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Abstract Normal categories are essentially those arising as the category of prin-
cipal left [right] ideals of a regular semigroup. These categories have been used in
describing the structure of regular semigroups. The structure theory in this context is
known as cross connection theory. Several associated categories can be derived from
a normal category which are also of interest in the structure theory of regular semi-
groups. The subcategory of inclusions, the subcategory of retractons, the groupoid
of isomorphisms etc. are some of the associated categories.
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1 Introduction

The fundamental question “How to approximate spectra of linear operators on sepa-
rable Hilbert spaces?” was considered by many mathematicians, starting from Szegö
in [21]. Several attempts have beenmade tomake use of the finite dimensional theory
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in the computation of the spectrum of bounded operators in an infinite dimensional
space through an asymptotic way. This approach found success in getting good esti-
mates in the case of some self-adjoint operators. Significant efforts have been done
by many mathematicians to build up a general theory for the approximation of the
spectrum of bounded self-adjoint operators on an infinite dimensional Hilbert space.
To quote some of the recent contributions in this direction are due to W.B. Arveson
[1], Albrecht Böttcher et al. [4], E.B. Davies et al. [6, 7], I. Gohberg et al. [9], A.
Hansen [11], etc. The list is nevertheless incomplete.

A short survey is presented here on various techniques used to approximate the
spectrum of a bounded self-adjoint operator A on a separable complex Hilbert space
H. The finite dimensional compressions An of A are considered here. The asymptotic
values of spectrum of An are used to study the nature of spectrum of A.

1.1 The Problem

Let {e1, e2, . . .} be an orthonormal basis for H and Pn be the projection of H onto
the finite dimensional subspace Ln = span{e1, e2, . . . , en}. The finite dimensional
truncations An = Pn APn of A can be treated as finite matrices by restricting their
domains to the image of Pn . If we denote the infinite matrix (ai, j ) = (

〈
Ae j , ei

〉
) to

be the matrix representation of A associated to the orthonormal basis {e1, e2, . . .},
then the n × n matrix (ai, j )1≤i, j≤n coincides with the matrix representation of An

restricted to the image of Pn .
Here we consider the following fundamental question. Can we approximate the

spectrum of A using the eigenvalue sequences of the matrices (ai, j )1≤i, j≤n . There
are some disappointing examples in which the eigenvalues of truncations give little
information about the spectrum. For instance, in the case of the right shift operator on
the sequence space l2(Z), the eigenvalue sequence of the truncations is the constant
sequence 0, while the spectrum is the whole closed unit circle. For a self-adjoint
example, one can consider the operator A on l2(N), defined as follows:

A(xn) = (xπ(n)), (1.1)

where π is a suitably chosen permutation on N. The essential properties required for
the permutation π, are discussed in [1], due to which the truncation method fails to
approximate the spectrum.

This article is a survey of some recent developments in this area. In the next
section, we discuss the class of operators introduced by W.B. Arveson in [1] for
which the spectrum is fully determined by the eigenvalues of their truncations except
for some discrete eigenvalues that may lie between the bounds of essential spectrum.
Also, the use of the truncation method to approximate the bounds and the discrete
eigenvalues lying outside the bounds of the essential spectrum of a bounded self-
adjoint operator is explained in this section. The recent advances in the spectral
gap prediction problems are also discussed there. The use of preconditioners to
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modify the truncation method is explained with a couple of more recent results. In
the third section, we briefly explain the quadratic projection method and second-
order relative spectra with some recent modifications. A concluding section on the
further possibilities ends the article.

2 Algebraic and Linear Algebraic Approach

First we report some of the algebraic developments in this area. The major contribu-
tions are due to W.B. Arveson, who generalized the notion of band-limited matrices
in [1], and achieved some success in the case of a special class of operators. We start
with some definitions and results below which will play a very important role in the
approximation of the spectrum of bounded self-adjoint operators. The notation An

is used to denote the matrix (ai, j )1≤i, j≤n .

Definition 2.1 A filtration of a Hilbert spaceH is a sequence of finite dimensional
subspaces of H, {Ln; n ∈ N} such that Ln ⊂ Ln+1 and closure of the union

⋃
n Ln

is H.

Example 2.2 A typical example for filtration in a Hilbert space with an orthonormal
basis is the following. Let {en : n ∈ Z} be the bilateral orthonormal basis for H
and let {Ln} be defined by Ln = span{e−n, e−n+1, . . . en}. Then {Ln; n ∈ Z} is a
filtration.

Definition 2.3 Let {Ln : n ∈ N} be a filtration. And Pn be the projection onto Ln.

The degree of a bounded operator A on H is defined by

deg(A) = sup
n≥1

rank(Pn A − APn).

Corresponding to each filtration, a Banach ∗−algebra of operators called Arve-
son’s class can be defined as follows.

