; be the incident electric field (tangential components to the
surface). Then by continuity of the tangential components of the electric field, we have

Ex x; y; 0þð Þ ¼ E0x x; yð Þ; Ey x; y; 0þð Þ ¼ E0y x; yð Þ;
0� x� a; 0� y� b;

where

Ex x; y; 0þð Þ ¼
X
m;n

� 1
h20 m; n½ � cmnA m; nð Þumn x; yð Þ þ jxl0B m; nð Þvmn x; yð Þð Þ

and

Ey x; y; 0þð Þ ¼
X
m;n

1
h20 m; n½ � �cmnA m; nð Þumn x; yð Þ þ jxl0B m; nð Þvmn x; yð Þð Þ

Thus

E0x x; yð Þ ¼ �
X
m;n

cmn
h20 m; n½ �A m; nð Þ 2ffiffiffiffiffi

ab
p mp

a

� �
cos

mpx
a

� �
sin

npy
b

� ��

� jxl0
h20 m; n½ �

2ffiffiffiffiffi
ab

p np
b

� �
B m; nð Þ cos mpx

a

� �
sin

npy
b

� �	

E0y x; yð Þ ¼ 2ffiffiffiffiffi
ab

p
X
m;n

�cmn
h20 m; n½ �A m; nð Þ np

b

� �
sin

mpx
a

� �
cos

npy
b

� ��

þ jxl0
h20 m; n½ �B m; nð Þ mp

a

� �
sin

mpx
a

� �
cos

npy
b

� �	

or equivalently

E0x x; yð Þ ¼
X
m;n

�2cmnmp

h20 m; n½ � ffiffiffiffiffiabp A m; nð Þ þ 2jxl0np

h20 m; n½ �b ffiffiffiffiffi
ab

p B m; nð Þ
 !

cos
mpx
a

� �
sin

npy
b

� �

and

E0y x; yð Þ ¼
X
m;n

�2cmnnp

h20 m; n½ �b ffiffiffiffiffi
ab

p A m; nð Þ þ 2jxl0mp

ah20 m; n½ � ffiffiffiffiffiabp B m; nð Þ
 !

sin
mpx
a

� �
cos

npy
b

� �
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Thus, we get

2ffiffiffiffiffi
ab

p
Z

E0x x; yð Þ cos mpx
a

� �
sin

npy
b

� �
dxdy

0\x\a; 0\y\b

¼ �mpcmn
ah20 m; n½ �A m; nð Þ þ jxl0np

h20 m; n½ �b B m; nð Þ
� �

These are the two simultaneous linear equations for the two variables
A m; nð Þ and B m; nð Þ which are easily solved. 2 × 2 matrix notation supports the
incident electric field is E0 x; y; z; tð Þ: Then, we take

Ê0x x; y;xð Þ ¼
Z
R

E0x x; y; 0; tð Þe�jxtdt

Ê0y x; y;xð Þ ¼
Z
R

E0y x; y; 0; tð Þe�jxtdt

Define

/x m; n; tð Þ ¼ 2ffiffiffiffiffi
ab

p
Z
D

E0x x; y; 0; tð Þ cos mpx
a

� �
sin

npy
b

� �
dxdy

/y m; n; tð Þ ¼ 2ffiffiffiffiffi
ab

p
Z
D

E0y x; y; 0; tð Þ sin mpx
a

� �
cos

npy
b

� �
dxdy

Then,

/̂x m; n;xð Þ,
Z
R

/x m; n; tð Þe�jxtdt

, 2ffiffiffiffiffi
ab

p
Z
D

Ê0x x; y;xð Þ cos mpx
a

� �
sin

npy
b

� �
dxdy

/̂y m; n;xð Þ,
Z
R

/y m; n; tð Þe�jxtdt

, 2ffiffiffiffiffi
ab

p
Z
D

Ê0y x; y;xð Þ sin mpx
a

� �
cos

npy
b

� �
dxdy
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11.3 Applications: Hybrid Modes Generation Inside
RDRA Can Be Used for Polarization Diversity

11.3.1 RF Measurements for Antenna Parameters

• S11
• Gain
• Radiation pattern
• VSWR
• Dispersion
• Polarization
• Permittivity and permeability
• Bandwidth
• S21
• Isolation
• Efficiency
• Directivity
• Resonant frequency
• Propagation constants
• Axial ratio
• Resonant mode
• Dominant mode
• Higher-order modes

250 11 Inhomogeneous Permittivity, Permeability, and Conductivity …



Chapter 12
Case Studies

Abstract This chapter deals with case studies, where implemented cases have been
discussed. Various type of antennas have been fabricated. Their dominating para-
meters are shown. These cases have either been developed using HFSS simulations
or hardcore experimentations. The case study is based on the rectangular DRA
using ceramics such as eccostock-500. Nomenclature and parameters obtained have
been mentioned below the each figure. Emphasis is also given on geometry of
antennas and their experimental results. The experimental results have been
obtained under specific environmental conditions i.e. anechoic chambers.

Keywords Rectangular DRA �Simulated and experimental results � Isolated RDRA
and RDRA with ground plane � Single feed � Double feed � Anechoic chamber
measurements � Radiation pattern � Gain � S11, VSWR, Z11, and E and H fields
distribution � RF absorbers � Test set for measurement � Prototype � Azimuth and
elevation pattern � Manganese–manganese material � Bandwidth enhancement �
Higher order resonant modes � Variable DRA height � Smith chart � Group
delay �Rectangular wells �LHCP �RHCP �Circular polarization � Phase distortion �
S21 � Ferrite RDRA � Slot variation � Permittivity variation effects � Hardware
implementation � VNA calibration � Aperture coupled RDRA and probe fed RDRA

12.1 Structure and Hardware Experimentations

The case study is based on the rectangular DRA where the various designs of DRA
have been presented and the nomenclature is given below each figure. These
antennas have been simulated and fabricated. The results obtained have been pre-
sented graphically here. These antennas also have been placed inside anechoic
chamber to minimize external effects that come during measurements. The figures
indicate various measurement steps involved in this process. For simulated results,
Ansoft HFSS 13.0 has been used. These graphs of radiation pattern, gain, S11,
VSWR, Z11, and field distribution have been presented and their domains are
mentioned below each figure (Figs. 12.1, 12.2, 12.3, 12.4, 12.5, 12.6 and 12.7).

© Springer India 2016
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3_12
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Fig. 12.1 a Model of electronic band gap (EBG) structure cavity rectangular dielectric resonator.
b Diagrammatic representation of RDRA with top-loading DRA

Fig. 12.2 Positioning of RDRA antenna ready for test procedure setup

Fig. 12.3 Positioning of RDRA antenna under measurement setup
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12.1.1 RDRA Antenna Results

See Figs. 12.8, 12.9, 12.10, 12.11, 12.12, 12.13, 12.14, 12.15, 12.16, 12.17, 12.18,
12.19, 12.20, 12.21, 12.22 and 12.23.

Fig. 12.4 RDRA antenna between RF absorbers inside chamber for gain testing

Fig. 12.5 View of RDRA antenna under test setup on sliding table

Fig. 12.6 View of RDRA antenna under test setup on sliding table

Fig. 12.7 RDRA antenna on sliding table with variation in position of RDRA
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Fig. 12.8 E-plane radiation pattern at 13.7 GHz of simulated RDRA for electric field distribution

Fig. 12.9 H-plane radiation pattern of simulated RDRA for magnetic field distribution
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Fig. 12.10 VSWR measurement for measurement of reflected field strength of simulated RDRA

Fig. 12.11 H-plane radiation pattern at 16.8GHz of simulated RDRA formagnetic field distribution
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12.2 RDRA with Manganese–Manganese Material
as Dielectric

In this case, the designing of RDRA using manganese–manganese material has
been presented. This dielectric material shows the various effects on the parameters
of the developed antenna. The bandwidth enhancement techniques have been
implemented using two wells. The results obtained have been presented graphically
here. These antennas also have been placed inside anechoic chamber to minimize
external effects that come during measurements. The figures indicate various
measurement steps involved in this process. These antennas have been simulated
and fabricated. For simulated results, Ansoft HFSS 13.0 has been used. These
graphs of radiation pattern, gain, S11, VSWR, Z11, and field distribution have been

Fig. 12.12 Measurement of gain at 16.8 GHz of simulated RDRA
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Fig. 12.13 Radiation pattern at 13.7 GHz for radiated field pattern of simulated RDRA
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Fig. 12.14 Return loss S11 of higher-order modes excited inside simulated RDRA

Fig. 12.15 Gain of simulated RDRA at various heights (with the excitation of higher-order modes)

Fig. 12.16 Excitation of higher mode at RDRA 10 mm height with variable frequency of 10, 12,
15 GHz
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Fig. 12.17 RDRA height 15 mm, excitation frequency variable, generated higher modes. Even
modes excitation with top excitation a TE114 at 11.7 GHz b TE116 at 13.7 GHz c TE118 at
16.7 GHz in RDRA

Fig. 12.18 Measured return loss S11 at −33.596 dB of RDRA
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Fig. 12.19 Measured input impedance of 50.089 Ω by Smith chart of RDRA

Fig. 12.20 Prototype RDRA under test setup for measurements with VNA
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Fig. 12.21 Experimental gain of antenna of 16.624 dBi at 16.8 GHz RDRA inside microwave
anechoic chamber

Fig. 12.22 E-plane radiation pattern at 16.8 GHz dBi inside microwave anechoic chamber
amplitude versus theta

12.2 RDRA with Manganese–Manganese Material as Dielectric 261



presented and their domains are mentioned below each figure. The phase versus
frequency plots indicate distortions in the developed RDRA. The group delay,
forward power has also been indicated in simulated results (Figs. 12.24, 12.25,
12.26, 12.27, 12.28, 12.29, 12.30, 12.31, 12.32, 12.33, 12.34, 12.35, 12.36, 12.37
and 12.38).

Fig. 12.23 H-plane radiation pattern at 16.8 GHz dBi inside microwave anechoic chamber
amplitude versus theta

Fig. 12.24 HFSS model of dual-feed RDRA with circular polarization
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Fig. 12.25 HFSS model of DRA with two rectangular wells
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Fig. 12.26 Return loss curve S11 of simulated DRA at 15.5 GHz
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Fig. 12.27 Radiation pattern 2 of simulated DRA at 15.5 GHz

12.2 RDRA with Manganese–Manganese Material as Dielectric 263



Ground plane 20� 30mm2

Substrate e ¼ 2:2ð Þ 20� 30� 0:8mm3

DRA material e ¼ 12:2ð Þ 12 manganese�manganeseð Þ
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Fig. 12.28 Impedance plot Z11 of simulated DRA at 15.5 GHz
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Fig. 12.29 Gain plot of 4.80 dBi of simulated DRA at 15.5 GHz
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Fig. 12.30 Axial ratio magnitude for polarization inside DRA
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Fig. 12.31 Left Circular polarization radiation plot of simulated DRA
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Fig. 12.32 Right Circular polarization of simulated DRA at 15.5 GHz

Fig. 12.33 E field pattern with dual feed of simulated DRA
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Fig. 12.34 E field pattern when single feed along y-axis of simulated DRA

Fig. 12.35 E field pattern when single feed along x-axis applied of simulated DRA

12.2 RDRA with Manganese–Manganese Material as Dielectric 267



Fig. 12.36 Group delay measurements in RDRA dual feed of simulated DRA

Fig. 12.37 Phase versus frequency plot (phase distortion) of simulated DRA
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12.3 Dual-Feed RDRA with Measurements Results

In this case, the designing of RDRA dual-feed mechanism has been implemented
for circular polarization. Ferrite DRA has been used for bandwidth enhancement
using magnetization concept. The results obtained have been presented graphically.
These antennas also have been placed inside anechoic chamber to minimize
external effects that come during measurements. The figures indicate various
measurement steps involved in this process. These antennas have been simulated
and fabricated. For simulated results, Ansoft HFSS 13.0 has been used. These
graphs of radiation pattern, gain, S11, VSWR, Z11, field distribution have been
presented and their domains are mentioned below each figure. The impedance
versus frequency has been presented. The hardware results using VNA for return
loss S11 have been also included (Figs. 12.39, 12.40 and 12.41; Table 12.1).

