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Preface

The International Conference on Semigroups, Algebras and Operator Theory
(ICSAOT-2014) focused on the recent advances in semigroup theory and operator
theory. The scientific programs emphasized on the research related to the structure
theory of semigroup, semigroup approach to Von Neumann regularity and operator
algebras. The conference was hosted by the Department of Mathematics, Cochin
University of Science and Technology (CUSAT), Kochi, Kerala, India during
26–28 February 2014.

Leading researchers from 11 different countries working in these areas were
invited to participate. A total of 63 delegates including Ph.D. students from eight
countries participated. The following plenary lectures were given:

1. John C. Meakin, University of Nebraska, USA—Amalgams of Inverse
Semigroups of C�—Algebras.

2. Laszlo Marki, Budapest, Hungary—Commutative Order in Semigroups.
3. M.V. Volkov, University of Ekaterinburg, Russia—The Finite Basis Problem

for Kauffman Monoids.
4. Alessandra Cherubini, Milano, Italy—Word Problem in Amalgams of Inverse

Semigroups.
5. K.S.S. Nambooripad, Kerala, India—von Neumann Algebras and Semigroups.
6. M.K. Sen, Kolkata, India—Left Clifford Semigroups.
7. Pascal Weil, LaBRI-CNBS, Talence Cedex, France—Logic, Language and

Semigroups: from the lattice of band varites to the quantifier alteration hier-
archy within the 2-variable fragment of first order logic.

8. Jorge Almeida, Alegre, Portugal—Irreducibility of Psedovarieties of
Semigroup.

9. B.V. Limaye, Mumbai, India—Operator Approximations.
10. S.H. Kulkarni, Chennai, India—The Null Space Theorem.
11. M. Thamban Nair, Chennai, India—Role of Hilbert Scales in Regularization

Theory.

The daily program consisted of lectures, paper presentations and discussions
held in an open and encouraging atmosphere.
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In addition to the above speakers there were invited talks and paper presentations.
We are greatful to all participants for their valuable contributions and for making the
ICSAOT-2014 a successfull event. Moreover, we would like to thank the National
Board for Higher Mathematics, DAE, Mumbai; CSIR, New Delhi; SERB-DST, New
Delhi; KSCSTE, Thiruvananthapuram for providing us with financial support. We
are also thankful to the Cochin University of Science and Technology for additional
support and practical assistance related to the preparation and organization of the
conference. We thank all our referees for their sincere cooperation, which enabled the
successful completion of the refereeing processes.

P.G. Romeo
John C. Meakin

A.R. Rajan
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Decidability Versus Undecidability
of the Word Problem in Amalgams
of Inverse Semigroups

Alessandra Cherubini and Emanuele Rodaro

Abstract This paper is a survey of some recent results on theword problem for amal-
gams of inverse semigroups. Some decidability results for special types of amalgams
are summarized pointing out where and how the conditions posed on amalgams are
used to guarantee the decidability of the word problem. Then a recent result on unde-
cidability is shortly illustrated to show how small is the room between decidability
and undecidability of the word problem in amalgams of inverse semigroups.

Keywords Inverse semigroup · Amalgams · Schutzenberger automata · Cactrod
inverse automata

1 Introduction

A semigroup S is a regular semigroup if for each a ∈ S there exists some element
b ∈ S such that a = aba and b = bab. Such an element b is called an inverse
of a. A regular semigroup where each element has a unique inverse is an inverse
semigroup, in such case the (unique) inverse of a is denoted by a−1. Equivalently,
an inverse semigroup is a regular semigroup whose idempotents commute, hence
its set of idempotents E(S) is a commutative subsemigroup of S, usually called the
semilattice of idempotents. A natural partial order is defined on an inverse semigroup
S by putting a ≤ b if and only if a = eb for some e ∈ E(S).

Inverse semigroups may be regarded as semigroups of partial one-to-one trans-
formations, so they arise very naturally in several areas of mathematics. We refer
the reader to the book of Petrich [25] for basic results and notation about inverse
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2 A. Cherubini and E. Rodaro

semigroups and books of Lawson [19] and Paterson [24] for many references to the
connections between inverse semigroups and other branches of mathematics. More
recently, inverse semigroups have also attracted the attention of physics and computer
science scholars because several notions and tools of inverse semigroup theory are
attuned toward questions in solid-state physics (particularly those concerning qua-
sicrystals) and the concrete modeling of time-sensitive interactive systems (see for
instance [14, 16, 17]). Besides, inverse semigroup theory gives raise to interesting
algorithmic problems.

Inverse semigroups form a variety of algebras defined by the associativity and the
following identities:

(a−1)−1 = a, (ab)−1 = b−1a−1 (1)

aa−1a = a, aa−1bb−1 = bb−1aa−1

Hence, for any given set X , the free inverse semigroup FIS(X) exists, and FIS(X) =
(X ∪ X−1)+/ν where ν is the congruence generated by the previous identities
(Vagner’s congruence). Let T ⊆ (X ∪ X−1)+ × (X ∪ X−1)+. The quotient of
the free semigroup (X ∪ X−1)+ by the least congruence τ that contains ν and the
relations in T is an inverse semigroup denoted by S = I nv〈X; T 〉, 〈X |T 〉 is called
a presentation of S with set of generators X and T . If both X and T are finite then S
is called finitely presented.

The aim of combinatorial inverse semigroup theory is to extract information on
an inverse semigroup starting from its presentation, and one of its core problems is
the word problem: for a given presentation 〈X |T 〉 of an inverse semigroup S

Input: Two words w,w′ ∈ (X ∪ X−1)+
Output: Do w,w′ represent the same element of S?

If there exists an algorithm answering to the above question, then S has decidable
word problem.

The word problem is, in general, undecidable for inverse semigroups (since
Novikov in the early 1950s proved that it is undecidable for groups [23]).

In 1974, Munn gave a nice characterization of the free inverse semigroup FIS(X)

in terms of birooted trees labeled on X (i.e., in terms of finite word automata), that
gives also a nice solution to the word problem for free inverse semigroups and can be
seen as the seed of the theory of presentations of inverse semigroups by generators
and relations. The Munn tree MT (w) of a word w ∈ (X ∪ X−1)+ is the finite
subtree of Cayley graph of the free group generated by X obtained by reading the
word w starting from 1, with 1 and the reduced word r(w) of w, in the usual group
theoretic sense, as initial and final roots. Then the solution of the word problem is the
following, two words w,w′ ∈ (X ∪ X−1)+ represent the same element of FIS(X) if
and only if they have the same birooted Munn tree.

Munn’s work was greatly extended by Stephen [31] who introduced the notion of
Schützenberger graphs and Schützenberger automata associated with presentations
of inverse semigroups. Let S = Inv〈X; T 〉, the Schützenberger graph SΓ (X, T ;w)



Decidability Versus Undecidability of the Word Problem … 3

of the wordw ∈ (X ∪ X−1)+ associated with the presentation 〈X |T 〉 is the restriction
to the vertices that areR-related tow of the Cayley graph of the presentation 〈X |T 〉 .
The Schützenberger automatonA(X, T ;w) of w ∈ (X ∪ X−1)+ associated with the
presentation 〈X |T 〉 is the automaton whose underlying graph is SΓ (X, T ;w) with
initial and final vertices ww−1τ and wτ , respectively. The importance of Schützen-
berger automata stems from the fact that any two words w,w′ ∈ (X ∪ X−1)+ repre-
sent the same element of S = Inv〈X; T 〉 if and only if A(X, T ;w) = A(X, T ;w′).
Therefore, it is clear that an algorithm for determining the Schützenberger graphs
of any word associated to a given presentation would solve the word problem for
that presentation. In [31] Stephen provides an iterative procedure to construct these
automata that, however, is not effective because in general Schützenberger automata
are not finite. In spite of that, these automata are widely used in the study of algo-
rithmic and structural questions for several classes of inverse semigroups (see, for
instance [3, 5–11, 13, 15, 26–28, 30, 32]).

In this paper, we consider the word problem for amalgamated free products of
two given inverse semigroups. The word problem is decidable for amalgamated free
products of groups and is undecidable for amalgamated free products of semigroups
(even when the two semigroups are finite [29]) but it is not known under which con-
ditions on the inverse semigroups the word problem for amalgamated free products
is decidable in the category of inverse semigroups (Problem 5 of [21]). In the sequel,
we will briefly illustrate some sufficient conditions on amalgams of inverse semi-
groups for the word problem being decidable in the amalgamated free products [7,
8] and a negative recent result [28]. The paper is organized as follows. In Sect. 2, we
recall basic definitions and relevant results concerning Schützenberger automata of
inverse semigroups, and the structure and properties of Schützenberger automata of
amalgams of inverse semigroups. In Sect. 3, we briefly describe the constructions to
build the Schützenberger automata for some special classes of amalgams of inverse
semigroups. In Sect. 4, we provide some sufficient conditions that guarantee these
constructions are effective. In Sect. 5, we give a brief description of the techniques
to prove that the word problem is undecidable even if we assume nice conditions on
the amalgam. The last section is devoted to some conclusions.

2 Preliminaries

In this section, we recall definitions and results concerning Schützenberger automata
of inverse semigroups. An inverse word graph over an alphabet X is a strongly
connected labeled digraph whose edges are labeled over X ∪ X−1, where X−1 is
the set of formal inverses of elements in X , so that for each edge labeled by x ∈ X
there is an edge labeled by x−1 in the reverse direction. A finite sequence of edges
ei = (αi , ai ,βi ), 1 ≤ i ≤ n, ai ∈ X ∪ X−1 with βi = αi+1 for all i with 1 ≤ i < n,
is an α1 −βn path of Γ labeled by a1a2 . . . an ∈ (X ∪ X−1)+. An inverse automaton
over X is a triple A = (α, Γ,β) where Γ is an inverse word graph over X with set
of vertices V (Γ ), set of edges Ed(Γ ), and α,β ∈ V (Γ ) are two special vertices
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called the initial and final state of A. The language L[A] recognized by A is the set
of labels of all α−β paths of Γ . The inverse word graph Γ over X is deterministic if
for each ν ∈ V (Γ ), a ∈ X ∪ X−1, (ν, a, ν1), (ν, a, ν2) ∈ Ed(Γ ) implies ν1 = ν2.

Morphisms between inverseword graphs are graphmorphisms that preserve label-
ing of edges and are referred to as V -homomorphisms in [31]. If Γ is an inverse word
graph over X and ρ is an equivalence relation on the set of vertices of Γ , the corre-
sponding quotient graph Γ/ρ is called a V -quotient of Γ (see [31] for details). There
is the least equivalence relation on the vertices of an inverse automaton Γ such that
the corresponding V -quotient is deterministic. A deterministic V -quotient of Γ is
called a DV -quotient. There is a natural homomorphism from Γ onto a V -quotient
of Γ . The notions of morphism, V -quotient, and DV -quotient of inverse graphs
extend analogously to inverse automata (see [31]).

Let S = Inv〈X; T 〉 	 (X ∪ X−1)+/τ be an inverse semigroup. The Schützen-
berger graph SΓ (X, T ;w) of a word w ∈ (X ∪ X−1)+ relative to the presen-
tation 〈X |T 〉 is an inverse word graph whose vertices are the elements of the
R-class of wτ in S and whose set of of edges consists of all the triples (s, x, t)
with s, t ∈ V (SΓ (X, T ;w)), x ∈ X ∪ X−1, and s(xτ ) = t . We view the edge
(s, x, t) as being directed from s to t . The graph SΓ (X, T ;w) is a deterministic
inverse word graph over X . The automaton A(X, T ;w), whose underlying graph
is SΓ (X, T ;w) with ww−1τ as initial state and wτ as terminal state, is called the
Schützenberger automaton of w ∈ (X ∪ X−1)+ relative to the presentation 〈X |T 〉.

In [31] Stephen provides an iterative (but in general not effective) procedure to
buildA(X, T ;w) via two operations, the elementary determination and the elemen-
tary expansion. We briefly recall such operations. Let Γ be an inverse word graph
over X , an elementary determination consists of folding two edges starting from the
same vertex and labeled by the same letter of the alphabet X ∪ X−1. The elementary
expansion applied to Γ relative to a presentation 〈X |T 〉 consists in adding a path
(ν1, r, ν2) to Γ wherever (ν1, t, ν2) is a path in Γ and (r, t) ∈ T ∪ T −1.

An inverse word graph is called closed relative to the presentation 〈X |T 〉, if it is
a deterministic word graph where no expansion relative to 〈X |T 〉 can be performed.
An inverse automaton is closed relative to 〈X |T 〉 if its underlying graph is closed.
We define the closure of an inverse automaton B relative to a presentation 〈X |T 〉
to be a closed automaton cl(B) relative to 〈X |T 〉, such that L(B) ⊆ L(cl(B)), and
if C is any other closed automaton relative to 〈X |T 〉 such that L(B) ⊆ L(C) then
L(cl(B)) ⊆ L(C). The existence of a unique automatonwith these properties follows
from theworks of Stephen [31, 32] who proved that any two sequences of expansions
and determinations of a finite inverse automaton which terminate in a closed inverse
automaton, yield to the same inverse automaton. The linear automaton of the word
w = y1y2 . . . ym with yi ∈ (X ∪ X−1), 1 ≤ i ≤ m is the automaton lin(w), whose
initial and final states are, respectively, α and β and whose underlying graph has
m + 1 vertices α = x0, x1, . . . , xm = β and edges (xi−1, yi , xi ) for 1 ≤ i ≤ m.
The Schützenberger automatonA(X, T ;w) ofw relative to 〈X |T 〉 is cl(lin(w)). An
approximate automaton of A(X, T ;w) is an inverse automaton A1, such that w′ ∈
L[A1] for some w′ ∈ (X ∪ X−1)+ with w′τ = wτ and L[A1] ⊆ L[A(X, T ;w)].
Obviously, lin(w) is an approximate automaton of A(X, T ;w). Stephen proved
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that each expansion or determination applied to an approximate automaton A1 of
A(X, T ;w) gives raise to an approximate automatonA2 which better approximates
A(X, T ;w), in the sense that

L[A1] ⊆ L[A2] ⊆ L[A(X, T ;w)] = {v ∈ (X ∪ X−1)+|vτ ≥ wτ }.

Then for any w,w′ ∈ (X ∪ X−1)+ wτ = w′τ if and only if they have the same
Schützenberger automata relative to the presentation 〈X |T 〉. Hence one can solve the
word problem for a presentation of an inverse semigroup S if he is able to effectively
construct the associated Schützenberger automaton, or if he is able to provide a “good
enough” approximation of it.We remark that Schützenberger automata in case of free
inverse semigroups (i.e., semigroups with presentation 〈X |∅〉) reduce to Munn trees.
Hence the Schützenberger automaton of a word relative to 〈X |T 〉 (or its Munn tree
in case of free inverse semigroups) can be seen as a “graphical normal form” of that
word in Inv〈X; T 〉. However, in general there is no effective way for “computing”
this normal form, and each case must be considered individually. Indeed, for some
families of inverse semigroups the confluence of the above procedure allows an
ordered sequence of expansions and determinations that brings to a more expressive
description of the shape of Schützenberger automata. In these cases, it is possible to
effectively construct approximate automata of the Schützenberger automata which
are good enough to solve the word problem. One of these cases consists in amalgams
of some classes of inverse semigroups which are introduced in the next section.

3 The Schützenberger Automata of Amalgams of Inverse
Semigroups

An amalgam of (inverse) semigroups is a tuple [S1, S2; U,ω1,ω2], where S1, S2, U
are disjoint (inverse) semigroups and ωi : U ↪→ Si , i = 1, 2 are two embeddings.
The amalgam can be shortly denoted by [S1, S2; U ]. An amalgam [S1, S2; U,ω1,ω2]
of semigroups (groups) is said to be strongly embeddable in a semigroup (group)
S if there are injective homomorphisms φi : Si → S such that φ1|U = φ2|U and
S1φ1 ∩ S2φ2 = Uφ1 = Uφ2. It is well known that every amalgam of groups embeds
in a group while semigroup amalgams do not necessarily embed in any semigroup
[18]. On the other hand, every amalgam of inverse semigroups embeds in an inverse
semigroup, and hence in the corresponding amalgamated free product in the category
of inverse semigroups [12] (which is defined by the usual universal construction).
In this section, we present an ordered procedure for building the Schützenberger
graphs (automata) of the amalgamated free products for some amalgams of inverse
semigroups. This construction is provided in [8] and is mainly along the lines of the
one given in [2] for the amalgamated free products of a class of amalgams which
satisfies some quite technical conditions are recalled in the following definition.
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Definition 1 An amalgam [S1, S2; U ] in the category of inverse semigroups is lower
bounded if satisfies the following conditions

1. For i ∈ {1, 2} and for all e ∈ E(Si ) the set Ui (e) = {u ∈ U | e ≤i u}, where
≤i denotes the natural order of Si , is either empty or contains a least element
denoted fi (e).

2. For i ∈ {1, 2}, if e1U, e2U, . . . is a descending chain of left cosets in Si , where
Ui (ek) �= ∅ for all k > 0, then there exists a positive integer N such that for each
g ∈ E(U ) with g ≤ f (eN ), f (eN · g) = g.

To describe this construction, we recall some terminology from [2, 8].
If (α1, Γ1,β1) and (α2, Γ2,β2) are inverse word automata, then (α1, Γ1,β1) ×

(α2, Γ2,β2) is the inverse word automaton (α1, Γ3,β2) where Γ3 is the V -quotient
of the union of Γ1 and Γ2 that identifies β1 with α2. Let Si = Inv〈Xi ; Ri 〉 = (Xi ∪
X−1

i )+/ηi , i = 1, 2, where X1, X2 are disjoint alphabets. Let [S1, S2; U,ω1,ω2] be
an amalgam, we view the natural image of u ∈ U in Si under the embedding ωi as a
word in the alphabet Xi , then 〈X1∪ X2|R1∪ R2∪W 〉with W = {(ω1(u),ω2(u))|u ∈
U } is a presentation of amalgamated free product S1 ∗U S2. We put X = X1 ∪ X2
and R = R1 ∪ R2 and we call 〈X |R ∪ W 〉 the standard presentation of S1 ∗U S2
with respect to the presentations of S1 and S2, for short, the standard presentation of
S1∗U S2 	 (X ∪ X−1)+/τ . Eachw ∈ (X ∪ X−1)+ can be factorized in a unique way
as w = w1,1w2,1w1,2w2,2 . . . w1,nw2,n where n > 0, w1,1 ∈ (X1 ∪ X−1

1 )∗, w2,n ∈
(X2 ∪ X−1

2 )∗,w1,i ∈ (X1 ∪ X−1
1 )+, w2,i ∈ (X2 ∪ X−1

2 )+ for all i with 2 ≤ i ≤ n−1.
We call the above factorization of w the chromatic factorization and n = ||w|| the
chromatic length of w.

Let Γ be an inverse word graph over X = X1 ∪ X2 with X1 ∩ X2 = ∅, an edge
of Γ that is labeled from Xi ∪ X−1

i , for some i ∈ {1, 2}, is said to be colored i . A
subgraph of Γ is called monochromatic if all its edges have the same color. A lobe of
Γ is defined to be a maximal monochromatic connected subgraph ofΓ . The coloring
of edges extends to a coloring of lobes. Two lobes are said to be adjacent if they
share common vertices, called intersection vertices. If ν ∈ V (Γ ) is an intersection
vertex, then it is common to two unique lobes, which we denote byΔ1(ν) andΔ2(ν),
colored 1 and 2, respectively. We define the lobe graph of Γ to be the graph whose
vertices are the lobes of Γ and whose edges correspond to the adjacency of lobes.

We remark that a nontrivial inverse word graph Δ colored i and closed relative
to 〈Xi |Ri 〉 contains all the paths (ν1, v

′, ν2) with v′ ∈ (Xi ∪ X−1
i )+ such that

v′ηi = vηi , provided that (ν1, v, ν2) is a path of Δ. Hence, we say that there is a
path (ν1, s, ν2) with s ∈ Si in Δ whenever {(ν1, v, ν2)|vηi = s} �= ∅. Similarly, we
say that (ν1, u, ν2) with u ∈ U is a path of Δ to mean that (ν1,ωi (u), ν2) is a path
of Δ. For all ν ∈ V (Δ) we denote by LU (ν,Δ), the set of all the elements u ∈ U
such that (ν, u, ν) is a loop based at ν in Δ.

We say that an inverse word graph Γ is cactoid if its lobe graph is a finite tree
and adjacent lobes have precisely one common intersection.

Obviously, the linear automaton of a word w with chromatic factorization w =
w1,1w2,1w1,2w2,2 . . . w1,nw2,n is a cactoid automaton with at most 2n lobes. We
have previously remarked that to get the Schützenberger automaton of w relative to
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the presentation 〈X |R ∪ W 〉 of S1 ∗U S2 we have to apply a sequence of expansions
and determinations starting from lin(w) until a closed automaton is reached, and
we can perform such sequence of operations in any order. Therefore, starting from
lin(w), we apply all the expansions and determinations relative to the relations in R
using the following operations grouped in constructions.

Step 1: Let B = (α, Γ,β) be a cactoid inverse automaton over X . Let Δ be a lobe
of Γ , colored i , that is not closed relative to 〈Xi |Ri 〉. Let λ be any vertex of Δ, let
cl(Δ)be adisjoint copyof the closure ofΔ relative to 〈Xi |Ri 〉, and letλ∗ denote the
natural image of λ in cl(Δ). Construct the automaton (λ, Γ,λ)× (λ∗, cl(Δ),λ∗)
and let Γ ′ be its underlying graph. Let κ be the least V -equivalence that makes Γ ′
deterministic. The procedure outputs the automaton B′ = (α′, Γ ′/κ,β′), where
α′,β′ denote the respective images of α and β.

The automaton B′ is also a cactoid inverse automaton with a number of lobes less or
equal to the number of lobes of B and if B approximates A(X, R ∪ W ;w) then so
doesB′. MoreoverB′ is finite if and only if cl(Δ) andB are finite. Using the previous
elementary step, we can perform the following Construction 1.

Construction 1: Let B = (α, Γ,β) be a cactoid inverse automaton. Apply itera-
tively Step 1 till a cactoid inverse automaton B∗ is obtained such that all its lobes
are closed relative to 〈Xi |Ri 〉.

If Step 1 terminates for each lobe, this construction terminates, because the number of
lobes does not increase at each application of Step 1. Then if the closure of each lobe
is a finite graph,B∗ is a finite cactoid automaton whose lobes are finite DV -quotients
of Schützenberger lobes relative to 〈Xi |Ri 〉 for some i ∈ {1, 2}. We refer to Lemma
4 of [8] for the proof. Of course since in that paper S1 and S2 were assumed finite,
the closures of the lobes were always finite automata and the construction always
terminates. In general, it is enough to ask that S1 and S2 have finite R-classes to
guarantee the same result. Moreover, we notice that if the above procedure is applied
to lin(w) then B∗ is the Schützenberger automaton of w in the free product S1 ∗ S2,
and its lobes are Schützenberger automata relative to 〈Xi |Ri 〉 for some i ∈ {1, 2}.
Roughly speaking the above procedure means that we are performing on the starting
catoid automaton B all the possible expansions and determinations relative to the
presentation 〈X |R〉.

Let ν be an intersection vertex of an inverse automaton over X , with corresponding
lobes Δ1(ν) and Δ2(ν). Let ei (ν) denote the minimum idempotent of Si labeling
a loop based at ν in Δi (for i = 1, 2) and let Li (ν) = LU (ν,Δi (ν)). If Li (ν) is
nonempty, it is a subsemigroup of U . Assume that it has a minimum idempotent
which we denote by f (ei ). This hypothesis is trivially satisfied in amalgams of finite
inverse semigroups and it is also satisfied in the lower bounded case as a consequence
of condition 1 in the definition. Namely, we remark that ifΔi (ν) is a Schützenberger
graph, then Li (ν) = Ui (ei (ν)) (see Definition 1), and the hypothesis that Ui (ei (ν))

has a minimum simplifies next constructions since no V -quotient is needed.
We say that an inverse automatonB over X has the property L if for each intersec-

tion vertex ν either L1(ν), L2(ν) are both empty or f (e1(ν)) = f (e2(ν)). We say
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that B has the loop equality property if L1(ν) = L2(ν) for each intersection vertex ν
of B. Obviously, each automaton with the loop equality property has the L property.
To obtain a cactoid automaton that satisfies the loop equality property, we have to
perform a sequence of suitable expansions using relations in W applied to loops
based at intersection vertices and relative determinations. This series of operations
is grouped into the following Step 2(a):

Step 2(a): Let B = (α, Γ,β) be a cactoid inverse automaton over X whose lobes
are closed DV -quotients of Schützenberger automata relative to 〈Xi |Ri 〉 for some
i ∈ {1, 2} and suppose that it has not the L property, i.e., for some intersection
vertex ν and some i ∈ {1, 2} Li (ν) �= ∅ and ω3−i ( f (ei (ν))) /∈ L3−i (ν). Let
f = ω3−i ( f (ei (ν))) and form the product C = (ν, Γ, ν) × A(X3−i , R3−i ; f ).
The union of the images of Δ3−i (ν) andA(X3−i , R3−i ; f ) is a lobe of C that is a
V -quotient of a Schützenberger automaton relative to R3−i by Lemma 3 of [8]. By
applying Construction 1 we obtain a cactoid automaton C′ = (ν ′, Γ ′, ν ′)which is
closed relative to 〈X |R〉 and whose lobes are closed DV -quotients of Schützen-
berger automata relative to 〈Xi |Ri 〉 for some i ∈ {1, 2}. Let B′ = (α′, Γ ′,β′)
(where α′ and β′ are the images of α and β, respectively) be the automaton
obtained from B by the application of Step 2(a) to B at the vertex ν.

Step 2(a) is used to perform the following

Construction 2(a): Let B = (α, Γ,β) be a cactoid inverse automaton. Iteratively
apply Step 2(a) at any intersection vertex till a cactoid inverse automatonB∗ which
has the property L is obtained.

If this procedure terminates in finitely many steps and B is finite, then B∗ is a finite
deterministic cactoid inverse automaton B∗ whose lobes are closed DV -quotients of
Schützenberger automata relative to either 〈Xi |Ri 〉 for some i ∈ {1, 2}which satisfies
the L property.Moreover ifB approximatesA(X, R∪W ;w), thenB∗ does the same.
We refer the reader to Lemma 2.8 of [2] for the proof that under condition 2 of the
lower bounded definition, construction 2(a) always terminates in finitely many steps.
Obviously, it terminates also under the hypothesis that S1 and S2 are finite. Indeed,
there are only finitely many possible graphs that can arise as closed DV -quotients
of Schützenberger automata relative to 〈Xi |Ri 〉 for some i ∈ {1, 2}. Any application
of Step 2(a) at a vertex ν replaces a closed DV -quotient of a Schützenberger graph
by another closed DV -quotient of a Schützenberger graph, and the new graph has
either more edges or more loops (i.e., has higher rank fundamental group) than the
original graph. The finiteness of each Si puts an upper bound on the number of edges
and the rank of the fundamental group of these graphs.

Let B be any cactoid inverse automaton over X whose lobes are closed DV -
quotients of Schützenberger automata relative to 〈Xi |Ri 〉 for some i ∈ {1, 2}, and let
ν be any intersection vertex of two lobesΔ1(ν) andΔ2(ν) ofB such that f (e1(ν)) =
f (e2(ν)). Hence, if (ν,ωi (u), νi ) for some u ∈ U is a path in Δi (ν) then there is
also the path (ν,ω3−i (u), ν3−i ) in Δ3−i (ν) (see Lemma 5 in [8]). The two vertices
νi and ν3−i are called related pair. It may happen that one of these paths is a loop
and the other not (i.e., B does not satisfy the loop equality property). We remark that
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this situation does not happen if condition 1 of Definition 1 holds, and in general
when all the lobes of B∗ are Schützenberger graphs. In order to reach the loop
equality property,we performa series of operations that are described in the following
Step 2(b).