Definition 2.4 A is an operator in the Arveson’s class if A = ∑∞
n=1 An, where

deg(An) < ∞ for every n and convergence is in the operator norm, in such a way
that

∑∞
n=1(1 + deg(An)

1
2 )‖An‖ < ∞.

In case each Ln is the span of finite number of elements in the basis as defined in
Example2.2, the following gives a concrete description of operators in the Arveson’s
class.

Theorem 2.5 ([1]) Let {Ln; n ∈ Z} be the filtration defined in Example2.2. Also let
(ai, j ) be the matrix representation of a bounded operator A, with respect to {en},
and for every k ∈ Z let

dk = sup
i∈Z

|ai+k,i |



188 K. Kumar

be the sup norm of the kth diagonal of (ai, j ). Then A will be in the Arveson’s class
whenever the series

∑
k |k|1/2dk converges.

In particular, any operator whose matrix representation (ai, j ) is band-limited,
in the sense that ai, j = 0 whenever |i − j | is sufficiently large, must be in the
Arveson’s class. Before stating the spectral inclusion theorems for arbitrary self-
adjoint operators and for operators in theArveson’s class, recall the notion of essential
points and transient points.

Definition 2.6 Essential point: A real number λ is an essential point of A, if for
every open set U containing λ, limn→∞ Nn(U ) = ∞, where Nn(U ) is the number
of eigenvalues of An in U.

Definition 2.7 Transient point: A real number λ is a transient point of A if there
is an open set U containing λ, such that sup Nn(U ) with n varying on the set of all
natural number, is finite.

Remark 2.8 It should be noted that a number can be neither transient nor essential.

Denote � = {λ ∈ R;λ = lim λn,λn ∈ σ(An)} and �e as the set of all essential
points. The following spectral inclusion results for a bounded self-adjoint operator
A is of high importance.

Theorem 2.9 ([1]) The spectrum of a bounded self-adjoint operator is contained
in the set of all limit points of the eigenvalue sequences of its truncations. Also, the
essential spectrum is contained in the set of all essential points, i.e.,

σ(A) ⊆ � ⊆ [m, M] and σe(A) ⊆ �e.

Equality in one of the above inclusion for bounded self-adjoint operators in the
Arveson’s class, was also proved in [1]. The precise result is the following.

Theorem 2.10 ([1]) If A is a bounded self-adjoint operator in the Arveson’s class,
then σe(A) = �e and every point in � is either transient or essential.

Remark 2.11 The above two theorems enable us to confine our attention to the
limiting set � and the essential points �e, in the task of computation of spectrum
and essential spectrum of a bounded self-adjoint operator, respectively. Now the
following issues may arise. The limiting set � may contain points which does not
belong to the spectrum. Such points are called spurious eigenvalues. In the case of an
operator in the Arveson’s class, the essential points will give all information about
essential spectrum, while the transient points may be misleading. Here we loose only
information about eigenvalues of finite multiplicity. But this is very important if such
points exist between the lower and upper bounds of essential spectrum, since they
lead to the existence of spectral gaps between these bounds.
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2.1 Operators with Connected Essential Spectrum

Things can be more difficult in the case of an arbitrary bounded self-adjoint operator.
There may exist essential points, which are not spectral values. The operator given
by the Eq. (1.1) is of that kind. However, the inclusion in Theorem2.9 helps us
to determine the spectrum, with an additional assumption of connectedness of the
essential spectrum. The details of this claim are given below, which is a brief review
of the article [4] with some slight modifications. This will play a key role in the
forthcoming sections.

Recall that, for a bounded self-adjoint operator A, the spectrum σ(A) is contained
in the interval [m, M] and the essential spectrum σe(A) in [ν,μ] ,where m, M, ν,μ,
are bounds of σ(A) andσe(A), respectively. The following definitions and prelimi-
nary results are needed further.

Definition 2.12 Consider the singular number sk , k natural number,

sk (A) = inf {‖A − F‖ ; F ∈ B(H), rank F ≤ k − 1}

is the kth approximation number of A.

Clearly, we have ‖A‖ = s1 (A) ≥ s2 (A) ≥ · · · ≥ 0

Theorem 2.13

• [9] limk→∞ sk (A) = ‖A‖ess where ‖A‖ess is the essential norm.
• [4] limn→∞ sk (An) = sk (A) .