Optimization of the feed position for impedance match to have maximum gain
(Figs. 12.42, 12.43, 12.44, 12.45, 12.46, 12.47, 12.48, 12.49, 12.50, 12.51, 12.52,
12.53, 12.54, 12.55, 12.56, 12.57, 12.58, 12.59, 12.60, 12.61, 12.62 and 12.63).

Fig. 12.38 S21 measurement plot in dual feed of simulated DRA
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Fig. 12.39 Double-feed RDRA HFSS model

DRA (4.6 x 9 x 10.8 mm)

Fig. 12.40 Design dimensions of RDRA under design

Feed design dimensions 

30mm

20mm

Fig. 12.41 Ground plane with slot/stub/micro-strip feed in RDRA

Table 12.1 Specification/dimensions

S. No. Element Dimension (mm)

1 Ground plane 20 × 30

2 Substrate er2:2ð Þ 20 × 30 × 0.8

3 DRA er12:2ð Þ 4.6 × 9 × 10.8

4 Width of micro-strip 2.4

5 Length of stub and micro-strip 18.693

6 Slot (l × w) 3.743 × 0.404
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Fig. 12.47 Radiation pattern 1 of simulated RDRA for field strength
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Fig. 12.48 Radiation pattern 2 of simulated RDRA for field strength
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Fig. 12.49 Radiation pattern of simulated RDRA for field strength

Fig. 12.50 Front and rear view of hardware implemented of dual-feed RDRA

Fig. 12.51 Short, open, and load termination for calibration of VNA
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Fig. 12.52 Top and side view of single- and double-feed aperture couple feed of RDRA

Fig. 12.53 Back side view of
double-feed aperture couple
feed of RDRA

Fig. 12.54 Fabricated ferrite
RDRA
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Fig. 12.55 Smith chart for impedance matching of RDRA

Fig. 12.56 Position of the
slot in ground plane of
single-feed RDRA
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Fig. 12.57 RDRA investigation under testing setup

Fig. 12.58 RDRA H fields pattern showing magnetic field strength
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Fig. 12.59 VNA showing measured S11 of RDRA

Fig. 12.60 Fabricated model of RDRA under test with single feed and slot

Fig. 12.61 Measurements of return loss S11 of fabricated RDRA
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12.4 Isolated and Grounded RDRA

Design of Isolated DRA: Isolated and grounded RDRA has different lengths due to
image theory. Isolated RDRA is shown in Fig. 12.64. The RDRA is excited by a
coax feed. Ground plane is absent in the first design. The rectangular DRA height
can be reduced to half if we use ground plane of finite dimensions (Table 12.2).

12.4.1 S11 Plot

Return loss of isolated DRA is shown in Fig. 12.65. It has resonant frequency of
3.99 GHz with −41.74 return loss.

Fig. 12.62 Slot in ground plane of fabricated RDRA

Fig. 12.63 Top view with single feed and SMA connector of fabricated RDRA
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Fig. 12.64 Isolated DRA
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Fig. 12.65 Return loss for isolated DRA

Table 12.2 Dimensions of
isolated DRA

Dimension of DRA in X-direction = 9.31 mm

Dimension of DRA in Y-direction = 18.62 mm

Dimension of DRA in Z-direction = 4.6 mm

Permittivity of DRA = 37.84
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12.4.2 Gain Plot

Gain plot is shown in Fig. 12.66. It shows that isolated DRA has 4.7 dB gain at
resonant frequency.

12.4.3 Impedance (Z) Plot

Impedance plot of isolated DRA is shown in Fig. 12.67. This has the real imped-
ance nearly 50 Ω at resonant frequency.
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Fig. 12.66 Gain plot of isolated DRA
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12.4.4 Design of RDRA with Ground Plane

Image theory has been applied to reduce the height of the antenna. HFSS model of
DRA with ground plane has been developed using excitation with coaxial feed.
Here, the height of DRA has been reduced to half as compared to isolated DRA
(Fig. 12.68; Table 12.3).

12.4.5 S11 Plot

Simulated return loss of DRA with ground is shown in Fig. 12.69. It has resonant
frequency 4.18 GHz with −28 dB return loss.

12.4.6 Gain Plot

Gain plot is shown in Fig. 12.70. It shows that antenna radiates in the end fire
direction and holds the value of gain 4.62 dB at resonant frequency.

Fig. 12.68 HFSS model for
DRA with ground

Table 12.3 Dimensions of
DRA with ground plane

Dimension of DRA in X-direction = 9.31 mm

Dimension of DRA in Y-direction = 9.31 mm

Dimension of DRA in Z-direction = 4.6 mm

Permittivity of DRA = 37.84
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12.4.7 Impedance Plot

Impedance plot of DRA with ground is shown in Fig. 12.71. This has the real
impedance nearly 48.2 Ω and reactive part is 0.17 Ω at resonant frequency.
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Fig. 12.69 Return losses for DRA with ground
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12.4.8 Comparison of DRAWith and Without Ground Plane

From the comparison in Table 12.4, it is seen that resonant frequency and gain for
isolated DRA and DRA with ground are approximately same but return loss and
impedance bandwidth are better in isolated DRA (Fig. 12.72).

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

Freq [GHz]

-37.50

-25.00

-12.50

0.00

12.50

25.00

37.50

50.00

Y
1

Ansoft LLC HFSSDesign1XY Plot 5
m6

m7

Curve Info

re(Zt(coaxpin_T1,coaxpin_T1))
Setup1 : Sweep1

im(Zt(coaxpin_T1,coaxpin_T1))
Setup1 : Sweep1

Name X Y

m6 4.1984 48.1805

m7 4.1824 0.1700

Fig. 12.71 Impedance plot for DRA with ground
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Fig. 12.72 Impedance plot of DRA

Table 12.4 Comparison of DRA with and without ground plane

Parameter Isolated With ground

Resonant frequency (GHz) 3.99 4.16

Gain (dB) 4.7 4.629

B.W. (GHz) 0.17 0.1

Return loss (dB) −41.04 −28
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12.4.9 Detailed Design of Aperture-Coupled DRA

Figure 12.73 shows the view of a simple structure of rectangular DRA. The rect-
angular DRA of length L, width W, and height H is placed over a slot, cut at the
center of ground plane of size 50 × 50 mm2. The micro-strip line of length Lm and
width We is placed on the other side of the ground plane. The dielectric material
used for substrate is having permittivity, er ¼ 10:2 and thickness 0.64 mm. The
dielectric material used for DRA is Rogers RT/Duroid 6010/6010LM having per-
mittivity er ¼ 10:2. All other the dimensions have been shown in Table 12.5
(Fig. 12.74).

Fig. 12.73 HFSS model for reference antenna 1

Table 12.5 Dimensions of reference antenna

L
(mm)

W
(mm)

H
(mm)

Ls
(mm)

Ws
(mm

Lm
(mm)

Wm
(mm)

Er
(sub)

er
(dra)

H (sub)
(mm)

10.6 6 9.6 7.2 1.2 28 0.6 10.2 10.2 0.64
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12.4.10 Return Loss

Return loss of antenna 1 is shown in Fig. 12.75. Resonant frequency is 6.89 GHz
with return loss −24 dB.

Fig. 12.74 Bottom view of aperture-coupled DRA
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Fig. 12.75 Return loss of aperture-coupled DRA
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12.4.11 Radiation Pattern

Antenna radiates in end fire direction. Gain of antenna at θ = 90° and Φ = 90° is
8.796 dBi (Figs. 12.76 and 12.77).

Fig. 12.76 Radiation pattern of gain for (antenna A) θ = 90° and Φ = 90°
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Fig. 12.77 Impedance matching plots
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Annexure-1

Details of the Dielectric Materials and Their Suppliers

S. No. Material Permittivity Supplier or manufacturer

1. MgO–SiO2

(CD-6)
6.3 Countis Laboratories

12295 Charles Dr, Grass Valley, CA 95945,
United States
+1 530-272-8334
tcountis@countis.com

2. MgO–SiO2–TiO2

(CD-9)
9.5

3. MgO–TiO2–SiO2

(CD-13)
13.0

4. MgO–TiO2

(CD-15)
15.0

5. MgO–TiO2

(CD-16)
16.0

6. Mgo–CaO–TiO2

(CD-18)
18.0

7. Mgo–CaO–TiO2

(CD-20)
20.0

8. Mgo–CaO–TiO2

(CD-30)
30.0

9. Mgo–CaO–TiO2

(CD-50)
50.0

10. Mgo–CaO–TiO2

(CD-100)
100.0

11. Mgo–CaO–TiO2

(CD-140)
140.0

(continued)
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S. No. Material Permittivity Supplier or manufacturer

12. Boron nitride
(ECCOSTOCK@)

4.0 Emerson & Cuming Microwave
Products N.V.
A unit of Laird Technologies
Hong Kong Holdings (4) Ltd.
Unit 2507-8, 25/F, Office Tower, Langham
Place,
8 Argyle Street, Mongkok
Kowloon, Hong Kong
Tel: +852-2923 0600 Call: +852-2923 0605
Email: sales@hk.eccosorb.com

13. Beryllium oxide
(ECCOSTOCK@)

6.0

14. Magnesium oxide
(ECCOSTOCK@)

9.0

15. Magnesium titanate
(ECCOSTOCK@)

10.0

16. Zirconia
(ECCOSTOCK@)

20.0

17. Titanium dioxide (rutile)
(ECCOSTOCK@)

50.0

18. Strontium titanate
(ECCOSTOCK@)

>100.0

19. Magnesium manganese
Aluminum iron ferrite

9.2 Hiltek Microwave Limited
15200 Shady Grove Road Suite 350
Rockville, Maryland 20850
United States
(301) 670-2833
(301) 670-2831 Fax
www.hiltek.com

20. Magnesium titanate 16.0

21. Lithium ferrite 20.0

22. Zirconium tin titanate 37.0

23. Titania ceramic 80–100

24. MgSi (Steatile)
(D6)

6.0 Morgan advanced Materials
150 Kampong ampat
05-06a
Ka Centre
Singapore
368324
t +65 6595 0000
F +65 6595 0005
asia.mc@morganplc.com

25. CaMgTi (Mg, Ca
titanate)
(D20)

20.0

26. ZrTiSn (Zr, Sn titanate)
(D36)

37.0

27. BaSmTi (Ba, Sm
titanate)
(D37)

76.5

(continued)
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S. No. Material Permittivity Supplier or manufacturer

28. Titanate with other
ingredients
(PD-6)

6.5 Pacific Ceramics, Inc.
Advanced Microwave Ceramic Materials
824 San Aleso Ave Sunnyvale, CA 94085
USA (408) 747-4600
info@pceramics.com

29. Titanate with other
ingredients
(PD-9)

9.5

30. Titanate with other
ingredients
(PD-12)

12.0

31. Titanate with other
ingredients
(PD-13)

13.0

32. Titanate with other
ingredients
(PD-15)

15.0

33. Titanate with other
ingredients
(PD-16)

16.0

34. Titanate with other
ingredients
(PD-18)

18.0

35. Titanate with other
ingredients
(PD-25)

25.0

36. Titanate with other
ingredients
(PD-38)

38.0

37. Titanate with other
ingredients
(PD-50)

50.0

(continued)
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S. No. Material Permittivity Supplier or manufacturer