Step 2(b): Let B = (α, Γ,β) be a cactoid inverse automaton over X whose lobes
are closed DV -quotients of Schützenberger automata relative to 〈Xi |Ri 〉 for some
i ∈ {1, 2}, and suppose that B has the property L but does not satisfy the loop
equality property. Then there exists some intersection vertex ν of B and a non-
idempotent element u ∈ U such thatωi (u) ∈ Li (ν) andω3−i (u) /∈ L3−i (ν). Then
in Δ3−i (ν) there is a (ν,ω3−i (u), ν ′) path for some ν ′ �= ν. Form the V -quotient
Γ ′ of Γ obtained by identifying ν and ν ′ in Δ3−i (ν). Then apply Construction 1
and Construction 2(a) to the resulting automaton.

To get the loop equality property, we need to iteratively apply Step 2(b), this is
described in the following

Construction 2(b): Let B = (α, Γ,β) be a cactoid inverse automaton over X
whose lobes are closed DV -quotients of Schützenberger automata relative to
〈Xi |Ri 〉 for some i ∈ {1, 2} which satisfies property L . Apply iteratively Step
2(b) to each intersection vertex ν with Li (ν) �= L3−i (ν) till the loop equality
property holds.

Step 2(b) can be seen as an elementary expansion applied to automatonB by sewing a
loop labeled byω3−i (u) based at the vertex ν because of the relation (ω1(u),ω2(u)) ∈
W followed by the associate finite sequence of determinations and Construction 2(a).
If S1 and S2 have finite R-classes and U is finite then construction 2(b) terminates
after finitely many steps to a finite cactoid inverse automaton B∗ whose lobes are
closed DV -quotients of Schützenberger automata relative to 〈Xi |Ri 〉 for i ∈ {1, 2}
with the loop equality property. Moreover, B∗ approximates A(X, R ∪ W ;w) if
B does. Once more, we remark that Construction 2(b) is not needed for amalgams
satisfying condition 1 of Definition 1 since the loop equality property is fulfilled after
Construction 2(a).

LetB be a cactoid inverse automaton over X whose lobes are closed DV -quotients
of Schützenberger automata relative to 〈Xi |Ri 〉 for some i ∈ {1, 2} andwhich satisfies
the loop equality property. We say that B has the related pair separation property if
for any lobe Δ of B colored i and for any two distinct intersection vertices ν and ν ′
of Δ there is no word u ∈ U such that ωi (u) labels a ν − ν ′ path in Δ.

Step 3: Let B = (α, Γ,β) be a cactoid automaton whose lobes are closed DV -
quotients of Schützenberger automata relative to 〈Xi |Ri 〉 for some i ∈ {1, 2} and
which satisfies the loop equality property but does not satisfy the related pair
separation property. Let ν0 and ν1 be two different intersection vertices of a lobe
Δi , colored i , such that (ν0,ωi (u), ν1) is a path of Δi . Since B has the loop
equality property, there is also a path (ν0,ω3−i (u), ν ′

0) in Δ3−i (ν0). Consider
the graph ˜Γ obtained by disconnecting Γ at ν0 and replacing ν0 with ν0(0)
and ν0(1) in Δ3−i (ν0) and Δi , respectively. Denote by T0 the component of
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˜Γ that contains ν0(0) and by T1 the component that contains ν0(1). Now put
C = (ν ′

0, T0, ν ′
0) × (ν1, T1, ν1). Clearly all the lobes of C except at most the

lobe colored 3 − i with intersection vertex ν ′
0 = ν1 are closed DV -quotients of

Schützenberger automata relative to 〈X |R〉. Build the automatonB′ = (α′, Γ ′,β′)
whose underlying graph is the same of the underlying graph of C, and α′,β′ are
the natural images of α,β. Thus, if we apply Constructions 1, 2(a) and 2(b) to B′
we get a new cactoid automaton satisfying the loop equality property.

Roughly speaking, Step 3 is a sequence of “guessed” expansions and determinations.
Namely, since in Δi there is a path (ν0,ωi (u), ν1), then because there is the relation
(ω1(u),ω2(u)) ∈ W we could draw a path (ν0,ω3−i (u), ν1). Hence, by iterated
determinations of this pathwith (ν0,ω3−i (u), ν ′

0) inΔ3−i (ν0) the two lobesΔ3−i (ν0)
and Δ3−i (ν1) glue in a unique lobe colored 3− i which has two intersection vertices
with Δi . The obtained automaton B′ is clearly not a cactoid, and this would prevent
the application of Constructions 1, 2(a) and 2(b). Therefore, to be consistent with
the cactoid shape, we bypass this problem introducing the cut and paste operation
described in Step 3which has the advantage of generating an approximate automaton.

Construction 3: Let B = (α, Γ,β) be a cactoid inverse automaton over X whose
lobes are closed DV -quotients of Schützenberger automata relative to 〈Xi |Ri 〉 for
some i ∈ {1, 2} which satisfies the loop equality property. Apply iteratively Step
3 till the related pair separation property is reached for each pair of intersection
vertices.

Since each lobe hasfinitelymany intersection vertices andStep 3does not increase the
number of lobes, repeated applications of this stepwill terminate in a finite number of
steps in an automaton B∗ that has the related pair separation property. Moreover, ifB
approximatesA(X, R ∪ W ;w) then also the automaton B∗ approximatesA(X, R ∪
W ;w) by Lemma 8 of [8].

The next step is applied to automata which are not in general cactoid, in particular
we are dealing with automata having more then one intersection vertex between two
adjacent lobes.

Step 4: Let B = (α, Γ,β) be an inverse word automaton whose lobes are closed
DV -quotients of some Schützenberger relative to 〈Xi |Ri 〉 for some i ∈ {1, 2}, and
which has the loop equality property and the related pair separation property. Then,
for each intersection vertex ν and for every vertex ν1 ∈ V (Δi (ν)) for which there
is a ν − ν1 path in Δi (ν) labeled by ωi (u), for some u ∈ U , there exists a unique
vertex ν2 ∈ V (Δ3−i (ν)) such that ω3−i (u) labels an ν − ν2 path in Δ3−i (ν).
We call the pair ν1, ν2 related pair with respect to Δi (ν),Δ3−i (ν). Moreover,
the related pair separation property guarantees that ν1 and ν2 are not intersection
vertices. Build the automaton B′ = (α′, Γ ′,β′) where Γ ′ is the quotient graph of
Γ with respect to the equivalence relation generated by identifying ν1 with ν2.

Step 4 can be seen as an expansion followed by the relative sequence of deter-
minations. Namely, if we have in Δi (ν) a path (ν,ωi (u), νi ) for some u ∈ U ,
then the expansion relative to the relation (ω1(u),ω2(u)) ∈ W produces a path
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(ν,ω3−i (u), νi ). Consequently, by the determinationwith the path (ν,ω3−i (u), ν3−i )

inΔ3−i (ν), the two vertices νi and ν3−i are identified.We say that two adjacent lobes
are assimilated if each related pair of vertices with respect to these two adjacent lobes
are identified. The following construction is defined in order to have all the pairs of
adjacent lobes assimilated.

Construction 4: Let B = (α, Γ,β) be a cactoid inverse automaton over X whose
lobes are closed DV -quotients of Schützenberger automata relative to 〈Xi |Ri 〉
for some i ∈ {1, 2} which satisfies the loop equality property and the related pair
separation property. Apply iteratively Step 4 with respect to all the related pairs of
vertices for each intersection vertex till all pairs of adjacent lobes are assimilated.

If B is finite Construction 4 terminates in finitely many steps in a finite deterministic
inverse word automaton B∗ which approximates A(X, R ∪ W ;w) if B does. In this
case we say that B∗ has the assimilation property. It is quite easy to verify that
in the new intersection vertices between adjacent lobes the loop equality property
is preserved (see Lemma 9 of [8]). Moreover, since the assimilation property does
not affect the lobes and their adjacency, it turns out that B∗ is a finite inverse word
automatonwhose lobes are closed DV -quotients of Schützenberger automata relative
to 〈Xi |Ri 〉, i ∈ {1, 2}, such that its lobe graph is a tree. ObviouslyB∗ has the adjacent
lobe assimilation property and each pair of intersection vertices between two adjacent
lobes are connected by related pair of paths (i.e., paths labeled by u for some u ∈ U ).
Such automaton (graph) is called in [8] an opuntoid automaton (graph).

At the end of Construction 4 the obtained automaton is called the core automaton
ofw and it is denoted byCore(w). Note that this is not the Schützenberger automaton
of w, and in general it is not the case that Core(w) = Core(w′) if wτ = w′τ .
However, the Schützenberger automatonA(X, R∪W ;w) is obtained fromCore(w)

by successive applications of another construction called Construction 5 described
below. We remark that opuntoid automata (graphs) were defined also in [2] with
the main difference that the lobes were Schützenberger graphs relative to 〈Xi |Ri 〉,
i ∈ {1, 2}. Indeed, conditions 1 of Definition 1 prevents the performing of DV -
quotients.

Construction 5 is applied in presence of special vertices. Let Γ be an opuntoid
graph, a vertex ν of Γ which is not an intersection vertex belonging to the (unique)
lobe Δi , i ∈ {1, 2}, is called a bud of Γ if Li (ν) �= ∅. The graph Γ is complete if it
has no buds: an opuntoid automaton is complete if its underlying graph is complete.
Of course the occurrence in Δi of a path labeled in U requires the application of
other expansions (and relative determinations). This can be done as follows.

Step 5: This step consists of the following two substeps:

• Let B = (α, Γ,β) be an opuntoid automaton and let ν ∈ V (Δi ) be a bud belong-
ing to a lobe Δi colored i ∈ {1, 2}. Put f = f (ei (ν)) and let (x,Λ, x) =
A(X3−i , R3−i ; f ). Consider the smallest equivalence relation ρ ⊆ V (Λ)× V (Λ)

which identifies all the vertices of Λ connected to x by some word of Li (ν) and
such that Λ/ρ is deterministic. Let Δ′ = Λ/ρ.
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• Consider the automaton C = (ν, Γ, ν) × (xρ,Δ′, xρ). For all u ∈ U such that
(ν, u, y) and (ν, u, y′) are paths ofΔ andΔ′, respectively, consider the equivalence
relation κ on V (C) that identifies y and y′. Build the automaton B′ = (α′, Γ ′,β′)
whose underlying graph is the same of the underlying graph of C/κ, and α′,β′ are
the natural images of α,β.

The graph B′ produced by the application of Step 5 has one more lobe then B.
Furthermore, B embeds into B′, and it is an opuntoid automaton that approximates
A(X, R ∪ W ;w) if B does. This is obvious in the lower bounded case. Indeed, in
the lower bounded case, Step 5 becomes simpler: in this case we have that Δi is a
Schützenberger graph, and the elements in Li (ei (ν)) for each bud ν are greater or
equal to f (ei (ν)) with respect to the natural order defined in U , whence the relation
ρ is reduced to the identity. Instead for the finite case to prove that these properties
hold requires a quite technical argument contained in Lemma 10 in [8]. Note that
this lemma only uses the periodicity of U .

Construction 5: Let B be an opuntoid automaton with at least a bud. Iteratively
apply Step 5 till a complete automaton is obtained.

In general, Construction 5 does not terminate and one obtains a directed sys-
tem of opuntoid automata A0 = Core(w),A1, . . .AN . . . whose direct limit is
A(X, R ∪ W ;w). Therefore, if Constrictions 1–4 terminates in finitely many steps,
and an application of Step 5 to some bud of Ai produces an automaton where Ai

embeds, then by the above discussion we derive that the Schützenberger graph of an
amalgamated free product of inverse semigroups is a complete opuntoid automaton.

4 Some Classes of Amalgams with Decidable Word Problem

When an application of Step 5 to some bud of Ai produces an opuntoid automaton
where Ai embeds, since Step 5 depends locally on the lobe containing the bud at
which the step is applied, the information for building the entire Schützenberger
automaton is already contained in Core(w). In such case, we can solve the word
problem for each class of amalgams of inverse semigroupswhere the above condition
on Construction 5 holds, andwhereCore(w) can be effectively built for eachwordw.
Namely, with the notation used in the previous sections, if w,w′ ∈ (X ∪ X−1)+, we
can consider the following recursive procedure: let C0 = Core(w) and let α,β be the
initial and final states, respectively; consider the opuntoid automaton Ci+1 obtained
applying Step 5 to all the buds of Ci . Let C j be the smallest opuntoid automaton
in the above sequence such for any bud ν and any shortest path (α, u, v), ‖w′‖ ≤
‖u‖. We put (α, Ext||w′||(Core(w)),β) = C j , and analogously build the opuntoid
automaton (α′, Ext||w||(Core(w′)),β′). Hence, the two words w,w′ represent the
same element of S1 ∗U S2 if and only if w′ ∈ L[(α, Ext||w′||(Core(w)),β)] and
w ∈ L[(α′, Ext||w||(Core(w′)),β′)]. If we go through the steps of the previous
Sect. 3, one gets the following
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Theorem 1 (see also Theorem 1, [7]) Let [S1, S2; U,ω1,ω2] be an amalgam of
inverse semigroups. Then Construction of Core(w) is effective if the following con-
ditions are satisfied.

1. Each R-class of Si (equivalently each Schützenberger graph relative to the pre-
sentations 〈Xi |Ri 〉) is finite.

2. The membership problem for U in each Si is decidable.
3. For any finite cactoid automaton associated with the given amalgam and for any

vertices ν, ν ′ of a lobe colored i and for each i = 1, 2, there is an algorithm to
decide whether the label of some ν − ν ′ path is in U. Note that this algorithm is
equivalent to check the emptiness of Li (ei (ν)).

4. For any finite cactoid automaton associated with the given amalgam and for any
vertex ν of a lobe colored i , (and each i = 1, 2) with Li (ei (ν)) �= ∅ the least
element f (ei (ν)) of Li (ei (ν)) exists and there is an algorithm to compute it.

5. Construction 2(a) of the above procedure must terminate after finitely many
applications at all the intersection vertices, and there is an effective bound on
the number of applications of the Step 2(a) that need to be applied in order for
Construction 2(a) to terminate. More precisely, for any cactoid automaton with
n lobes associated with the given amalgam, there is an effectively computable
bound χ(n) such that the sequence of cactoid automata obtained by applying
Step 2(a) successively at some intersection vertex of the previously constructed
automaton in the sequence will terminate after at most χ(n) steps in a cactoid
automaton which has the L property. The bound χ(n) and the final automaton
constructed depend on n and on the structure of the lobes in the original cactoid
automaton.

6. Construction 2(b) and Construction (4) of the above procedure must terminate
after finitely many applications at all intersection vertices of Steps 2(b) and
4. More precisely, for any cactoid automaton with n lobes associated with the
given amalgam, there is an effectively computable bound η(n) such that the
sequence of cactoid automata obtained by applying Step 2(b) successively at
some intersection vertex of the previously constructed automaton in the sequence
will terminate after at most η(n) steps in a cactoid automaton which has the loop
equality property. Similarly for any cactoid automaton with n lobes associated
with the given amalgam, there is an effectively computable bound κ(n) such that
the sequence of cactoid automata obtained by applying Step 4 successively at
some intersection vertex of the previously constructed automaton in the sequence
will terminate after at most κ(n) steps in a cactoid automaton which has the
assimilation property.

By the discussion at the end of previous section, we can deduce the following
decidability results.

Theorem 2 (Theorem 3.4 [7]) The word problem is decidable for any inverse semi-
group amalgam of the form S = FIS(A) ∗U FIS(B) where U is a finitely generated
inverse subsemigroup of FIS(A) and FIS(B).
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Theorem 3 (Theorem 2 [8]) Let S = S1 ∗U S2 be an amalgamated free product of
finite inverse semigroups S1 and S2 amalgamating a common inverse subsemigroup
U, where Si = Inv〈Xi ; Ri 〉 are given finite presentations of Si for i = 1, 2. Then the
word problem for S is decidable.

We underline that the previous result is quite in contrast with the general case
of amalgams of finite semigroups where the word problem has been proven to be
undecidable by Sapir [29].

5 Undecidability of the Word Problem

In the opposite trend with respect to the results shown in the previous section, here
we survey a recent result of undecidability of the word problem for amalgams of
inverse semigroups with nice algorithmic conditions on the initial semigroups. In
particular, we sketch the proof of the following theorem.

Theorem 4 ([28]) There exists an amalgam [S1, S2; U,ω1,ω2] of inverse semi-
groups such that:

1. S1 and S2 have finite R-classes (and therefore solvable word problem);
2. U is a free inverse semigroup with zero of finite rank;
3. the membership problem of ωi (U ) is decidable in Si for i = 1, 2;
4. ω1,ω2 and their inverses are computable functions;

but for which the following problems are undecidable:

(i) the word problem;
(ii) checking whether or not a given D-class of S1 ∗U S2 is finite;

The proof usesMinskymachines, also called 2-counter machines. In the next subsec-
tions, we recall some basic definitions of 2-counter machines, and we finally give an
idea of the encoding which allow to reduce the word problem to the halting problem
for such machines. Although [28] takes inspiration in the usage of Minsky machines
from [20, 29], there are several technical differences, starting from the necessity of
considering particular subclasses of 2-counter machines more suitable to deal with
inverse semigroups.

5.1 The Amalgam Associated to a 2-counter Machine

A 2-counter machine (for short, CM(2)) is a systemM = (Q, δ, ι, f ) with 2 tapes,
Q is the nonempty finite set of internal states, ι ∈ Q is the initial state, and f ∈ Q
is the final (halting) state. The alphabet used by the tape is A = {⊥, a}, where ⊥ is
a blank symbol, and
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δ ⊆ (Q × {1, . . . , 2} × A × Q) ∪ (Q × {1, . . . , 2} × D × Q)

where D = {−, 0,+} and the symbols −, 0,+ denote, respectively, a shift on the
left, no-shift, and right-shift of a head of the machine. Tapes are one-way (rightward)
infinite delimited on the leftmost squares by the blank symbol ⊥, and all the other
squares contain the symbol a. The term counter comes from the fact that the head
pointing to a square takes track of an integer, namely the number of a’s from the black
symbol to the pointed square. Each element of δ is thus a quadruple of one of the
two forms: (q, i, s, q ′), (q, i, d, q ′) where q, q ′ ∈ Q, i ∈ {1, 2}, s ∈ A and d ∈ D.
The interpretation of a quadruple of the form (q, i, s, q ′) is that if the machineM is
in the state q and the i th-head (one for each of the two tapes) is reading the symbol s
then the machine changes its state into q ′. This instruction is used to test whether the
content of a counter is zero (the head is reading the symbol ⊥) or the head is reading
a square with symbol a. This kind of instructions is called test instructions. On the
other hand, an instruction (q, i, d, q ′) has the following interpretation: ifM is in the
state q then the i th-head ofM shifts one cell to the right (d = +), left (d = −), or it
keeps the same position (d = 0), and finally the state is changed to q ′. As usual, the
evolution ofM can be followed through instantaneous descriptions of the machine.
An instantaneous description (for short, ID) of aCM(2)M = (Q, δ, ι, f ) is a 3-tuple
(q, n1, n2) ∈ Q ×N

2. It represents thatM is in state q and the i th-head is in position
ni for i = 1, 2, where we assume the position of the head reading the symbol ⊥ to
be 0. The relation �M on the set of configurations associates to a configuration the
one that is obtained by applying the transition map δ. More precisely, if (q, n1, n2)

is an configuration
(q, n1, n2) �M (q ′, n′

1, n′
2)

if one of the following conditions is satisfied for some i ∈ {1, 2}:
• (q, i,⊥, q ′) ∈ δ and ni = n′

i = 0.
• (q, i, a, q ′) ∈ δ and ni = n′

i > 0.
• (q, i,−, q ′) ∈ δ and ni − 1 = n′

i .• (q, i, 0, q ′) ∈ δ and ni = n′
i .• (q, i,+, q ′) ∈ δ and ni + 1 = n′

i .

As usual, the reflexive and transitive closure of �M and its application n times
are denoted by �∗

M and �n
M, respectively. The pair (n1, n2) is accepted by M if

(ι, n1, n2) �∗
M ( f, n′

1, n′
2) for some pair (n′

1, n′
1).

Contrary to [20, 29], where 2-counter machines are used in their full generality,
to prove Theorem 4 it is needed to deal with a subclass of CM(2) called reversible
2-counter machines. The reason, which will be more clear later, is due to the fact
that inverse semigroups are by their nature reversible being represented by partial
one-to-one functions. Roughly speaking, a reversible 2-counter machine is a CM(2)
such that if there is a computation

(q1, n1, m2) �M (q2, n2, m2) �M . . . �M (qk, nk, mk)



16 A. Cherubini and E. Rodaro

Fig. 1 The deterministic
case (on the left) and the
reversible case (on the right)

then this sequence is unique, hence the initial configuration (q1, n1, m2) can be
retrieved by (qk, nk, mk). In (theoretical) computer science this notion is central
because such machines have no thermodynamical cost (see for instance the seminal
paper of Bennet [1]). The following is a more precise definition of reversible deter-
ministic 2-counter machines. Let M = (Q, δ, ι, f ) be a CM(2), M = (Q, δ, ι, f )

can be depicted as a labeled graph G (M) with set of vertices Q and labeled edges
δ where (q1, i, h, q2) ∈ δ is represented as an arrow from q1 to q2 labeled by i, h
with i ∈ {1, 2} and h ∈ {a,⊥,+, 0,−}. Thus, M is deterministic when the only
case where a vertex q of G (M) may have two outgoing edges is when we have
a test instruction (Fig. 1), i.e., (q, i, a, q1), (q, i,⊥, q2) are two edges of G (M)

with i ∈ {1, 2}. Dually, M is reversible when for each vertex q of G (M) with
in-degree strictly greater than one there are only two ingoing edges of the form
(q1, i, a, q), (q2, i,⊥, q) for some i ∈ {1, 2} (Fig. 1). It is clear from the definitions
that every ID of a deterministic (reversible, respectively) CM(2) has at most one
ID that immediately follows (precedes) it in some computation. Restricting to these
machines does not affect the computational power which remains equivalent to the
one of the Turing machines as the following theorem shows.

Theorem 5 ([22]) For any deterministic Turing machine T there is a deterministic
reversible CM(2) M that simulates T .

The strategy to prove Theorem 4 is to encode a general computation M (ι, n1, n2)

�k
M (q, n′

1, n′
2) in an approximate automaton Bk

n1,n2 of the Schützenberger automa-
ton of some word wn1,n2 representing the initial configuration (ι, n1, n2) of the
machine, and to simulate a one step computation (q, n′

1, n′
2) �M (q ′, n′′

1, n′′
2) by

a suitable expansion. Eventually, in the case the machine reaches the halting state f ,
a suitable relation forces f to be a zero, thus collapsing the Schützenberger automaton
of wn1,n2 to the Schützenberger automaton of the zero, whence reducing the reacha-
bility of the state f to checking whether wn1,n2 = 0. The main technical problem is
the control of the expansions. Expansionsmust be in one-to-one correspondencewith
each step of the computation, and each of themmust have a “local influence”. This is
done to avoid unexpected quotients, and so loose the information encoded in Bk

n1,n2 .
Therefore, in order to fulfill these requirements it becomes clear how determinism
and the reversibility of the machine plays a fundamental role. The determinism of
M is required to have uniqueness in the application of each expansion. Indeed, in
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the nondeterministic case, although the machine can choose nondeterministically for
just one transition, all the expansions for all the relations associated to each possible
choice have to be performed, and in this case the control of the quotients would be
more difficult or even impossible. On the other side, the reversibility is used to avoid
“feedback expansions”: if one transition can be reached in two (or more) different
ways, we should have at least two relations u1 = u2, v1 = v2 with u2 = v2. Now
suppose that the expansion corresponding to a one step of the computation is relative
to the relation u1 = u2. This creates a new path labeled by u2. Since u2 = v2, this
triggers a new expansion relative to the relation v1 = v2 which is “backward” with
respect to the timeline of the computation. Another condition has to be imposed on
the machine. The two-counter machineM = (Q, δ, ι, f ) is called alternating if, for
all pairs of different instructions (q, i, h, q ′), (q ′, j, h′, q ′′) ∈ δ, it is j = 3− i . The
reason why we restrict to the class of alternating machines is purely technical and it
is fundamental in simplifying the proof of the finiteness of theR-classes. Although
we have restricted to alternating machine this class keeps the same computational
power of the Turing machines. Indeed, by adding dummy states it is easy to prove
the following proposition.

Proposition 1 Let M = (Q, δ, ι, f ) be a deterministic reversible CM(2). Then,
there is a deterministic reversible and alternating CM(2) M′ that simulates M.

A simplification on the general description of the machine can be done: an instruc-
tion (p, i, 0, q) can always be replaced by the couple of instructions (p, i, a, q),

(p, i,⊥, q) and by doing so the CM(2) remains deterministic, reversible, and alter-
nating. Therefore, a CM(2)which is deterministic, reversible, alternating, and has no
instruction of the form (p, i, 0, q) is said to be normalized. Taking in particular the
universal Turing machine in Theorem 5 and being undecidable whether or not the
universal Turing machine can accept a given input, by Proposition 1, the following
corollary is obtained.

Corollary 1 There exists a normalized CM(2) M∗ such that it is undecidable
whether or not a given (m, n) ∈ N

2 is accepted by M∗.

We now sketch how to associate to M∗ an amalgam for which the word problem is
equivalent to the halting problem for M∗. The rough idea is depicted in Fig. 2: the
two tapes of the machineM are encoded by two inverse semigroups S1, S2, and the
control ofM is handled through a common inverse subsemigroup U .

We start by associating toM two inverse semigroups S1, S2, representing the two
tapes, called, respectively, the left tape inverse semigroup and the right tape inverse
semigroup of a normalized 2-counter machineM = (Q, δ, ι, f ). The left and right
tape inverse semigroups associated to M are the inverse semigroups Si (i = 1, 2)
presented by 〈Xi | Ti 〉, where:

Xi = {⊥i , ai , ti } ∪ {qi : q ∈ Q},

Ti = T c
i ∪ T t

i ∪ T w
i ∪ T e

i ∪ T f
i
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Fig. 2 The rough idea of the encoding

and:

• T c
i are the commuting relations, used to keep track of the instantaneous description

of the machine;
• T t

i are the test relations (corresponding to the test instructions);
• T w

i are the writing relations (corresponding to instructions that move the head of
the i th tape to the right);

• T e
i are the erasing relations (corresponding to instructions that move the head of

the i th tape to the left);
• T f

i are meant to force the final state f of M to be a zero and to enforce some
finiteness properties on the semigroup Si .

We do not enter into the details of all the relations involved, instead we will later
show the usage of some of them in the simulation of M via the construction of the
Schützenberger automaton. We associate toM another inverse semigroup U which
represents its control unit. The core inverse semigroup U of M is the free inverse
semigroup with zero presented by 〈XU |TU 〉, where XU = Q ∪ {t} and the set of
relationsTU which are used to force the final state f to be the zero of the amalgamated
free product. The following proposition describes the embeddings ωi , i = 1, 2.

Proposition 2 Let M be a normalized 2-counter machine and let S1, S2, U be,
respectively, the left-right tape inverse semigroups and the core inverse semigroup
of M. The map ωi defined by

ωi (t) = ti , ωi (q) = qi (q ∈ Q)



Decidability Versus Undecidability of the Word Problem … 19

can be extended to a monomorphism ωi : U ↪→ Si for i = 1, 2. Moreover, the
membership problem for ωi (U ) is decidable in Si , and both ωi and its inverse are
computable.

In view of Proposition 2, an amalgam can be associated to a normalized 2-counter
machine:

Definition 2 Let M = (Q, δ, ι, f ) be a normalized 2-counter machine. The amal-
gam of inverse semigroups associated toM is the 5-tuple [S1, S2; U,ω1,ω2] where
S1, S2 are the left-right tape inverse semigroups of M, U is the core inverse semi-
group ofM and ωi : U ↪→ Si are the embeddings of Proposition 2. In this way, the
amalgamated free product of the amalgam [S1, S2; U,ω1,ω2] associated to M can
be presented by

〈X1 ∪ X2 | T1 ∪ T2 ∪ T3〉

where
T3 = {(q1, q2) : q ∈ Q} ∪ {(t1, t2)}

The left-right tape inverse semigroups Si have the following important property:

Proposition 3 Let M be a normalized 2-counter machine and let S1, S2 be, respec-
tively, the left-right tape inverse semigroups of M. Then the Green R-classes of Si

are finite for i = 1, 2.