Remark 2.14 For |A| = (A∗ A)
1/2 , in case A is a finite matrix, the approximation

numbers are the eigenvalues of |A|. That is sk (A) = λk(|A|), where λk (|A|) is the
kth eigenvalue of |A|.
Theorem 2.15 ([9]) The set σ(|A|) − [

0, ‖A‖ess

]
is at most countable, ‖A‖ess is

the only possible accumulation point, and all the points of the set are eigenvalues
with finite multiplicity of |A|. Furthermore if

λ1(|A|) ≥ λ2(|A|) ≥ · · · ≥ λN (|A|)

are those N eigenvalues (N can be infinity), then

sk (A) =
{

λk(|A|), if N = ∞ or 1 ≤ k ≤ N
‖A‖ess, if N < ∞ and k ≥ N + 1

(2.1)

Corollary 2.16

lim
n→∞ λk (|An|) = lim

n→∞ sk (An) = sk (A) =
{

λk (|A|) i f N = ∞ or 1 ≤ k ≤ N
‖A‖ess i f N < ∞ and k ≥ N + 1
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Remark 2.17 The above result will play a key role in the approximation of spec-
trum. Considering the positive operator A − m I, it can be deduced that the set
σ(A) ∩ (μ, M] is at most countable and that consists of eigenvalues of finite multi-
plicity by Theorem2.15. Also μ is the only possible accumulation point. Let these
eigenvalues be

λ+
R(A) ≤ · · · ≤ λ+

2 (A) ≤ λ+
1 (A).

Similarly by considering the operator M I − A, it can be observed that σ(A) ∩
[m, ν) consists of at most countably many eigenvalues of finite multiplicity with
only possible accumulation point ν. Let

λ−
1 (A) ≤ λ−

2 (A) ≤ · · · ≤ λ−
S (A)

be those eigenvalues. Also the numbers R and S can be infinity. Arrange the eigen-
values of An as

λ1(An) ≥ λ2(An) ≥ · · · ≥ λn(An).

From here onwards, the above notations will be used.

Now we prove the following result from [4] which is the major tool that is used
frequently in this note.

Theorem 2.18 For every fixed integer k we have

lim
n→∞ λk(An) =

{
λ+

k (A), if R = ∞ or 1 ≤ k ≤ R
μ, if R < ∞ and k ≥ R + 1

lim
n→∞ λn+1−k(An) =

{
λ−

k (A), if S = ∞ or 1 ≤ k ≤ S
ν, if S < ∞ and k ≥ S + 1

In particular,

lim
k→∞ lim

n→∞ λk(An) = μ and lim
k→∞ lim

n→∞ λn+1−k(An) = ν.

Proof The following observations are made first.

|A − m I | = A − m I, Pn(A − m I )Pn = An − m In, and |An − m In| = An − m In.

Hence from the above corollary, we have

lim
n→∞ λk(An − m In) =

{
λk(A − m I ), if R = ∞ or 1 ≤ k ≤ R

‖A − m I‖ess, if R < ∞ and k ≥ R + 1
(2.2)
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Similarly, by considering the operator M I − A, we get

lim
n→∞ λk(M In − An) =

{
λk(M I − A), if S = ∞ or 1 ≤ k ≤ S

‖M I − A‖ess, if S < ∞ and k ≥ S + 1
(2.3)

Also we have the following identities

‖A − m I‖ess = μ − m, ‖M I − A‖ess = M − ν. (2.4)

λk(An − m In) = λk(An) − m, λk(M In − An) = M − λn+1−k(An). (2.5)

λk(A − m I ) = λ+
k (A) − m, λk(M I − A) = M − λ−

k (A). (2.6)

Substituting them in Eqs. (2.2) and (2.3), we get

lim
n→∞ λk(An) =

{
λ+

k (A), if R = ∞ or 1 ≤ k ≤ R
μ, if R < ∞ and k ≥ R + 1

lim
n→∞ λn+1−k(An) =

{
λ−

k (A), if S = ∞ or 1 ≤ k ≤ S
ν, if S < ∞ and k ≥ S + 1

Hence the proof. �

Remark 2.19 The above results are also true ifwe replace An by someother sequence
A1n of self-adjoint operators with the property that

‖An − A1n‖ → 0 as n → ∞

In order to justify this, we need only to recall an important inequality concerning
the eigenvalues of self-adjoint matrices A, B (refer e.g. to [2])

|λk (A) − λk (B)| ≤ ‖A − B‖ .

Remark 2.20 By Theorem2.18, all the discrete spectral values lying outside the
bounds of essential spectrum and the upper and lower bounds of the essential spec-
trum can be approximated. Note that, the theorem points out exactly the particular
sequence that converges to a discrete spectral value. But how fast does the conver-
gence take place, is still not known. Looking at some concrete situations, one may
hope for a better rate of convergence.

Even the rate of convergence is not estimated, it can be proved that the order of
convergence is the same as the order of convergence of approximation numbers. The
following theorem gives a vague idea about the rate of convergence.

Theorem 2.21 ([14]) If sk(An) − sk(A) = O(θn), where θn goes to 0 as n tends to
∞, then
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λk(An) =
{

λ+
k (A) + O(θn), if R = ∞ or 1 ≤ k ≤ R

μ + O(θn), if R < ∞ and k ≥ R + 1

λn+1−k(An) =
{

λ−
k (A) + O(θn), if S = ∞ or 1 ≤ k ≤ S

ν + O(θn), if S < ∞ and k ≥ S + 1

where R and S are the same notations used in Theorem2.18.