38. Titanate with other
ingredients
(PD-100)

98.0

39. Titanate with other
ingredients
(PD-160)

160.0

40. Titanate with other
ingredients
(PD-270)

270.0

41. Zr Sn Ti oxide
(E2000)

37.0 Temex Components & Temex Telecom,
USA
Supplier 1
SM CREATIVE
No 845, 2nd Cross, 7th Main HAL 2nd
Stage
Indiranagar, Bangalore, 560 038
India
sundar@smcel.com
+91 (80) 25210268
+91 (80) 41255492
Mobile Phone Number: +91 (98) 45410417
http://www.smcel.com
S M Creative Electronics Ltd
#10, Electronic City, Sector-18
Gurgaon 122 015, Haryana
Tel: +91 124-4909850
Fax: +91 124-2455 212
smcel@smcel.com
Supplier 2
SIMAL
# 60 & 60/1, 18th Cross, 4th Main
Malleswaram, Bangalore, 560 055
India
agencies@simal.com.sg
+91 (80) 41532079
+91 (80) 23444410
Mobile Phone Number: +91 (99721) 24165
http://www.simal.com.sg

42. E3000 34.0

43. Ba Zn Ta oxide
(E4000)

30.0

44. Ba Sm Ti oxide
(E5000)

78.0

45. Ti Zr Nb Zn oxide
(E6000)

45.0

46. Cordierite (Mg, Al,
silicate)
(D-4)

4.5 Trans-Tech
Skyworks Solutions, Inc.
5520 Adamstown Road
Adamstown, MD 21710
Supplier
SM Electronic Technologies Pvt. Ltd.
#1790, 5th Main, 9th Cross, RPC Layout
Vijayanagar 2nd Stage
Bangalore 560 040
India

47. Forsterite (Mg, Si,
oxide)
(D-6)

6.3

48. Mg–Ti
(D-15)

15.0

49. Mg–Ti
(D-16)

16.0

(continued)

292 Annexure-1

http://www.smcel.com
http://www.simal.com.sg


S. No. Material Permittivity Supplier or manufacturer

50. Ba, Zn, Ta-oxide
(D-29)

29.0–30.7 Mr. Manjunath
+91-80-23301030
smgroup@vsnl.com51. Ba, Zn, Ta-oxide

(perovskite)
(D-87)

29.5–31.0

52. BaZnCoNb
(D-83)

35.0–36.5

53. Zirconium titanate based
(D-43)

44.7–46.2

54. E-11 11.0 T-CERAM, RF & Microwave
Okružní 1144
500 03 Hradec Králové
Czech Republic, EU
sales@t-ceram.com
www.t-ceram.com
+420 774 406 438
CZ 42196078

55. E-20 20.0

56. E-37 37.0

57. TE-21 21.0 Token Electronics Industry Co., Ltd.
No. 137, Sec. 1, Chung Shin Rd., Wu Ku
Hsiang, Taipei Hsien, Taiwan, R.O.C
TEL: 886-2-2981 0109; FAX: 886-2-2988
7487
http://www.token.com.tw rfq@token.com.
tw

58. TE-30 30.0

59. TE-36 36.0

60. TE-45 45.0

61. TE-80 80.0

62. TE-90 90.0

63. Mg–Ca–Ti
(MDR20)

20.0 MCV Microwave
6640 Lusk Blvd, Suite A102 San Diego, CA
92121
Tel: 858-450-0468
Fax: 858-869-8404
www.mcv-microwave.com

64. Ta with other ingredients
(MDR24)

24.0

65. Ta with other ingredients
(MDR30)

30.0

66. Zn–Sn–Ti
(MDR38)

38.0

67. La–Ba–Ti
(MDR45)

45.0

68. DR-30 30.0 TCI Ceramics, Inc.
18450 Showalter Rd., Hagerstown, MD
21742
Ph: 301-766-0560 Fax: 301-766-0566
E-mail: sales@tciceramics.com
www.tciceramics.com

69. DR-36 36.0

70. DR-45 45.0

71. DR-80 80.0

72 RT6010, RT-6002 10.2

73 MCT-25
SMAT
BaTiO3

25
27
14

TRANS TECH

74 ECCOSTOCK’SHIK 10,20,30,40
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Annexure-2

Two-Dimensional Mathematical Model of Resonant Modes
in Cavity Resonator

See Figs. A2.1, A2.2 and A2.3.
Probe inserted dl
Characteristic equation of RDRA is given below:

k2x þ k2y þ k2z ¼ erk
2
mn ðA2:1Þ

The field Ez can be expressed as follows:

r2
? þ h2

� �ðHz or EzÞ ¼ 0; Helmholtz equation

Ez ¼
X

Cmn � sin mpx=að Þ � sin npy=bð Þ � e�cmnz ejxt

In the above equation, Cmn are the amplitude coefficients and wave is propagating
in z-direction

) cmn Propagation constantð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2mn � k2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2mn � x2l�

q

where hmn ¼ kc ¼ np=b; are possible eigenvalues.
Hence, computation of field Ez when all the four sides of resonator are trans-

parent and magnetic walls (PMC walls) and top and bottom walls are PEC
(Electrical walls). We are well versed that Hz ¼ 0 at magnetic walls and Ez ¼ 0 at
electric walls.

The feed probe is inserted into rectangular DRA at point (a/2, b/2) in z-direction.
I(t) Current can be expressed in terms of magnetic vector potential Az.

© Springer India 2016
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Az ¼
ẑ lIdl
4pr

e�jkr; r is far field point:

div A ¼ � jkðr̂ � ẑÞ lIdl� e�jkr

4pr

div A ¼ � jk cos h lIdl� e�jkr

4pr
;

¼ � jx 6 9
c2

Fig. A2.1 RDRA without
ground plane

Fig. A2.2 Ground plane of
RDRA

Fig. A2.3 RF feed
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Let,

6 9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p kc
x

lIdl
4pr

e�jkr

¼ cos hlIdl
4pr

e�jkr

Now,

E ¼ �rø� jxA; Lorentz’s gauge condition

Er ¼ 0þ O
1
r2

� �
Eh ¼ jxAh ¼ jxAz; at z ¼ 0

Eø ¼ �jxAø ¼ 0 at z ¼ 0

Hence,

Eh ¼ Ez ¼ jxAz

¼ jxlIdl
4pr

e�jkr � 2ffiffiffiffiffi
ab

p sin
mpx
a

� �
sin

npy
b

� �

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
dm;m0; dn; n0 ¼ unm; um0n0h i; where z = 0; (property of orthogonality as product

of basis function becomes zero)

Ez ¼
X
mn

Cmnumn x; yð Þe�cmnz

hmn �x

At z = 0

Ez )
X
mn

Cmnumn x; yð Þ jxlIdl

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p e�jk
ffiffiffiffiffiffiffiffiffi
x2þy2

p
;

Hence, amplitude coefficient

Cmn ¼ jxlIdl
4p

Za
0

Zb
0

umnðx;yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p e�jk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� a=2
� �2þ x� b=2

� �2r
dxdy;
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Cmn ¼ jxlIdl
4p

Za
0

Zb
0

umnðx;yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� a=2
� �2þ y� b=2

� �2r e�jk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� a=2
� �2þ x� b=2

� �2r
dxdy

ðA2:2Þ

Hence p2
m
a

� �2
þ n

b

� �2	 

�x2

if a[ b and m ¼ 1; 2; 3; . . . n ¼ 1; 2; 3; . . .

p2
1
a2

þ 1
b2

� �
�x2\p2

2
a2

þ 1
b2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a2

þ 1
b2

r
� x

p
\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
a2

þ 1
b2

r

cmn ¼
jpp
d

k2 þ c2mn ¼ h2mn

hence, k2 ¼ h2mn þ
p2p2

d2

Cmn Fourier coefficients of modes;
umn depends on input excitation;
hmn resonant mode (cut off frequency); and
k-propagation constant.

Generation of modes or characteristics frequencies x mnpð Þ e.m. of electro-
magnetic fields oscillations inside the cavity resonator has been discussed. The
basic Maxwell’s theory can be applied with boundary conditions to express res-
onator fields as superposition of these characteristics frequencies.

The fields

Ez x; y; z; tð Þ ¼
X
mnp

Re
Z

Cmnpe
jx mnpð Þtumnp x; y; zð Þ

or X
mnp

Cmnp

�� ��umnp x; y; zð Þ cos x mnpð Þ þ U mnpð Þð Þ;
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where umn x; yð Þ ¼ 2ffiffiffiffi
ab

p sin mpx
a

� �
sin npy

b

� �
; x mnpð Þ is the characteristic frequency and

x mnpð Þ is the phase of current applied. The rectangular cavity resonator is excited
at the centre with an antenna probe carrying current I(t) of some known frequency
x mnpð Þ. This generates the field Ez inside the cavity of the form given below:

Ezðx; y; d; tÞ ¼
Z

Gðx; yÞ jxlIdlðx2 þ y2Þ
4p x2 þ y2 þ d2
� �3=2 e jxt�x

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p� �
I xð Þejxtdx

where G(x, y) are the constant terms associated with current.
Equating resonator field with the antenna current fields at z ¼ d plane;
Antenna or resonator radiation current or fields

¼
X
p

Cmnp

�� �� ffiffiffi
2
d

r
sin

ppd
d

� �
cos xðmnpÞt þ /ðmnpÞð Þ

Antenna probe current

¼
Z

Gðx; yÞ jxlIdlðx2 þ y2Þ
4p x2 þ y2 þ d2
� �3=2 I xð Þ

ejxtdx e jxt�x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p
þwmnp

� ��
umn x; yð Þdxdy;

Multiply both sides by e�jxðmnpÞt and then taking time averaging (KAM) gives us
the following

Cmnp

�� �� ffiffiffi
2
d

r
sin

ppd
d

� �
ejøðmnpÞ ¼ lim

T!/
1
2p

�
ZT
�T

Gðx; yÞ jxlIdlðx2 þ y2Þ
4p x2 þ y2 þ d2
� �3=2 e�jxðmnpÞt

I xð Þejxtdx e jxt�x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p
þwmnp

� ��
umn x; yð Þdt

It is clear that for these two expressions to be equal, the probe current can be
defined as

IðxÞ ¼ 1
2

X
mnp

I mnpð Þj j dðx� x mnpð Þejø mnpð Þ þ ejø mnpð Þd x� x mnpð Þf g
h i

The antenna probe current must contain only the resonator characteristics
frequencies x mnpð Þ, then
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X
p

Cmnp

�� �� ffiffiffi
2
d

r
sin

ppd
d

� �
cosðx mnpð Þt þ / mnpð Þ

¼
Z

Gðx; yÞ jxlIdlðx2 þ y2Þ
4p x2 þ y2 þ d2
� �3=2 I xð Þ

ejxtdxðe jxt�x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þd2

p
þwmnp

� �
umn x; yð Þdxdy

ðA2:3Þ

Antenna probe current = Resonator radiated current or magnetic fields, as per the
law of conservation of energy. The modes’ diagrams are given below (Figs. A2.4,
A2.5, A2.6, A2.7, A2.8, A2.9, A2.10, A2.11, A2.12, A2.13, A2.14 and A2.15):

Fig. A2.4 Mode diagram

Fig. A2.5 TE112

Fig. A2.6 TE113

Fig. A2.7 TE114
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Fig. A2.8 TE111

Fig. A2.9 TE112

Fig. A2.10 TE113

Fig. A2.11 TE115

Fig. A2.12 TE116
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Mode sketch

Rectangular design

xmn ¼ pffiffiffiffi
le

p m2

a2 þ n2
b2

� �1
2
, in two-dimensional case

@2X
@2x

þ k2x � x ¼ 0;
@2Y
@2y

þ k2y � y ¼ 0;
@2Z
@2z

þ k2z � z ¼ 0

erk
2
0 ¼ k2x þ k2y þ k2z ; where k is wave number

hðkxxÞ is the harmonic function and can be written as follows: sinðkxxÞ or cosðkxxÞ:
These are solution of wave function and if boundary conditions are applied, then

eigenvalues can be defined as follows:

k0 ¼ 2pf0
c

; ky tanðkyd=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðer � 1Þk20 � k2y

q

k2x þ k2y þ k2z ¼ erk
2
0; Resonant frequency f0 ¼ c

2p
ffiffiffiffi
er

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q

where kx ¼ m p
a ; ky ¼ n p

b ; and kz tag
kzd
2

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � 1ð Þk20 � k2z

q
:

Fig. A2.13 TE114

Fig. A2.14 TE118

Fig. A2.15 TE114
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The resonance frequency of this antenna can be estimated using the approximate
analytical expressions for the resonance frequency of TE111 mode in the a rectan-
gular resonator (three dimensional) given by

f111 ¼ c
2p

ffiffiffiffi
er

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
a

� �2
þ p

2b

� �2
þ p

d

� �2r
;

Three-dimensional case

Propagation constant, c2 ¼ k2 � k2c

A2.1 Fourier Series

f xð Þ ¼ a0
2
þ
X1
n¼1

an cos
2np
a

x

� �
þ bn sin

2np
a

x

� �	 


an ¼ 2
a

Za
0

f xð Þ cos 2np
a

x

� �
dx

bn ¼ 2
a

Za
0

f xð Þ sin 2np
a

x

� �
dx

Half-wave Fourier analysis will have odd or even terms, i.e., sine–sine or
cosine–cosine.