5.2 Simulating a 2-counter Machines via Stephen’s Iterated
Procedure

As we have anticipated in the previous section, we simulate the dynamics of the
machine encoding the history of the computation in an approximate automaton and
each expansion corresponds to one and only one step of the computation of the
machine. Suppose that we have the following computation:

(ι, m, n) = (q(0), m0, n0) �M . . . �M (q(k), mk, nk). (2)

SinceM is deterministic, there is at most one such sequence of length k + 1 starting
with (ι, m, n). Write m′

k = max{m0, . . . , mk}, n′
k = max{n0, . . . , nk}. We associate

to the computation (2), a finite inverse X -automaton B(k)
m,n (see Fig. 3) as follows

(describing only the edges with positive label):

• The vertices are of the form ci, j and di,� for i = 0, . . . , k and j = 0, . . . , m′
k + 1

and � = 0, . . . , n′
k + 1.

• c0,0 is the initial vertex and d0,0 is the final vertex.
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and there exist the following edges:

• ci−1, j
t1,t2−→ci, j for all i = 1, . . . , k and j = 0, . . . , m′

k + 1.

• di−1,�
t1,t2−→di,� for all i = 1, . . . , k and � = 0, . . . , n′

k + 1.

• ci,0
⊥1−→ci,1 for all i = 0, . . . , k.

• ci, j
a1−→ci, j+1 for all i = 0, . . . , k and j = 1, . . . , m′

k .

• di,1
⊥2−→di,0 for all i = 0, . . . , k.

• di, j+1
a2−→di, j for all i = 0, . . . , k and j = 1, . . . , n′

k .

• ci,mi +1
q(i)
1 , q(i)

2−−−→di,ni +1 for all i = 0, . . . , k.

In the sequel, a brief justification of how this automaton encodes the computa-
tion (2), and how the dynamics of the machine is simulated by Stephen’s iterative
construction is given. First, note that each i th configuration is encoded in the i th
level of the automaton, i.e., the (induced) subgraph with vertices ci, j , di,�, with
j = 0, . . . , m′

k + 1 and � = 0, . . . , n′
k + 1. For instance, the first level encodes the

initial configuration (q(0), m, n), with q(0) = ι, by reading from left to right the path:

c0,0
⊥1 am

1 q(0)
1 an

2 ⊥2−−−−−−−→d0,0

while the second level encodes the configuration (q(1), m +1, n) by reading the path:

c1,0
⊥1 am+1

1 q(1)
1 an

2 ⊥2−−−−−−−−→d1,0

Note that each level is separated by the next one with edges labeled by t1, t2 that
can be interpreted as the unit of time. Furthermore, note that by the definition of
the core semigroup q(i)

1 = q(i)
2 = q(i), and t1 = t2 = t . Each new configuration

corresponding to the transition

(q(k), mk, nk) �M (q(k+1), mk+1, nk+1)

is obtained by adding a new (k + 1)th level separated by the previous one by edges
labeled by t’s. Let us make a practical example and consider the following compu-
tation of an hypothetical normalized CM(2) (Fig. 4):

(ι, 2, 3) �M (q(1), 3, 2) �M (q(2), 3, 2)

where the first transition is due to the instruction (ι, 1,+, q(1)), and the second one
is a test instruction (q(1), 2, a, q(2)). Let us start from the linear automaton of the
initial configuration represented by the word w2,3 =⊥1 a2

1ι1a3
2 ⊥2, and let us start

to build the Schützenberger automaton of this word, note that ι1 = ι2 = ι by the
relations of Definition 2 (see phase 1 of Fig. 4). Inside the set T w

1 , that takes care of
all the relations relative to the instructions relative to the first tape, associated to the
instruction (ι, 1,+, q(1)) we have the following relations:
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Fig. 4 An example of simulation of the CM(2) using Stephen’s iterative procedure

sι = st1a1q(1)
1 t−1

1 , s ∈ {a1,⊥1}

Thus, we can perform an expansion, which followed by a determination, produces
the approximate automaton depicted in Phase 2 of Fig. 4. Now we need to copy the
contents of the counters from the first level to the new one. This is achieved via
the relations T c

1 , T c
2 . Indeed, T c

i consists of all the relations of the form ti x = xti ,
for x ∈ {ai , a−1

i ,⊥i ,⊥−1
i }, for i = 1, 2, which applied produces the approximate

automaton in Phase 3 of Fig. 4. The second instruction (q(1), 2, a, q(2)) is related
to the second counter and the corresponding relations are contained in the set T t

2
which are:

q(1)a2 = t2q(2)t−1
2 a2
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In this case, the test is positive, otherwise if the second counter was empty we would
have applied an instruction (q(1), 2,⊥2, p)with the corresponding relation q(1) ⊥2=
t2 pt−1

2 ⊥2. Performing the expansion and a determination on the second level relative
to the relation q(1)a2 = t2q(2)t−1

2 a2 produces the approximate automaton depicted
in Phase 4 of Fig. 4. Like before, also in this case we need to transfer the content on
the counters in the new created level. This is done by performing the expansions and
the corresponding determinations of the commutating relations of T c

1 , T c
2 (Phase 5

of Fig. 4). In general, it is possible to prove the following lemma.

Lemma 1 Let M be a normalized CM(2), let m, n, k ∈ N, and put wm,n =⊥1

am
1 ιan

2 ⊥2. Then B(k)
m,n is a finite approximate automaton of A(X, T ;wm,n).

Let C denote the finite complete inverse automaton with a single vertex and all the
loops labeled by all the elements in X1 ∪ X2, (the bouquet automaton). The relations
contained in T f

1 , T f
2 , TU force the final state f = f1 = f2 to be a zero of S1 ∗U S2.

Therefore, in case the machine reaches the halting state f at the kth step, the fact
that f is zero forces B(k)

m,n to collapse to the bouquet automata C. It follows from the
definition that B(k−1)

m,n embeds in B(k)
m,n for every k ≥ 1, hence we can define Bm,n

as the colimit of the sequence (B(k)
m,n)k , where all the B(k)

m,n embed. By the previous
remark on the bouquet automaton, this colimit may be finite or infinite, depending
on whether or not the computation inM halts when we start with the configuration
(ι, m, n). Using the fact that CM(2) is normalized, especially the determinism and
the reversibility that forbid that more than one expansion is performed for each edge
labeled by some state of Q, and by Lemma 1, it is possible to prove the following
proposition.

Proposition 4 Let M be a normalized CM(2) and let m, n ∈ N. Then

A(X, T ;wm,n) =
{

C if (m,n) is accepted by M
Bm,n otherwise

Since C is the Schützenberger automaton of the zero of S, we immediately obtain:

Theorem 6 Let M be a normalized CM(2) and let m, n ∈ N. Then wm,n = 0 in
the inverse semigroup defined by the associated amalgam [S1, S2; U,ω1,ω2] if and
only if (m, n) is accepted by M.

Hence, if the word problem would be decidable in these circumstances, then, in
view of Propositions 2 and 3 and Theorem 6, we could decide whether or not a
normalized CM(2) accepts a given (m, n) ∈ N

2. And the latter is undecidable, even
when we consider the single CM(2) M∗ of Corollary 1. Furthermore, if there would
be an algorithm to decide whether a D-class of some word is finite or not, then by
Proposition 4 it would be possible to decide the halting problem for the machine
M∗, and this concludes the sketch of the proof of the two statements (i), (i i) of
Theorem 4.
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6 Conclusions: The Limit of Decidability
of the Word Problem

It is quite clear that the two decidability results illustrated in Sect. 4, can be probably
extended to wider classes of amalgams, making use of Theorem 1. However, it
seems likely that such classes are not neatly defined, and that there is quite small
room between decidability and undecidability results. One could try to deal with
decidability with different approaches, for instance in [4] sufficient conditions for
amalgamated free products of amalgams satisfying condition 1 of Definition 1 are
obtained by a procedure that differs from the one proposed by Bennet mainly in
Construction 1. In [10], it is proven that the languages recognized by Schützenberger
automata of amalgamated free products of inverse semigroups are context-free, hence
the decidability of word problem for such inverse semigroups immediately follows
from the decidability of the membership problem for context-free languages. The
attempt at classifying languages recognized by Schützenberger automata could be
promising, because one could then apply decidability and computational complexity
results in the realm of the theory of formal languages. It is however fair to say that
to classify these languages in general, one has to use some good information on the
shape of the Schützenberger automata.

We would also remark that the shape of Schützenberger automata can also give
quite often important information on structural properties of the amalgamated free
product, see for instance [3, 6, 26].
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A Nonfinitely Based Semigroup
of Triangular Matrices

M.V. Volkov

Abstract A new sufficient condition under which a semigroup admits no finite
identity basis has been recently suggested in a joint paper by Karl Auinger, Yuzhu
Chen, Xun Hu, Yanfeng Luo, and the author. Here we apply this condition to show
the absence of a finite identity basis for the semigroup UT3(R) of all upper triangular
real 3×3-matrices with 0 s and/or 1 s on the main diagonal. The result holds also for
the case when UT3(R) is considered as an involution semigroup under the reflection
with respect to the secondary diagonal.

Keywords Semigroup reduct · Involution semigroup · semigroup variety

1 Introduction

A semigroup identity is just a pair of words, i.e., elements of the free semigroup A+
over an alphabet A. In this paper, identities are written as “bumped” equalities such as
u � v. The identity u � v is trivial if u = v and nontrivial otherwise. A semigroup
S satisfies u � v where u, v ∈ A+ if for every homomorphism ϕ : A+ → S, the
equality uϕ = vϕ is valid in S; alternatively, we say that u � v holds in S. Clearly,
trivial identities hold in every semigroup, and there exist semigroups (for instance,
free semigroups over non-singleton alphabets) that satisfy only trivial identities.

Given any system� of semigroup identities, we say that an identity u � v follows
from� if every semigroup satisfying all identities of� satisfies the identity u � v as
well; alternatively, we say that � implies u � v. A semigroup S is said to be finitely
based if there exists a finite identity system � such that every identity holding in S
follows from �; otherwise, S is called nonfinitely based.

The finite basis problem, that is, the problem of classifying semigroups according
to the finite basability of their identities, has been intensively explored since the mid-
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1960s when the very first examples of nonfinitely based semigroups were discovered
byAustin [3], Biryukov [5], andPerkins [15, 16].One of the examples byPerkinswas
especially impressive as it involved a very transparent and natural object. Namely,
Perkins proved that the finite basis property fails for the 6-element semigroup formed
by the following integer 2 × 2-matrices under the usual matrix multiplication:

(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

,

(

1 0
0 1

)

.

Thus, even a finite semigroup can be nonfinitely based; moreover, it turns out that
semigroups are the only “classical” algebras forwhich finite nonfinitely based objects
can exist: finite groups [14], finite associative and Lie rings [4, 10, 11], and finite
lattices [13] are all finitely based. Therefore studying finite semigroups from the
viewpoint of the finite basis problem has become a hot area in which many neat
results have been achieved and several powerful methods have been developed, see
the survey [18] for an overview.

It may appear surprising but the finite basis problem for infinite semigroups is less
studied. The reason for this is that infinite semigroups usually arise in mathematics
as semigroups of transformations of an infinite set, or semigroups of relations on
an infinite domain, or semigroups of matrices over an infinite ring, and as a rule all
these semigroups are “too big” to satisfy any nontrivial identity. For instance (see,
e.g., [6]), the two integer matrices

(

2 0
1

)

,

(

2 1
1

)

are known to generate a free subsemigroup in the semigroup T2(Z) of all upper
triangular integer 2 × 2-matrices. (Here and below we omit zero entries under the
main diagonal when dealing with upper triangular matrices.) Therefore even such
a “small” matrix semigroup as T2(Z) satisfies only trivial identities, to say nothing
about matrix semigroups of larger dimension.

If all identities holding in a semigroup S are trivial, S is finitely based in a voidway,
so to speak. If, however, an infinite semigroup satisfies a nontrivial identity, its finite
basis problem may constitute a challenge since “finite” methods are nonapplicable
in general. Therefore, up to recently, results classifying finitely based and nonfinitely
based members within natural families of concrete infinite semigroups that contain
semigroups with a nontrivial identity have been rather sparse.

Auinger et al. [1] have found a new sufficient condition under which a semigroup
is nonfinitely based and applied this condition to certain important classes of infinite
semigroups. In the present paper, we demonstrate yet another application; its inter-
esting feature is that it requires the full strength of the main result of [1]. Namely, we
prove that the semigroup UT3(R) of all upper triangular real 3 × 3-matrices whose
main diagonal entries are 0 s and/or 1 s is nonfinitely based. The result holds also for
the case when UT3(R) is considered as an involution semigroup under the reflection
with respect to the secondary diagonal.
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The paper is structured as follows. In Sect. 2,we recall themain result from [1], and
in Sect. 3 we apply it to the semigroup UT3(R). Section4 collects some concluding
remarks and a related open question.

An effort has been made to keep this paper self-contained, to a reasonable extent.
We use only the most basic concepts of semigroup theory and universal algebra that
all can be found in the early chapters of the textbooks [7, 8], a suitable version of
the main theorem from [1], and a few minor results from [2, 12, 17].

2 A Sufficient Condition for the Nonexistence of a Finite
Basis

The sufficient condition for the nonexistence of a finite basis established in [1] ap-
plies to both plain semigroups, i.e., semigroups treated as algebras of type (2), and
semigroups with involution as algebras of type (2,1). Let us recall all the concepts
needed to formulate this condition.

We start with the definition of an involution semigroup. An algebra 〈S, ·, �〉 of
type (2,1) is called an involution semigroup if 〈S, ·〉 is a semigroup (referred to as
the semigroup reduct of 〈S, ·, �〉) and the unary operation x �→ x� is an involutory
anti-automorphism of 〈S, ·〉, that is,

(xy)� = y�x� and (x�)� = x

for all x, y ∈ S.
The free involution semigroup FI(A) on a given alphabet A can be constructed

as follows. Let A := {a� | a ∈ A} be a disjoint copy of A. Define (a�)� := a for all
a� ∈ A. Then FI(A) is the free semigroup (A ∪ A)+ endowed with the involution
defined by

(a1 · · · am)� := a�
m · · · a�

1

for all a1, . . . , am ∈ A ∪ A. We refer to elements of FI(A) as involutory words
over A. An involutory identity u � v is just a pair of involutory words; the identity
holds in an involution semigroup S if for every involution semigroup homomorphism
ϕ : FI(A)+ → S, the equality uϕ = vϕ is valid in S. Now the concepts of a finitely
based/nonfinitely based involution semigroup are defined exactly as in the plain semi-
group case. In what follows, we use square brackets to indicate adjustments to be
made in the involution case.

A class V of [involution] semigroups is called a variety if there exits a system �

of [involution] semigroup identities such that V consists precisely of all [involution]
semigroups that satisfy every identity in �. In this case we say that V is defined
by �. If the system � can be chosen to be finite, the corresponding variety is said
to be finitely based; otherwise it is nonfinitely based. Given a class K of [involu-
tion] semigroups, the variety defined by the identities that hold in each [involution]
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semigroup from K is said to be generated by K and is denoted by var K; if K = {S},
we write var S rather than var{S}. It should be clear that S and var S are simultane-
ously finitely based or nonfinitely based.

A semigroup is said to be periodic if each of its one-generated subsemigroups
is finite and locally finite if each of its finitely generated subsemigroups is finite. A
variety of semigroups is locally finite if all its members are locally finite.

Let A and B be two classes of semigroups. The Mal’cev product A ©m B of A and
B is the class of all semigroups S for which there exists a congruence θ such that
the quotient semigroup S/θ lies in B while all θ-classes that are subsemigroups in
S belong to A. Notice that for a congruence θ on a semigroup S, a θ-class forms a
subsemigroup of S if and only if the class is an idempotent of the quotient semigroup
S/θ.

Let x1, x2, . . . , xn, . . . be a sequence of letters. The sequence {Zn}n=1,2,... of
Zimin words is defined inductively by Z1 := x1, Zn+1 := Zn xn+1Zn . We say that
a word v is an [involutory] isoterm for a class C of semigroups [with involution]
if the only [involutory] word v′ such that all members of C satisfy the [involution]
semigroup identity v � v′ is the word v itself.

Now we are in a position to state the main result of [1]. Here Com denotes the
variety of all commutative semigroups.

Theorem 1 ([1, Theorem 6]) A variety V of [involution] semigroups is nonfinitely
based provided that

(i) [the class of all semigroup reducts of ] V is contained in the variety
var(Com ©m W) for some locally finite semigroup variety W and

(ii) each Zimin word is an [involutory] isoterm relative to V.

Formulated as above, Theorem 1 suffices for all applications presented in [1] but
is insufficient for the purposes of the present paper. However, it is observed in [1,
Remark 1] that the theorem remains valid if one replaces the condition (i) by the
following weaker condition:

(i′) [the class of all semigroup reducts of ] V is contained in the variety var(U ©m W)

where U is a semigroup variety all of whose periodic members are locally finite
and W is a locally finite semigroup variety.

Here we will utilize this stronger form of Theorem 1.

3 The Identities of UT3(R)

Recall that we denote by UT3(R) the semigroup of all upper triangular real 3 × 3-
matrices whosemain diagonal entries are 0 s and/or 1s. For eachmatrixα ∈ UT3(R),
let αD stand for the matrix obtained by reflecting α with respect to the secondary
diagonal (from the top right to the bottom left corner); in other words, (αi j )

D :=
(α4− j 4−i ). Then it is easy to verify that the unary operation α �→ αD (called the
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skew transposition) is an involutory anti-automorphism of UT3(R). Thus, we can
consider UT3(R) also as an involution semigroup. Our main result is the following

Theorem 2 The semigroup UT3(R) is nonfinitely based as both a plain semigroup
and an involution semigroup under the skew transposition.

Proof We will verify that the [involution] semigroup variety var UT3(R) satisfies
the conditions (i′) and (ii) discussed at the end of Sect. 2; the desired result will then
follow from Theorem 1 in its stronger form.

Let D3 denote the 8-element subsemigroup of UT3(R) consisting of all diagonal
matrices. To every matrix α ∈ UT3(R)we assign the diagonal matrix Diag(α) ∈ D3
by changing each nondiagonal entry of α to 0. The following observation is obvious.

Lemma 3 The map α �→ Diag(α) is a homomorphism of UT3(R) onto D3.

We denote by θ the kernel of the homomorphism of Lemma 3, i.e.,

(α,β) ∈ θ if and only if Diag(α) = Diag(β).

Then θ is a congruence on UT3(R). Since each element of the semigroup D3 is an
idempotent, each θ-class is a subsemigroup of UT3(R). The next fact is the core of
our proof.

Proposition 4 Each θ-class of UT3(R) satisfies the identity

Z4 � (x1x2)
2x1x3x1x4x1x3x1(x2x1)

2. (1)

Proof We have to consider eight cases. First we observe that the identity (1) is left-
right symmetric, and therefore, (1) holds in some subsemigroup S of UT3(R) if and
only if it holds in the subsemigroup SD = {s D | s ∈ S} since SD is anti-isomorphic
to S. This helps us to shorten the below analysis.

Case 1: S000 =
{(

0 α12 α13
0 α23

0

)

| α12,α13,α23 ∈ R

}

. This subsemigroup is easily

seen to satisfy the identity x1x2x3 � y1y2y3 which clearly implies (1).

Case 2: S100 =
{(

1 α12 α13
0 α23

0

)

| α12,α13,α23 ∈ R

}

. Multiplying three arbitrary

matrices α,β, γ ∈ S100, we get

⎛

⎝

1 α12 α13
0 α23

0

⎞

⎠ ·
⎛

⎝

1 β12 β13
0 β23

0

⎞

⎠ ·
⎛

⎝

1 γ12 γ13
0 γ23

0

⎞

⎠ =
⎛

⎝

1 γ12 γ13 + β12γ23
0 0

0

⎞

⎠ =
⎛

⎝

1 β12 β13
0 β23

0

⎞

⎠ ·
⎛

⎝

1 γ12 γ13
0 γ23

0

⎞

⎠ .
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Thus, αβγ = βγ and we have proved that S100 satisfies the identity xyz � yz.
Clearly, this identity implies (1).

Case 3: S010 =
{(

0 α12 α13
1 α23

0

)

| α12,α13,α23 ∈ R

}

. It is easy to see that this

subsemigroup satisfies the identity xyx � x which clearly implies (1).

Case 4: S001 =
{(

0 α12 α13
0 α23

1

)

| α12,α13,α23 ∈ R

}

. This case reduces to Case 2

since S001 = SD
100.

Case 5: S110 =
{(

1 α12 α13
1 α23

0

)

| α12,α13,α23 ∈ R

}

. Multiplying three arbitrary

matrices α,β, γ ∈ S110, we get

⎛

⎝

1 α12 α13
1 α23

0

⎞

⎠ ·
⎛

⎝

1 β12 β13
1 β23

0

⎞

⎠ ·
⎛

⎝

1 γ12 γ13
1 γ23

0

⎞

⎠ =
⎛

⎝

1 α12 + β12 + γ12 γ13 + (α12 + β12)γ23
1 γ23

0

⎞

⎠

whence the product αβγ depends only on γ and on the sum α12 +β12. Thus, αβγ =
βαγ and we have proved that S110 satisfies the identity xyz � yxz. This identity
implies (1).

Case 6: S101 =
{(

1 α12 α13
0 α23

1

)

| α12,α13,α23 ∈ R

}

. Take an arbitrary homomor-

phism ϕ : {x1, x2, x3, x4}+ → S101 and let α = x1ϕ, β = x2ϕ, γ = x3ϕ, and δ =
x4ϕ. Thenone can calculate that both Z4ϕ and (x1x2x1x2x1x3x1x4x1x3x1x2x1x2x1)ϕ

are equal to the matrix

(

1 α12 ε
0 α23

1

)

where ε stands for the following expression:

8α13 + 4β13 + 2γ13 + δ13 + α12(4β23 + 2γ23 + δ23) + (4β12 + 2γ12 + δ12)α23.

Thus, the identity (1) holds on S101.
For readers familiarwith theReesmatrix construction (cf. [8, Chap. 3]), we outline

a more conceptual proof for the fact that S101 satisfies (1). Let G = 〈R,+〉 stand
for the additive group of real numbers and let P be the R×R-matrix over G whose
element in the r th row and the sth column is equal to rs. One readily verifies that the

map

(

1 α12 α13
0 α23

1

)

�→ (α23,α13,α12) constitutes an isomorphism of the semigroup

S101 onto the Rees matrix semigroup M(R, G, R; P). It is known (see, e.g., [9]) and
easy to verify that every Rees matrix semigroup over an Abelian group satisfies each
identity u � v for which the following three conditions hold: the first letter of u
is the same as the first letter of v; the last letter of u is the same as the last letter
of v; for each ordered pair of letters, the number of occurrences of this pair is the
same in u and v. Inspecting the identity (1), one immediately sees that it satisfies the
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three conditions whence it holds in the semigroup M(R, G, R; P) and also in the
semigroup S101 isomorphic to M(R, G, R; P).

Case 7: S011 =
{(

0 α12 α13
1 α23

1

)

| α12,α13,α23 ∈ R

}

. This case reduces to Case 5

since S011 = SD
110.

Case 8: S111 =
{(

1 α12 α13
1 α23

1

)

| α12,α13,α23 ∈ R

}

. The semigroup S111 is in fact

the group of all real upper unitriangular 3 × 3-matrices. The latter group is known
to be nilpotent of class 2, and as observed by Mal’cev [12], every nilpotent group of
class 2 satisfies the semigroup identity

xzytyzx � yzxtxzy. (2)

Now we verify that (1) follows from (2). For this, we substitute in (2) the letter x1
for x , the letter x3 for z, the word x1x2x1 for y, and the letter x4 for t . We then obtain
the identity

x1
︸︷︷︸

x

x3
︸︷︷︸

z

x1x2x1
︸ ︷︷ ︸

y

x4
︸︷︷︸

t

x1x2x1
︸ ︷︷ ︸

y

x3
︸︷︷︸

z

x1
︸︷︷︸

x

�

x1x2x1
︸ ︷︷ ︸

y

x3
︸︷︷︸

z

x1
︸︷︷︸

x

x4
︸︷︷︸

t

x1
︸︷︷︸

x

x3
︸︷︷︸

z

x1x2x1
︸ ︷︷ ︸

y

.

Multiplying this identity through by x1x2 on the left and by x2x1 on the right, we
get (1). �

Recall that a semigroup identity u � v is said to be balanced if for every letter the
number of occurrences of this letter is the same in u and v. Clearly, the identity (1)
is balanced.

Lemma 5 ([17, Lemma3.3]) If a semigroup variety V satisfies a nontrivial balanced
identity of the form Zn � v, then all periodic members of V are locally finite.

Let U stand for the semigroup variety defined by the identity (1). Then Lemma 5
ensures that all periodic members of U are locally finite while Lemma 3 and Propo-
sition 4 imply that the semigroup UT3(R) lies in the Mal’cev product U ©m var D3.

The variety var D3 is locally finite as a variety generated by a finite semigroup [7,
Theorem 10.16]. We see that the variety var UT3(R) satisfies the condition (i′).

It remains to verify that var UT3(R) satisfies the condition (ii) as well. Clearly,
the involutory version of the condition (ii) is stronger than its plain version so that
it suffices to show that each Zimin word is an involutory isoterm relative to UT3(R)

considered as an involution semigroup.
Let TA1

2 stand for the involution semigroup formed by the (0, 1)-matrices

(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

1 0
1 0

)

,

(

0 1
0 1

)

,

(

1 0
0 1

)
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under the usual matrix multiplication and the unary operation that swaps each of
the matrices

(

1 0
0 0

)

and
(

0 1
0 1

)

with the other one and fixes the rest four matrices. By
[2, Corollaries 2.7 and 2.8] each Zimin word is an involutory isoterm relative to TA1

2.
Now consider the involution subsemigroup M in UT3(R) generated by the matrices

e =
⎛

⎝

1 0 0
1 0
1

⎞

⎠ , x =
⎛

⎝

1 0 0
0 0
1

⎞

⎠ , and y =
⎛

⎝

1 1 0
0 1
1

⎞

⎠ .

Clearly, for each matrix (μi j ) ∈ M , one has μi j ≥ 0 and μ11 = μ33 = 1, whence
the set N of all matrices (μi j ) ∈ M such that μ13 > 0 forms an ideal in M . Clearly,
N is closed under the skew transposition. A straightforward calculation shows that,

besides e, x , and y, the only matrices in M\N are xy =
(

1 1 0
0 0
1

)

and yx =
(

1 0 0
0 1
1

)

.

Consider the following bijection between M\N and the set of nonzero matrices in
TA1

2:

e �→ (

1 0
0 1

)

, x �→ (

1 0
1 0

)

, y �→ (

0 1
0 0

)

, xy �→ (

0 1
0 1

)

, yx �→ (

1 0
0 0

)

.

Extending this bijection to M by sending all elements from N to
(

0 0
0 0

)

yields an invo-
lution semigroup homomorphism from M onto TA1

2. Thus, TA
1
2 as a homomorphic

image of an involution subsemigroup in UT3(R) satisfies all involution semigroup
identities that hold in UT3(R). Therefore, each Zimin word is an involutory isoterm
relative to UT3(R), as required. �

4 Concluding Remarks and an Open Question

Here we discuss which conditions of Theorem 2 are essential and which can be
relaxed.

It should be clear from the above proof of Theorem 2 that the fact that we have
dealt with matrices over the field R is not really essential: the proof works for every
semigroup of the form UT3(R) where R is an arbitrary associative and commutative
ring with 1 such that

1 + 1 + · · · + 1
︸ ︷︷ ︸

n times

�= 0 (3)

for every positive integer n. For instance,we can conclude that the semigroupUT3(Z)

of all upper triangular integer 3 × 3-matrices whose main diagonal entries are 0 s
and/or 1s is nonfinitely based in both plain and involution semigroup settings.