Proof Let N be the number of eigenvalues lying in σ(|A|) − [
0, ‖A‖ess

]
. From

identity (2.1), and the the fact that sk(An) = λk(|An|),we have the following identity.

sk(An) − sk(A) =
{

λk(|An|) − λk(|A|), if N = ∞ or 1 ≤ k ≤ N
λk(|An|) − ‖A‖ess , if N<∞ and k ≥ N + 1

Since by hypothesis, sk(An) − sk(A) = O(θn),

λk(|An|) − λk (|A|) = O(θn), if N = ∞ or 1 ≤ k ≤ N ,

λk(|An|) − ‖A‖ess = O(θn), if N < ∞ and k ≥ N + 1.

Applying this to the positive operators A−m I , and M I − A, with the notations used
in Theorem2.18, we get the following conclusions.

λk(An − m In) =
{

λk (A − m I ) + O(θn), if R = ∞ or 1 ≤ k ≤ R
‖A − m I‖ess + O(θn), if R < ∞ and k ≥ R + 1

and

λk(M In − An) =
{

λk (M I − A) + O(θn), if S = ∞ or 1 ≤ k ≤ S
‖M I − A‖ess + O(θn), if S < ∞ and k ≥ S + 1

Also from the identities (2.4)–(2.6), we get the desired conclusions

λk(An) =
{

λ+
k (A) + O(θn), if R = ∞ or 1 ≤ k ≤ R

μ + O(θn), if R < ∞ and k ≥ R + 1

λn+1−k(An) =
{

λ−
k (A) + O(θn), if S = ∞ or 1 ≤ k ≤ S

ν + O(θn), if S < ∞ and k ≥ S + 1

Hence the proof. �

The above theorem is the first result regarding the rate of convergence in the
approximations done in Theorem2.18. So far there is no evidence of remainder
estimation and the error estimation in these approximations in the case of an arbitrary
self-adjoint operator to the best of our knowledge. The subsequent theorem taken
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from [4] denies the existence of spurious eigenvalues (points in � those are not part
of the spectrum) under the assumption of connectedness of essential spectrum.

Theorem 2.22 ([4]) If A is a self-adjoint operator and if σe(A) is connected, then
σ(A) = �.

Remark 2.23 It is worthwhile to notice that the connectedness of essential spectrum
enables us to compute the spectrum using finite dimensional truncations. Thus, if we
cannot determine the spectrum fully by the truncations, then the essential spectrum
is not connected. In short, if there is a spurious eigenvalue, then there exists a gap in
the essential spectrum.

Remark 2.24 The converse of the above observation need not be true. That is the
existence of a spectral gap does not lead to the existence of a spurious eigenvalue. For
example, if we take A to be be the projection operator on to some closed subspace of
H, then the eigenvalues of truncations are 0 and 1 only. There we have � = σ(A) =
{0, 1}. Hence no spurious eigenvalues, but still there is a gap.

In summary, the upper and lower bounds of the essential spectrum can be com-
puted using the sequence of eigenvalues of finite dimensional truncations. Also the
discrete eigenvalues lying below and above these bounds can be computed. The
above results pinpointing the particular sequence of eigenvalues that converges to a
particular eigenvalue of the operator. Now the remaining part is the computation of
essential spectrum. The problem is whether it is possible to locate the gaps in the
essential spectrum using these truncations. If it is possible, then the spectrum is fully
determined up to some discrete eigenvalues that may have trapped between these
gaps.

2.2 Gaps in the Essential Spectrum

The following theorem is an attempt to predict the existence of spectral gaps, using
the finite dimensional truncations. The notation #S is used to denote the number
of elements in the set S and wnk is used to denote an averaging sequence. That is

0 ≤ wnk ≤ 1, and
n∑

k=1
wnk = 1.

Theorem 2.25 ([13]) Let A be a bounded self-adjoint operator, and λn1(An) ≥
λn2(An) ≥ · · · ≥ λnn(An) be the eigenvalues of An arranged in decreasing order.

For each positive integer n, let an =
n∑

k=1
wnkλnk be the convex combination of

eigenvalues of An. If there exists a δ > 0 and K > 0 such that

#
{
λnj ;

∣∣an − λnj

∣∣ < δ
}

< K (2.7)

and in addition if σe(A) and σ(A) have the same upper and lower bounds, then
σe(A) has a gap.
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Remark 2.26 There is possibility for the presence of discrete eigenvalues inside the
gaps in the above case.

Remark 2.27 The special case which is more interesting is when wnk = 1
n , for all

n. In that case, we are actually looking at the averages of eigenvalues of truncations
and these averages can be computed using the trace at each level.