If f(x) = f(� x), then even harmonics will take place and only cosine terms will
occur, i.e.,

f ðxÞ ¼
X1
n¼1

Cn cos
pnx
a

� �

where Cn ¼ 2
a

Z a

0
f xð Þ cos np

a
x

� �
dx

Similarly for odd terms, f ðxÞ 6¼ f ð�xÞ;

f ðxÞ ¼
X1
n¼1

Bn sin
pnx
a

� �

where Bn ¼ 2
a

Z a

0
f xð Þ sin np

a
x

� �
dx:
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A2.2 Spectral Resolution of EM Waves

Every wave can be subjected to the process of spectral resolution, i.e., can be
represented as a superposition of monochromatic waves of various frequencies. The
character of this expansion varies according to the character of the time dependence
of the fields.

One category consists of those cases where the expansion contains frequencies
forming a discrete sequence of values. The simplest case of this type arises in the
resolution of a purely periodic field. This is the usual expansion in Fourier series. It
contains the frequencies which are integral multiples of the “fundamental” fre-
quency x0 ¼ 2p=T; where T is the period of the field. We therefore write it in the

form as follows:

f ¼
X1
n¼�1

fne�jx0nt

where f is any of the quantities describing the field. The quantities fn are defined in
terms of the function f by the integrals

fn ¼ 1
T

ZT=2
�T=2

f tð Þejnx0tdt:

Because f(t) must be real

fn ¼ f �n :

in more complicated cases, the expansion may contain integral multiples of several
different incommensurable fundamental frequencies. When the sum is squared and
averaged over the time, the product of terms with different frequencies is given zero
because they contain oscillating factors.

Only terms of the form fnf�n ¼ fnj j2 remain. Thus, the average of the square of
the field, i.e., the average intensity of the wave, is the sum of the intensities of its
monochromatic components.

f 2 ¼Pn ¼ �11 fnj j2 ¼ 2
P1

n¼1 fnj j2, where it is assumed that the average of
the function f over a period is zero. Another category consists of fields which are
expandable in a Fourier integral containing a continuous distribution of different
frequencies. For this to be possible, the function f(t) must satisfy certain definite
conditions; usually we consider functions which vanish for t ! �1:

Similarly, f�x ¼ f �x; let us express the total intensity of the wave, i.e., the
integrals of f 2 over all time, in terms of the intensity of the Fourier components.
Now, we have
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Z1
�1

f 2dt ¼
Z1
�1

f
Z1
�1

fxe
�jxt dx

2p

8<
:

9=
;dt ¼

Z1
�1

fx

Z1
�1

fe�jxtdt

8<
:

9=
; dx

2p

¼
Z1
�1

fxf�x
dx
2p

;

or

Z1
�1

f 2dt ¼
Z1
�1

fxj j2dx
2p

¼ 2
Z1
0

fxj j2dx
2p

:

f ðtÞ ¼ 1
2p

R1
�1 fxe�jxtdx, where the Fourier components are given in terms of the

function f ðtÞ by the integrals, fx ¼ R1�1 f tð Þejxtdt:

A2.3 Coordinate System and Their Transformations

Rectangular ðx; y; zÞ, cylindrical ðq;/; zÞ, and spherical ðr; h;/Þ coordinates can be
expressed as follows:

x q cos/ ¼ r sin h cos/:

y ¼ q sin/ ¼ r sin h sin/ � z ¼ r cos h:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ r sin h:

h ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

¼ tan�1 q
z

Transformations of the coordinate components of a vector among the three
coordinate systems are given by

Az ¼ Aq cos/� A/ sin/

¼ Ar sin h cos/þ Ah cos h cos/� A/ sin/

Ay ¼ Aq sin/� A/ cos/

¼ Ar sin h sin/þ Ah cos h sin/� A/ cos/

Az ¼ Ar cos h� Ah sin h

Aq ¼ Az cos/þ Ay sin/ ¼ Ar sin hþ Ah cos h

A/ ¼ �Ax sin/þ Ay cos/
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Ar ¼ Ax sin h cos/þ Ay sin h sin/þ Az cos h

¼ Aq sin hþ Az cos h

Ah ¼ Ax cos h cos/þ Ay cos h sin/� Az sin h

¼ Aq cos h� Az sin h

unit vector in the three systems are denoted by ðux; uy; uzÞ; ðuq; u/; uzÞ;
and ður; uh; u/Þ

dr ¼ dxdydz ¼ qdqd/dz ¼ r2 sin hdrdhd/

Area Dsð Þ ¼ uxdydzþ uydxdzþ uzdxdy

¼ uqqd/dzþ u/dqdzþ uzqdqd/

¼ urr
2 sin hdhd/þ uhr sin hdrd/þ u/rdrdh

Length ðLÞ ¼ uxdxþ uydyþ uzdz

¼ uqdqþ u/qd/þ uzdz

urdr þ uhrdhþ u/r sin hd/

Scalar multiplication is defined by

A � B ¼ A1B1 þ A2B2 þ A3B3

r � rv ¼ r2v

r�r� A ¼ r r � Að Þ � r2A

ReðrejøÞ ¼ r cosðxt þ hÞ

ImðrejøÞ ¼ r sinðxt þ hÞ

Kronecker Tensor �

f ¼ 1
2pr2 e

�ðn�aÞ2
2r2 where a is the mean and σ is the variance and vector multipli-

cation can be defined as:

A� B ¼
u1
A1

B1

u2
A2

B2

u3
A3

B3

������
������

The differential operators are the gradient ðrxÞ;
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Divergence ðr � AÞ;

curl ðr � AÞ

Laplacian operator ðr2
xÞ

In rectangular coordinates, we can think of del ðrÞ as the vector operator

r ¼ ux
@

@x
þ uy

@

@y
þ uz

@

@z

rx ¼ ux
@x
@x

þ uy
@x
@y

þ uz
@x
@z

r � A ¼ @Ax

@x
þ @Ay

@x
þ @Az

@x

r� A ¼
ux
@
@x

Az

uy
@
@y

Ay

uz
@
@z

Az

������
������

r2
x ¼ @2

x

@2
x
þ @2

x

@2
y
þ @2

x

@2
z

In cylindrical coordinates, we have

rx ¼ uq
@x
@q

þ u/
1
q
@x
@/

þ uz
@x
@z

r � A ¼ 1
q
@

@q
qAq
� �þ 1

q
@A/

@/
þ @Az

@z

r� A ¼ ur
1
q
@Az

@/
� @A/

@z

� �
þ u/

@Aq

@z
� @Az

@q

� �
þ uz

1
q
@

@q
qA/
� �� 1

q
@Aq

@/

	 


r2
x ¼ 1

q
@

@q
q
@x
@q

� �
þ 1
q2

@2
x

@2
/

þ @2
x

@2
z

In spherical coordinates, we have
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rx ¼ ur
@x
@r

þ u/
1
r
@x
@/

þ u/
1

r sin h
@x
@/

r � A ¼ 1
r2

@

@r
r2Ar
� �þ 1

r sin h
@

@h
Ah sin hð Þ þ 1

r sin h
@A/

@/

r� A ¼ ur
1

r sin h
½ @
@h

Ah sin hð Þ � @Ah

@/

þ uh
1
r
½ 1
sin h

@Ar

@/
� d
dr

rA/
� �þ uø

1
r

@

@r
rAhð Þ � @Ar

@h

� �

r2
x ¼ 1

r2
@

@r
r2
@x
@r

� �
þ 1
r2 sin h

@

@h
sin h

@x
@h

� �
þ 1

r2 sin2 h

@2
x

@2
/

R ¼ uxxþ uyyþ uzz

And the “source coordinates” by

r0 ¼ uxx
0 þ uyy

0 þ uzz
0

r � r0j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2ðz� z0Þ2

q

A ¼ Ile�jk r�r
0j j

4p r � r0j j

To emphasize that A is evaluated at the field point (x, y, z) and Il is situated at the
source point ðx0; y0; z0Þ (Table A2.1),

A rð Þ ¼ A ¼ Ilðr0Þe�jk r�r0j j

4p r � r0j j

Table A2.1 Frequency in Hz

Frequency Symbol Frequency in Hz

Tera T 1012

Giga G 109

Mega M 106

Kilo K 103

Hecto H 102

Deca Da 101

Deci d 10−1

Centi cm 10−2

Milli mm 10−3

Micro μ 10−6

Nano n 10−9

Pico p 10−12

Femto f 10−15
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Annexure-3

Design Steps of RDRA Using ADS Software

Steps !
1. Export the model from HFSS and save in G drive or any file (without Path).
2. Now right click the ADS icon and click run as administration.
3. Then, click the yes button.
4. Then, click the cancel and go create new project.
5. Now on schematic will open, then go to layout button, then go to create update

layout.
6. Then go to file button and then go to import button, the layout model is

complete.
7. Now click on line which is connected to the patch on layout model then delete

it.
8. Then go to the view button then go to layer view then go to by name. Then go

to conductor 2 button, now then drag the feed or patch and date it.
9. Now go the each capacitor then click double and give it value according to the

formula.

CðvÞ ¼ 26 f at v ¼ 0 Ci ¼ 1:298lf
Cf ¼ 0 f and add each capacitor by line by clicking on line icon.

10. Now go to S-parameter then click on termination which also given in Fig. A3.1.
11. Now go to the S.P (S-parameter) button and put on schematic window then

click the S-parameter which is on the schematic window and put frequency 1 to
3 by stepping 1 MHz frequency then ok.

12. Now go to simulate button and simulate it then after completing the button.
13. Now then go to EDS model, then go to substrate and create update then go to

open button put substrate (RT Duroid-5880) then put the thickness of the
substrate (1.524 mm) loss tangent (0.001) then go to apply and then go to ok.

14. Now again go to EDS model then go to component. Now go to create update
then put start frequency and stop frequency 3 GHz.

15. Now put the port on the patch by single clicking on the patch from port Ze on.
16. Now minimize it.
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17. Now go to schematic window and then go to library file and click on anywhere
on schematic window.

18. Now go to lumped element and select on capacitor and put three by pressing
control button.
PCB manufacturing from HFSS model

1. Save HFSS model bottom as view .dxf file after going to modeler and
exporting it

2. open .dfx in AutoCAD to generate .pdf or image as .jpg format.
3. use butter paper to place this design on to PCB
4. now connect SMA connectors and it is ready for testing antenna parameters.