On the other hand, we cannot get rid of the restriction imposed on the main
diagonal entries: as the example reproduced in the introduction implies, the semi-
group T3(Z) of all upper triangular integer 3× 3-matrices is finitely based as a plain
semigroup since it satisfies only trivial semigroup identities. In a similar way, one
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can show that T3(Z) is finitely based when considered as an involution semigroup
with the skew transposition. Indeed, the subsemigroup generated in T3(Z) by the

matrix ζ =
(

2 0 0
1 1
2

)

and its skew transpose ζ D is free, and therefore, considered as

an involution semigroup, it is isomorphic to the free involution semigroup on one
generator, say z. However, FI({z}) contains as an involution subsemigroup a free
involutory semigroup on countably many generators, namely, FI(Z) where

Z = {zz∗z, z(z∗)2z, . . . , z(z∗)nz, . . . }.

Hence T3(Z) satisfies only trivial involution semigroup identities. Of course, the
same conclusions persist if we substitute Z by any associative and commutative ring
with 1 satisfying (3) for every n.

We can, however, slightly weaken the restriction on the main diagonal entries by
allowing them to take values in the set {0,±1}. The proof of Theorem 2 remains
valid for the resulting [involution] semigroup that we denote by UT±

3 (R). Indeed,
the homomorphism α �→ Diag(α) of Lemma 3 extends to a homomorphism of
UT±

3 (R) onto its 27-element subsemigroup consisting of diagonal matrices. The
subsemigroup classes of the kernel of this homomorphism are precisely the subsemi-
groups S000, . . . , S111 from the proof of Proposition 4, and therefore, the variety
var UT±

3 (R) satisfies the condition (i′) of the stronger form of Theorem 1. Of course,
the variety fulfills also the condition (ii) since (ii) is inherited by supervarieties. In
the same fashion, the proof of Theorem 2 applies, say, to the semigroup of all upper
triangular complex 3 × 3-matrices whose main diagonal entries come from the set
{0, 1, ξ, . . . , ξn−1} where ξ is a primitive nth root of unity.

The question of whether or not a result similar to Theorem 2 holds true for
analogs of the semigroup UT3(R) in other dimensions is more involved. The
variety var UT2(R) fulfills the condition (i′) since the condition is clearly in-
herited by subvarieties and the injective map UT2(R) → UT3(R) defined by
(

α11 α12
α22

)

�→
( α11 0 α12

0 0
α22

)

is an embedding of [involution] semigroups whence

var UT2(R) ⊆ var UT3(R). However, var UT2(R) does not satisfy the condition
(ii) as the following result shows.

Proposition 6 The semigroup UT2(R) of all upper triangular real 2 × 2-matrices
whose main diagonal entries are 0s and/or 1s satisfies the identity

Z4 � x1x2x1x3x21 x2x4x2x21 x3x1x2x1. (4)

Proof Fix an arbitrary homomorphismϕ : {x1, x2, x3, x4}+ → UT2(R). For brevity,
denote the right-hand side of (4) by w; we thus have to prove that Z4ϕ = wϕ. Let

x1ϕ =
(

α11 α12
α22

)

, x2ϕ =
(

β11 β12
β22

)

, x3ϕ = ( γ11 γ12
γ22

)

, x4ϕ =
(

δ11 δ12
δ22

)

,

where α11,α22,β11,β22, γ11, γ22, δ11, δ22 ∈ {0, 1} and α12,β12, γ12, δ12 ∈ R.
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If α22 = 0, the fact that α11,β11, γ11, δ11 ∈ {0, 1} readily implies that Z4ϕ =
wϕ =

(

ε εα12
0

)

, where ε = α11β11γ11δ11. Similarly, if α11 = 0, then it is easy to

calculate that Z4ϕ = wϕ =
(

0 α12η
η

)

, where η = α22β22γ22δ22. We thus may (and

will) assume that α11 = α22 = 1.
Now, if β22 = 0, a straightforward calculation shows that Z4ϕ = wϕ =

(

κ κ(α12+β12)
0

)

, where κ = β11γ11δ11. Similarly, if β11 = 0, we get Z4ϕ =
wϕ =

(

0 (α12+β12)λ
λ

)

, where λ = β22γ22δ22. Thus, we may also assume that

β11 = β22 = 1. Observe that the word w is obtained from the word Z4 by sub-
stituting x21 x2 for the second occurrence of the factor x1x2x1 and x2x21 for the
third occurrence of this factor. Therefore α11 = α22 = β11 = β22 = 1 implies

x1x2x1ϕ = x21 x2ϕ = x2x21ϕ =
(

1 2α12+β12
1

)

whence Z4ϕ = wϕ. �

Now let UTn(R) stand for the semigroup of all upper triangular real n × n-
matrices whose main diagonal entries are 0s and/or 1s and assume that n ≥ 4.
Here the behavior of the [involution] semigroup variety generated by UTn(R) with
respect to the conditions of Theorem 1 is in a sense opposite. Namely, it is not hard
to show (by using an argument similar to the one utilized in the proof of Theorem 2)
that the variety var UTn(R) with n ≥ 4 satisfies the condition (ii). On the other
hand, the approach used in the proof of Theorem 2 fails to justify that this variety
fulfills (i′). In order to explain this claim, suppose for simplicity that n = 4. Then
the homomorphism α �→ Diag(α) maps UT4(R) onto its 16-element subsemigroup
consisting of diagonal matrices which all are idempotent. This induces a partition of
UT4(R) into 16 subsemigroups, and to mimic the proof of Theorem 2 one should
show that all these subsemigroups belong to a variety whose periodic members are
locally finite. One of these 16 subsemigroups is nothing but the group of all real upper
unitriangular 4 × 4-matrices. The latter group is known to be nilpotent of class 3,
and one might hope to use the identity

xzytyzxsyzxtxzy � yzxtxzysxzytyzx, (5)

proved by Mal’cev [12] to hold in every nilpotent group of class 3, along the lines of
the proof of Proposition 4 where we have invokedMal’cev’s identity holding in each
nilpotent group of class 2. However, it is known [19, Theorem 2] that the variety
defined by (5) contains infinite finitely generated periodic semigroups. Even though
this fact does not yet mean that the condition (i′) fails in var UT4(R), it demonstrates
that the techniques presented in this paper are not powerful enough to verify whether
or not the variety obeys this condition. It seems that this verification constitutes a
very difficult task as it is closely connected with Sapir’s longstanding conjecture that
for each nilpotent group G, periodic members of the semigroup variety var G are
locally finite, see [17, Sect. 5].

Back to our discussion, we see that Theorem 1 cannot be applied to the semigroup
UT2(R) andwe are not in a position to apply it to the semigroupsUTn(R)with n ≥ 4.
Of course, this does not indicate that these semigroups are finitely based—recall that
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Theorem 1 is only a sufficient condition for being nonfinitely based. Presently, we
do not know which of the semigroups UTn(R) with n �= 3 possess the finite basis
property, and we conclude the paper with explicitly stating this open question in
the anticipation that, over time, looking for an answer might stimulate creating new
approaches to the finite basis problem for infinite [involution] semigroups:

Question For which n �= 3 is the [involution] semigroup UTn(R) finitely based?
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Regular Elements in von Neumann Algebras

K.S.S. Nambooripad

Abstract The semigroup of all linear maps on a vector space is regular, but the
semigroup of continuous linear maps on a Hilbert space is not, in general, regular;
nor is the product of two regular elements regular. In this chapter, we show that in
those types of vonNeumann algebras of operators inwhich the lattice of projections is
modular, the set of regular elements do form a (necessarily regular) semigroup. This
is done using the construction of a regular biordered set (as defined in Nambooripad,
Mem. Am. Math. Soc. 22:224, 1979, [9]) from a complemented modular lattice (as
in Patijn, Semigroup Forum 21:205–220, 1980, [11]).

Keywords Rgular biordered set · ∗-Regular element

Throughout the following, H denotes a Hilbert space and B(H) denotes the
semigroup of bounded (continuous) linear maps of H to itself. Elements of B(H)

are called operators on H . The range and kernel of t in B(H) are denoted by ran(t)
and ker(t); that is for t in B(H)

ran(t) = {y ∈ H : ∃x ∈ H y = t (x)} and ker(t) = {x ∈ H : t (x) = 0}

By a projection of H , we mean a self-adjoint, idempotent operator on H ; that is,
an element p of B(H) for which p∗ = p = p2. It is well known that ran(p) is
a closed linear subspace of H for any projection p of H with ker(p) = ran(p)⊥,
and conversely, for each closed subspace A of H , there exists a projection p of H
with ran(p) = A and ker(p) = A⊥. Thus there is a one-to-one correspondence
between projections in B(H) and closed linear subspaces of H . For each closed
linear subspace A of H , the unique projection with range A is denoted as pA and is
called the projection on A.

An operator on H is called regular, if it is a regular element of the semigroup
B(H); that is, if there exists an operator t ′ on H such that t t ′t = t . If t ′ satisfies the
equation t ′t t ′ = t ′ also, then it is called a generalized inverse of t . It is not difficult
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to show that every linear map on a vector space has a generalized inverse (see [1],
Sect. 2.3, Exercise8). But in the case of an operator on a Hilbert space, it may happen
that none of its generalized inverses are bounded, so that t is not regular as an element
of B(H). We can characterize the regular elements of B(H) as follows (see [3]).

Proposition 1 An element t of B(H) is regular if and only if ran(t) is closed. In this
case, there exists a unique generalized inverse t† of t such that t t† is the projection
on ran(t) and t†t is the projection on ker(t)⊥. �

The generalized inverse t† in the above result is called the Moore–Penrose inverse
of t .

We next note that the map t �→ t∗, where t∗ is the (Hilbert space) adjoint of t , is
an involution on the semigroup B(H) in the sense that (t∗)∗ = t for all t in B(H)

and (st)∗ = t∗s∗ for all s, t in B(H). Following [10], we define an element x of an
involution semigroup S to be ∗-regular, if there exists an inverse x† of x such that
(xx†)∗ = xx† and (x†x)∗ = x†x . Thus we have the following corollary:

Corollary 2 An element t of B(H) is ∗-regular if and only if it is regular. �
Note that if p is a projection on H , then ran(p) = ker(p)⊥ so that p(x) = x for

every x ∈ ker(p)⊥. This is generalized as follows: an operator v on H is called a
partial isometry, if ||v(x)|| = ||x || for each x in ker(v)⊥. This can be characterized
in several different ways (see [2], Proposition 4.38 and [4], Problem 98, Corollary 3).

Proposition 3 For an operator v on H, the following are equivalent

(i) v is a partial isometry
(ii) vv∗ is a projection

(iii) v∗v is a projection
(iv) vv∗v = v �

Now from (iv) above, we have

v∗ = (vv∗v)∗ = v∗v∗∗v∗ = v∗vv∗

and this together with (iv) shows that v∗ is an inverse of v. In view of (ii) and (iii),
it follows that the adjoint v∗ is in fact the Moore–Penrose inverse of v. Thus we can
add the following characterization to the above list:

Proposition 4 An operator v on H is a partial isometry if and only if v is a regular
element of B(H) for which v† = v∗. �

If H is of finite dimension, then every linear subspace is closed and so the range
of every operator is closed. Thus by Proposition 1, the semigroup B(H) is regular.
But if H is of infinite dimension, there are operators with nonclosed range (see
[4], Sect. 41) and so B(H) is not regular. Moreover, in this case, there are regular
operators with nonregular products, so that the subset of B(H) consisting only of
regular operators does not form a semigroup. To see this, we give a necessary and
sufficient condition for the product of two regular operators to be regular:
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Proposition 5 Let s and t be regular elements of B(H). Then st is regular if and
only if ker(s) + ran(t) is closed in H.

Proof We start by noting that for any two elements s, t in B(H),

ker(s) + ran(t) = s−1(ran(st))

One of the inclusions is easily seen like this:

ker(s) + ran(t) ⊆ s−1s(ker(s) + ran(t)) = s−1(s(ran(t)) = s−1(ran(st))

To prove the reverse inclusion, let x ∈ s−1(ran(st)), so that s(x) = st (y) for some
y in H . Hence x − t (y) ∈ ker(t) and so x = (x − t (y)) + t (y) ∈ ker(s) + ran(t).
Thus s−1(ran(st)) ⊆ ker(s) + ran(t) also.

Now let s and t be regular elements of B(H). If st is regular, then ran(st) is
closed, by Proposition 1, and so ker(s) + ran(t) = s−1(ran(st)) is closed, since
s is continuous. To prove the converse, first note that ran(s) is closed and hence
complete, since s is regular, so that s is a continuous linear map from the complete
normed space H onto the complete normed linear space ran(s) and so is an open
map. Hence s is a quotient map onto ran(s) and ran(st) ⊆ ran(s). If we now assume
that s−1(ran(st)) = ker(s) + ran(t) is closed in H , then it follows that ran(st) is
closed in ran(s), since s is a quotient map. Again, since ran(s) is closed in H , it
follows that ran(st) is closed in H . Thus st is regular. �

It can be shown that any Hilbert space of infinite dimension contains pairs of
closed linear subspaces whose sum is not closed (see [5], Sect. 15) If A and B are
two such subspaces, then by the above result, the product pA⊥ pB is not regular. In
other words, the set of regular elements of B(H) is not a semigroup, if H is of infinite
dimension.

This result can also be used to show how the regularity of a product in the semi-
group B(H) is linked to the lattice of closed linear subspaces of H . It is easily seen
that the set of all subspaces of a vector space is a lattice under set inclusion, with
meet and join defined by

A ∧ B = A ∩ B A ∨ B = A + B

and that it satisfies the modular identity

A ≤ C =⇒ A ∨ (B ∧ C) = (A ∨ B) ∧ C

If H is a Hilbert space, then the set of all closed linear subspaces is not a sublattice of
the above, since the sum of two closed linear subspaces may not be closed in general.
However, it is indeed a lattice with meet and join defined by

A ∧ B = A ∩ B A ∨ B = cl(A + B)
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where cl denotes closure in H . But this lattice is modular if and only if H is of finite
dimension, the lack of modularity being a consequence of the existence of closed
linear subspaces with nonclosed sum (see [4], Problem9). This is seen in a better
perspective by localizing the notion of modularity: two closed linear subspaces A,
B of H is said to be a modular pair if

X ≤ B =⇒ X ∨ (A ∧ B) = (X ∨ A) ∧ B

It can be shown that A, B form a modular pair if and only if A + B is closed ([7],
Theorem III-6 and Theorem III-13) Thus our result on the regularity of a product
can be rephrased as follows:

Proposition 6 Let s and t be regular elements in B(H). Then st is regular if and
only if ker(s) and ran(t) form a modular pair in the lattice of closed subspaces
of H �

It may also be noted that the one-to-one correspondence A �→ pA, between closed
linear subspaces of H and projections on them, induces a lattice structure on the set
of projections of H . We call this the projection lattice of H and denote it as P(H).

We now pass on to the definition of a von Neumann algebra. This can be done
in several equivalent ways, and we choose the one which uses only the algebraic
properties of B(H) (see [12]). For this, we define the commutant of a subset S of
B(H), denoted S′, by

S′ = {t ∈ B(H) : st = ts ∀s ∈ S}

Note that a subset S of B(H) is called self-adjoint, if for each t in S, we also have
t∗ in S.

Definition 7 A self-adjoint subalgebra A of B(H) is called a von Neumann algebra
if A′′ = A.

An interesting feature of a vonNeumann algebra A is that, as remarked in [12], just
about any canonical construction applied to the elements of A results in an element
of A itself.

For example, consider the followingdecompositionof anoperator: it canbeproved
that for any operator t on H , there is a unique pair of operators s and v where s is a
positive operator (meaning 〈t (x), x〉 ≥ 0 for every x in H ) and v is a partial isometry
with ker(s) = ker(v) such that t = vs (see [2], Proposition 4.39). This is called the
polar decomposition of an operator. If t is in a von Neumann algebra A and t = vs
is the polar decomposition of t , then both v and s are in A ([12], Corollary 0.4.9). As
another example, we show that if t ∈ A, then its Moore–Penrose inverse t† is also in
A. For this wemake use of the following result proved in [12] (Scholium 0.4.8). Note
that an operator u on H is called unitary if uu∗ = u∗u = 1, the identity operator
on H .



Regular Elements in von Neumann Algebras 43

Lemma 8 Let A be a von Neumann algebra of operators on H and let t be an
operator on H. Then t ∈ A if and only if utu∗ = t for every unitary operator u in
the commutant A′ of A. �

Proposition 9 Let t be a regular element of B(H) and let A be a subset of B(H)

which is a von Neumann algebra. If t is in A, then the Moore–Penrose inverse t† of
t is also in A.

Proof Let t ∈ A. We first prove that the projections t t† and t†t are in A. Let t = vs
be the polar decomposition of t , so that v ∈ A. Since A is self-adjoint, we have
v∗ ∈ A and hence vv∗ and v∗v are in A. Moreover, vv∗ is the projection on ran(v) =
ran(t) and v∗v is the projection on ker(v)⊥ = ker(t)⊥ (see Proposition 6.1.1 and
Theorem 6.1.2 of [6]). By definition of t†, it follows that t t† = vv∗ and t†t = v∗v.
Thus t t† and t†t are in A.

To show that t† itself is in A, we make use of the lemma above. Let u be a unitary
operator in A′. ut†u∗ = t†, we start by proving that t ′ = ut†u∗ is an inverse of t in
B(H). Since t ∈ A and u ∈ A′, we have ut = tu. Again, A′ is self-adjoint, since A
is ([12], Proposition 0.4.1) so that u∗ ∈ A′ and so u∗t = tu∗. Thus

t t ′t = t (ut†u∗)t = (tu)t†(tu∗) = (ut)t†(tu∗) = u(t t†t)u∗ = utu∗ = tuu∗ = t

since u is unitary. Again, since u∗tu = tu∗u = t ,

t ′t t ′ = (ut†u∗)t (ut†u∗) = (ut†)(u∗tu)(t†u∗) = u(t†t t†)u∗ = ut†u∗ = t ′

Thus t ′ is an inverse of t . Also,

t t ′ = t (ut†u∗) = u(t t†)u∗ = t t†

and
t ′t = (ut†u∗)t = u(t†t)u∗ = t†t

since t t† and t†t are in A. So, t ′ is an inverse of t in B(H)with t t ′ and t ′t projections,
so that t ′ = t†, by the uniqueness of the Moore–Penrose inverse. Thus ut†u∗∗ = t†

for every unitary operator in A′ and hence t† ∈ A, by the lemma. �

This result immediately leads to the following generalization of Corollary 2.

Corollary 10 An element t of a von Neumann algebra is ∗-regular if and only if it
is regular. �

Another property of a von Neumann algebra A is that the set P(A) of projections
in it forms a complete sublattice of P(H). In [8], certain kinds of von Neumann
algebras are classified into different types, on the basis of a real valued, positive
function on the projection lattice. A von Neumann algebra A is called a factor if

A ∩ A′ = {λ1 : λ ∈ C}
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that is, a factor is a von Neumann algebra A in which the only operators in A
commuting with all operators in A are scalar multiples of the identity operator. In
[8], factors are classified into five types named In , I∞, II1, II∞, III (see [12] for a
concise description of these ideas).

Our interest in this scheme is that for factors of type In and II1, the projection
lattice is modular. So, for a factor A of these types, any two projections form a
modular pair in the projection lattice P(A) and so by Proposition 6, the product of
any two regular elements of A is again regular. Thus we have the following:

Proposition 11 If A is a factor of type In or II1, then the set of regular operators in
A forms a regular subsemigroup of A.

Another approach to this idea is via the notion of biordered sets, introduced in
[9] and the construction of a biordered set from a modular lattice, given in [11].
A biordered set is defined as a set with a partial binary operation and the set of
idempotents of a regular semigroups is characterized as a special kind of biordered
set termed regular biordered set (see [9] for the details). In [11], it is shown if L
is a complemented modular lattice, then the set E(L) of pairs of complementary
elements of L can be turned into a regular biordered set with a suitably defined
partial binary operation. Thus it follows that for a von Neumann algebra A whose
projection lattice ismodular, the set of regular operators form a semigroup.Moreover,
this approach also gives explicit expressions for the Moore–Penrose inverse of the
product of regular elements:

Proposition 12 Let s and t regular operators in a von Neumann algebra of type In
or II1 and let p and q be the projections on ker(st)⊥ and ran(s), respectively. If h is
the idempotent operator of H with

ran(h) = (ker(s)⊥ + ran(t)⊥) ∩ ran(t)

ker(h) = (ker(s)⊥ ∩ ran(t)⊥) + ker(s)

then (st)† = pt†hs†q. �
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LeftRight Clifford Semigroups

M.K. Sen

Abstract Clifford semigroups are certain interesting class semigroups and looking
for regular semigroups close to this is natural. Here we discuss the leftright Clifford
semigroups.

Keywords LC-semigroup · Clifford semigroup · L R-C semigroup

1 Introduction

Let S be a semigroup and denote its set of idempotents by ES . Recall that S is regular
if for each a ∈ S there exists x ∈ S such that a = axa. As usual, Greens relations are
denoted by L,R,H,D, and J. An element of a semigroup S is completely regular,
if there exists an element x ∈ S such that axa = a and ax = xa. A semigroup S is
completely regular semigroup if all its elements are completely regular. A completely
regular semigroup is a semigroup that is a union of groups. This class of regular
semigroups and its subclasses have been studied by many authors (see M. Petrich
and N.R. Reilly [7]).

A semigroup S is said to be an inverse semigroup if, for every a ∈ S, there is
a unique b ∈ S (called the inverse of a) such that aba = a and bab = b. This is
equivalent to the condition that semigroup S is regular and that the idempotents of S
commute. It follows that every inverse semigroup which is completely regular, i.e.,
union of groups is a semilattice of groups, and conversely. Any such semigroup is
now known as Clifford semigroup. Such semigroup can be constructed as follows.
Let Y be a semilattice, and to each element α of Y assign a group Gα such that Gα

and Gβ are disjoint if α �= β. To each pair of elements α,β of Y such that α ≥ β,
assign a homomorphism φα,β : Gα → Gβ such that:

(1.1) α ≥ β ≥ γ implies φα,βφβ,γ = φα,γ,

(1.2) φα,α is the identity automorphism of Gα.
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Let S = ⋃{Gα|α ∈ Y } and define the product ab of two elements a, b of S as
follows: if a ∈ Gα and b ∈ Gβ then ab = (aφα,αβ)(bφβ,αβ). Here αβ is the product
of α and β in Y . We call {φα,β | α ≥ β}, the set of connecting homomorphisms of S.

2 Orthogroups

A semigroup S is called orthodox if it is regular (a ∈ aSa for all a in S) and if
the set ES of idempotents of S is a subsemigroup of S. An orthodox semigroup is
called an orthogroup if it is also a completely regular semigroup. It is well known
that an orthogroup can be expressed as a semilattice of rectangular groups. Recall
that a rectangular group is a semigroup isomorphic to the direct product L × G × R
where L is a left and R is a right zero semigroup, and G is a group. The structure of
orthogroups has been studied by many authors, and in particular, Petrich [6] in 1987
described an elegant method for the construction of such semigroups.

Let Y be a semilattice. For every α ∈ Y , let Sα = Iα × Gα × �α, where Iα is a
left zero semigroup, Gα is a group, and �α is a right zero semigroup, and assume
that Sα ∩ Sβ = φ if α �= β. For each α ∈ Y , fix an element in Iα ∩ �α.

Let 〈, 〉 : Sα × Iβ → Iβ , [, ] : �β × Sα → �β be two functions defined whenever
α ≥ β. Let G be a semilattice Y of groups Gα in which multiplication is denoted by
juxtaposition. Assume that for all a = (i, g,λ) ∈ Sα and b = ( j, h,μ) ∈ Sβ , the
following conditions hold.
(A) If k ∈ Iα and ν ∈ �α, then 〈a, k〉 = i , and [ν, a] = λ. On S = ⋃

α∈Y Sα define
a multiplication by aob = (〈a, 〈b,αβ〉〉, gh, [[αβ, a], b]).
(B) If γ ≤ αβ, k ∈ Iγ, ν ∈ �γ , then 〈a, 〈b, k〉〉 = 〈aob, k〉, [[ν, a], b] = [v, aob].
Then S is an orthogroup such that S/D ∼= Y and whose multiplication restricted
to each Sα coincides with the given multiplication. Conversely, every orthogroup is
isomorphic to one so constructed.

Petrich and Reilly [7] have discussed some special orthogroups, that is, the C
orthogroup if its set of idempotents forms a C band. The most well-known C bands
are tabled in the text ofHowie [8], except semilattice and rectangular band, as follows:

(1) regular band: the band satisfying the identity e f ge = e f ege,
(2) left regular band: the band satisfying the identity e f = e f e, and right regular

band: the band satisfying the identity f e = e f e,
(3) normal band: the band satisfying the identity e f ge = eg f e,
(4) left normal band: the band satisfying the identity e f g = eg f , and right normal

band: the band satisfying the identity f ge = g f e.

Among the above classes of C orthogroups, the class of left regular orthogroups and
the class of right regular orthogroups are two important proper subclasses of the class
of regular orthogroups, and in particular, their intersection is the class of Clifford
semigroups.
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3 LC-Semigroups

Due to the rich structure of Clifford semigroup, it is natural to search for classes of
regular semigroups close to Clifford semigroups. In [5], Petrich, and in [13], Zhu
et al. left [right]Clifford semigroups as generalization of Clifford semigroups. A left
[right]Clifford semigroup is a regular semigroup S satisfying eS ⊆ Se [resp. Se ⊆
eS], for all e ∈ ES . For the sake of convenience, we call the left Clifford semigroups
as just LC-semigroups. We discuss some basic properties of LC-semigroups.

Lemma 1 Let S be a regular semigroup with the set of idempotents E. Then S is an
LC-semigroup if and only if for any e ∈ E and a ∈ S, eae = ea.

Lemma 2 A semigroup S is LC if and only if S is completely regular and the set ES

of idempotents of S is a left regular band (that is, S is a left regular orthogroup).

Lemma 3 Let S be an LC and s ∈ S. Then aa′ = aa′′ for all a′, a′′ ∈ V (A), that
is, S is a right inverse semigroup.

Note. The converse of the above result is not true. For instance, the bicyclic semigroup
is a right inverse semigroup but not LC.

In the following we list equivalent conditions obtained by [13]:

1. S is left Clifford.
2. S is regular and L = J is a semilattice congruence.
3. S is a semilattice of left groups.
4. S is regular such that each idempotent e of S lies in the center of eS.
5. S is regular with aS ⊆ Sa, for all a ∈ S.
6. S is regular and DS ⋂

(Es × Es) = LES .

Theorem 4 Let S be a semigroup with set of idempotents ES. Then S is a strong
semilattice of left groups if and only if S is the left normal band of groups and ES is
a band.

4 A Structure Theorem

In [10] Sen et al. introduced the concept of left quasi-direct product of semigroups.
Let Y be a semilattice and T a Clifford semigroup with Y as the semilattice of its
idempotents. Following Kimura [9], in [10] we find construction of left regular band
B =

⋃

α∈Y

Bα, where each Bα is a left zero band, for all α ∈ Y . Let B ⊕ T =

{(e, γ) | γ ∈ T, e2 = e ∈ Bγ0}. Define a mapping φ from T into the endomorphism
semigroup End(B) of B by

φ : γ → γφ = σγ, where γ ∈ T and σγ ∈ End(B)
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such that the following conditions are satisfied:

(P1) For any γ ∈ T and α ∈ Y, Bασγ ⊆ B(αγ)0 ; and if γ ∈ Y , then there exists
f 2 = f ∈ Bγ such that eσγ = f e, for any e2 = e ∈ B.

(P2) For any γ, w ∈ T, f ∈ B(γw)0 , we have σwσγδ f = σγwδ f , where δ f is an
inner endomorphism on B (that is, eδ f = f e f = f e) for any e ∈ B.