Remark 2.28 It is to be noted that all the points of the form an =
n∑

k=1
wnkλnk are in

the numerical range of An . Therefore, the result can be made simpler in the language
of numerical range. However it is not easy to compute the numbers in the expression
(2.7). Herewe treated it as a deviation from themean value. Hence the condition (2.7)
may be interpreted as a restriction to the deviation of the eigenvalues of truncations
from their central tendency. Nevertheless the computations still remain difficult.

In Theorem2.25, the weighted mean of the eigenvalues at each level and its
deviation is analyzed. The following special choice of the weights are interesting.

Special Choice

Let us consider an instance where these weights wnk arise naturally associated to

a self-adjoint operator on a Hilbert space. Let An =
n∑

k=1
λn,k Qn,k be the spectral

resolution of An . Define wnk = 〈
Qn,ke1, e1

〉
. Then 0 ≤ wnk ≤ 1 and

n∑

k=1
wnk = 1.

Now

n∑

k=1

wnkλnk =
n∑

k=1

λnk
〈
Qn,ke1, e1

〉 = 〈Ane1, e1〉 = 〈Ae1, e1〉 = a11.

Therefore by Theorem2.25, if there exists a δ > 0 and a K > 0, such that

#
{
λnj ;

∣∣a11 − λnj

∣∣ < δ
}

< K

then there exists a gap in the essential spectrum of A. Hence if the first entry in the
matrix representation of A, is not an essential point, then there exists a gap in the
essential spectrum.

Remark 2.29 All points of the form 〈Aei , ei 〉 = aii are in the numerical range which
lies between the bounds of the essential spectrum, in the case that the bounds coincide
with the bounds of the spectrum. Hence in that case, if aii is not an essential point for
some i , then that will lead to the existence of a spectral gap. That means if any one of
the diagonal entries in the matrix representation of A is not an essential point, then
there exists a gap in the essential spectrum as indicated in the above special choice
of wnk .

The following is an example where the first entry a11 is a transient point and the
spectral gap prediction is valid.
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Example 2.30 Define a bounded self-adjoint operator A on l2(N), as follows.

A(xn) = (xn−1 + xn+1) + (vn xn), x0 = 0;

where the periodic sequence (vn) = (1, 2, 3, 1, 2, 3, . . .). The matrix representation
of A, associated to the standard orthonormal basis, is tridiagonal. The diagonal entries
are the entries in the periodic sequence (vn) and upper and lower diagonal will be
1. Such matrices can be identified as the block Toeplitz operator with corresponding
matrix valued symbol given by

f̃ (θ) =
⎡

⎣
1 1 eiθ

1 2 1
e−iθ 1 3

⎤

⎦ .

By our special choice above, Theorem2.25 guarantees that if 〈A(e1), e1〉 = 1 is
a transient point, then σe(A) has a gap. The fact that 1 is a transient point, is a
consequence of discrete Borg theorem [8, 10] and some numerical computations.

The interval
(
3−√

5
2 , 5−√

5
2

)
is a spectral gap an 1 lies in that gap.

2.3 Preconditioners in Spectral Approximation

Here we try to modify the truncation method with the help of the notions of pre-
conditioners and the convergence of matrix sequences in the sense of eigenvalue
clustering. Recall that in the numerical analysis literature, the preconditioner associ-
ated with a matrix is used to make the iteration process more efficient. Here we use
different notions of matrix convergence in the sense of eigenvalue clustering to study
the spectral approximation by preconditioners. That is, the An’s will be replaced by
its preconditioner to perform approximation of spectrum.

We start with defining different notions of convergence of matrix sequences in the
sense of eigenvalue clustering. Such notions were used in the special case of Toeplitz
matrices in [20], and generalized into the arbitrary case in [12].

Definition 2.31 Let {An} and {Bn} be two sequences of n × n Hermitian matrices.
We say that An − Bn converges to 0 in the strong cluster sense if for any ε > 0,
there exist integers N1,ε, N2,ε such that all the singular values σ j (An − Bn) lie in the
interval [0, ε) except for at most N1,ε (independent of the size n) singular values for
all n > N2,ε.

If the number N1,ε does not depend on ε, we say that An − Bn converges to 0 in
the uniform cluster sense. And if N1,ε depends on ε, n and is of o(n), we say that
An − Bn converges to 0 in weak cluster sense.

Here the aim is to modify the truncation method by replacing An by some other
simpler sequence of matrices Bn , where {An} − {Bn} converges to 0 in the strong
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cluster sense (weak or uniform cluster sense, respectively). We study the effect of
this replacement in the well-known results obtained by truncation method. We prove
a couple of results which show that the convergence in the strong or uniform cluster
sense is equivalent to the compact perturbation of operators. These are the modified
versions of the results proved in [15].