II. HFSS design steps:

APPLY MAGNETIC AND ELECTRIC BIAS TO MHD ANTENNA
MAGNETIC BIASING STEPS WITH HFSS:

1. MAKE THREE SLOTS
2. SLOTS SHOULD BE ENCLOSING MICRO-STRIP FEED LINE
3. THE UPPER EDGE OF ALL THE SLOTS SHOULD TOUCH EACH

OTHER
4. THE SUBS AND SLOTS SHOULD NOT INTERSECT
5. UNITE ALL THE SLOTS
6. SELECT MATERIAL
7. (A) FERRITE
8. (B) MAGNETIC SATURATION EG 500 TESLA
9. GO TO BOX → ASSIGN EXCITATION → MAGNETIC BIAS—

10. NEXT
11. PERMEABILITY
12. X, Y, Z VALUE-DESIRED
13. FINISH
14. CHECK FOR VALIDATION

Fig. A3.1 Then go to
button and connected to the
termination
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15. RELOCATE SLOT IF REQUIRED
16. SIMULATE

ELECTRIC BIASING STEPS WITH HFSS:

1. INSERT TWO BOXES OF COPPER INSIDE THE DRA OVER THE
SLOT

2. NOW APPLY VOLTAGE BIAS BY RIGHT CLICK AND APPLY +15 V
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3. WHEN CLICK ON VOLTAGE, THIS WINDOW COME WHERE WE
ENTER VOLTAGE AND E FIELD DIRECTION

4. IN THE SAME WAY, WE APPLY ELECTRIC BIAS TO SECOND
ELECTRODE
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Annexure-4

Resonating Modes in Rectangular Resonators

See Fig. A4.1.

Rectangular waveguide solution:
Helmholtz equation

r2wþ k2w ¼ 0 source less mediumð Þ
r2wþ k2w ¼ �lj medium with sourceð Þ

Maxwell’s equations

r� E ¼ �l
@H
@t

r� H ¼ jþ @E
@t

Solving LHS of both sides first

r� E ¼
i j k
@
@x

@
@y

@
@z

Ex Ey Ez

������
������ ¼ i

@Ez

@y
� @Ey

@z

� �
� j

@Ez

@x
� @Ex

@z

� �
þ k

@Ey

@x
� @Ex

@y

� �

r� H ¼
i j k
@
@x

@
@y

@
@z

Hx Hy Hz

������
������ ¼ i

@Hz

@y
� @Hy

@z

� �
� j

@Hz

@x
� @Hx

@z

� �
þ k

@Hy

@x
� @Hx

@y

� �

Comparing with RHS in both equations and getting value of Hx, Hy, Hz and Ex,
Ey, Ez, we get
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Hx ¼ 1
�jxl

@Ez

@y
� @Ey

@z

� �
ðA4:1Þ

Hy ¼ 1
jxl

@Ez

@x
� @Ex

@z

� �
ðA4:2Þ

Hz ¼ 1
�jxl

@Ey

@x
� @Ex

@y

� �
ðA4:3Þ

Ex ¼ 1
jxe

@Hz

@y
� @Hy

@z

� �
ðA4:4Þ

Ey ¼ 1
�jxe

@Hz

@x
� @Hx

@z

� �
ðA4:6Þ

Ez ¼ 1
jxe

@Hy

@x
� @Hx

@y

� �
ðA4:7Þ

Substituting: � @
@z ¼ c;

Hx ¼
jxe @Ez

@y þ c @Hz
@x

c2 þ x2le
Ex ¼

�jxl @Hz
@y þ c @Ez

@x

c2 þ x2le

Hy ¼
�jx @Ez

@x þ c @Hz
@x

c2 þ x2le
Ey ¼

jxl @Hz
@x þ c @Ez

@y

c2 þ x2le

�ðc2 þ x2leÞ Hz ¼ d2Hz

dx2
þ d2Hz

dy2

�ðc2 þ x2leÞ Ez ¼ d2Ez

dx2
þ d2Ez

dy2

On looking above equations, we get that Hz, Ez in 2-D Helmholtz equation
Now, rewriting Helmholtz equation for source-free medium

Fig. A4.1 Resonating modes
in rectangular resonators
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r2wþ k2w ¼ 0

Here, k is the wave number

W ¼ X xð ÞY yð ÞZ zð Þ

1
X

d2X
dx2

� �
þ 1
Y

d2Y
dy2

� �
þ 1
Z

d2Z
dz2

� �� �
þ k2 ¼ 0

Separating the independent terms, we get

1
X

d2X
dx2

� �
¼ �k2x

1
Y

d2Y
dy2

� �
¼ �k2y

1
Z

d2Z
dz2

� �
¼ �k2z

k2 ¼ k2x þ k2y þ k2z

W ¼ A sin kx � xþ B cos kx � xð Þ C sin ky � yþ D cos ky � y
� �� 

e�jkzz

Solving above function and keeping propagation in +z-direction only, we get TE
mode

Hz ¼
X
mn

Cmn cos
mpx
a

� �
cos

npy
b

� �n o
e�jkzz; Cmn Fourier Coefficients ðA4:8Þ

TM mode

Ez ¼
X
mn

Dmn sin
mpx
a

� �
sin

npy
b

� �n o
e�jkzz; Dmn Fourier Coefficients ðA4:9Þ

These Fourier coefficients are resultant of mode amplitude and propagation
constant at any instant.

Let c ¼ �jkz and m, n are integers and a, b are dimensions;

mp
a

� �2
þ np

b

� �2
¼ kcð Þmn; cut off frequency

k2z ¼ x2le� mp
a

� �2
þ np

b

� �2� �
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Hence, EM wave will propagate in z-direction if:

x2le� mp
a

� �2
þ np

b

� �2� �
[ 0

This gives cutoff frequency as follows:

xc ¼ 1ffiffiffiffiffi
le

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mp
a

� �2
þ np

b

� �2� �s

It means, waveguide will support all waves having ω greater than xc to
propagate.

Now, rewriting Hz and Ez

Hz ¼
X
mn

Cmn cos
mpx
a

� �
cos

npy
b

� �n o
e�jkzz

Ez ¼
X
mn

Dmn sin
mpx
a

� �
sin

npy
b

� �n o
e�jkzz

Here Cmn and Dmn are coefficients of Hz and Ez fields
Eixðx;yÞ Incident EM wave in x-direction;
Eiyðx;yÞ Incident EM wave in y-direction;

Eixðx;yÞ ¼
X jxlDmn

np
b

� �þ cmnCmn
mp
a

� �
h2m;n

" #
cos

mpx
a

� �
sin

npy
b

� �
expð�cmnzÞ;

Similarly,

Eiyðx;yÞ ¼
X jxlDmn

mp
a

� �þ cmnCmn
np
b

� �
h2m;n

" #
cos

mpx
a

� �
sin

npy
b

� �
expð�cmnzÞ;

On simplification

Eixðm;nÞ ¼
jxlDmn

np
b

� �þ cmnCmn
mp
a

� �
h2m;n
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Similarly

Eiyðm;nÞ ¼
jxlDmn

mp
a

� �þ cmnCmn
np
b

� �
h2m;n

Eix m;nð Þ
Eiy m;nð Þ

	 

¼

mp
a

c m;nð Þ
h2m;n

np
b

jxl
h2m;n

� c m;nð Þ
b

np
h2m;n

�jxl
a

mp
h2m;n

" #
Cmn

Dmn

	 

;

we can now get the value of Cmn, Dmn after substitution of Eix m;nð Þ;Eiy m;nð Þ values.

Where h2m;n ¼ m
a

� �2þ n
b

� �2 and

cmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2m;n � x2le

q

Hence, Cmn andDmn gives us relative amplitudes of Ez and Hz fields in TM or TE
modes.

Hence, we get solution of possible amplitudes and phase of wave propagating
through rectangular waveguide called as modes of propagation.

Half-wave Fourier expansion in waveguide is given as follows:

fmn ¼
Za
0

cos
mpx
a

� �
cos

mpx
a

� �
dx ¼

Zb
0

sin
npy
b

� �
sin

npy
b

� �
dy;

even or odd terms, i.e., f(x) = f(−x) for even term (all cosine terms) or even modes.
Where m, m′ and n, n′ ≥ 1

Eixðm;nÞ ¼ 2
ab

Za
0

Zb
0

Eixðx;yÞ cos
mpx
a

� �
cos

npy
b

� �
dxdy

Eiyðm;nÞ ¼
2
ab

Za
0

Zb
0

Eiyðx;yÞ sin
mpx
a

� �
sin

npy
b

� �
dxdy

Half-wave Fourier analysis will have odd or even terms, i.e., sine–sine or
cosine–cosine.

If f(x) = f(�x), even harmonics will take place and only cosine terms will occur,
i.e.,

f ðxÞ ¼
X1
n¼1

Cn cos
pnx
a

� �
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where

Cn ¼ 2
a

Za
0

f xð Þ cos np
a
x

� �
dx

Similarly for odd terms, f(x) ≠ f(�x);

f xð Þ ¼
X1
n¼1

Bn sin
pnx
a

� �

where

Bn ¼ 2
a

Za
0

f xð Þ sin np
a
x

� �
dx

Solving wave equation with boundary conditions Etan ¼ 0; we find E fields and
then H fields. Now shape and size of resonator is given, wave equation shall give
solution of characteristic frequencies x mnpð Þ called eigenvalues or eigenfrequen-
cies of e-m oscillations of cavity resonator.

Lowest eigenfrequency x1 is c
l ; where l is the dimension of resonator.

Higher frequency x 	 c
l

� �
; then x is vx2

2p2c3 :

Hence, it depends on volume and net on shape of resonator.

For resonator:
X
mnr

fmnr sin
pmx
a

� �
sin

pny
b

� �
sin

prz
d

� �
¼ f x; y; zð Þ

@2

@x2
þ @2

@y2
þ @2

@z2

� �
w x; y; zð Þ þ k2w x; y; zð Þ ¼ f x; y; zð Þ;

Helmholtz equation

w x; y; zð Þ ¼
X
mnr

Cmnr sin
pmx
a

� �
sin

pny
b

� �
sin

prz
d

� �

k2 � p2
m2

a2
þ h2

b2
þ r2

d2

� �	 

Cmnr ¼ fmnr

Amplitude coefficient;Cmnr ¼ fmnr

k2 � m2

a2 þ h2
b2 þ r2

d2

� �.
xmnr
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k ¼ x
ffiffiffiffiffi
l�

p

x ¼ x mnpð Þ þ d; where d small deviation and r is different from p.
Hence,

Cmnr ¼ fmnr
ðx mnpð Þ þ dÞ2 � xðmnrÞ2

¼ fmnr
dðx mnpð Þ � xðmnrÞ

A4-3 Solution of Single-String Resonator

x00 tð Þ þ x2
0xðtÞ ¼ Bejxt

x tð Þ ¼ Aejxt

ðx2
0 � x2ÞA ¼ B

Hence,

A ¼ B
x2

0 � x2

x tð Þ ¼ Bejxt

x2
0�x2, if x0 ¼ x; then x(t) will be 1

Now, x ¼ x0 þ d when d is small deviation

¼ Bejxt

x0 þ xð Þ x0 � xð Þ

Hence, the solution of spring resonator is in one dimension

¼ Bejxt

d 2x0ð Þ
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@2

@x2
� 1
c2

@2

dt2

� �
u x; tð Þ ¼ 0; at boundaries

u 0; tð Þ ¼ 0 and u L; tð Þ ¼ 0

Taking Fourier transform of above equation

@2

@x2
þ x2

c2

� �
û x;xð Þ ¼ 0

Writing above terms in sine and cosine form, we have

A sin
xx
c

� �
þ B cos

xx
c

� �
¼ 0

û 0;xð Þ ¼ 0

û L;xð Þ ¼ 0

sin xL
c

� � ¼ 0; Hence k L ¼ np; sine values to be zero.
x ¼ kc ¼ npc

L , when n = 1, 2, 3 where k = ω/c;
when 2L, it is fundamental frequency x1

when L, the frequency is 2x1

when 2L/3, the frequency 3x1;
which can be generalized as:

X
n

C nð Þsin npx
L

� �

A-4 Solution of Two-Dimensional Resonator

General Helmholtz equation is given below (Fig. A4.2):

y=b

x=a

Fig. A4.2 Rectangular
resonator
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@2w x; y; tð Þ
@x2

þ @2w x; y; tð Þ
@y2

� 1
c2

@2w x; y; tð Þ
@t2

¼ 0

Applying boundary conditions

w 0; y; tð Þ ¼ w a; y; tð Þ ¼ 0

w x; 0; tð Þ ¼ w x; b; tð Þ ¼ 0

Let input excitation be some tension T

rdxdy
@2w
@t2

¼ @

@x
Tdy

@w
@x

� �
dxþ @

@y
Tdx

@w
@y

� �
dy

Y 00

Y
¼ �k2Y ;

X 00

X
¼ �k2X ;

Now from Helmholtz equation:

@2w
@t2

� c2r2w ¼ 0

Using separation of variables:

w x; y; tð Þ ¼ X xð ÞY yð ÞT tð Þ

�x2 ¼ T 00 tð Þ
T tð Þ ¼ c2

X 00 xð Þ
X xð Þ þ Y 00 yð Þ

Y yð Þ
� �

ðA4:10Þ

Let

X xð Þ ¼ sin kxxð Þ

Y yð Þ ¼ sin kyy
� �
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k2x þ k2y ¼
x2

c2

where kx and ky can be

kx ¼ mp
a

; ky ¼ np
b

Equation (A4.1) can be written as x mnð Þ ¼ cp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
a

� �2þ n
b

� �2q
:

From Fourier series analysis

x m; nð Þ ¼
X1
mn¼1

sin
mpx
a

� �
sin

npy
b

� �
Cðm; nÞejx m;nð Þt þ D m; nð Þe�jx m;nð Þt
h i

ðA4:12Þ

At t ¼ 0; w x; y; 0ð Þ ¼ w0 x; yð Þ
On differentiating equation w0 x; yð Þ, we get w1 x; y; 0ð Þ ¼ w1 x; yð Þ:
When t 6¼ 0;

w0 x; yð Þ ¼
X1
mn¼1

ðCðm; nÞ þ Dðm; nÞÞ sin mpx
a

� �
sin

npy
b

� �
ðA4:13Þ

w1 x; yð Þ ¼
X1
mn¼1

jx m; nð Þ C m; nð Þ � D m; nð Þð Þ sin mpx
a

� �
sin

npy
b

� �
ðA4:14Þ

2ffiffiffiffiffi
ab

p
Za
0

Zb
0

w0 x; yð Þ sin mpx
a

� �
sin

npy
b

� �
dxdy ¼ ½C m; nð Þ þ D m; nð Þ
 ðA4:15Þ

Similarly,

jx m; nð Þ 2ffiffiffiffiffi
ab

p
Z

w1 x; yð Þ sin mpx
a

� �
sin

npy
b

� �
dxdy ¼ ½C m; nð Þ � D m; nð Þ


ðA4:16Þ

Hence, obtain the value of C m; nð Þ;D m; nð Þ from Eqs. (A4.3) and (A4.4)
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C m; nð Þ;D m; nð Þ½ 
 ¼ 1ffiffiffiffiffi
ab

p
ZZ

w0 x; yð Þ sin mpx
a

� �
sin

npy
b

� �
dxdy

	

� 1
jx m; nð Þ

Z
w; x; yð Þ sin mpx

a

� �
sin

npy
b

� �
dxdy


 ðA4:17Þ

Hence, from Eq. (A4.17),

w0 x; yð Þ ¼ A sin
m0px
a

� �
sin

n0py
b

� �

w1 x; yð Þ ¼ B sin
m0px
a

� �
sin

n0py
b

� �

due to force, perturbation occurs (Fig. A4.3)
Solving equation (A4.17)

Cðm; nÞ;Dðm; nÞð Þ ¼ d m� m0½ 
d n� n0½ 


¼ Affiffiffiffiffi
ab

p a
2
� b
2

� �
� 1ffiffiffiffiffi

ab
p B

jxðm0; n0

� �
a
2
� b
2

� �� �

C m; nð Þ;D m; nð Þð Þ ¼
ffiffiffiffiffi
ab

p A
4
� j � B

4

� � ffiffiffiffiffi
ab

p

4
A� jBð Þd m� m0½ 
d n� n0½ 


w x; y; tð Þ ¼
ffiffiffiffiffi
ab

p

2
Re A� jBð Þ sin m0px

a

� �
sin

n0py
b

� �
ejxðm0;n0tÞ

Hence, we complete solution of two-dimensional resonator.

w x; y; tð Þ ¼
ffiffiffiffiffi
ab

p

2
A cosðxðm0n0ð ÞtÞ þ B sinðxðm0n0ÞtÞÞ sin m0px

a

� �
sin

n0py
b

� �
ðA4:18Þ

T(x+ x,y+ y)

T(x,y + y) T(x+ x,y)

Fig. A4.3 Deformation due
to excitation T(x, y)
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Alternate method

m ¼ 2b sin h;

n ¼ 2a cos h;

Dividing both sides of above equations by 2a and 2b and adding them gives us

1
k2

¼ n2

4a2
þ m2

4b2
; where k2 ¼ k2x þ k2y

Thus, resonant frequency of resonator can be determined.
Half-wave Fourier analysis:

f ðxÞ ¼ a0
2
þ
X1
n¼1

an cos
2np
a

x

� �
þ bn sin

2np
a

x

� �	 


an ¼ 2
a

Za
0

f xð Þ cos 2np
a

x

� �
dx

bn ¼ 2
a

Za
0

f xð Þ sin 2np
a

x

� �
dx

Half-wave Fourier analysis will have odd or even terms, i.e., sine–sine or
cosine–cosine.

If f(x) = f(�x), even harmonics will take place and only cosine terms will occur,
i.e.,

f ðxÞ ¼
X1
n¼1

Cn cos
pnx
a

� �

where

Cn ¼ 2
a

Za
0

f xð Þ cos np
a
x

� �
dx

Similarly for odd terms, f xð Þ 6¼ f �xð Þ;

f xð Þ ¼
X1
n¼1

Bn sin
pnx
a

� �
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where

Bn ¼ 2
a

Za
0

f xð Þ sin np
a
x

� �
dx

Spectral resolution of EM waves
Every wave can be subjected to the process of spectral resolution, i.e., can be
represented as a superposition of monochromatic waves of various frequencies. The
character of this expansion varies according to the character of the time dependence
of the fields.

One category consists of those cases, where the expansion contains frequencies
forming a discrete sequence of values. The simplest case of this type arises in the
resolution of a purely periodic field. This is the usual expansion in Fourier series. It
contains the frequencies which are integral multiples of the “fundamental” fre-
quency x0 ¼ 2p=T , where T is the period of the field. We therefore write it in the
form as follows:

f ¼
X1
n�1

fne�jx0nt

(where f is any of the quantities describing the field). The quantities fn are defined in
terms of the function f by the integrals

fn ¼ 1
T

ZT=2
�T=2

f tð Þejnx0tdt:

Because f(t) must be real

fn ¼ f �n :

in more complicated cases, the expansion may contain integral multiples of several
different incommensurable fundamental frequencies. When the sum is squared and
averaged over the time, the product of terms with different frequencies is given zero
because they contain oscillating factors.

Only terms of the form fnf�n ¼ fnj j2 remain. Thus, the average of the square of
the field, i.e., the average intensity of the wave, is the sum of the intensities of its
monochromatic components. f 2 ¼P1

n¼�1 fnj j2 ¼ 2
P1

n¼1 fnj j2; where it is
assumed that the average of the function f over a period is zero. Another category
consists of fields which are expandable in a Fourier integral containing a continuous
distribution of different frequencies. For this to be possible, the function f(t) must
satisfy certain definite conditions; usually we consider functions which vanish for
t ! �1.
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Similarly, f�x ¼ f �x; Let us express the total intensity of the wave, i.e., the
integrals of f 2 over all time, in terms of the intensity of the Fourier components.
Now, we have

Z1
�1

f 2dt¼
Z1
�1

f
Z1
�1

fxe
�jxt dx

2p

8<
:

9=
;dt ¼

Z1
�1

fx

Z1
�1

fe�jxt dt

8<
:

9=
; dx

2p

¼
Z1
�1

fxf�x
dx
2p

;

or

Z1
�1

f 2dt ¼
Z1
�1

fxj j2dx
2p

¼ 2
Z1
0

fxj j2dx
2p

:

f tð Þ ¼ 1
2p

R1
�1 fxe�jxtdx; where the Fourier components are given in terms of the

function
f(t) by the integrals, fx ¼ R1�1 f tð Þejxtdt:

Power and Energy Signals:
Let x(t) is the input signal, i.e., voltage signal. As per Parseval’s power theorem,
energy associated with this signal be

E ¼
Z1
�1

x tð Þj j2dt; in time domain

¼ 1
2p

Z1
�1

XðxÞj j2dx; in frequency domain

The amount of energy radiated by this signal, when applied across
Antenna having radiation resistanceRr shall be

E ¼ 1
Rr

Z1
�1

x tð Þj j2dt ¼ 1
2pRr

Z1
�1

XðxÞj j2dx

Now if input signal is x(t) having current signal

E ¼ Rr

Z1
�1

xðtÞj j2dt ¼ R
2p

Z1
�1

X xð Þj j2dx
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ESD energy spectral density; energy spread per unit volume across 1 Ω resister

ESD ¼ X xð Þj j2

Discrete Fourier transform (DFT) in time domain into frequency domain spectral
analysis

x kð Þ ¼
XN�1

n¼0

x nð Þe�j2pnk
N

; k ¼ 0; 1; . . .;N � 1:

X nð Þ ¼ 1
N

XN�1

k¼0

X kð Þe�j2pkn
N

; n ¼ 0; 1; 2; . . .;N � 1:

X(n) finite sequence.
DFT has finite length N, period N

w h;/ð Þ ¼ k rn
!� r0
� � ¼ n� 1ð Þkd sin h

E sin hð Þ ¼
XN
n¼1

ej n�1ð Þðkd sin hÞ
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Annexure-5

Resonant Mode Generation and Control in RDRA

In this annexure, resonant modes TE and TM have been generated inside RDRA
whose dimensions are a, b, and d. Two parallel plates are attached along with
dielectric slab in between these plates to RDRA. This slab forms non-resonant part
and RDRA is main resonant. This is shown in Fig. A5.1a, b. The resonant modes
dominant and higher-order modes are being generated by maintaining appropriate
aspect ratio of RDRA. Then, the non-resonant slab inductance and capacitance is
introduced into main RDRA. This lumped value of inductance and capacitance is
seen in the resonant frequency.

(a) The increase in the length of internal strip introduce shift in the higher
resonant modes frequency, as they shift toward lower side and vice versa.
Hence, resonant frequency is reduced.

(b) On the other side, increase in the length of external strip introduces shift in
the lower resonant modes frequency shifts toward higher side and vice
versa. Hence, frequency is increased with strip length.

(c) Increase in spacing between parallel plates introduces the combined effect
of internal as well as external strip length variation, i.e., higher- and
lower-order resonant modes shift toward the centre frequency which can be
seen as mode-merging effect.

(d) Finally, the effect of placing a lumped varactor diode between parallel plates is
seen. The increase in the capacitance value of lumped varactor diode causes
shift in the higher resonant frequency toward lower resonant frequency
side.