Now, define a multiplication ∗ on B ⊕ T by

(e, w) ∗ ( f, τ ) =
(

e( f σw), wτ
)

for any (e, w), ( f, τ ) ∈ B ⊕ T . Then B ⊕ T forms a semigroup under the mul-
tiplication “∗”. This semigroup (B ⊕ T, ∗), is called a left quasi-direct product of
B and T which is determined by the mapping φ, denoted by B ⊕φ T . Right quasi-
direct product can be likewisely defined.With the above definition of left quasi-direct
product of semigroups, it was proved in [10], the following construction theorem for
LC-semigroups.

Theorem 5 Let T be a Clifford semigroup whose set of idempotents forms a semi-
lattice Y . Let B =

⋃

α∈Y

Bα be a left regular band. Then the left quasi-direct product

B ⊕φ T of B and T is an LC-semigroup. Conversely, every LC-semigroup S is iso-
morphic to a left quasi-direct product of a left regular band and a Clifford semigroup.

5 LR-C Semigroup

In [11] Sen et al. introduced LR-C semigroup.

Definition 6 A semigroup S is called leftright Clifford, abbreviated to LR-C, if S
is regular and for all idempotents e ∈ ES , eS ⊆ Se or Se ⊆ eS.

Clearly, all left and all right Clifford semigroups are LR-C. But the converse may
fail.

Example 7 Let S = {(a, b) ∈ R × R | ab = 0} with multiplication (a, b)(c, d) =
(|a|c, b|d|), with respect to which S becomes a regular semigroup.

ES =
{

(1, 0), (−1, 0), (0, 0), (0, 1), (0,−1)
}

.

Also S(1, 0) ⊆ (1, 0)S,
S(−1, 0) ⊆ (−1, 0)S,
(0, 1)S ⊆ S(0, 1),
and (0,−1)S ⊆ S(0,−1).

Hence S is an LR-C semigroup but S is neither a left Clifford semigroup nor a right
Clifford semigroup as (1, 0)S is not a subset of S(1, 0) and S(0, 1) is not a subset of
(0, 1)S.
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Lemma 8 Let S be an LR-C semigroup. Then for e, f ∈ ES, either e f e = e f or
e f e = f e.

Proof For e ∈ ES , either eS ⊆ Se or Se ⊆ eS. If eS ⊆ Se, then for any f ∈ ES ,
e f = te for some t ∈ S. Then e f e = tee = te = e f . Again, if Se ⊆ eS, f e = et1
for some t1 ∈ S so that e f e = eet1 = et1 = f e. �

Definition 9 A band B is called an LR regular band if for e, f ∈ ES , either e f e =
e f or e f e = f e.

A left(right) regular band is clearly an LR regular band but the converse is not
necessarily true, the following is an example.

Example 10 Let B = {e1, e2, f1, f2, g} with the following table

· | e1 e2 f1 f2 g
− | − − − − − −
e1 | e1 e2 g g g
e2 | e1 e2 g g g
f1 | g g f1 f1 g
f2 | g g f2 f2 g
g | g g g g g

One can check that B is an LR regular band but B is neither a left regular band nor
a right regular band. This is because that e1e2 �= e1e2e1 and f1 f2 �= f2 f1 f2.

We know that a semigroup S is completely semigroup if and only if a ∈ aSa2,
for all a ∈ S.

Theorem 11 Let S be an LR-C semigroup. Then S is completely regular.

Proof Let a be an element of S and x be an inverse of a in S. Let e = xa and eS ⊆ Se.
Then x = xax = ex = x1e for some x1 ∈ S. Hence x = x1xa which implies that
x2 = x1xax = x1x so that x = x1xa = x2a and ax = ax2a. Suppose now Se ⊆ eS.
Then a = axa = ae = ea1 for some a1 in S. Now a = ea1 = xaa1 which implies
that a2 = axaa1 = aa1 and so a = xa2. Hence ax = xa2x . Then either ax = ax2a
or ax = xa2x . If ax = ax2a, then a = ax2a2 ∈ aSa2. Also if ax = xa2x , then
a = axa = xa2xa = xa2 so that a = axa = axxa2 = ax2a2 ∈ aSa2. Thus in
both cases, a ∈ aSa2 which implies that S is completely regular. �

The following is an example of a completely regular semigroup which is not an
LR-C semigroup.

Example 12 Let Q+ be the set of positive rational numbers and

S =
{

(

a b
xa xb

)

: a, b, x ∈ Q
+}

.



52 M.K. Sen

Then S is a completely regular semigroup under usual multiplication of matrices.

Indeed,

(

a b
xa xb

) (

c d
yc yd

)

= (a + yb)

(

c d
xc xd

)

. Also

(

a b
xa xb

)

∈ ES if

and only if a + xb = 1. But S is not an LR-C semigroup, since for E =
(

1
2 1
1
4

1
2

)

∈

ES and F =
(

1
3 2
1
9

2
3

)

∈ S, we have E F = 5
6

(

1
3 2
1
6 1

)

/∈ SE . In fact, for any A =
(

a b
xa xb

)

∈ S, AE = (a+ b
2 )

( 1
2 1
x
2 x

)

. Then E F = AE implies 1
2 (a+ b

2 ) = 5
18 and

(a + b
2 ) = 5

3 which is impossible for any a, b ∈ Q
+. Also F E = 4

3

(

1
2 1
1
6

1
3

)

/∈ E S.

For, if A =
(

a b
xa xb

)

∈ S, then E A = ( 12 + x)

(

a b
a
2

b
2

)

. Then E A = F E implies

( 12 + x)a = 2
3 and ( 12 + x) 1

2 a = 2
9 , which is again impossible for any a, x ∈ Q

+.
Thus S is not an LR-C semigroup.

Theorem 13 Let S be a regular semigroup. Then the following statements are equiv-
alent:

(i) S is an LR-C semigroup.
(ii) For each a ∈ S, either aS ⊆ Sa or Sa ⊆ aS.

(iii) For each a ∈ S, either aS ⊆ Sa or there exists an inverse a∗ of a in S such that
Sa ⊆ a∗aS.

(iv) For each a ∈ S, either Sa ⊆ aS or there exists an inverse a∗ of a in S such that
aS ⊆ Saa∗.

Theorem 14 A semigroup S is an LR-C semigroup if and only if S is completely
regular and for e, f ∈ ES, either e f e = e f , or e f e = f e (that is, ES is LR regular
band).

Proof Let e ∈ ES and x ∈ S. Then S being completely regular, ex = extex =
exext , for some t ∈ S. Suppose e f e = e f , for all f ∈ ES , then ex = exe(ext) =
exe(ext)e ∈ Se so that eS ⊆ Se. Similarly, if e f e = f e for all f ∈ ES , then
Se ⊆ eS. Hence S is an LR-C semigroup. �

Recall that a regular semigroup S is orthodox if ES is a subsemigroup of S.

Theorem 15 Let S be an LR-C semigroup. Then

(i) S is orthodox,
(ii) for every a ∈ S, either aV (a) ⊆ V (a)a or V (a)a ⊆ aV (a).

The next example describes an orthodox semigroup which is not an LR-C semi-
group.
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Example 16 We consider the inverse semigroup I(X) of all one-one partial map-
pings of the set X = {1, 2, 3}. I(X) is an orthodox semigroup. It is to be noted that
an element α of I(X) is idempotent if and only if α is the identity mapping of a
subset A of X onto itself. We show that I(X) is not an LR-C. For this, we consider
the elements e =

(

1
1

)

and f =
(

1 2
2 1

)

in I(X), where e is an idempotent. Then

e f =
(

2
1

)

/∈ I(X)e and f e =
(

1
2

)

/∈ eI(X). This implies that eI(X) is not a

subset of I(X)e and I(X)e is not a subset of eI(X). Hence I(X) is not an LR-C
semigroup.

6 Structure of LR-C Semigroups

A semigroup S is called a quasi-inverse semigroup, if it is orthodox and for any
a, x, y, a ∈ ES , axya = axaya (that is, ES is a regular band).

Let S be an LR-C semigroup. Then for all e ∈ ES , either e f e = e f , for all
f ∈ ES or e f e = f e, for all f ∈ ES . Now let a, x, y ∈ ES . Suppose a f a = a f ,
for all f ∈ ES . Then a(xy)a = (ax)y = axay so that axya = axaya. This also
holds in case a f a = f a, for all f ∈ ES . Hence ES is a regular band. Also from the
Theorem 15 it follows that S is orthodox. Hence S is a quasi-inverse semigroup.

The converse of the above result may not be true. In fact, the inverse semigroup
I(X) of Example16 is a quasi-inverse semigroup which is not an LR-C semigroup.

Let S be a quasi-inverse semigroup. Then S is an orthodox semigroup. The least
inverse semigroup congruence σ on S is given as follows:

aσb if and only if V (a) = V (b), where V (x) denotes the set of all inverses of x .
Now, a relation η1 on S is defined as follows:
aη1b if and only if

(1) ā = b̄ (where x̄ denotes the σ-class containing x ∈ S),
(2) there exists an inverse a∗ of a and an inverse b∗ of b such that aea∗ beb∗ = beb∗

and beb∗ aea∗ = aea∗, for all e ∈ ES .

By [12], η1 is a congruence on S and S/η1 is a left inverse semigroup.
Dually, a relation η2 on S is defined by
aη2b if and only if

(1) ā = b̄ and
(2) there exists an inverse a∗ of a and an inverse b∗ of b such that a∗ea b∗eb = a∗ea

and b∗eb a∗ea = b∗eb, for all idempotents e ∈ ES .

Then η2 is a congruence on S and S/η2 is a right inverse semigroup. According to
Yamada [12], a regular semigroup is a quasi-inverse semigroup if and only if it is
isomorphic to a subdirect product of a left inverse semigroup and a right inverse
semigroup.
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We now show that a quasi-inverse semigroup may be characterized as a special
type of subdirect product, namely, spined product. The direct product of a family
of semigroups {Sα}α∈A is denoted by

∏

α∈A Sα. Let S = ∏

α∈A Sα and πα denote
the projection homomorphism πα : S → Sα. Any semigroup S isomorphic to a
subsemigroup P of S such that Pπα = Sα, for all α ∈ A is called a subdirect
product of the semigroups Sα,α ∈ A. Let T be a semigroup and suppose that for
some family of semigroups {Sα}α∈A and each α ∈ A, there exists an epimorphism
ϕα : Sα → T . Then

S =
{

(aα) ∈
∏

α∈A

Sα|aαϕα = aβϕβ,α,β ∈ A

}

is called the spined product of semigroups Sα over T (and the epimorphismsϕα,α ∈
A). It follows easily that the spined product is a subdirect product of semigroups Sα.
If it is clear from the context what are the epimorphisms are, we say only that S is a
spined product of semigroups Sα.

Theorem 17 A quasi-inverse semigroup is isomorphic to a spined product of a left
inverse semigroup and a right inverse semigroup with respect to an inverse semigroup
which is the greatest inverse semigroup homomorphic image of S.

Proof Let S be a quasi-inverse semigroup. By [12], S is isomorphic to a subdirect
product of S/η1 and S/η2 where the isomorphism φ : S −→ S/η1 × S/η2 is given
by aφ = (ã, ˜̃a), a ∈ S where ã, ˜̃a denote the η1-class and η2-class containing a,
respectively. Let ψ : S/η1 −→ S/σ and ξ : S/η2 −→ S/σ be defined by ãψ = ā
and ˜̃aξ = ā, where ā is the σ-class containing a. Then it is easy to see that ψ and

ξ are epimorphisms. Thus T = {(ã,
˜̃b) ∈ S/η1 × S/η2 : aσb} is a spined product

of S/η1 and S/η2 with respect to S/σ. Now define θ : S −→ T by aθ = (ã, ˜̃a).

Clearly, θ is a monomorphism. Let (ã,
˜̃b) ∈ T . Then aσb so that V (a) = V (b)

and a = ab∗a = a(b∗bb∗)a = a(b∗b)(b∗a) η1 a(b∗b)(b∗a)(b∗b) = ab∗ab∗b =
ab∗b = c (say) where b∗ ∈ V (b). Also c = ab∗b = ab∗(bb∗b) = (ab∗)(bb∗)b η2
(bb∗)(ab∗)(bb∗)b = b(b∗ab∗)b = bb∗b = b. Therefore, c = ab∗b ∈ S such that

c̃ = ã, ˜̃c = ˜̃b. Thus cθ = (ã,
˜̃b) and θ is an isomorphism. �

Now suppose S is an LR-C semigroup. Then by Theorem 11, S is completely
regular. Also a homomorphic image of a completely regular semigroup is completely
regular. Consequently, the left inverse semigroup S/η1 becomes a left Clifford semi-
group. Similarly, S/η2 is a right Clifford semigroup and S/σ becomes a Clifford
semigroup. Thus we have the following:

Corollary 18 An LR-C semigroup S is isomorphic to a spined product of a left Clif-
ford semigroup and a right Clifford semigroup with respect to a Clifford semigroup.



LeftRight Clifford Semigroups 55

Example 19 Let R be the set of real numbers. For any a, b ∈ R, we define a • b =
a|b|, a ◦ b = |a|b. Then L = (R, •) is a left Clifford semigroup and R = (R, ◦)

is a right Clifford semigroup. Let C be the semigroup of nonnegative real numbers
with usual multiplication. Then C is a Clifford semigroup. We define the mappings
θ : L −→ C by aθ = |a| and φ : R −→ C by aφ = |a|. It is easy to verify that θ and
φ are epimorphisms. Let T =

{

(a, b) ∈ L × R : aθ = bφ
}

be the spined product

of L and R with respect to C . Now T =
{

(a, a), (a,−a) : a ∈ R
}

is not an LR-C
semigroup. Indeed, for the element (1, 1) ∈ ET , we have (1, 1)(−1,−1)(1, 1) =
(1, 1) whereas (1, 1)(−1,−1) = (1,−1) and (−1,−1)(1, 1) = (−1, 1).

Theorem 20 Let S be a semigroup. The following conditions are equivalent:

(1) S is an LR-C semigroup.
(2) S is isomorphic to a spined product of a left Clifford semigroup L and a right

Clifford semigroup R with respect to a Clifford semigroup C and epimorphisms
θ : L → C and φ : R → C such that for each e ∈ E either eθ−1 = {x} for
some x ∈ ECL or eφ−1 = {y} for some y ∈ ECR .

(3) S is a completely regular subdirect product of a left inverse semigroup L and a
right inverse semigroup R such that
ES ⊆ (ECL × ER) ∪ (EL × ECR )

or, equivalently, S ⊆ (C(L) × R) ∪ (L × C(R) where ECL and ECR are the set
of all idempotents in the centers C(L) of L and C(R) of R, respectively.

7 Some Problem

Definition 21 A regular semigroup is said to satisfy condition (A): if for any a, t ∈
S, e ∈ ES, there exists a1 ∈ S such that eat = a1et.

Clearly, all left Clifford semigroups are regular semigroups satisfying condition (A).
For the converse, we consider the following examples:

Example 22 Let S = {a, b, c, d} be a semigroup with the Cayley table:

a b c d
a a a a d
b a b c d
c a b c d
d a a a d

Here S is a band which is a regular semigroup satisfying condition (A). However, S
is not a left Clifford semigroup since aS is not a subset of Sa, for any element a in S.
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Also, it is easy to see that a right zero semigroup is a regular semigroup satisfying
condition (A), but it is not left Clifford.

Theorem 23 A regular semigroup S with condition (A) is completely regular.

Problem. Describe this semigroup.
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Certain Categories Derived from Normal
Categories

A.R. Rajan

Abstract Normal categories are essentially the category of principal left(right)
ideals of a regular semigroup which are used in describing the structure of regu-
lar semigroups. Several associated categories can be derived from normal categories
which are of interest.

Keywords Normal categories · Ordered groupoid · Partial cones
Normal categories have been introduced by Nambooripad [7] to describe the struc-
ture of the categories of principal left [right] ideals of regular semigroups. These
categories arise in the structure theory of regular semigroups. Several structure theo-
ries are available for regular semigroups and the differences arise in terms of the basic
structures used in the theory. The structure theory in which the category of principal
left ideals and the category of principal right ideals of the semigroup are the basic
structures uses a relation between these categories known as cross connection. The
cross-connections described for categories is a generalization of the cross-connection
theory developed by Grillet [1] on partially ordered sets. The categories that arise in
the theory of cross-connections are the normal categories. Here we consider some
subcategories associated with a normal category and provide some of the relations
among these subcategories.

1 Preliminaries

Here we introduce some notations and terminology on normal categories and related
concepts. We follow generally the notations and terminology of Mac Lane [5] for
concepts in category theory and Howie [2] for semigroup concepts.For normal cat-
egories the references are [4, 7, 8].

We consider a category C as consisting of a class of objects denoted by vC and
for each pair of objects a, b a set [a, b]C called the set of morphisms from a to b
satisfying certain conditions. Here we write f : a → b to represent a morphism
f ∈ [a, b]C . Also we may write a = d(f ) and b = r(f ) and call a the domain
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of f and b the range or codomain of f . Further each of the sets [a, b]C is called a
homset. The following are the conditions.

1. For morphisms f : a → b and g : c → d a composition f g is defined only when
b = c and in this case the product f g is from a to d.

2. This composition is associative whenever defined, that is, if f , g, h are morphisms
such that (f g)h and f (gh) are defined then (f g)h = f (gh).

3. For each object a ∈ vC there is a morphism 1a : a → a such that 1af = f for all
f : a → b and g1a = g for all g : b → a for any b ∈ vC.
The morphism 1a is called the identity morphism at a. A morphism f : a → b

is said to be an isomorphism or is said to be invertible if there exists a morphism
g : b → a such that f g = 1a and gf = 1b. A morphism f : a → b is said to be a
monomorphism if it is cancellable on the right in compositions. That is, if gf = hf
for some morphisms g, h : c → a then g = h. A morphism f is said to be an
epimorphism if it is cancellable on the left in compositions.

The concepts of functors and natural transformations are considered as in Mac
Lane [5]. For categories C and D, an isomorphism from C to D is a functor from C
to D which is a bijection from vC to vD and a bijection on each homset.

A category C is said to be a small category when the class of objects vC is a set.
We consider only small categories here.

Thedescription of normal category follows the properties identified in the category
of principal left ideals of a regular semigroup. We now describe this category. Let
S be a regular semigroup. We denote by L(S) the category of principal left ideals
of S whose objects and morphisms are given below. Objects are principal left ideals
of S and morphisms are right translations on these ideals. A right translation on a
semigroup S is mapping ρ : S → S such that (xy)ρ = x(yρ) for all x, y ∈ S. The
restriction of a right translation on S to a subsemigroup is called a right translation
on the subsemigroup.

Since S is a regular semigroup every principal left ideal is generated by an idem-
potent and so we have

vL(S) = {Se : e ∈ E(S)}

where E(S) is the set of all idempotents of S. A morphism ρ : Se → Sf in L(S) is
a right translation on Se with image in Sf and so has the following description. Let
eρ = u ∈ Sf. Then since ρ is a right translation

u = eρ = (ee)ρ = e(eρ) = eu.

So we see that u = euf ∈ eSf and for any x ∈ Se, xρ = (xe)ρ = x(eρ) = xu.
Thus every morphism ρ : Se → Sf can be regarded as a right translation by an
element u ∈ eSf and we represent this morphism as ρ(e, u, f ). It may be observed
that for ρ(e, u, f ) : Se → Sf and ρ(f , v, g) : Sf → Sg the composition is given by
ρ(e, u, f )ρ(f , v, g) = ρ(e, uv, g).

The category L(S) has several additional features and we proceed to describe
them.
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A category P is said to be a preorder if for any objects a, b of P there is at most
one morphism from a to b. If [a, b]P �= ∅ we say a ≤ b and it can be seen that ≤ is a
quasiorder(that is a reflexive and transitive relation) on vP . If [a, b]∪ [b, a] contains
at most one element then ≤ is a partial order on vP . In this case, P is said to be a
strict preorder.

Definition 1.1 ([7]) A category with subobjects is a pair (C,P)where C is a small
category and P is a subcategory of C satisfying the following,

1. vC = vP .

2. P is a strict preorder.
3. Every f ∈ P is a monomorphism in C.
4. If f , g ∈ P and if f = hg for some h ∈ C then h ∈ P.

If (C,P) is a category with subobjects and if f : a → b is a morphism in P then
we write f = j(a, b) and is called the inclusion from a to b. Also we write a ≤ b in
this case. Further, we often denote a category with subobjects as C in place of (C,P).

A cone in a category (C,P) with subobjects is a map γ from vC to the set of
morphisms of C defined as follows.

Definition 1.2 A cone in a category with subobjects C is a map γ : vC → C
satisfying the following.

1. There is an object cγ called the vertex of the cone γ such that for each a ∈ vC, γ(a)
is a morphism from a to cγ . In this case γ(a) is called the component of γ at a.

2. If a, b ∈ vC and a ≤ b then γ(a) = j(a, b)γ(b).

A cone is said to be a normal cone if at least one component is an isomorphism.
The vertex of a cone γ is usually denoted by cγ .

Remark 1.3 The condition that at least one component of γ is an isomorphism is
equivalent to the condition that at least one component is an epimorphism.

For, let c be the vertex of γ and let γ(a) : a → c be an epimorphism. So we
can write γ(a) = qu for a retraction q and an isomorphism u. Let q : a → a0 and
u : a0 → c. Then a0 ≤ a and j(a0, a)q = 1 on a0. Now from the property of cone,
we get

γ(a0) = j(a0, a)γ(a) = j(a0, a)qu = u.

Thus the component γ(a0) is an isomorphism.

Now we define normal category. The definition given below is essentially the
definition for reductive normal category in the terminology of Nambooripad [7]. For
convenience, we use the term normal category only.

Definition 1.4 A category with subobjects (C, P) is said to be a normal category
if the following hold.
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(N1) Every inclusion j = j(a, b) : a → b has a right inverse q : b → a in C. Such
a morphism q is called a retraction in C.

(N2) Every morphism f ∈ C has a factorization in the form f = quj where q is a
retraction, u is an isomorphism, and j is an inclusion. Such a factorization is
called a normal factorization.

(N3) For each c ∈ vC there exists a normal cone γ such that γ(c) = 1c.

Remark 1.5 The definition of normal category may also be given with the condition
(N3) above modified as follows.

(N3)’: (C,P) contains normal cones. In this case (C,P) will give rise to another
pair (C0,P0) which satisfies the conditions (N1), (N2), and (N3). This can be seen
as follows. Let (C,P) be a category with subobjects satisfying (N1), (N2) and (N3)’.
Then we can produce a category with subobjects (C0,P0) where C0 is a subcategory
of C such that (C0,P0) satisfies the conditions of Definition 2.1.

For this, consider the full subcategory C0 of C with

vC0 = {c ∈ vC : for some normal cone γ in C, γ(c) is an isomorphism}.

Let P0 be the full subcategory of P with vP0 = vC0. Then (C0,P0) satisfies (N1),
(N2), and (N3) of the above definition.

Example 1.6 It can be seen that the categoryL(S) of principal left ideals of a regular
semigroup S is a normal category. Here for Se ⊆ Sf the inclusion morphism is
j(Se, Sf) = ρ(e, e, f ) and a retraction q : Sf → Se is ρ(f , fe, e) = ρ(f , fe, fe). For an
arbitrary morphism ρ(e, u, f ) : Se → Sf a normal factorization is given by

ρ(e, u, f ) = ρ(e, g, g)ρ(g, u, h)ρ(h, h, f )

for some g ∈ E(Ru) ∩ ω(e) and h ∈ E(Lu) ∩ ω(f ).
Here Ru and Lu denotes the Green’s equivalence classes and ω(e) = {g ∈ E(S) :

g ≤ e in the natural partial order in S}. It may further be noted that E(Ru) ∩ ω(e)
and E(Lu) ∩ ω(f ) are nonempty since S is regular.

The normal factorization of a morphism f given above is not in general unique.
But if f = quj and f = q1u1j1 are normal factorizations then qu = q1u1 and j = j1
(cf. [7]). In this case f 0 = qu is an epimorphism (that is left cancellative) and is called
the epimorphic component of f . The epimorphic component f 0 is unique for f .

Each normal category C gives rise to a regular semigroup denoted by TC, which
is the semigroup of normal cones in C with composition defined as follows. For
γ, δ ∈ TC, the product γ ∗ δ is the normal cone given by

(γ ∗ δ)(a) = γ(a)(δ(cγ))
0.

It can be seen that γ ∗ δ is a normal cone in this case and that TC is a regular
semigroup with respect to the above product.
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We often write γδ in place of γ ∗ δ. Also if f : cγ → c is a morphism, then we
write γ ∗ f for the cone with components

(γ ∗ f )(a) = γ(a)f .

It may noted that γ∗f is a normal conewhenever γ is normal and f is an epimorphism.
The idempotents and Green’s relations in TC are characterized as follows.

Proposition 1.7 ([7])Let TC be the semigroup of normal cones in a normal category
C = (C,P). Let γ, δ be normal cones in C with cγ = c and cδ = d. Then

1. γ is an idempotent in TC if and only if γ(c) = 1c.

2. Let L be the Green’s L-relation in TC. Then

γ L δ if and only if c = d.

The following theorem shows that every normal category arises as the category
L(S) for a regular semigroup S.

Theorem 1.8 ([7]) Let C be a normal category. Then C is isomorphic to L(S) where
S = TC.

2 Subcategories of Retractions

Now we identify some subcategories in a normal category C and describe their
relations with the semigroup TC. The subcategory P of inclusions appear in the
description of normal category. We can see that the collection of all retractions is a
subcategory of C which can be described independent of inclusions.

Theorem 2.1 Let C = (C, P) be a normal category. Then

1. Let q1 : a → b and q2 : b → c be retractions in C. Then q1q2 : a → c is a
retraction in C.

2. The set of all retractions of C forms a v-full subcategory of C.

Proof Since q1 : a → b is a retraction, we have b ≤ a and j(b, a)q1 = 1b. Similarly
j(c, b)q2 = 1c. Now c ≤ b ≤ a and so c ≤ a. Now

j(c, a)q1q2 = j(c, b)j(b, a)q1q2 = 1c.

So q1q2 is a retraction.
Now to see that the subcategory of retractions is v-full, consider any a ∈ vC. Then

1a : a → a is both a retraction and an inclusion. So the subcategory of retractions is
v-full.

The following are the major properties of this subcategory.
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Theorem 2.2 Let C = (C, P) be a normal category and Q be the subcategory of
retractions in C. Then the following hold for a, b, c ∈ vC.

1. If a ≤ b then Q(b, a) is nonempty and jq = 1a for every q ∈ Q(b, a) and
j = j(a, b).

2. Q(b, a) = ∅ if and only if P(a, b) = ∅.
3. P ∩ Q = vC.
4. If q1, q2 ∈ Q and q1 = q2h for some h ∈ C with r(h) ≤ d(h) then h ∈ Q.

Proof The first three properties are clear from the definition of retraction. Now we
prove the last statement. Let q1 : b → a, q2 : b → c ∈ Q and h : c → a ∈ C with
a ≤ c. Now j = j(a, c) ∈ P and so there is a q ∈ Q such that jq = 1a such that
q1 = q2h. Let j1, j2 ∈ P be such that j1q1 = 1a and j2q2 = 1c. Now jj2 = j1 and so

jh = j(j2q2)h = (jj2)(q2h) = j1q1 = 1a.

So h ∈ Q.

Now we show that the conditions in the above theorem characterizes the subcat-
egory of retractions in a normal category.

Theorem 2.3 Let C = (C, P) be a category with subobjects and Q be a v-full
subcategory of C. Then Q is the category of retractions associated with (C,P) if and
only if Q satisfies the following.

1. For all a ∈ vC, Q(a, a) = {1a}.
2. For a, b ∈ vC with a �= b, if Q(b, a) is nonempty then Q(a, b) is empty and and

there exists j = j(a, b) ∈ P such that jq = 1a for every q ∈ Q(b, a).
3. If q1, q2 ∈ Q and q1 = q2h for some h ∈ C with r(h) ≤ d(h) then h ∈ Q.