Theorem 2.32 Let A, B ∈ B(H) be self-adjoint operators. Then the operator R =
A − B is compact if and only if the sequence of truncations An − Bn converges to
the zero matrix in the strong cluster.

Proof First assume that R = A − B is compact and its spectrum σ(R) = {λk(R) :
k = 1, 2, 3, . . .} ⋃ {0}. Here 0 is the only accumulation point of the spectrum. Hence
λk(R) → 0 as k → ∞. Hence for any given ε > 0, there exists a positive integer
N1,ε such that

λk(R) ∈
(−ε

2
,

ε

2

)
, for every k > N1,ε.

Also since R is compact, the truncation Rn = An − Bn converges to R in the
operator norm topology. Therefore, the eigenvalues of truncations converges to the
eigenvalues of R. That is

λk(Rn) → λk(R) as n → ∞, for each k.

In particular, for every k > N1,ε, there exists a positive integer N2,ε such that

λk(Rn) − λk(R) ∈
(−ε

2
,

ε

2

)
, for every n > N2,ε.

Therefore, when n > N2,ε, all the eigenvalues λk(Rn) of Rn = An − Bn , except for
at most N1,ε eigenvalues, are in the interval (−ε, ε). That is Rn = An − Bn converges
to 0 in the strong cluster.

For the converse part, assume that An − Bn converges to the zero matrix in the
strong cluster. Then for any λ �= 0, choose an ε > 0 such that λ is outside the
interval (−ε, ε). Corresponding to this ε, there exist positive integers N1,ε, N2,ε such
that σ(An − Bn) is contained in (−ε, ε), for every n > N2,ε, except for possibly N1,ε

eigenvalues. Now consider the counting function Nn(U ) of eigenvalues of An − Bn

in U . For any neighborhood U of λ that does not intersect with (−ε, ε), Nn(U ) is
bounded by the number N1,ε. Hence λ is not an essential point of A− B. Therefore, it
is not in the essential spectrum (see Theorem 2.3 of [1]). Since λ �= 0 was arbitrary,
this shows that the essential spectrum of A − B is the singleton set {0}. Hence it is
a compact operator and the proof is completed. �

Theorem 2.33 Let A, B ∈ B(H) be self-adjoint operators. Then the operator R =
A − B is of finite rank if and only if the truncations An − Bn converges to the zero
matrix in the uniform cluster.



Spectral Approximation of Bounded Self-Adjoint Operators … 197

Proof The proof is an imitation of the proof of Theorem2.32, differs only in the
choice of N1,ε to be independent of ε. However the details are given below. First
assume that R=A−B is a finite rank operatorwith rank N1, and its spectrumσ(R) =
{λk(R) : k = 1, 2, 3, . . . N1} ⋃ {0}. Since the truncation Rn = An − Bn converges
to R in the operator norm topology, the eigenvalues of truncations converges to the
eigenvalues of R. That is

λk(Rn) → λk(R) as n → ∞, for each k = 1, 2, 3, . . . N1.

For every k > N1, λk(Rn) converges to 0 by [4]. Hence for a given ε > 0, there
exists a positive integer N2,ε such that

λk(Rn) ∈ (−ε, ε) , for every n > N2,ε and for each k > N1.

Therefore, when n > N2,ε, all the eigenvalues λk(Rn) of Rn = An − Bn , except for
the first N1 eigenvalues, are in the interval (−ε, ε). That is An − Bn converges to 0
in the uniform cluster.

For the converse part, assume that An − Bn converges to the zero matrix in the
uniform cluster. Then for any ε > 0, there exist positive integers N1, N2,ε such that
σ(An − Bn) is contained in (−ε, ε), for every n > N2,ε, except for possibly N1

eigenvalues. As in the proof of Theorem2.32, we obtain 0 is the only element in
the essential spectrum. Hence R = A − B is a compact operator. In addition to
this, R can have at most N1 eigenvalues. To see this, notice that all the eigenvalues
of a compact operator are obtained as the limits of sequence of eigenvalues of its
truncations. In this case at most N1 such sequence can go to a nonzero limit. Hence
R is a finite rank operator and the proof is completed. �

Remark 2.34 The above results have the following implications. Since a compact
perturbation may change the discrete eigenvalues, the above results show that the
convergence of preconditioners in the sense of eigenvalue clustering, is not sufficient
to use them in the spectral approximation problems. Nevertheless one can use it in the
spectral gap prediction problems, since the compact perturbation preserves essential
spectrum.

Remark 2.35 The analysis of weak convergence is yet to be carried out.

We end this section with the example of Frobenius optimal preconditioners, which
are useful in the context of infinite linear systems with Toeplitz structure (see [20]
for details).

Example 2.36 Let {Un} be a sequence of unitary matrices over C, where Un is of
order n for each n. For each n, we define the commutative algebra MUn of matrices
as follows.