These results have been investigated using HFSS and they shown with S11
results along with each RDRA model. By varying length, “a,” width “b,” and
height “d” of RDRA modes are generated. The internal strip, external strip, and
dielectric slab and dielectric constant provided several degrees of freedom in the
RDRA design. This has extended the control on the amount of coupling, hence
resonant frequency. This shall have large impact on resonant modes, compactness
of antenna, radiation pattern, and polarization.

© Springer India 2016
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3
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A5.1 Effect of Change of Aspect Ratio (a/b) and (a/d) of RDRA
on Resonant Modes

See Fig. A5.2.

A5.2 Effect of Strip Length, Separation, εr on the Modes Developed
Inside the RDRA

See Fig. A5.3 and Table A5.1.

Fig. A5.1 a RDRA with two
parallel standing strips having
rectangular non-resonant slab
in between. b RDRA with
lumped varactor diode
between strips
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Fig. A5.2 a Higher-order modes generated in RDRA with square base. b Higher-order modes
generated in the rectangular base RDRA
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A5.2(a) Effect of Internal Strip Length Variation on Resonant
Modes Inside RDRA

The effect of the internal strip length is seen on resonance frequency and resonant
modes of RDRA.

The reflection coefficient plot can be seen for the possible changes as given in
Fig. A5.4a.

The effective electrically length of RDRA is changed by introducing change in
length of internal strip as given below.

Changing the effective dimension of the dielectric resonator changes the reso-
nant frequency.

Fig. A5.3 RDRA with parallel standing strips

Table A5.1 Effect of strip length

Structure x (mm) y (mm) z (mm) er
DRA 4.6 9 10.8 9.8

substrate 20 30 0.8 2.2

Micro-strip 2.4 (width)

Rect. SLAB 1 9 10.8 1

External strip 2.4 10.5

Internal strip 2.4 3
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Fig. A5.4 a External strip (fixed) = 10.5 mm and variation in internal strip from (2 mm).
b External strip (fixed) = 10.5 mm and variation in internal strip from (2.5 mm). c External strip
(fixed) = 10.5 mm and variation in internal strip from (3 mm)
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A5.2(b) Effect of External Strip Length Variation on Resonant
Modes Inside RDRA

The effect of the external strip length on resonance frequency and resonant modes is
shown in Fig. A5.5b. Internal strip (fixed) = 3 mm and variation in external strip
from 10.5, 7, 0 mm is investigated. Contrary to the previous case, the third reso-
nance stays mainly fixed at the same frequency, while the first and second resonant
frequencies are considerably decreased with increasing external strip length.

A5.2(c) Effect of Separation Width Between the Two Parallel
Standing Strips and er

The effect of the spacing between parallel plates and permittivity of the rectangular
slab between parallel plates is seen on resonance frequency and modes (Figs. A5.6
and A5.7).

• The separation width variation ranges as 0.5, 1.5, and 2.5 mm [er ¼ 1, external
strip = 10.5 mm and inner strip = 3.5 mm (fixed)].

• we will change the variable separation Width (0.5, 1.5, 2.5) for er ¼ 2 keeping
external strip = 10.5 mm, inner strip = 3.5 mm constant (Fig. A5.8).

Fig. A5.4 (continued)
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Fig. A5.5 a Internal strip (fixed) = 3 mm and variation in external strip from (0 mm). b Internal
strip (fixed) = 3 mm and variation in external strip from (7 mm). c Internal strip (fixed) = 3 mm and
variation in external strip from (10.5 mm)
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Fig. A5.5 (continued)

Fig. A5.6 RDRA with sepa-
rated plates

336 Annexure-5



10.00 12.00 14.00 16.00 18.00 20.00
Freq [GHz]

-17.50

-15.00

-12.50

-10.00

-7.50

dB
(S

(w
av

ep
or

t,w
av

ep
or

t)
)

HFSSDesign1XY Plot 4 ANSOFT

m1

m2
m3

m4 m5

10.00 12.00 14.00 16.00 18.00 20.00
Freq [GHz]

-22.50

-20.00

-17.50

-15.00

-12.50

-10.00

-7.50

dB
(S

(w
av

ep
or

t,w
av

ep
or

t)
)

HFSSDesign1XY Plot 4 ANSOFT

m1

m2
m3 m4

m5

10.00 12.00 14.00 16.00 18.00 20.00
Freq [GHz]

-22.50

-20.00

-17.50

-15.00

-12.50

-10.00

-7.50

-5.00

dB
(S

(w
av

ep
or

t,w
av

ep
or

t)
)

HFSSDesign1XY Plot 4 ANSOFT

m1 m2

m3

Curve Info

dB(S(waveport, waveport))
Setup6 : Sweep

Name X Y

m1 10.2000 -17.1071

m2 14.6000 -15.6812

m3 16.8500 -16.0264

m4 17.6500 -16.4270

m5 19.5000 -16.2692

Curve Info

dB(S(w aveport,w aveport))
Setup6 : Sw eep

Name X Y

m1 10.4500 -17.9665

m2 14.3500 -16.3577

m3 16.8000 -16.7685

m4 17.5000 -16.4319

m5 19.5000 -21.9771

Curve Info

dB(S(waveport, waveport))
Setup6 : Sweep

Name X Y

m1 14.6000 -16.6991

m2 16.9500 -16.3861

m3 17.9000 -20.2745

(a)

(b)

(c)

Fig. A5.7 a Separation width (0.5 mm) for er ¼ 1, external strip = 10.5 mm, inner strip = 3.5 mm.
b Separation width (1.5 mm) for er ¼ 1, external strip = 10.5 mm, inner strip = 3.5 mm.
c Separation width (2.5 mm) for er ¼ 1, external strip = 10.5 mm, inner strip = 3.5 mm
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Fig. A5.8 a Separation width (0.5) for er ¼ 2, external strip = 10.5 mm, inner strip = 3.5 mm.
b Separation width (1.5) for er ¼ 2, external strip = 10.5 mm, inner strip = 3.5 mm. c Separation
width (2.5) for er ¼ 2, external strip = 10.5 mm, inner strip = 3.5 mm
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A.5.2(d) Effect of Variable Capacitance (Varactor Diode)
in Between the Plate

The effect of the varactor diode capacitance placed in between the parallel standing
strips is seen. The resonant modes get shifted lower side (Fig. A5.9).

The separation width = 1.0, er ¼ 1, external strip = 10.6 mm, inner
strip = 3.0 mm, varactor diode (variation from 1 to 5 μF with step of 1 μF) at
position (z = 2.3) in vertical direction. The resulting effect is shown in Fig. A5.10.

A5.3 Designing Steps

HFSS steps_Project1

1. Open HFSS.
2. Create file name project1.
3. Define in the Cartesian co-ordinate system origin as (x = 0, y = 0, z = 0).
4. Choose 3-D rectangular box for substrate by defining the desired substrate

material and its dimensions such as (RT Duroid and x = 20 mm, y = 30 mm,
z = 0.8 mm).

5. Create DRA structure with desired material and dimensions on the substrate top
surface (e.g., If substrate dimension from origin was 0.8 mm in z-direction.
Then choose DRA #d dimension keeping substrate dimension as reference).

Fig. A5.9 RDRA with lumped capacitance
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6. Create two parallel strips adjacent to DRA above the substrate surface with
rectangular slab in between them keeping substrate dimension as reference.

7. Apply micro-strip feeding to the DRA structure by defining the micro-strip port
with appropriate length and width for impedance matching (e.g., wave port)
assigning in the desired direction of input excitation.

8. Variation in height of external strip keeping the internal strip height fixed and
vice versa.

9. Effect of the permittivity of rectangular slab can be seen by varying the material
property and thickness of the slab in between two fixed parallel plates.

10. Placing a lumped capacitor between two parallel standing strips with desired
value (e.g., 2 μF) and perform parametric analysis for variable capacitance
value of lumped element.

11. Performing the simulation for the steps 8, 9, 10 mentioned above separately and
for mode analysis of DRA which give modal frequency response and effect of
the variation of radiation parameters associated with DRA and non-resonant
slab with parallel standing strip geometry.

12. Analysis of the simulated structure can be performed by taking various
response quantities such as S11, radiation pattern, gain, and field distribution.

13. The above mechanism can also be validated in RDRA by VNA with anechoic
chamber on prototype model after structure is simulated.
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Fig. A5.10 Variation of resonant frequency with lumped capacitance
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Annexure-6

Cartesian, Cylindrical, and Spherical Coordinate System

There are three different coordinate systems, i.e., Cartesian, cylindrical, and
spherical systems. Cartesian are (x, y, z), cylindrical are ðq;/; zÞ, and spherical are
ðr; h;/Þ representation (Figs. A6.1 and A6.2).

1. DEL ðrÞ derivation in cylindrical system:

The Cartesian r (Del) is given as follows:

~r ¼~x
@

@x
þ~y

@

@y
þ~z

@

@z

(a) Cylindrical to cartesian (b) Cartesian to cylindrical

X ¼ q cos/

Y ¼ q sin ø

Z ¼ z

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ø ¼ tan�1 y

x
Z ¼ z

(c) Spherical to cartesian (d) Cartesian to cylindrical

X ¼ r sin h cos/

Y ¼ r sin h sin/

Z ¼ r cos h

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
h ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

 !

/ ¼ tan�1 y
x

� �
(e) Cylindrical to spherical (f) Spherical to cylindrical

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ z2

p
h ¼ tan�1 q

z

� �
/ ¼ /

q ¼ r sin h

/ ¼ /

z ¼ r cos h

© Springer India 2016
R.S. Yaduvanshi and H. Parthasarathy, Rectangular Dielectric
Resonator Antennas, DOI 10.1007/978-81-322-2500-3
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Cylindrical r (Del) is given below:

~r ¼ q̂
@

@q
þ /̂

1
q

@

@/
þ ẑ

@

@z

Converting differential operators in terms of the cylindrical system by chain rule:

x̂
@

@x
¼ @

@q
@q
@x

6¼ @

@/
@/
@x

6¼ @

@z
@z
@x

� �
x̂

@q
@x

¼ @

@x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
¼ 1

z
2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ cos/

) q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Hence,

cos/ ¼ x
q

@/
@x

¼ @

@x
tan�1 y

x

� �h �
¼ 1

1þ y2

x2

x 0ð Þ � y1
x2

¼ x2

x2 þ y2
¼ �y

x2

@/
@x

¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ �1
q

� sin/

@/
@x

¼ 0 ð) z is the same z as in Cartesian system it doesn't depend on xÞ

Fig. A6.1 Cartesian system

Fig. A6.2 Cylindrical
components

342 Annexure-6



As per chain rule
Thus, we have

x̂
@

@x
¼ x̂

@

@p
@P
@x

þ @

@/
@/
@x

þ @

@z
@z
@x

� �

¼ x̂
@

@q
cos/þ @

@/
�1
p

sin/
� �

þ 0
� � ðA6:1Þ

Using the same technique to convert the differential for y:

ŷ
@

@y
¼ ŷ

@

@q
@q
@y

þ @

@/
@/
@y

þ @

@z
@z
@y

� �
@q
@y

¼ @

@y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2ð Þ

p
¼ 2y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ sin/

@/
@y

@

@y
tan�1 yð Þx� � ¼ 1

1þ y2

x2

1
x
¼ x

x2 þ y2
¼ 1

q
cos/

@z
@y

¼ 0

Thus,

ŷ
y
@y

¼ ŷ
@

@q
@q
@y

þ @

@/
@/
@y

þ @

@z
@z
@y

� �

ŷ sin/
@

@q
þ 1
q
cos/

@

@/
þ 0

� � ðA6:2Þ

Finally, since z is not transformed between coordinate systems

@

@z
¼ @

@z
ðA6:3Þ

~r ¼ x̂
@

@x
þ ŷ

@

@y
þ ẑ

@

@z

~r ¼ x̂ cos/
@

@q
� 1
q
sin/

@

@/

� �
þ ŷ sin/

@

@q
þ 1
q
cos/

@

@/

� �
þ ẑ

@

@z

Cylindrical

~r ¼ x̂ cos/þ ŷ sin/ð Þ @

@q
þ 1
q

ŷ cos/� x̂ sin/ð Þ @

@/
þ ẑ

@

@z
ðA6:4Þ
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Hence, definition to cylindrical unit vector is given as follows:

p̂ ¼ x̂ cos/þ ŷ sin/ ¼ p̂

/̂ ¼ x̂ sin/þ ŷ cos/ ¼ /̂

ẑ ¼ ẑ ¼ ẑ

Thus, Del cylindrical can be written as follows:

~r ¼ q̂
@

@q
þ 1
q
/̂

@

@/
þ ẑ

@

@z

which is the desired solution of r in cylindrical coordinates.