3 Groupoid of Isomorphisms

Another category we associate with a normal category is the groupoid of isomor-
phisms. It can be seen that this groupoid is an ordered groupoid. We start with the
definition of ordered groupoid.Agroupoid is a small category inwhich allmorphisms
are isomorphisms.

Definition 3.1 ([6]) A groupoid G with a partial order ≤ on G is said to be an
ordered groupoid if the following hold.

(OG1) If x, y, u, v ∈ G, xy, uv exist in G and if x ≤ u and y ≤ v then xy ≤ uv.
(OG2) If x ≤ y then x−1 ≤ y−1.

(OG3) Let e be an identity in G, x ∈ G and let ex be the left identity of x. If e ≤ ex

then there exists a unique morphism e ∗ x ∈ G such that e ∗ x ≤ x and the
left identity of e ∗ x is e.
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Remark 3.2 The element e ∗ x defined above is often called the restriction of x to e.
Dually there is a concept of corestriction defined as follows. Let x : a → b in G and
f be an identity in G with f ≤ b. Then x ∗ f = (f ∗ x−1)−1 is called the corestriction
of x to f . It may be noted that x ∗ f ≤ x and r(x ∗ f ) = f .

The next theorem describes the ordered groupoid associated with a normal
category.

Theorem 3.3 Let C = (C, P) be a normal category. Then the set G(C) of all
isomorphisms in C is a v-full subcategory of C which is an ordered groupoid with
partial order defined as follows. For x : a → b and y : c → d in G(C),

x ≤ y if a ≤ c, b ≤ d and xj(b, d) = j(a, c)y.

Proof Since the product of two isomorphisms is an isomorphism and identities are
isomorphisms it follows that G(C) is a v-full subcategory of C. First observe that
the partial order defined above coincides with the partial order of vC by considering
elements of vC as identity morphisms in G.

Now let x : a → b be a morphism in G = G(C). Then d(x) = a and r(x) = b.
Let y : b → c so that xy : a → c. Let u : a1 → b1 and v : b1 → c1 so that x ≤ u
and y ≤ v. Then from the definition of ≤ above, we see that

xyj(c, c1) = xj(b, b1)v = j(a, a1)uv.

Therefore xy ≤ uv. Thus (OG1) holds. Similarly, we can see that (OG2) also holds.
To see (OG3) consider x : a → b in G and e ≤ a in vC. Now j(e, a)x is a

morphism in C and has a normal factorization. Let x0 be the epimorphic part of this
normal factorization which is unique. Then j(e, a)x = x0j(r(x0), b) and x0 ∈ G.

Further
x0 = j(e, a)xq (1)

where q : b → r(x0) is a retraction and the product on the right side is independent
of the choice of q. Define

e ∗ x = x0.

Then clearly x0 ≤ x and so (OG3) holds.
We now show that certain normal categories can be described in terms of the sub-

categories of inclusions, retractions, and the groupoid of isomorphisms. We consider
the case where the category P of inclusions induces a semilattice order on the vertex
set of P. In this case for a, b ∈ vP , we denote by a ∧ b the meet of a and b in the
semilattice.

Let (G,≤) be an ordered groupoid with vertex set vG. Then the partially ordered
set (vG,≤) determines a preorder which is denoted by P(G). G is said to be semi-
lattice ordered if (vG,≤) is a semilattice. LetQ be the preorder which is dual to P.
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Then vQ = vP = vG and for a, b ∈ vG, Q(a, b) �= ∅ if and only if b ≤ a. We
show that any P, G, Q as above arises from a normal category.

Theorem 3.4 Let (G,≤)be an ordered groupoid with semilattice order on identities.
Let G(P) be the preorder induced by the partial order ≤ on vG. Let Q be the dual
of P. Then C = Q ⊗ G ⊗ P is a normal category in which P is the subcategory
of inclusions, Q is the subcategory of retractions, and G is the ordered groupoid of
isomorphisms of C where

Q ⊗ G ⊗ P = {(q, u, j) ∈ Q × G × P : r(q) = d(u) and r(u) = d(j)}.

Proof First we describe a product of morphisms in C = Q ⊗ G ⊗ P. Let
(q, u, j), (s, v, k) ∈ Q ⊗ G ⊗ P with r(j) = d(s). Then the product is defined
as

(q, u, j)(s, v, k) = (q′, (u ∗ h)(h ∗ v), j′)

where h = r(u) ∧ d(v), q′ : d(q) → d(u ∗ h) and j′ : r(h ∗ v) → r(k). It follows
from the definition of u ∗ h and h ∗ v that d(u ∗ h) ≤ d(u) and r(h ∗ v) ≤ r(v) so that
q′ ∈ Q and j′ ∈ P exist. Clearly, the product is well defined and so C is a category
with vC = vG.

Let
P ′ = {(1a, 1a, j) : a ∈ vG and j ∈ P with d(j) = a}.

Then P ′ is the subcategory of inclusions of C. Further for (1a, 1a, j1), (1b, 1b, j2) ∈
P ′ with j1 : a → b it is easy to see that

(1a, 1a, j1)(1b, 1b, j2) = (1a, 1a, j1j2).

Therefore, P ′ is isomorphic to P. Similarly, we see that

Q′ = {(q, 1b, 1b) : b ∈ vG and q ∈ Q with r(q) = b}

is the subcategory of retractions of C and Q′ is isomorphic to Q.

For any morphism (q, u, j) ∈ C with q : a → b, u : b → c and j : c → d has a
factorization

(q, u, j) = (q, 1b, 1b)(1b, u, 1c)(1c, 1c, j)

which is a normal factorization of (q, u, j).
Further for any a ∈ vC there is a normal cone σ with vertex a defined as follows.

For any b ∈ vC, σ(b) = (q(b), 1t, j(t, a)) where t = a ∧ b and q(b) : b → t is the
unique morphism from b to t in Q. Hence C is a normal category.
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4 Groupoid of Partial Cones

Another category of interest associated with a normal category is the groupoid of
partial cones. By a partial cone, we mean part of a normal cone where the base is
suitably restricted. For any normal cone γ in a normal category C let

M(γ) = {a ∈ vC : γ(a) is an isomorphism}.

We denote by m(γ), the partial cone corresponding to γ whose base is M(γ) and
components given by m(γ)(a) = γ(a). Note that all the components of this partial
cone are isomorphisms.

Let P(M) denote the set of all partial cones in a normal category C. We denote
by P(M) the category whose vertex set is P(M) and morphisms are as defined
below. For m(γ), m(δ) ∈ P(M) a morphism from m(γ) to m(δ) exists only when
M(γ) = M(δ) and in this case u = (γ(a))−1δ(a) : cγ → cδ for a ∈ M(γ) is a
morphism in P(M). Further P(M)(m(γ),m(δ)) is the set of all products of the form
uv : cγ → cδ where u = (γ(a))−1σ(a) and v = (σ(b))−1δ(b) for some normal cone
σ with b ∈ M(σ) = M(δ) = M(γ). Clearly P(M) becomes a category and all the
morphisms are invertible. Thus P(M) is a groupoid. In fact P(M) is a subgroupoid
of the groupoid G(C) of isomorphisms of C. So there is a partial order on P(M)

induced by the partial order on G(C).

Theorem 4.1 Let (C,P) be a normal category. Then the groupoid P(M) of partial
cones is an ordered groupoid.

Proof First we define a partial order on vP(M) as follows. For normal cones γ and
δ define

γ ≤ δ if cγ ≤ cδ and γ = δ ∗ q

for a retraction q : cδ → cγ . Now for m(γ) and m(δ) in vP(M) define

m(γ) ≤ m(δ) if γ ≤ δ.

Now let δ, δ′ be normal cones and x : cδ → cδ′ be a morphism from m(δ) to
m(δ′) and let m(γ) ≤ m(δ). Define

m(γ) ∗ x = cγ ∗ x

where cγ ∗ x is the restriction of x to cγ defined in the ordered groupoid G(C).
It remains to show that cγ ∗ x defined above lies in P(M). By the definition of

restriction in G(C) and by Eq. (1), we see that

cγ ∗ x = j(cγ, cδ)xq

where q is a retraction from cδ′ to d′ = r(cγ ∗ x).
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First consider x = (δ(a))−1δ′(a) for some a ∈ M(δ). Then

cγ ∗ x = (δ ∗ q)(a′)−1δ′(a′)

where a′ = r(cγ ∗ (δ(a))−1) and q is a retraction from cδ to cγ . So cγ ∗ x ∈ P(M).

Similarly, we can see that for all x ∈ P(M) with d(x) = cδ the restriction cγ ∗ x ∈
P(M). Thus P(M) is an ordered groupoid.

Remark 4.2 The ordered groupoid of partial cones can be used to describe the cat-
egory of principal right ideals of the semigroup TC associated with the normal cate-
gory C.
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Semigroup Ideals and Permuting
3-Derivations in Prime Near Rings

Asma Ali, Clauss Haetinger, Phool Miyan and Farhat Ali

Abstract Let N be a near ring. A 3-additive map � : N × N × N −→ N is
called a 3-derivation if the relations �(x1x2, y, z) = �(x1, y, z)x2 + x1�(x2, y, z),
�(x, y1y2, z) = �(x, y1, z)y2+y1�(x, y2, z), and�(x, y, z1z2) = �(x, y, z1)z2+
z1�(x, y, z2) are fulfilled, for all x, y, z, xi , yi , zi ∈ N , i = 1, 2. The purpose of the
present paper is to prove some commutativity theorems in the setting of a semigroup
ideal of a 3-prime near ring admitting a permuting 3-derivation, thereby extending
some known results of biderivations and permuting 3-derivations.

Keywords Near ring · 3-prime near rings · Semigroup ideals · Permuting
3-derivations

Mathematics Subject Classification (2010) 16N60 · 16W25 · 16Y30

1 Introduction

Throughout the paper, N denotes a zero-symmetric left near ring with multiplicative
center Z , and for any pair of elements x, y ∈ N , [x, y] denotes the commutator
xy − yx while the symbol (x, y) denotes the additive commutator x + y − x − y.
A near ring N is called zero-symmetric if 0x = 0, for all x ∈ N (recall that left
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distributivity yields that x0 = 0). The near ring N is said to be 3-prime if x N y = {0}
for x, y ∈ N implies that x = 0 or y = 0. A near ring N is called n-torsion free,
where n is a positive integer, if (N ,+) has no element of order n. For all x ∈ N ,
C(x) = {a ∈ N | ax = xa} denotes the centralizer of x in N . A nonempty
subset U of N is called a semigroup right (resp. semigroup left) ideal if UN ⊆ U
(resp. NU ⊆ U ) and if U is both a semigroup right ideal and a semigroup left
ideal, it is called a semigroup ideal. An additive map d : N −→ N is called a
derivation if the Leibniz rule d(xy) = d(x)y + xd(y) holds for all x, y ∈ N . A
biadditive map D : N × N −→ N (i.e., D is additive in both arguments) is said to
be a biderivation if it satisfies the relations D(xy, z) = D(x, z)y + x D(y, z) and
D(x, yz) = D(x, y)z + y D(x, z), for all x, y, z ∈ N .

A map � : N × N × N −→ N is said to be permuting if the equation
�(x1, x2, x3) = �(xπ(1), xπ(2), xπ(3)) holds for all x1, x2, x3 ∈ N and for every
permutation π on {1, 2, 3}. A map δ : N −→ N defined by δ(x) = �(x, x, x), for
all x ∈ N is called trace of �, where � : N × N × N −→ N is a permuting map.
It is obvious that, in case � : N × N × N −→ N is a permuting map which is also
3-additive (i.e., additive in each argument), the trace of � satisfies the relation

δ(x + y) = δ(x) + 2�(x, x, y) + �(x, y, y) + �(x, x, y) + 2�(x, y, y)

+ δ(y) for all x, y ∈ N .

Since we have

�(0, y, z) = �(0 + 0, y, z) = �(0, y, z) + �(0, y, z),

for all y, z ∈ N , we obtain �(0, y, z) = 0, for all y, z ∈ N . Hence we get

0 = �(0, y, z) = �(x − x, y, z) = �(x, y, z) + �(−x, y, z)

and so we see that �(−x, y, z) = −�(x, y, z), for all x, y, z ∈ N . Hence δ is an
odd function.

A 3-additive map � : N × N × N −→ N is called a 3-derivation if the relations

�(x1x2, y, z) = �(x1, y, z)x2 + x1�(x2, y, z),

�(x, y1y2, z) = �(x, y1, z)y2 + y1�(x, y2, z),

and

�(x, y, z1z2) = �(x, y, z1)z2 + z1�(x, y, z2)

are fulfilled for all x, y, z, xi , yi , zi ∈ N , i = 1, 2. If � is permuting then, the above
three relations are equivalent to each other.
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For example, let N be a commutative near ring. A map � : N × N × N −→ N
defined by (x, y, z) �→ d(x)d(y)d(z), for all x, y, z ∈ N is a permuting 3-derivation,
where d is a derivation on N .

On the other hand, let S be a commutative near ring and let N =
{ (

a b
0 0

)

| a, b ∈

S

}

. It is clear that N is a noncommutative near ring under matrix addition and matrix

multiplication. We define a map � : N × N × N −→ N by

( (

a1 b1
0 0

)

,

(

a2 b2
0 0

)

,

(

a3 b3
0 0

))

�−→
(

0 a1a2a3
0 0

)

.

Then it is easy to see that � is a permuting 3-derivation.
In case of rings and near rings derivations and biderivations have received sig-

nificant attention in recent years see [1, 2, 5, 6, 9–12]. Motivated by the notion
of permuting 3-derivations in rings introduced by Ozturk in [4], Park and Jung [7]
defined permuting 3-derivations in near rings and studied commutativity of a near
ring admitting a 3-derivation satisfying certain conditions. In the present paper we
obtain the results in the setting of a semigroup ideal of a 3-prime near ring admitting
a permuting 3-derivation, thereby extending some known results on biderivations
and 3-derivations.

2 Preliminary Results

We begin with the following lemmas.

Lemma 2.1 ([1, Lemma 1.2]) Let N be a 3-prime near ring and Z be the center of
N .

(i) If z ∈ Z\{0}, then z is not a zero divisor.
(ii) If Z\{0} contains an element z for which z + z ∈ Z, then (N ,+) is abelian.

Lemma 2.2 ([1, Lemma 1.3]) Let N be a 3-prime near ring and U be a nonzero
semigroup ideal of N .

(i) If x, y ∈ N and xU y = {0}, then x = 0 or y = 0.
(ii) If x ∈ N and xU = {0} or U x = {0}, then x = 0.

Lemma 2.3 ([1, Lemma 1.5]) If N is a 3-prime near ring and Z contains a nonzero
semigroup left ideal or semigroup right ideal, then N is a commutative ring.

Lemma 2.4 ([7, Lemma 2.4]) Let N be a near ring and let � : N × N × N −→ N
be a permuting 3-derivation. Then we have

[�(x, z, w)y + x�(y, z, w)]v = �(x, z, w)yv + x�(y, z, w)v

for all v,w, x, y, z ∈ N .
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Lemma 2.5 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N . Let � : N × N × N −→ N be a nonzero 3-derivation. Then �(U, U, U ) �= {0}.
Proof Suppose that �(U, U, U ) = {0}. For any u, v, w ∈ U , we have

�(u, v, w) = 0 for all u, v, w ∈ U. (2.1)

Substituting ux for u in (2.1), we get

�(u, v, w)x + u�(x, v, w) = 0 for all u, v, w ∈ U and x ∈ N .

Using (2.1), we get U�(x, v, w) = {0}. Invoking Lemma 2.2 (ii), we have

�(x, v, w) = 0 for all v,w ∈ U and x ∈ N . (2.2)

Substituting vy for v in (2.2), we get

�(x, v, w)y + v�(x, y, w) = 0 for all v,w ∈ U and x, y ∈ N .

Using (2.2), we find U�(x, y, w) = {0} and Lemma 2.2 (ii), yields that

�(x, y, w) = 0 for all w ∈ U and x, y ∈ N . (2.3)

Substituting wz for w in (2.3), we obtain U�(x, y, z) = {0}. Another appeal to
Lemma 2.2 (ii), yields that �(x, y, z) = 0, for all x, y, z ∈ N , which is a contradic-
tion, since � is nonzero on N and hence theorem is proved.

Lemma 2.6 Let N be a 3!-torsion-free near ring and U be a nonzero additive
subgroup of N. Let � : N × N × N −→ N be a permuting 3-additive map with
trace δ such that δ(x) = 0, for all x ∈ U. Then we have � = 0 on U.

Proof For any x, y ∈ U , we have the relation

δ(x + y) = δ(x) + 2�(x, x, y) + �(x, y, y) + �(x, x, y) + 2�(x, y, y) + δ(y)

and so, by the hypothesis, we get

2�(x, x, y) + �(x, y, y) + �(x, x, y) + 2�(x, y, y) = 0 for all x, y ∈ U. (2.4)

Substituting −x for x in (2.4), we obtain

2�(x, x, y) − �(x, y, y) + �(x, x, y) − 2�(x, y, y) = 0 for all x, y ∈ U. (2.5)

On the other hand, for any x, y ∈ U ,

δ(y + x) = δ(y) + 2�(y, y, x) + �(y, x, x) + �(y, y, x) + 2�(y, x, x) + δ(x)



Semigroup Ideals and Permuting 3-Derivations in Prime Near Rings 71

and thus, by the hypothesis and using the fact that � is permuting, we have

2�(x, y, y) + �(x, x, y) + �(x, y, y) + 2�(x, x, y) = 0 for all x, y ∈ U. (2.6)

Comparing (2.4) and (2.5), we get

2�(x, y, y) + �(x, x, y) + �(x, y, y) = �(x, x, y) − 3�(x, y, y)

which implies that

2�(x, y, y) + �(x, x, y) + �(x, y, y) + 2�(x, x, y) = �(x, x, y) − 3�(x, y, y)

+ 2�(x, x, y).

Hence it follows from (2.6) that

�(x, x, y) − 3�(x, y, y) + 2�(x, x, y) = 0 for all x, y ∈ U. (2.7)

Substituting −x for x in (2.7), we find

�(x, x, y) + 3�(x, y, y) + 2�(x, x, y) = 0 for all x, y ∈ U. (2.8)

Comparing (2.7) and (2.8), we obtain

6�(x, y, y) = 0 for all x, y ∈ U.

Since N is 3!-torsion free, we get

�(x, y, y) = 0 for all x, y ∈ U. (2.9)

Substituting y + z for y in (2.9) and linearizing (2.9) we obtain

�(x, y, z) = 0 for all x, y ∈ U,

i.e., � = 0 on U which completes the proof.

Lemma 2.7 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N . Let � : N × N × N −→ N be a 3-derivation. If x ∈ N and �(U, U, U )x = {0}
(or x�(U, U, U ) = {0}), then either x = 0 or � = 0 on U.

Proof Let
�(y, z, w)x = 0 for all y, z, w ∈ U.

Substituting y = vy we get �(v, z, w)yx = 0, for all y, z, v, w ∈ U , i.e.,
�(v, z, w)U x = {0}, for all v, z, w ∈ U . Invoking Lemma 2.2 (i) either x = 0
or � = 0 on U .
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Lemma 2.8 Let N be a 3!-torsion-free 3-prime near ring and U be a nonzero
additive subgroup and a semigroup ideal of N . Let � : N × N × N −→ N be
permuting 3-derivation with trace δ and x ∈ N such that xδ(y) = 0, for all y ∈ U.
Then either x = 0 or � = 0 on U.

Proof For any y, z ∈ U , we have

δ(y + z) = δ(y) + 2�(y, y, z) + �(y, z, z) + �(y, y, z) + 2�(y, z, z) + δ(z).

By hypothesis

2x�(y, y, z) + x�(y, z, z) + x�(y, y, z) + 2x�(y, z, z) = 0 for all y, z ∈ U.

(2.10)
Substituting −y for y in (2.10), it follows that

2x�(y, y, z) − x�(y, z, z) + x�(y, y, z) − 2x�(y, z, z) = 0 for all y, z ∈ U.

(2.11)
On the other hand,

δ(z + y) = δ(z) + 2�(z, z, y) + �(z, y, y) + �(z, z, y) + 2�(z, y, y) + δ(y)

Again using hypothesis, we have

2x�(z, z, y) + x�(z, y, y) + x�(z, z, y) + 2x�(z, y, y) = 0.

Since � is permuting, we get

2x�(y, z, z) + x�(y, y, z) + x�(y, z, z) + 2x�(y, y, z) = 0 for all y, z ∈ U.

(2.12)
Comparing (2.10) and (2.11), we get

2x�(y, z, z) + x�(y, y, z) + x�(y, z, z) = x�(y, y, z) − 3x�(y, z, z),

i.e.,

2x�(y, z, z) + x�(y, y, z) + x�(y, z, z) + 2x�(y, y, z) = x�(y, y, z)

− 3x�(y, z, z) + 2x�(y, y, z).

Now, from (2.12), we obtain

x�(y, y, z) − 3x�(y, z, z) + 2x�(y, y, z) = 0 for all y, z ∈ U. (2.13)

Substituting −y for y in (2.13), we find

x�(y, y, z) + 3x�(y, z, z) + 2x�(y, y, z) = 0 for all y, z ∈ U. (2.14)
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Comparing (2.13) and (2.14), we obtain

6x�(y, z, z) = 0 for all y, z ∈ U.

Since N is 3!-torsion free, we get

x�(y, z, z) = 0 for all y, z ∈ U. (2.15)

Substituting z + w for z in (2.15), we have

x�(w, y, z) = 0 for all w, y, z ∈ U. (2.16)

Hence by Lemma 2.7 either x = 0 or � = 0 on U .

3 Main Results

Theorem 3.1 Let N be a 3-prime near ring and U be a nonzero semigroup ideal
of N which is closed under addition. Let � : N × N × N −→ N be a nonzero
3-derivation such that �(U, U, U ) ⊆ Z. Then (N ,+) is abelian.

Proof By hypothesis �(x, y, z) ∈ Z , for all x, y, z ∈ U . Since � is nonzero
on U by Lemma 2.5, there exists nonzero elements x0, y0, z0∈U such that 0 �=
�(x0, y0, z0) ∈ Z \{0} and�(x0, y0, z0+ z0) = �(x0, y0, z0)+�(x0, y0, z0) ∈ Z .
Hence (N ,+) is abelian by Lemma 2.1 (ii).

Theorem 3.2 Let N be a 3!-torsion-free 3-prime near ring and U be a nonzero
additive subgroup and a semigroup ideal of N . Let � : N × N × N −→ N be
a nonzero permuting 3-derivation with trace δ such that �(U, U, U ) ⊆ Z and
δ(U ) ⊆ U. Then N is a commutative ring.

Proof By hypothesis

w�(x, y, z) = �(x, y, z)w for all x, y, z ∈ U and w ∈ N . (3.1)

Replacing x by xv in (3.1) and using Lemma 2.4, we get

w�(x, y, z)v + wx�(v, y, z) = �(x, y, z)vw + x�(v, y, z)w

for all v, x, y, z ∈ U and w ∈ N .

Using hypothesis and Theorem 3.1, we have

�(x, y, z)[w, v] = �(v, y, z)[x, w] for all v, x, y, z ∈ U and w ∈ N . (3.2)
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Replacing x by δ(u) in (3.2), we obtain

�(δ(u), y, z)[w, v] = 0 for all u, v, y, z ∈ U and w ∈ N . (3.3)

Assume that

�(δ(u), y, z) = 0.

Substituting u + x for u and using the hypothesis, we obtain

�(�(u, u, x), y, z) + �(�(u, x, x), y, z) = 0 for all u, x, y, z ∈ U. (3.4)

Replacing u by −u in (3.4) and using (3.4), we obtain

�(�(u, u, x), y, z) = 0 for all u, x, y, z ∈ U. (3.5)

Now replacing x by ux in (3.5) and using (3.3), we find

δ(u)�(x, y, z) + �(u, y, z)�(u, u, x) = 0,

and by hypothesis

δ(u)�(x, y, z) + �(u, u, x)�(u, y, z) = 0 for all u, x, y, z ∈ U. (3.6)

Taking u = y = x in (3.6), we obtain

δ(x)�(x, x, z) = 0 for all x, z ∈ U. (3.7)

If �(x, x, z) is nonzero element of Z , then δ(x) = 0, for all x ∈ U by Lemma 2.1
(i). On the other hand if �(x, x, z) = 0, for all x, z ∈ U , we have �(x, x, x) = 0,
i.e., δ(x) = 0. Hence in both the cases δ(x) = 0, for all x ∈ U and using Lemma
2.6 we have � = 0 on U—a contradiction by Lemma 2.5. Thus �(δ(u), y, z) is a
nonzero element of Z and by Lemma 2.1 (i), (3.3) yields that U ⊆ Z . Hence N is a
commutative ring by Lemma 2.3.

Theorem 3.3 Let N be a 3!-torsion-free 3-prime near ring and U be a nonzero
additive subgroup and a semigroup ideal of N . Let � : N × N × N −→ N
be a nonzero permuting 3-derivation with trace δ such that δ(x), δ(x) + δ(x) ∈
C(�(U, U, U )), for all x ∈ U. Then (N ,+) is abelian.

Proof For all t, u, v, x, w ∈ U
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�(u + t, v, w)(δ(x) + δ(x))

= (δ(x) + δ(x))�(u + t, v, w)

= (δ(x) + δ(x))[�(u, v, w) + �(t, v, w)]

= (δ(x) + δ(x))�(u, v, w) + (δ(x) + δ(x))�(t, v,w)

= �(u, v, w)(δ(x) + δ(x)) + �(t, v, w)(δ(x) + δ(x))

= �(u, v, w)δ(x) + �(u, v, w)δ(x) + �(t, v, w)δ(x)

+ �(t, v, w)δ(x)

= δ(x)�(u, v, w) + δ(x)�(u, v, w) + δ(x)�(t, v, w)

+ δ(x)�(t, v, w)

for all t, u, v, w, x ∈ U.

(3.8)
and

�(u + t, v, w)(δ(x) + δ(x))

= �(u + t, v, w)δ(x) + �(u + t, v, w)δ(x)

= δ(x)�(u + t, v, w) + δ(x)�(u + t, v, w)

= δ(x)[�(u, v, w) + �(t, v, w)]

+ δ(x)[�(u, v, w) + �(t, v, w)]

= δ(x)�(u, v, w) + δ(x)�(t, v, w) + δ(x)�(u, v, w)

+ δ(x)�(t, v, w)

for all t, u, v, w, x ∈ U.

(3.9)
Comparing (3.8) and (3.9), we obtain

δ(x)�((u, t), v,w) = 0 for all t, u, v, w, x ∈ U.

By hypothesis we get

�((u, t), v,w)δ(x) = 0 for all t, u, v, w, x ∈ U.
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Hence it follows from Lemma 2.8, that

�((u, t), v,w) = 0 for all t, u, v, w ∈ U. (3.10)

Substituting uz for u and ut for t in (3.10) to get

0 = �(u(z, t), v,w) = �(u, v, w)(z, t) + u�((z, t), v,w),

i.e.,

�(u, v, w)(z, t) = 0 for all t, u, v, w, z ∈ U. (3.11)

By Lemma 2.7 either (z, t) = 0 or � = 0 on U . Later yields a contradiction by
Lemma 2.5. Hence (z, t) = 0, for all z, t ∈ U . Substituting zr for z and zs for t , for
all r, s ∈ N , we have

z(r, s) = 0 for all z ∈ U and r, s ∈ N ,

i.e.,

U (r, s) = {0} for all r, s ∈ N . (3.12)

Invoking Lemma 2.2 (ii), (r, s) = 0, for all r, s ∈ N and (N ,+) is abelian.

Theorem 3.4 Let N be a 3!-torsion-free 3-prime near ring and U be a nonzero
additive subgroup and a semigroup ideal of N . Let � : N × N × N −→ N
be a nonzero permuting 3-derivation with trace δ such that δ(x), δ(x) + δ(x) ∈
C(�(U, U, U )), for all x ∈ U and δ(U ) ⊆ U. Then N is a commutative ring.