MUn = {
A ∈ Mn (C) ; Un

∗ AUn complex diagonal
}
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Recall that Mn (C) is a Hilbert space with respect to the classical Frobenius scalar
product,

〈A, B〉 = trace (B∗ A).

Observe that MUn is a closed convex set in Mn (C) and hence, corresponding to each
A ∈ Mn (C), there exists a unique matrix PUn (A) in MUn such that

‖A − X‖22 ≥ ∥∥A − PUn (A)
∥∥2
2 for every X ∈ MUn .

For each A ∈ B(H), consider the sequence of matrices PUn (An) as the Frobenius
optimal preconditioners of An . In the case A is the Toeplitz operator with continuous
symbol, there are many good examples of matrix algebras such that the associated
Frobenius optimal preconditioners are of low complexity and have faster rate of
convergence.

3 Analytical Approach

The concepts of second-order relative spectra and quadratic projectionmethod,which
are almost synonyms of the other, were used in the spectral pollution problems and
in determining the eigenvalues in the gaps by E.B. Davies, Levitin, Shagorodsky, etc.
(see [5–7, 17]). In all these articles, the idea is to reduce the spectral approximation
problems into the estimation of a particular function, related to the distance from
the spectrum. This particular function is usually approximated by a sequence of
functions related to the eigenvalues of truncations of the operator under concern.

First, we shall briefly mention the work done by E.B. Davies [6] and E.B. Davies
and M. Plum [7], which is of great interest, where he considered functions which are
related to the distance from the spectrum.

3.1 Distance from the Spectrum

In the paper published in 1998 [6], E.B. Davies considered the function F defined by

F(t) = inf

{‖A(x) − t x‖
‖x‖ : 0 �= x ∈ L

}
(3.1)

where L is a subspace of H. Then he observed the following.

• F is Lipschitz continuous and satisfies |F(s) − F(t)| ≤ |s − t |, for all s, t ∈ R.

• F(t) ≥ d(t,σ(A)) = dist (t,σ(A)).

• If 0 ≤ F(t) ≤ δ, then σ(A) ∩ [t − δ, t + δ] �= ∅.



Spectral Approximation of Bounded Self-Adjoint Operators … 199

From these observations, he obtained some bounds for the eigenvalues in the
spectral gap of A, and found it useful in some concrete situations. For the efficient
computation of the function F, he considered family of operators N (s) on the given
finite dimensional subspace L, defined by

N (s) = A∗
L

AL − 2s P AL + s2 IL (3.2)

where P is the projection onto L and the notation AL means A restricted to L. The
eigenvalues of these family of finite dimensional operators form sequence of real
analytic functions (functions which map s to the eigenvalues of N (s)). He used these
sequence to approximate the function F and thereby obtain information about the
spectral properties of A. The main result is stated below, under the assumption that
A is bounded.

Theorem 3.1 Suppose {Ln}∞n=1 is an increasing sequence of closed subspaces of
H. If Fn is the functions associated with Ln according to (3.1), then Fn decreases
monotonically and converge locally uniformly to d(.,σ(A)). In particular, s ∈ σ(A)

if and only if
lim

n→∞ Fn(s) = 0.

In the article on spectral pollution [7] in 2004, the above method was linked with
various techniques due to Lehmann [16], Behnke et al. [3], Zimmerman et al. [22].
The problem of spurious eigenvalues in a spectral gap was addressed by considering
the following function.

F(t) = inf{‖A(x) − t x‖ : x ∈ L, ‖x‖ = 1}

If we define Fn(t) = inf{‖A(x) − t x‖ : x ∈ Ln, ‖x‖ = 1}, then the following
results shall be obtained.

• Given ε > 0, there exists an Nε such that n ≥ Nε implies

F(t) ≤ Fn(t) ≤ F(t) + ε for all t ∈ R

• σ(A) ∩ [t − Fn(t), t + Fn(t)] �= ∅ for every t ∈ R.

These observations were useful in obtaining some bounds for the eigenvalues
between the bounds of essential spectrum. This was established with some numerical
evidence in [7] for bounding eigenvalues for some particular operators.

Levitin and Shargorodsky considered the problem of spectral pollution in [17].
They suggested the usage of second-order relative spectra, to deal the problem. For
the sake of completion, the definition is given below.

Definition 3.2 ([17]) Let L be a finite dimensional subspace ofH. A complex num-
ber z is said to belong to the second-order spectrum σ2(A,L) of A relative to L if
there exists a nonzero u in L such that
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〈(A − z I )u, (A − z̄ I )v〉 = 0, for every v ∈ L

They proved that the second-order relative spectrum intersects with every disk
in the complex plane with diameter is an interval which intersect with the spectrum
of A (Lemma 5.2 of [17]). They also provided some numerical results in case of
some Multiplication and Differential operators, which indicated the effectiveness of
second-order relative spectra in avoiding the spectral pollution. In [5], Boulton and
Levitin used the quadratic projection method to avoid spectral pollution in the case
of some particular Schrodinger operators.