2. DEL ðrÞ expression as spherical system (Figs. A6.3, A6.4 and A6.5):

~r ¼ @

@x
x̂þ @

@y
ŷþ @

@z
ẑ ðA6:5Þ

x̂
@

@x
¼ x̂

@

@r
@r
@x

þ @

@h
@h
@x

þ @

@/
@/
@x

	 

ðA6:6Þ

Fig. A6.3 Spherical system

Spherical to Cartesian Cartesian to Spherical

X ¼ r sin h cos/

Y ¼ r sin h sin/

Z ¼ r cos h

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
h ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

 !

/ ¼ tan�1 y
x

� �
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ŷ
@

@y
¼ y

@

@r
@r
@y

þ @

@h
@h
@y

þ @

@/
@/
@y

	 

ðA6:7Þ

ẑ
@

@z
¼ z

@

@r
@r
@z

þ @

@h
@h
@z

þ @

@/
@/
@z

	 

ðA6:8Þ

Fig A6.4 Spherical
components

Fig. A6.5 Spherical
subcomponents
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Now, partially differentiate r with respect to x

@r
@x

¼ @

@x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ 2x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

¼ r sin h cos/
r

¼ sin h cos/

ðA6:9Þ

Similarly partially differentiate r with respect to y

@r
@y

¼ @

@y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ 2y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

¼ r sin h sin/
r

¼ sin h sin/

ðA6:10Þ

Partially differentiate r with respect to z

@r
@z

¼ @

@z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ 2z

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

¼ r cos h
r

¼ cos h

ðA6:11Þ
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Partially differentiate h with respect to x

@h
@x

¼ @

@x
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

 !

¼ 1

1þ x2þy2

z2

1
z

2x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ z2

z2 þ x2 þ y2
x

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ x

ð
ffiffiffiffiffiffiffiffiffi
x2þy2

p
Þ

z x2 þ y2 þ z2ð Þ

¼ r sin h cos/
r2 tan h

¼ cos h cos/
r

ðA6:12Þ

Partially differentiate h with respect to y

@h
@y

¼ @

@y
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

 !

¼ 1

1þ x2þy2

z2

1
z

2y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ z2

z2 þ x2 þ y2
y

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ y

ð
ffiffiffiffiffiffiffiffiffi
x2þy2

p
Þ

z x2 þ y2 þ z2ð Þ

¼ r sin h sin/
r2 tan h

¼ cos h sin/
r

ðA6:13Þ
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Partially differentiate h with respect to z

@h
@z

¼ @

@z
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

 !

¼ �1

1þ x2þy2

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z2

¼ �z
x2 þ y2 þ z2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

 !

¼ � sin h
r

ðA6:14Þ

Partially differentiate / with respect to x

@/
@x

¼ @

@x
tan�1 y

x

� �
¼ 1

1þ y2

x2

x 0ð Þ � y 1ð Þ
x2

	 


¼ x2

x2 þ y2
� y
x2

h i
¼ � y

x2 þ y2

¼ � sin/
r sin h

ðA6:15Þ

Partially differentiate / with respect to y

@/
@y

¼ @

@y
tan�1 y

x

� �

¼ 1

1þ y2

x2

1
x

	 


¼ x
x2 þ y2

¼ cos/
r sin h

ðA6:16Þ
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Partially differentiate / with respect to z

@/
@z

¼ @

@z
tan�1 y

x

� �
¼ 0 ðA6:17Þ

Put Eqs. (A6.5), (A6.8), (A6.11) in Eq. (A6.2), Put Eqs. (A6.6), (A6.9), (A6.12)
in Eq. (A6.3) and Put Eqs. (A6.7), (A6.10), (A6.13) in Eq. (A6.4).

x̂
@

@x
¼ x̂

@

@r
sin h cos/þ @

@h
cos h cos/

r
� sin/
r sin h

@

@/

	 

ðA6:18Þ

ŷ
@

@y
¼ ŷ

@

@r
sin h sin/þ @

@h
cos h sin/

r
þ cos/
r sin h

@

@/

	 

ðA6:19Þ

ẑ
@

@z
¼ ẑ

@

@r
cos h� @

@h
sin h
r

	 

ðA6:20Þ

Put Eqs. (A6.13), (A6.14) and (A6.15) in Eq. (A6.1).
And by using original definition to Spherical unit vector,

r̂ ¼ x̂ sin h cos/þ ŷ sin h sin/þ ẑ cos h

ĥ ¼ x̂ cos h cos/þ ŷ cos h sin/� ẑ sin h

/̂ ¼ �x̂ sin/þ ŷ cos/

We get

~r ¼ r̂
@

@r
þ ĥ

1
r
@

@h
þ /̂

1
r sin h

@

@/

Fig. A6.6 E and H fields pattern in RDRA
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Hence ~r from Cartesian to spherical converted.

3. E and H fields in RDRA

Fields converting into TE and TM modes inside rectangular DRA (Fig. A6.6).

4. Transcendental equation solution using MATLAB programs (simulated
rectangular DRA) (Fig. A6.7; Table A6.1).

Fig. A6.7 Rectangular DRA

Table A6.1 Transcendental equation solution

S.
No.

Permittivity Dimension (a(length) × b
(width) × d(depth)) (mm)

Resonant
frequency

Effective
width (b′)

Multiple
factor

%
change
in width

1. 10.0 14.3 × 25.4 × 26.1 3.5 34.22 1.3474 34.7381

2. 10.0 14 × 8 × 8 5.5 14.13 1.7665 76.6535

3. 10.0 15.24 × 3.1 × 7.62 6.21 8.33 2.8872 168.7230

4. 20.0 10.2 × 10.2 × 7.89 4.635 15.31 1.5014 50.1419

5. 20.0 10.16 × 10.2 × 7.11 4.71 15.15 1.4858 48.5797

6. 35.0 18 × 18 × 6 2.532 24.12 1.34 33.9973

7. 35.0 18 × 18 × 9 2.45 25.64 1.4244 42.4423

8. 100.0 10 × 10 × 1 7.97 11.24 1.1242 12.4237
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%%Dimensions of DRA
%%length
d=[14.3,14.0,15.24,10.2,10.16,18,18,10];
%%width
w=[25.4,8,3.1,10.2,10.2,18,18,10];
%%height
h=[26.1,8,7.62,7.89,7.11,6,9,1];
%%Mode
m=1;
n=1;
p=1;
c=3e8;
cons=[10.0,10.0,10,20,20,35,35,100];
syms y real
for i=drange(1:8)
kx(i)=pi/d(i);
kz(i)=pi/2/h(i);
ko=sqrt((kx(i).^2+y.^2+kz(i).^2)/cons(i));
f=real(y.*tan(y*w(i)/2)-sqrt((cons(i)-1)*ko.^2-y.^2));
ky(i)=fzero(inline(f),[0,(pi/w(i))-0.01]);
%%Resonant frequency
fre(i)=c/2/pi*sqrt((kx(i).^2+ky(i).^2+kz(i).^2)/cons(i))*1e3;
Effwidth(i)=pi/ky(i);
factor(i)=Effwidth(i)./w(i);
perchangwidth(i)=((Effwidth(i)-w(i))/w(i))*100;
end
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m=1;
n=1;
p=1;
E_r=10;
a=15.24e-03;
b=3.1e-03;
d=7.62e-03;
c=3e+08;
kx=m*pi/a;
ky=n*pi/b;
kz=p*(pi/d)/2;
ko=sqrt(kx^2+ky^2+kz^2)/sqrt(E_r);
fo=(c*ko/pi)/2;
foghz=fo/(1e+09);
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MATLAB programs taking parameters a,b,d same and comparing frequency using :

Program 1 : Characteristic Equation

m=1
n=1
p=1
E_r=10
a=14.3e-03
b=25.4e-03
d=26.1e-03
c=3e+08
k_x=m*pi/a
k_y=n*pi/b
k_z=p*(pi/d)/2
k_o=sqrt(k_x^2+k_y^2+k_z^2)/sqrt(E_r)
f_o=(c*k_o/pi)/2
f_oGHz=f_o/1e+09
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m=1;
n=1;
p=1;
E_r=10;
a=14.3e-03;
b=25.4e-03;
d=26.1e-03;
c=3e+08;
syms y real
kx=pi/a;
kz=pi/d/2;
ko=sqrt(kx^2+y^2+kz^2)/sqrt(E_r);
f=real(y*tan(y*b/2)-sqrt((E_r-1)*ko^2-y^2));
ky=fzero(inline(f),[0,(pi/b)-0.01]);
fre=c/2/pi*sqrt((kx^2+ky^2+kz^2)/E_r)*1e3;
effwidth=pi/ky;
factor=effwidth/b;
perchangwidth=((effwidth-b)/b)*100;
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MATLAB programs taking parameters a,b,d same and comparing frequency using :

: Characteristic Equation

Where a=17mm
b=25mm
c=10mm

m=1;
n=1;
p=1;
E_r=10;
a=17e-03;
b=25e-03;
d=10e-03;
c=3e+08;
k_x=m*pi/a;
k_y=n*pi/b;
k_z=p*(pi/d)/2;
k_o=sqrt(k_x^2+k_y^2+k_z^2)/sqrt(E_r);
f_o=(c*k_o/pi)/2;
f_oGHz=f_o/1e+09;
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m=1;
n=1;
p=1;
E_r=10;
a=17e-03;
b=25e-03;
d=10e-03;
c=3e+08;
syms y real
kx=pi/a;
kz=pi/d/2;
ko=sqrt(kx^2+y^2+kz^2)/sqrt(E_r);
f=real(y*tan(y*b/2)-sqrt((E_r-1)*ko^2-y^2));
ky=fzero(inline(f),[0,(pi/b)-0.01]);
fre=c/2/pi*sqrt((kx^2+ky^2+kz^2)/E_r)*1e3;
effwidth=pi/ky;
factor=effwidth/b;
perchangwidth=((effwidth-b)/b)*100;
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MATLAB programs taking parameters a,b,d same and comparing frequency using :
Characteristic Equation

m=1
n=1
p=1
E_r=10
a=14.3e-03
b=25.4e-03
d=26.1e-03
c=3e+08
k_x=m*pi/a
k_y=n*pi/b
k_z=p*(pi/d)/2
k_o=sqrt(k_x^2+k_y^2+k_z^2)/sqrt(E_r)
f_o=(c*k_o/pi)/2
f_oGHz=f_o/1e+09
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m=1;
n=1;
p=1;
E_r=10;
a=14.3e-03;
b=25.4e-03;
d=26.1e-03;
c=3e+08;
syms y real
kx=pi/a;
kz=pi/d/2;
ko=sqrt(kx^2+y^2+kz^2)/sqrt(E_r);
f=real(y*tan(y*b/2)-sqrt((E_r-1)*ko^2-y^2));
ky=fzero(inline(f),[0,(pi/b)-0.01]);
fre=c/2/pi*sqrt((kx^2+ky^2+kz^2)/E_r)*1e3;
effwidth=pi/ky;
factor=effwidth/b;
perchangwidth=((effwidth-b)/b)*100;
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