Proof By the hypothesis for all u, v, w, x ∈ U

[δ(x),�(u, v, w)] = 0. (3.13)

Replacing x by x + y in (3.13) and using Theorem 3.3, we obtain

[�(x, x, y),�(u, v, w)] + [�(x, y, y),�(u, v, w)] = 0 for all u, v, w, x, y ∈ U.

(3.14)
Setting y = −y in (3.14) and comparing the result with (3.14), we obtain

[�(x, y, y),�(u, v, w)] = 0 for all u, v, w, x, y ∈ U. (3.15)

Replacing y by y + z in (3.15), using (3.15) and the fact that � is permuting, we
have

[�(x, y, z),�(u, v, w)] = 0 for all u, v, w, x, y, z ∈ U.
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�(x, y, z)�(u, v, w) = �(u, v, w)�(x, y, z) for all u, v, w, x, y, z ∈ U. (3.16)

Substituting ut for u in (3.16), we find

�(u, v, w)t�(x, y, z) − �(x, y, z)�(u, v, w)t + u�(t, v, w)�(x, y, z)

− �(x, y, z)u�(t, v, w) = 0 for all t, u, v, w, x, y, z ∈ U. (3.17)

Substituting δ(u) for u in (3.17) and using (3.16), we get

�(δ(u), v,w)[t,�(x, y, z)] = 0 for all t, u, v, w, x, y, z ∈ U. (3.18)

Replacing w by ws in (3.18), we have

�(δ(u), v,w)s[t,�(x, y, z)] = 0 for all s, t, u, v, w, x, y, z ∈ U,

i.e.,

(δ(u), v,w)U [t,�(x, y, z)] = 0 for all t, u, v, w, x, y, z ∈ U.

By Lemma 2.2 (i), either �(δ(u), v,w) = 0 or [t,�(x, y, z)] = 0.

Assume that

�(δ(u), v,w) = 0 for all u, v, w ∈ U. (3.19)

Substituting u + x for u in (3.19) and using the hypothesis, we obtain

�(�(u, u, x), v,w) + �(�(u, x, x), v,w) = 0 for all u, x, v, w ∈ U. (3.20)

Setting u = −u in (3.20) and comparing the result with (3.20), we find that

�(�(u, u, x), v,w) = 0 for all u, x, v, w ∈ U. (3.21)

Substituting ux for x in (3.21) and applying (3.19), we obtain

δ(u)�(x, v, w) + �(u, v, w)�(u, u, x) = 0

and so it follows from the hypothesis that

δ(u)�(x, v, w) + �(u, u, x)�(u, v, w) = 0 for all u, x, v, w ∈ U. (3.22)

Taking u = v = x in (3.22) and using hypothesis, we obtain

�(x, x, w)δ(x) = 0 for all x, w ∈ U. (3.23)
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By Lemma 2.8, �(x, x, w) = 0. Replacing w by x , we have δ(x) = 0, for all x ∈ U
and Lemma 2.6 yields that � = 0 on U—a contradiction by Lemma 2.5.

Consequently, we arrive at

[t,�(x, y, z)] = 0 for all t, x, y, z ∈ U.

Substituting r t for t , we get

[r,�(x, y, z)]t = 0 for all t, x, y, z ∈ U and r ∈ N ,

i.e.,

[r,�(x, y, z)]U = {0} for all x, y, z ∈ U and r ∈ N .

By Lemma 2.2 (ii), we get

[r,�(x, y, z)] = 0 for all x, y, z ∈ U and r ∈ N ,

i.e., �(x, y, z) ∈ Z , for all x, y, z ∈ U . Hence N is a commutative ring by Theo-
rem 3.2.

The following example justifies that Theorem 3.4 does not hold for an arbitrary
near ring and conditions U to be a semigroup ideal of N and δ(U ) ⊆ U in the
hypothesis are essential.

Example 3.1 Let S be any commutative near ring. Let N =
{ (

x y
0 0

)

| x, y ∈ S

}

and U =
{(

x 0
0 0

)

| x ∈ S

}

. Then N is a near ring and U is an additive subgroup

of N but not a semigroup ideal of N . Define � : N × N × N −→ N by

((

x1 y1
0 0

)

,

(

x2 y2
0 0

)

,

(

x3 y3
0 0

) )

�−→
(

0 x1x2x3
0 0

)

and δ : N −→ N

such that δ(y) = �(y, y, y), for all y ∈ N . Then � is a permuting 3-derivation on
N with trace δ. It can be easily verified that δ(U ) �⊆ U and δ(x), δ(x) + δ(x) ∈
C(�(u, v, w)), for all u, v, w, x ∈ U . Neither (N ,+) is abelian nor N under mul-
tiplication is commutative.
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Biordered Sets and Regular Rings

P.G. Romeo

Abstract Biordered sets were introduced in [3] to describe the structure of regular
semigroups. In [1] it is shown that the ideals of a regular ring forms a complemented
modular lattices. Here we describe the biordered set of such a regular ring.

Keywords Biordered sets · Regular ring · Modular lattice
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1 Preliminaries

First, we recall the basic definitions and results regarding lattices and rings needed
in the sequel. Let L be a class of elements a, b, . . . together with a binary relation <

between pairs of elements of L satisfying a ∨ b and a ∧ b exists, for all a, b ∈ L ,
then L is called a lattice. Further if ∨S and ∧S exist for all S ⊆ L , then L is called
a complete lattice.

Definition 1 A complemented lattice is a bounded lattice (with least element 0 and
greatest element 1) in which every element a has a complement b such that

a ∨ b = 1 and a ∧ b = 0.

Definition 2 Let L be a lattice

(1) L is said to be distributive if it satisfies the distributive laws

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), and

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), ∀ a, b, c ∈ L
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(2) L is said to be modular if it satisfies the modular law

a ≥ c ⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ c, ∀ a, b, c ∈ L

A complemented distributive lattice is called a Boolean algebra. Obviously, a
Boolean algebra is a complemented modular lattice. A typical example of a com-
plemented modular lattice which is not a Boolean algebra is the lattice of linear
manifolds of a finite dimensional vector space.

A set S together with an associative binary operation is called a semigroup. An
element a in a semigroup S is called regular if there exists an element a′ ∈ S such that
aa′a = a, if every element of S is regular then S is a regular semigroup. An element
e ∈ S such that e · e = e is called an idempotent and the set of all idempotents in S
will be denoted by E(S).

Let S be a semigroup for a ∈ S the smallest left ideal containing a is S1a = Sa∪a
and is called the principal left ideal generated by a. An equivqlence relation L on
S is defined by aLb if and only if S1a = S1b. Similarly, we can define the relation
R by aRb if and only if aS1 = bS1. The intersection of L and R is the relation H
and their unionD. It is easy to observe that these are equivalence relations and these
relations are termed as Green’s equivalences.

Lemma 1 A semigroup S is regular if each L class and each R class of S contain
idempotents.

Lemma 2 A semigroup S is an inverse semigroup if each L class and each R class
of S contain a unique idempotent.

Remark 1 If a is a regular element in a semigroup S then there exists a′ such that
aa′a = a, hence we have both aa′ and a′a which are idempotents and so the above
lemmas follows.

Definition 3 Let S be a semigroup with 0 and X any subset of S, then

Xr = {y ∈ S : xy = 0 for all x ∈ X}

is the right annihilator of X . If X = {x} then xr is the right annihilator of x .

Similarly, one can define the left annihilator Xl and xl .
A Baer semigroup is a multiplicative semigroup with zero in which the left [right]

annihilator of each element x is a principal left [right] ideal.

Definition 4 A regular semigroup S for which the set of the principal left [right]
ideals coincides with the set of left [right] annihilators of elements of S is called a
strongly regular Baer semigroup.

Let P be a partially ordered set and � : P → P be an isotone mapping, then �

is called normal
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(1) im� is a principal ideal of P
(2) whenever x� = y, then there exists some z ≤ x such that � maps the principal

ideal P(z) isomorphically onto the principal ideal P(y).

Definition 5 The partially ordered set P is called regular if for every e ∈ P, P(e) =
im� for some normal mapping � : P → P with �2 = �

If P is a regular partially ordered set , then the set S(P) [S∗(P)] of normal map-
pings of P into itself, considered as left [right] operators form a regular semigroup
with the composition of maps as binary operation and S(P)/R = S∗(P)/L = P .
The following is an interesting lemma in this context.

Lemma 3 Let S be a regular semigroup. Then S/L and S/R are regular partially
ordered sets. For any y ∈ S the mappings

ry : S/R → S/R, Rx → ry Rx = Rxy

and
ly : S/L → S/L, Lx → Lxly = Lxy

are normal mappings.

Definition 6 A ring R is a set of elements x, y, . . . together with two binary oper-
ations ‘ + ’ and ‘ · ’ with the following properties:

(1) (R,+) is an abelian group.
(2) (R, ·) is a semigroup.
(3) x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x , for all x, y, z ∈ R.

Further if there exists an element 1 with the property that x · 1 = 1 · x = x for
every x ∈ R, then the ring is called a ring with unity. In the following our ringR is
always regarded as a ring with unity. An element e ∈ R is said to be an idempotent
if e2 = e. Obviously, 1 is an idempotent element.

Definition 7 A ringR is called a division algebra or a field if for every x �= 0 there
exists a y such that x · y = y · x = 1. This y is unique and will be denoted by x−1.

1.1 Ideals and Modular Lattices

A subset a of a ring R is called right ideal in case

x + y ∈ a, xz ∈ a

for each x, y ∈ a and z ∈ R. Similarly, we can define the left ideal in R. We call a
an ideal if it is both a right and a left ideal. The set of all right (left) ideals of R is
denoted by RR(LR).
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It is easy to note that the intersection of any class of right(left) ideals is again a
right (left) ideal and also for any a ⊂ R there is a unique least extension ar , (al)

which is a right (left) ideal.

Definition 8 A principal right [left] ideal is one of the from (x)r [(xl)]. The class of
all principal right [left] ideals will be denoted by R̄R [L̄R].
Lemma 4 Let R be a ring, e ∈ R, then

• e is idempotent if and only if (1 − e) is idempotent.

• 〈e〉r if the set of all x such that x = ex is a principal right ideal.

• 〈e〉r and 〈1 − e〉r are mutual inverses, i.e., 〈e〉r ∪ 〈1 − e〉r = 1, and 〈e〉r ∩
〈1 − e〉r = 0.

• If 〈e〉r = 〈 f 〉r and if 〈1 − e〉r = 〈1 − f 〉r where e and f are idempotents, then
e = f .

Theorem 1 Two right ideals a and b are inverses if and only if there exists an
idempotent e such that a = 〈e〉r and b = 〈1 − e〉r .

Proof Let a and b be inverse right ideals, then there exists elements x, y with x + y =
1, x ∈ a, y ∈ b. If z ∈ a then xz + yz = x , hence yz = x − xz since z, xz ∈ a this
implies yz ∈ a. But yz ∈ b, hence yz = 0. Thus z = xz ∈ (x)r for every z ∈ a
and a ⊂ (x)r . But x ∈ a, hence a = (x)r . Similarly, b = (y)r = (1 − x)r , since
x + y = 1. Finally, since z = xz for every z ∈ a this holds for z = x and x is
idempotent. �

Theorem 2 The following statements are equivalent

(1) Every principal right ideal 〈a〉r has an inverse right ideal.

(2) For every a there exists an idempotent e such that 〈a〉r = 〈e〉r .

(3) For every a there exists an element x such that axa = a.

(4) For every a there exists an idempotent f such that 〈a〉l = 〈 f 〉l .

(5) Every principal ideal 〈a〉l has an inverse left ideal.

Definition 9 A ringR is said to be regular ifR possesses anyone of the equivalent
properties of the above theorem.

Proposition 1 (cf. [1] Theorem 2.3). If a and b be two elements in the principal
right ideal R̄R then their join a ∪ b is a principal right ideal.



Biordered Sets and Regular Rings 85

Also since the principal right ideals R̄R and the principal left ideals L̄R are anti-
isomorphic it is easy to see that for any two right ideals a and b, we can define ∩ as
follows:

al ∩ bl = (a ∪ b)l

where al is defined by al = {y : z ∈ a, implies, yz = 0} (see [1]).
Lemma 5 (cf. [1] Lemma 2.4). If a and b be two elements in the principal right
ideal R̄R then a ∩ b is a principal right ideal.

Theorem 3 The set R̄R is a complemented modular lattice partially ordered by ⊂,
the meet being ∩ and join ∪ , its zero is (0) and its unit is (1)r .

1.2 Biordered Sets

Next we recall the definitions of a biordered set from cc. [3]. By a partial algebra
E we mean a set together with a partial binary operation on E . The domain of the
partial binary operation will be denoted by DE . On E we define

ωr = {(e, f ) : f e = e}ωl = {(e, f ) : e f = e}

also, R = ωr ∩ (ωr )−1, L = ωl ∩ (ωl)−1, and ω = ωr ∩ ωl

Definition 10 Let E be a partial algebra. Then E is a biordered set if the following
axioms and their duals hold:

(1) ωr and ωl are quasi-orders on E and

DE = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1.

(2) f ∈ ωr (e) ⇒ f R f eωe.
(3) gωl f and f, g ∈ ωr (e) ⇒ geωl f e.
(4) gωr f ωr e ⇒ g f = (ge) f.
(5) gωl f and f, g ∈ ωr (e) ⇒ ( f g)e = ( f e)(ge).

LetM(e, f ) denote the quasi-ordered set (ωl(e)∩ωr ( f ),<) where < is defined by
g < h ⇔ egωr eh, and g f ωl h f. Then the set

S(e, f ) = {h ∈ M(e, f ) : g < h for all g ∈ M(e, f )}

is called the sandwitch set of e and f .

(1) f, g ∈ ωr (e) ⇒ S( f, g)e = S( f e, ge)

The biordered set E is said to be regular if S(e, f ) �= ∅ ∀e, f ∈ E
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Example Let S be a semigroup. On E(S) = {e ∈ S e2 = e} we define

eωr f ⇔ f e = e and eωl f ⇔ e f = e.

It can easily be seen that ωr and ωl are quasi-orders on E(S). Let DE(S) = (ωr ∪
ωl)∪ (ωr ∪ωl)−1 so whenever (e, f ) ∈ DE(S) we have e f ∈ E(S). Thus restricting
the product in S to DE (S)we obtain a partial algebra on E(S) and this partial algebra
is a biordered set.

2 Biordered Set of a Regular Ring

LetR be a regular ring and R̄R be the class of all principal right ideals. For a ∈ R̄R
there exists an inverse b ∈ R̄R, by this we mean a ∩ b = 0 and a ∪ b = 1., that is
they are complementary. Now for any pair of (a, b) of complementary elements in
R̄R, define the mappings (a, b), (a, b)′ : R̄R → R̄R by

(a, b)(x) �→ b ∩ (a ∪ x)

and
(a, b)′(x) �→ a ∪ (b ∩ x).

It is seen that (a, b) [(a, b)′] is an idempotent order preserving mapping of R̄R onto
the principal ideal [0, v] [n, 1].

Let P(R̄R) denote the subsemigroup of S∗(R̄R) generated by these idempotent
mappings where the binary composition is defined by

(a1, b1) · (a2, b2) = (a1 ∨ (b1 ∧ a2), (b1 ∨ a2) ∧ b2)

Clearly,
EP(R̄R) = {(a, b) : a, b ∈ R̄R, a and b complementary}

is a biordered set with quasi-orders defined by

(a1, b1)ω
l(a2, b2) if and only if b1 ≤ b2

(a1, b1)ω
r (a2, b2) if and only if a2 ≤ a1

Lemma 6 For (a1, b1)ωl(a2, b2)

(a1, b1)(a2, b2) = (a1, b1)

(a2, b2)(a1, b1) = (a2 ∨ (b2 ∧ a1), b1)
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Proof We have

(a1, b1) · (a2, b2) = (a1 ∨ (b1 ∧ a2), (b1 ∨ a2) ∧ b2)

= (a1, b1)

(a2, b2) · (a1, b1) = (a2 ∨ (b2 ∧ a1), (b2 ∨ a1) ∧ b1)

= (a2 ∨ (b2 ∧ a1), b1)

�

Lemma 7 For (a1, b1)ωr (a2, b2)

(a1, b1)(a2, b2) = (a1, b2 ∧ (a2 ∨ b1)

(a2, b2)(a1, b1) = (a1, b1)

Theorem 4 R̄R be the principal right ideals of the ring R then E(R̄R) = {(a, b) :
a, b ∈ R̄R complementary}, then (E(R̄R),ωr ,ωl) with ωr and ωl is the biordered
set of R̄R.
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Topological Rees Matrix Semigroups

E. Krishnan and V. Sherly

Abstract An important problem in the theory of topological semigroups is to for-
mulate a suitable definition of continuity for the choice of generalized inverses. In
this paper, we will show that under certain natural conditions, a topology can be
defined on a Rees matrix semigroup, which turns it into a topological semigroup,
and in which a canonical continuous choice of inverses is possible. As an example,
we show that this construction applied to the semigroup of operators of rank less than
or equal to 1 on a Hilbert space gives a topology which is stronger than the norm
topology, under which this semigroup is a topological semigroup and the assignment
of every operator to its Moore-Penrose inverse is continuous.

Keywords Topological semigroup · Rees matrix semigroup

First we fix the notations and terminology used in this paper. If G is a group and 0
is a symbol not in G, then the semigroup G0 = G ∪ {0}, with the operation in G
extended by x0 = 0x = 00 = 0 for all x in G0, is called a group with zero. Now let
X , Y be any two nonempty sets and let P be a function from X × Y to G0. Then we
can define a multiplication on the set T = (G × X × Y ) ∪ {0} by

(α, a, b)(β, c, d) =
{

(αP(b, c)β, a, d), if P(b, c) �= 0

0, if P(b, c) = 0

(α, a, b)0 = 0(α, a, b) = 00 = 0

which turns T into a completely 0-simple semigroup, called the Rees X × Y matrix
semigroup over the group with zero G0 with sandwich matrix P (see [1], Sects. 3.1
and 3.2 and [2], Sect. III.2 for details). This semigroup is denotedM 0(G; X,Y ;P).
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Now suppose that in the above construction, there is a topology on G0 under
which it is a topological semigroup and the mapping x �→ x−1 is continuous on G.
Then G0 is called a topological group with zero. Suppose further that X and Y are
also topological spaces and that the mapping P : X × Y → G0 is continuous, where
X × Y is given the product topology. We show how we can turn T into a topological
semigroup in this set-up.

Let S = G0 × X × Y with the product topology and let Z = {0} × X × Y .
Then by definition, T = (S \ Z) ∪ {0}. Define π : S → G0 by π(λ, x, y) = λ and
π0 : T → G0 by

π0(t) =
{

π(t), if t �= 0

0, if t = 0

Note that if A ⊆ S \ Z = S ∩ T , then π(A) = π0(A).
We first consider some conditions under which 0 belongs to the closure of π0(A)

for a subset A of T . Throughout the sequel, we denote the closure of a subset A of
S by cl(A). The same notation will be used for subsets of G0 also.

Lemma 1 Let A ⊆ T . If either 0 ∈ A or if 0 /∈ A and cl(A) ∩ Z �= ∅, then
0 ∈ cl(π0(A)). The converse is also true if X and Y are compact.

Proof If 0 ∈ A, then 0 = π0(0) ∈ π0(A) ⊆ cl(π0(A)). Suppose now that 0 /∈ A
and cl(A) ∩ Z �= ∅. Since 0 /∈ A, we have A ⊆ S \ Z and since cl(A) ∩ Z �= ∅,
there exists s ∈ cl(A) ∩ Z . Then s ∈ cl(A) and π(s) = 0, by definition of Z and π.
Hence 0 = π(s) ∈ π(cl(A)). Also, since S has the product topology, the projection
π is continuous, so that π(cl(A)) ⊆ cl(π(A)). Again, since A ⊆ S \ Z , we have
π(A) = π0(A). Thus

0 ∈ π(cl(A)) ⊆ cl(π(A)) = cl(π0(A))

Now suppose that X and Y are compact and 0 ∈ cl(π0(A)). If 0 ∈ A, we are done.
Suppose 0 /∈ A. Since 0 ∈ cl(π0(A)), there exists a net (λi ) in π0(A) such that
limi λi = 0. So for each i , there exists si ∈ A with π0(si ) = λi . Since 0 /∈ A
we have A ⊆ S and so each si = (λi , xi , yi ), where xi ∈ X and yi ∈ Y . Now
since X and Y are compact, the nets (xi ) and (yi ) have convergent subnets (xik ) and
(yik ). Let a = limk xik and b = limk yik . Then ((λik , xik , yik )) is a net in A with
limk(λik , xik , yik ) = (0, a, b) so that (0, a, b) ∈ cl(A)∩ Z . Thus cl(A)∩ Z �= ∅. �

The following corollary is immediate

Corollary 2 If A ⊆ T and 0 /∈ cl(π0(A)), then 0 /∈ A and cl(A) ∩ Z = ∅. �

Wenext define anoperation on subsets of T which turns out to be a closure operator
on T . Let A be a subset of T . If 0 /∈ cl(π0(A)), then 0 /∈ A and cl(A) ∩ Z = ∅,
by the corollary above, so that cl(A) is a subset of T . Also note that for any subset
A of T , the set A \ {0} is contained in S, so that cl(A \ {0}) is a subset of S and so
(cl(A \ {0}) \ Z) ∪ {0} is a subset of T .
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Thus with each subset A of T , we can associate a subset c(A) by

c(A) =
{

cl(A), if 0 /∈ cl(π0(A))

(cl(A \ {0}) \ Z) ∪ {0}, if 0 ∈ cl(π0(A))

We next show that c satisfies the Kuratowski closure axioms (see [3]). In the
sequel, for a subset A of T , we often write A′ for A \ {0}.
Proposition 3 The map c on subsets of T defined above satisfies the following
conditions.

(i) c(∅) = ∅
(ii) A ⊆ c(A), for all subsets A of T

(iii) c(c(A)) = c(A), for all subsets A of T .
(iv) c(A ∪ B) = c(A) ∪ c(B), for all subsets A and B of T .

Proof Since π0(∅) = ∅, we have 0 /∈ π0(∅) and so c(∅) = cl(∅) = ∅, by definition
of c. This proves (i).

To prove (ii), let A ⊆ T and suppose first that 0 /∈ cl(π0(A)). Then c(A) = cl(A)
by definition, and A ⊆ cl(A), so that A ⊆ c(A). Next suppose that 0 ∈ cl(π0(A)),
so that c(A) = (cl(A′) \ Z)∪ {0}. Now A′ ⊆ cl(A′) and since A′ ⊆ T , we also have
A′ ∩ Z = ∅. Hence A′ ⊆ cl(A′) \ Z and so

A = A′ ∪ {0} ⊆ (cl(A′) \ Z) ∪ {0} = c(A)

To prove (iii), let A ⊆ T and let B = c(A). First suppose that 0 /∈ cl(π0(A)).
Then B = c(A) = cl(A), by definition. We next show that 0 /∈ cl(π0(B)). Since
B = c(A) ⊆ T and B = cl(A) ⊆ S, we have π0(B) = π(B). Also, since B = cl(A)
and π is continuous on S, we have

π(B) = π(cl(A)) ⊆ cl(π(A))

Again, since 0 /∈ cl(π0(A)), we have 0 /∈ A, by Corollary2 and so A ⊆ S. Hence
A ⊆ T ∩ S, so that π(A) = π0(A) and so cl(π(A)) = cl(π0(A)).Thus

π0(B) = π(B) ⊆ cl(π(A)) = cl(π0(A))

and so cl(π0(B)) ⊆ cl(π0(A)). Since 0 /∈ cl(π0(A)), by assumption, we also have
0 /∈ cl(π0(B)). So c(B) = cl(B), by definition. Again, since B = cl(A), we have
cl(B) = cl(cl(A)) = cl(A).Thus c(B) = cl(B) = cl(A) = B. In other words,
c(c(A)) = c(A). Next suppose that 0 ∈ cl(π0(A)), so that

B = c(A) = (cl(A′)\Z) ∪ {0}

Hence 0 ∈ B so that 0 = π0(0) ∈ π0(B) ⊆ cl(π0(B)) and so by definition,
c(B) = (cl(B ′)\Z)∪{0}. Now since B = (cl(A′)\Z)∪{0}, we have B ′ = cl(A′)\Z
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and so B ′ ⊆ cl(A′). Hence cl(B ′) ⊆ cl(cl(A′)) = cl(A′) and so

c(B) = (cl(B ′) \ Z) ∪ {0} ⊆ (cl(A′) \ Z) ∪ {0} = B

Since B ⊆ c(B), by (ii) above, we now have c(B) = B. That is, c(c(A)) = A.
Finally, let A and B be subsets of T . First note that

cl(π0(A ∪ B)) = cl(π0(A) ∪ π0(B)) = cl(π0(A)) ∪ cl(π0(B)). (1)

Now suppose that 0 /∈ cl(π0(A ∪ B)). Then c(A ∪ B) = cl(A ∪ B). Also, by Eq. (1),
we have 0 /∈ cl(π0(A)) and 0 /∈ cl(π0(B)) so that c(A) = cl(A) and c(B) = cl(B).
Since cl(A ∪ B) = cl(A) ∪ cl(B), we have

c(A ∪ B) = cl(A ∪ B) = cl(A) ∪ cl(B) = c(A) ∪ c(B)

Next suppose that 0 ∈ cl(π0(A ∪ B)). Then

c(A ∪ B) = (cl((A ∪ B)′) \ Z) ∪ {0}

Now
(A ∪ B)′ = (A ∪ B) \ {0} = (A \ {0}) ∪ (B \ {0}) = A′ ∪ B ′

so that
cl((A ∪ B)′) = cl(A′ ∪ B ′) = cl(A′) ∪ cl(B ′)

and so

cl((A ∪ B)′) \ Z = (cl(A)′ ∪ cl(B ′)) \ Z = (cl(A′) \ Z) ∪ (cl(B ′) \ Z)

Thus we have

c(A ∪ B) = (cl((A ∪ B)′) \ Z) ∪ {0} = (cl(A′) \ Z) ∪ (cl(B ′) \ Z) ∪ {0} (2)

Again, since cl(π0(A ∪ B)) = cl(π0(A)) ∪ cl(π0(B)) and 0 ∈ cl(π0(A ∪ B)), we
have 0 ∈ cl(π0(A)) or 0 ∈ cl(π0(B)). Suppose 0 ∈ cl(π0(A)) and 0 ∈ cl(π0(B)).
Then c(A) = (cl(A′) \ Z) ∪ {0} and c(B) = (cl(B ′) \ Z) ∪ {0} so that from Eq. (2)

c(A ∪ B) = (cl(A′) \ Z) ∪ (cl(B ′) \ Z) ∪ {0}
= ((cl(A′) \ Z) ∪ {0}) ∪ ((cl(B ′) \ Z) ∪ {0})
= c(A) ∪ c(B)

Next suppose that 0 is in only one of the sets cl(π0(A)) or cl(π0(B)). With a change
of notation, if necessary, we can assume that 0 ∈ cl(π0(A)) and 0 /∈ cl(π0(B)). Then
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c(A) = (cl(A′) \ Z) ∪ {0} and c(B) = cl(B)

Now since 0 /∈ cl(π0(B)), we have 0 /∈ B and cl(B) ∩ Z = ∅, by Lemma1.
So B ′ = B \ {0} = B and hence cl(B ′) ∩ Z = cl(B) ∩ Z = ∅. It follows that
cl(B ′) \ Z = cl(B ′) = cl(B). Hence from Eq. (2)

c(A ∪ B) = (cl(A′) \ Z) ∪ (cl(B ′) \ Z) ∪ {0}
= ((cl(A′) \ Z) ∪ {0}) ∪ (cl(B))

= c(A) ∪ c(B)

This proves (iv) and hence the result. �

Since c satisfies the four conditions above, the complements of those subsets F
of T with c(F) = F form a topology on T such that for each subset A of T , the
closure of A with respect to this topology is c(A) (see [3], Chap. 1, Theorem8). We
denote this topology by Tc.