3.2 Distance from the Essential Spectrum

To predict the existence of a gap in the essential spectrum, we need to know whether
a number λ in (ν,μ) belongs to the spectrum or not. If it is not a spectral value,
then there exists an open interval between (ν,μ) as a part of the compliment of the
spectrum, since the compliment is an open set. We observe that the spectral gap
prediction is possible by computing values of the following function.

Definition 3.3 Define the nonnegative valued function f on the real line R as fol-
lows.

f (λ) = νλ = inf σe((A − λI )2).

The primary observation is that we can predict the existence of a gap inside
the essential spectrum by evaluating the function and checking whether it attains a
nonzerovalue.Thenonzerovalues of this functiongive the indicationof spectral gaps.

Theorem 3.4 The number λ in the interval (ν,μ) is in the gap if and only if f (λ) >

0. Also one end point of the gap will be λ ± √
f (λ).

The advantage of considering f (λ) is that, it is the lower bound of the essential
spectrum of the operator (A − λI )2, which we can compute using the finite dimen-
sional truncations with the help of Theorem2.18. So the computation of f (λ), for
each λ, is possible. This enables us to predict the gap using truncations. Also here
we are able to compute one end point of a gap. The other end point is possible to
compute by Theorem 2.3 of [18], which is stated below.

Theorem 3.5 ([18]) Let A be a bounded self-adjoint operator and σe(A) =
[a, b] ⋃ [c, d], where a < b < c < d. Assume that b is known and not an accu-
mulation point of the discrete spectra of A. Then c can be computed by truncation
method.
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Coming back to the Arveson’s class, we observe that the essential points and
hence the essential spectrum is fully determined by the zeros of the function in the
Definition 3.3.

Corollary 3.6 If A is a bounded self-adjoint operator in the Arveson’s class, then
λ is an essential point if and only if f (λ) = 0.

When one wishes to apply the above results to determine the gaps in the essential
spectrumof a particular operator, one has to face the following problems. To check for
each λ in (ν,μ), is a difficult task from the computational point of view. Also taking
truncations of the square of the operator may lead to difficulty. Note that (Pn APn)

2

and Pn A2Pn are entirely different. So we may have to do more computations to
handle the problem.

Another problem is the rate of convergence and estimation of the remainder term.
For each λ in (ν,μ), the value of the function f (λ) has to be computed. This com-
putation involves truncation of the operator (A − λI )2 and the limiting process of
sequence of eigenvalues of each truncation. The rate of convergence of these approx-
imations and the remainder estimate are the questions of interest.

Below, the function f (.) is approximated by a double sequence of functions,
which arise from the eigenvalues of truncations of operators.

Theorem 3.7 ([14]) Let fn,k be the sequence of functions defined by fn,k (λ) =
λn+1−k

(
Pn (A − λI )2 Pn

)
. Then f (.) is the uniform limit of a subsequence of

{ fn,k (.)} on all compact subsets of the real line.

The following result makes the computation of f (λ) much easier for a particular
class of operators. When the operator is truncated first and square the truncation
rather than truncating the square of the operator, the difficulty of squaring a bounded
operator is reduced. The computation needs only to square the finite matrices.

Theorem 3.8 ([14]) If ‖Pn A − APn‖ → 0 as n → ∞, then

lim
k→∞ lim

n→∞ λn+1−k
(
Pn (A − λI )2 Pn

) = lim
k→∞ lim

n→∞ λn+1−k (Pn (A − λI ) Pn)
2 .

Remark 3.9 The function f (.) that is considered here is directly related to the
distance from the essential spectrum, while Davies’ function was related with
the distance from the spectrum. Here the approximation results in [4], especially
Theorem2.18 are used to approximate the function. But it is still not known to us
whether these results are useful from a computational point of view. The methods
due to Davies et al. were applied in the case of some Schrodinger operators with a
particular kind of potentials in [5, 17]. We hope that a combined use of both methods
may give a better understanding of the spectrum.
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4 Concluding Remarks and Further Problems

The goal of such developments is to use the finite dimensional techniques into the
spectral analysis of bounded self-adjoint operators on infinite dimensional Hilbert
spaces. This also leads to a large number of open problems of different flavors. We
shall quote some of them here.

• The numerical algorithms have to be developed to approximate spectrum and
essential spectrum using the eigenvalue sequence of truncations, with emphasis
on the computational feasibility.

• The random versions of the spectral approximation problems are another area to
be investigated. The related work is already under progress in [14].

• The use of preconditioners has its origin in the numerical linear algebra literature,
especially in the case of Toeplitz operators. One can expect good estimates on such
concrete examples.

• The unbounded operators shall be considered and the approximation techniques
have to be developed.
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