We next look at some of the properties of this topology. First we show that the
map π0 is continuous.

Proposition 4 The map π0 : T → G0 is continuous with respect to the topology
Tc on T .

Proof To prove that π0 is continuous, we need only show that π0(c(A)) ⊆ cl(π0(A))
for each subset A of T (see [3], Chap. 3, Theorem1). Let A be a subset of T and first
suppose that 0 /∈ cl(π0(A)). Then c(A) = cl(A) and cl(A) is a subset of S, so that
π0(c(A)) = π0(cl(A)) = π(cl(A)). Now since π is a continuous map on S, we have
π(cl(A)) ⊆ cl(π(A)). Again, since A ⊆ S ∩ T , we have π(A) = π0(A). Thus in
this case.

π0(c(A)) = π(cl(A)) ⊆ cl(π(A)) = cl(π0(A))

Next suppose that 0 ∈ cl(π0(A)), then c(A) = (cl(A′) \ Z) ∪ {0} so that

π0(c(A)) = π0(cl(A′) \ Z) ∪ {π0(0)} = π(cl(A′) \ Z) ∪ {0}

since cl(A′) \ Z ⊆ S \ Z and π0(0) = 0. Also, π(cl(A′) \ Z) ⊆ π(cl(A′)) and since
π is continuous, we have π(cl(A′)) ⊆ cl(π(A′)). Again, since A′ ⊆ S ∩ T , we have
π(A′) = π0(A′). Hence

π0(c(A)) = π(cl(A′) \ Z) ∪ {0} ⊆ cl(π0(A′)) ∪ {0}

Now since A′ ⊆ A, we have π0(A′) ⊆ π0(A) and so cl(π0(A′)) ⊆ cl(π0(A)). Also,
0 ∈ cl(π0(A)), by our assumption. Hence cl(π0(A′)) ∪ {0} ⊆ cl(π0(A)) and so

π0(c(A)) ⊆ cl(π0(A′)) ∪ {0} ⊆ cl(π0(A))

Thus π0(c(A)) ⊆ cl(π0(A)), for each subset A of T and so π0 is continuous. �
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We can also show that the map θ : S → T defined by

θ(λ, x, y) =
{

(λ, x, y), if λ �= 0

0, if λ = 0

is continuous. For this, we prove that the topology Tc is weaker than the quotient
topology on T induced by θ. First we note a simple property of the map θ.

Lemma 5 If A is a subset of T , then

θ−1(A) =
{

A, if 0 /∈ A

(A \ {0}) ∪ Z , if 0 ∈ A

Proof Let A be a subset of T . First, suppose that 0 /∈ A and let (λ, x, y) ∈ θ−1(A).
Then θ(λ, x, y) ∈ A. Since 0 /∈ A, we have θ(λ, x, y)) �= 0 and so θ(λ, x, y) =
(λ, x, y), by definition of θ. Thus (λ, x, y) = θ(λ, x, y) ∈ A. It follows that
θ−1(A) ⊆ A.

To prove the reverse inclusion, let t ∈ A. Then t �= 0, since 0 /∈ A. So, t =
(λ, x, y) for some λ ∈ G0, x ∈ X and y ∈ Y . Also, λ �= 0, since t /∈ Z . Hence
θ(t) = θ(λ, x, y) = (λ, x, y) = t , by definition of θ. Thus θ(t) = t ∈ A and so
t ∈ θ−1(A). It follows that A ⊆ θ−1(A) also.

Next suppose that 0 ∈ A and let (λ, x, y) ∈ θ−1(A) so that θ(λ, x, y) ∈ A. If
λ = 0, then (λ, x, y) = (0, x, y) ∈ Z and if λ �= 0, then θ(λ, x, y) = (λ, x, y), so
that (λ, x, y) = θ(λ, x, y) ∈ A. Thus (λ, x, y) ∈ A ∪ Z and (λ, x, y) �= 0, so that
(λ, x, y) ∈ (A \ {0}) ∪ Z . it follows that θ−1(A) ⊆ (A \ {0}) ∪ Z .

To prove the reverse inclusion, let A′ = A \ {0}. Then A′ ⊆ T with 0 /∈ A′,
so that θ−1(A′) = A′, by the first part of the proof. Also, since A′ ⊆ A, we have
θ−1(A′) ⊆ θ−1(A). Hence A′ = θ−1(A′) ⊆ θ−1(A). Also, θ(Z) = {0}, by definition
of θ and 0 ∈ A, by assumption, so that θ(Z) ⊆ A. Hence Z ⊆ θ−1θ(Z) ⊆ θ−1(A).
Since A′ ⊆ θ−1(A) and Z ⊆ θ−1(A), we have A′ ∪ Z ⊆ θ−1(A). �

Now we can compare the topology Tc and the quotient topology induced by the
map θ.

Proposition 6 The topology Tc on T is weaker than the quotient topology on T
induced by the map θ : S → T , where S has the product topology. If X and Y are
compact, then these two topologies are equal.

Proof Let A be a subset of T which is closed with respect to Tc. We will show that
A is closed with respect to Tθ. Note that since Tθ is the quotient topology induced
by θ : S → T , the subset A of T is closed with respect to Tθ if and only if θ−1(A)
is closed in S.

First suppose that 0 /∈ A. Then θ−1(A) = A, by Lemma5. Also, A = c(A),
since A is closed with respect to Tc, so that 0 /∈ c(A). Also, by definition of c, we
have 0 ∈ c(A), if and only if 0 ∈ cl(π0(A)). It follows that 0 /∈ cl(π0(A)). Hence
c(A) = cl(A), by definition of c. Since c(A) = A, we now have A = cl(A) and so
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A is closed in S. Thus θ−1(A) is closed in S and so A is closed with respect to the
quotient topology Tθ.

Next suppose that 0 ∈ A. Then θ−1(A) = A′∪Z ,where A′ = A\{0}, byLemma5.
Also, in this case, 0 = π0(0) ∈ π0(A) ⊆ cl(π0(A)), so that c(A) = (cl(A′)\Z)∪{0},
by definition of c. Again, since A is closed with respect to Tc, we have c(A) = A.
Thus A = (cl(A′) \ Z) ∪ {0}. It follows that A′ = A \ {0} = cl(A′) \ Z , since
0 /∈ cl(A′) \ Z . Hence

A′ ∪ Z = (cl(A′) \ Z) ∪ Z = cl(A′) ∪ Z

Now since π : S → G0 is continuous and Z = π−1(0), we have Z closed in S and
so Z = cl(Z). So,

A′ ∪ Z = cl(A′) ∪ cl(Z) = cl(A′ ∪ Z)

Thus A′ ∪ Z is closed in S and since θ−1(A) = A′ ∪ Z , we have θ−1(A) closed in
S. So, A is closed with respect to Tθ. Thus every subset of T closed with respect to
Tc is closed with respect to Tθ and so Tc is weaker than Tθ.

Now suppose that X and Y are compact and A is a subset of T which is closedwith
respect to Tθ. First suppose that 0 /∈ cl(π0(A)). Then c(A) = cl(A), by definition
of c. Also, since A is closed with respect to Tθ, we have θ−1(A) closed in S. Again,
since 0 /∈ cl(π0(A)), we have 0 /∈ A, by Corollary2, so that θ−1(A) = A, by
Lemma5. Hence A is closed in S and so cl(A) = A. Thus c(A) = cl(A) = A and
so A is closed with respect to Tc.

Next suppose that 0 ∈ cl(π0(A)), so that c(A) = cl(A′) \ Z , where A′ = A \ {0}.
We now show 0 ∈ A. Suppose 0 /∈ A. Then θ−1(A) = A and θ−1(A) is closed in S,
since A is closed with respect to Tθ. Thus A is closed in S and so cl(A) = A. On
the other hand, since X and Y are compact, the conditions 0 ∈ cl(π0(A)) and 0 /∈ A
imply cl(A) ∩ Z �= ∅, by the second part of Lemma1. This contradicts the earlier
conclusion that cl(A) = A, since A ⊆ T and hence A ∩ Z = ∅. Thus 0 ∈ A and so
θ−1(A) = A′ ∪ Z , by Lemma5. Since θ−1(A) is closed in S, we have A′ ∪ Z closed
in S and so

A′ ∪ Z = cl(A′ ∪ Z) = cl(A′) ∪ cl(Z) = cl(A′) ∪ Z

since Z is closed in S. Now since A′ ⊆ A ⊆ T , we have A′ ∩ Z = ∅ and so

A′ = A′ ∪ Z \ Z = cl(A′) \ Z

Hence
A = A′ ∪ {0} = (cl(A′) \ Z) ∪ {0} = c(A)

since 0 ∈ cl(π0(A)), Thus A is closed with respect to Tc, since c(A) = A. Thus
every subset of T closed with respect to Tθ is closed with respect to Tc and so Tθ

is weaker than Tc. Hence in this case, Tc = Tθ. �
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Now by definition of quotient topology, the map θ : S → T is continuous with
respect toTθ. SinceTc is weaker thanTθ, it follows that θ is continuous with respect
to Tc also.

Corollary 7 The map θ : S → T is continuous with respect to the product topology
on S and the topology Tc on T . �

We next show that T with the topology Tc is a topological semigroup. For this,
we first characterize convergence with respect to Tc. Throughout the sequel, T will
be assumed to have the topology Tc, and S will be assumed to have the product
topology, unless otherwise specified.

Proposition 8 Let {ti : i ∈ D} be a net in T . Then we have the following

(i) {ti : i ∈ D} converges to 0 in T if and only if the net {π0(ti ) : i ∈ D} converges
to 0 in G0.

(ii) For a �= 0 in T , the net {ti : i ∈ D} converges to a in T if and only if there exists
k ∈ D such that ti �= 0 for all i ≥ k and {ti : i ≥ k} converges to a in S.

Proof Let {ti : i ∈ D} be a net in T . If limi ti = 0, then limi π0(ti ) = 0, since π0
is continuous. Conversely, let limi π0(ti ) = 0. Suppose that limi ti �= 0. Then there
exists a neighborhood U of 0 in T such that for each j ∈ D, there exists k ∈ D
with k ≥ j such that tk /∈ U . Hence the set E = { j ∈ D : t j /∈ U } is a cofinal
subset of D and so {t j : j ∈ E} is a subnet of {ti : i ∈ D}. Hence {π0(t j ) : j ∈ E} is
a subnet of {π0(ti ) : i ∈ D}. Since the net {π0(ti ) : i ∈ D} converges to 0, the subnet
{π0(t j ) : j ∈ E} also converges to 0. Now if A = T \ U , then {t j : j ∈ E} is a net
in A, by definition of E and so {π0(t j ) : j ∈ E} is a net in π0(A). Since this net
converges to 0, we have 0 ∈ cl(π0(A)). Hence c(A) = (A \ {0} \ Z) ∪ {0} so that
0 ∈ c(A). Again, since U is open in T , we have A closed in T so that c(A) = A.
Thus 0 ∈ A, which contradicts our assumption that 0 ∈ U = T \ A. It follows that
limi ti = 0. This proves (i).

To prove (ii), let a ∈ T \ {0} and suppose that {ti : i ∈ D} converges to a in T .
We first show that this net is not frequently 0. Suppose {ti : i ∈ D} is frequently 0.
Then the set E = {i ∈ D : ti = 0} is cofinal in D and so {π0(t j ) : j ∈ E} is a subnet
of {π0(ti ) : i ∈ D}. Hence

lim
j∈E

π0(t j ) = lim
i∈D

π0(ti ) = π0(lim
i∈D

ti ) = π0(a)

since π0 is continuous. On the other hand, lim j∈E t j = 0, since t j = 0 for all j ∈ E ,
so that

lim
j∈E

π0(t j ) = π0(lim
j∈E

t j ) = π0(0) = 0

by definition of π0. It follows that π0(a) = 0, since G0 being a Hausdorff space, nets
in it have unique limits. But then a ∈ T \ {0}, by assumption, so that π0(a) �= 0, by
definition of π0. This contradiction shows that {ti : i ∈ D} is not frequently 0 and so
there exists k ∈ D with ti �= 0 for all i ≥ k.
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Next note that ti ∈ T = (S\Z)∪{0} and ti �= 0 for all i ≥ k, so that ti ∈ S\Z ⊆ S
for all i ≥ k. Suppose that {ti : i ≥ k} does not converge to a in S. Then there exists
a neighborhood U of a in S such that {ti : i ∈ D} is not eventually in U . Hence the
set E = {i ∈ D : i ≥ k and ti /∈ U } is cofinal in D and so {t j : j ∈ E} is a subnet
of {ti : i ∈ D}. Since the net {ti : i ∈ D} converges to a in T , so does the subnet
{t j : j ∈ E}. Let F = S \ U and A = F \ Z . Then A ⊆ T . Also, we have seen that
t j ∈ S \ Z for all j ∈ E and by definition of E , we have t j /∈ U for all j ∈ E , so that
{t j : j ∈ E} is a net in (S \ Z) \ U = (S \ U ) \ Z = A. Since this net converges to
a in T , we have a ∈ c(A). Next note that c(A) ⊆ cl(A) ∪ {0}, for if 0 /∈ cl(π0(A)),
then c(A) = cl(A) and if 0 ∈ cl(π0(A)), then

c(A) = (cl(A \ {0}) \ Z) ∪ {0} ⊆ cl(A \ {0}) ∪ {0} ⊆ cl(A) ∪ {0}

Also, since A ⊆ F , we have cl(A) ⊆ cl(F). Again, since U is open in S, we have
F closed in S so that cl(F) = F . Hence cl(A) ⊆ F and so c(A) ⊆ cl(A) ∪ {0} ⊆
F ∪ {0}. Since a ∈ c(A), we now have a ∈ F ∪ {0}, which is impossible, since
a ∈ U = S \ F and a �= 0. It follows that {t j : j ≥ k} converges to a in S.

Conversely, let {ti : i ∈ D} be a net in T and a ∈ T \ {0} such that there exists
k ∈ D with ti �= 0 for all i ≥ k and the net {ti : i ≥ k} converges to a in S. then
the net {θ(ti ) : i ∈ D} converges to θ(a) in T , since θ : S → T is continuous. Now
since ti ∈ T = (S \ Z) ∪ {0} for all i ∈ D and ti �= 0 for all i ≥ k, we have
ti ∈ S \ Z for all i ≥ k, so that θ(ti ) = ti for all i ≥ k, by definition of θ. Also since
a ∈ T \ {0} = S \ Z , we have θ(a) = a. Thus the net {ti : i ≥ k} converges to a in
T and so does the net {ti : i ∈ D}. �

The above description of convergence in T shows in particular that T is a Haus-
dorff space.

Corollary 9 Tc is a Hausdorff topology on T .

Proof It suffices to show that nets in T convergent with respect to Tc have unique
limits. Let {ti : i ∈ D} be a net in T which converges to a in T . We will show that
this net cannot converge to a different point.

First suppose a = 0 and suppose {ti : i ∈ D} converges to b also in T , where
b �= a. First let a = 0. Then

lim
i∈D

π0(ti ) = 0

by Proposition8. Also, b �= 0 and {ti : i ∈ D} converges to b in T , so that there exists
k ∈ D such that ti �= 0 for all i ≥ k and the net {π0(ti ) : i ≥ k} converges to b in S,
again by Proposition8. Hence limi≥k π(ti ) = π(b), since π is continuous on S. Now
for each i ≥ k, we have ti ∈ S ∩ T , so that π(ti ) = π0(ti ) and also b ∈ S ∩ T , so
that π(b) = π0(b). Thus

lim
i≥k

π0(ti ) = π0(b)

Again, since {π0(ti ) : i ≥ k} is a subnet of {π0(ti ) : i ∈ D}, we have
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lim
i≥k

π0(ti ) = lim
i∈D

π0(ti ) = 0

Now since G0 is a Hausdorff space, convergent nets in G0 have unique limits and
so π0(b) = 0. But this is impossible, since b �= 0 and so π0(b) �= 0, by definition
of π0. it follows that if {ti : i ∈ D} converges to 0 in T , then it cannot converge to
another nonzero element of T .

Next suppose that a �= 0 and again suppose {ti : i ∈ D} converges to b also in
T , where b �= a. Then there exists k ∈ D such that ti �= 0 for all i ≥ k and the
net {ti : i ≥ k} converges to a in S. Also since {ti : i ∈ D} converges to a and b with
a �= 0, we have b �= 0, by the first part of the proof. So there exists l ∈ D such that
ti �= 0 for all i ≥ l and the net {ti : i ≥ l} converges to b in S. Now since D is a
directed set, there exists m ∈ D with m ≥ k and m ≥ l. Then the net {ti : i ≥ m} is a
subnet of both {ti : i ≥ k} and {ti : i ≥ l} so that {ti : i ≥ m} converges to both a and
b in S. This is impossible, since S is a Hausdorff space. It follows that {ti : i ∈ D}
cannot have a limit different from a and so is a Hausdorff space. �

Nowbya topological semigroup,wemean a semigroupwith aHausdorff topology,
with respect towhich themultiplication in the semigroup is continuous.Wenext show
that T with the topology Tc is a topological semigroup. For this, we first note that
S is a semigroup with respect to multiplication defined by, under a simple condition
on the function P

(α, a, b) · (β, c, d) = (αP(b, c)β, a, d)

(see [1], Sect. 3.1). We can show that S is a topological semigroup with respect to
the product topology. First note that the product topology on S = G0 × X × Y is
Hausdorff, since G0, X and Y areHausdorff spaces. Also, if {(λi , xi ,i , yi ) : i ∈ D} is
a net in S which converges to (α, a, b), then limi λi = α, limi xi = a and limi yi = b,
by the characterization of convergence in a product space ([3], Chap. 3, Theorem4).

Suppose {(λi , xi , yi ) : i ∈ D} and {(μi , ui , vi ) : i ∈ D} are nets in S converg-
ing to (α, a, b) and (β, c, di ). Then for each i , we have (λi , xi , yi ) · (μi , ui , vi ) =
(λiP(yi , ui )μi , xi , vi ). By the description of convergence in S, we have limi λi = α
and limi μi = β. Also limi yi = b and limi ui = c so that limi P(yi , ui ) = P(b, c),
since P is continuous. Hence limi λiP(yi , ui )μi = αP(b, c)β, since multiplica-
tion in G0 is continuous. Again, from the convergence of the nets in S, we have
limi xi = a and limi vi = d. So, the net {(λiP(yi , ui )μi , xi , vi ) : i ∈ D} converges
to (αP(b, c)β, a, d). It follows that S is a topological semigroup.

We next note that the map θ is a homomorphism from S to T . Let (α, a, b) and
(β, c, d) be elements of S. First assume that both α and β are nonzero. Then by
definition of θ, we have θ(α, a, b) = (α, a, b) and θ(β, c, d) = (β, c, d), so that

θ(α, a, b)θ(β, c, d) = (α, a, b)(β, c, d) =
{

(αP(b, c)β, a, d), if P(b, c) = 0

0, if P(b, c) �= 0

by definition of the multiplication in T and
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θ((α, a, b) · (β, c, d)) = θ(αP(b, c)β, a, d) =
{

(αP(b, c)β, a, d), if αP(b, c)β = 0

0, if αP(b, c) �= β0

by definition of the product in S and by definition of θ. Now since α and β are both
nonzero elements of G0, the product αP(b, c)β = 0 iff P(b, c) = 0. It follows that
θ((α, a, b) · (β, c, d)) = θ(α, a, b)θ(β, c, d) in this case. Next suppose that α or β
is equal to 0. Then αP(b, c)β = 0 so that

θ((α, a, b) · (β, c, d)) = θ(αP(b, c), a, d) = θ(0, a, d) = 0

Again, θ(α, a, b) or θ(β, c, d) is 0 (depending on whether α or β is 0) and so
θ(α, a, b)θ(β, c, d) = 0. Thus θ((α, a, b) · (β, c, d)) = θ(α, a, b)θ(β, c, d) in this
case also. Thus θ is a homomorphism.

We need to impose a condition on the map P for T to be a topological semigroup
with respect to Tc.

Definition 10 Let G0 be a topological group with zero and let X be a set. A map
φ : X → G0 is said to be bounded, if for any net {gi : i ∈ D} in G0 converging to 0
and for any net {xi : i ∈ D} in X , the net {giφ(xi ) : i ∈ D} converges to 0 in G0.

Note that if K is the set of real numbers or the set of complex numbers with
multiplication, then φ : X → K is bounded in the usual sense iff φ is bounded in the
above sense.

Theorem 11 If the map P : X × Y → G0 is bounded, then T is a topological
semigroup with respect to the topology Tc.

Proof We have seen in Corollary9 that Tc is a Hausdorff topology on T . To prove
that the multiplication in T is continuous, let {si : i ∈ D} and {ti : i ∈ D} be nets
converging to a and b in T . We will show that {si ti : i ∈ D} converges to ab in T .

First suppose that both a and b are nonzero. Then there exists k ∈ D such that
si �= 0 for all i ≥ k and {si : i ≥ k} converges to a in S and also there exists l ∈ D
such that ti �= 0 for all i ≥ l and {ti : i ≥ l} converges to b in S. Since D is a
directed set, there exists m ∈ D such that m ≥ k and m ≥ l. Then si �= 0 for all
i ≥ m and {si : i ≥ m} is a subnet of {si : i ≥ k}, since m ≥ k. Hence {si : i ≥ m}
also converges to a. Again, ti �= 0 for all i ≥ m and {ti : i ≥ m} converges to b,
since m ≥ l. Now since S is a topological semigroup, the product net {si · ti : i ≥ m}
converges to a · b in S. Hence the net {θ(si · ti ) : i ≥ m} converges to θ(a · b) in T ,
since θ : S → T is continuous. Also, since θ is a homomorphism, we have

θ(si · ti ) = θ(si )θ(ti ) for all i ∈ D

and
θ(a · b) = θ(a)θ(b)

Again, since si and ti are nonzero for all i ≥ k, we have



100 E. Krishnan and V. Sherly

θ(si ) = si and θ(ti ) = ti for all i ≥ k,

by definition of θ. Also, since a and b are nonzero, we have θ(a) = a and θ(b) = b.
Thus the net {si ti : i ≥ m} converges to ab in T , and hence {si ti : i ∈ D} also con-
verges to ab in T .

Next suppose that a or b is 0. By a change of notation, if necessary, we can assume
that a = 0. If now {si ti : i ∈ D} is eventually equal to 0, then this net evidently
converges to 0 in T . Suppose this net is not eventually equal to 0. Then the set E =
{i ∈ D : si ti �= 0} is cofinal in D and so {s j t j : j ∈ E} is subnet of {si ti : i ∈ D}. Now
for each j ∈ E , we have s j t j �= 0 and so s j �= 0 and t j �= 0. Let s j = (λ j , x j , y j )

and t j = (μ j , u j , v j ) for each j ∈ E . Then s j t j = (λ jP(y j , u j )μ j , x j , v j ), by
definition of the product in T and so

π0(s j t j ) = λ jP(y j , u j )μ j

by definition ofπ0. Now {si : i ∈ D} converges to a = 0 and themapπ0 is continuous
byProposition4 so thatwe have limi∈D π0(si ) = 0.Also, {π0(s j ) : j ∈ E} is a subnet
of {π0(si ) : i ∈ D}, since E is cofinal in D. Hence lim j∈E λ j = lim j∈E π0(s j ) = 0
and so

lim
j∈E

λ jP(y j , u j ) = 0

since P is a bounded map to G0. Also, since {s j : j ∈ E} is a subnet of {si : i ∈ D}
and the latter net converges to b, so does the former net and so

lim
j∈E

μ j = lim
j∈ π0(t j ) = π0(b)

since π0 is a continuous map on T . So,

lim
j∈E

π0(s j t j ) = lim
j∈E

(λ jP(y j , u j ))μ j = 0 π0(b) = 0

since multiplication is continuous in G0. it follows that {s j t j : j ∈ E} converges to
0 in T . To show that {si ti : i ∈ D} also converges to 0 in T , let U be a neighborhood
of 0 in T . Since {s j t j : j ∈ E} converges to 0, there exists k ∈ E such that s j t j ∈ U
for all j ∈ E with j ≥ k. Let i ∈ D with i ≥ k. If i ∈ E , then si ti ∈ U . If i /∈ E ,
then si ti = 0, by definition of E and so si ti = 0 ∈ U . Thus si ti ∈ U for all i ∈ D
with i ≥ k. It follows that {si ti : i ∈ D} converges to 0 in T .

Thus in all cases, {si ti : i ∈ D} converges to ab. It follows that multiplication in
T is continuous, and hence T is a topological semigroup. �

It is well known that a Rees matrix semigroupM 0(G; X,Y ;P) is regular if and
only if for each x ∈ X there exists a y ∈ Y with P(x, y) �= 0 and for each y ∈ Y
there exists x ∈ X with P(x, y) �= 0 ([1], Lemma3.1). For this reason, P is called
regular if it satisfies the above condition. So, in the above result, if P is also assumed
to be regular, then T is a topological semigroup which is also regular.
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Now one problem in topological semigroups which are regular is the correct
formulation of the connection between the topology and the notion of regularity.
Since in a regular semigroup, inversion is a relation (rather than a function as in
the case of a group), it is not very clear how the continuity of inversion is to be
formulated so as to be meaningful in the significant examples. In many cases, there
is no canonical choice of a single inverse.

However, in certain types of Rees matrix semigroups, such a canonical choice of
inverses is possible. Consider a Rees matrix semigroup T = M 0(G; X, X;P) and
suppose that for each x in X , we have P(x, x) = ε, where ε is the identity of G.
Then for each (α, a, b) in T , we can define (α, a, b)† = (α−1, b, a). Then (α, a, b)†

is an inverse of (α, a, b), for

(α, a, b)(α, a, b)†(α, a, b) = (α, a, b)(α−1, b, a)(α, a, b)

= (αP(b, b)α−1, a, a)(α, a, b)

= (ε, a, a)(α, a, b)

= (εP(a, a), a, b)

= (α, a, b)

using the fact that P(b, b) = P(a, a) = ε. Also,

(α, a, b)†(α, a, b)(α, a, b)† = (α−1, b, a)(α, a, b)(α−1, b, a)

= (α−1P(a, a)α, b, b)(α−1, b, a)

= (ε, b, b)(α−1, b, a)

= (εP(b, b)α−1, b, a)

= (α−1, b, a)

= (α, a, b)†

We can also show that if in addition, X is a topological space, G0 is a topological
group with zero and P is continuous and bounded, then the above choice of inverses
for nonzero elements is continuous. To see this, let {ti : i ∈ D} be a net in T \ {0}
which converges to p in T \ {0}. Then ti = (λi , xi , yi ) with λi ∈ G, xi ∈ X
and yi ∈ Y for each i ∈ D and p = (α, a, b) with α ∈ G, a ∈ X and b ∈ Y .
Since ti ∈ T \ {0} = S \ Z and t �= 0, the net {ti : i ∈ D} converges to p in S, by
Proposition8. Hence limi λi = λ, limi xi = a, and limi yi = b, since the topology
on S is the product topology. Since limi λi = α in G and G0 is a topological group
with zero, we have limi λ−1

i = α−1. Hence {(λ−1
i , xi , yi ) : i ∈ D} converges to

(α−1, a, b) in S. In other words {ti † : i ∈ D} is a net in T such that ti † �= 0 for each
i ∈ D and converging to p† in S. So, t †i : i ∈ D

}

converges to p† in T . It follows
that the map t �→ t † is continuous in T \ {0}. Thus we have the following result:

Theorem 12 Let G0 be a group with zero 0, X be a set andP be a map from X ×X to
G0. If P(x, x) = ε, where ε is the identity of G, for each x ∈ X, then the Rees matrix
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semigroup T = M (G; X, X; P) is a regular semigroup and for each (α, a, b) in T ,
the element (α, a, b)† defined by (α, a, b)† = (α−1, b, a) is an inverse of (α, a, b).

Moreover if G0 is a topological group with zero, X is a topological space and P
is continuous and bounded, then T is a topological semigroup and the map t �→ t †

is a continuous choice of inverses for nonzero elements of T . �

As an example of this, we consider the semigroupK1(H) of all operators of rank
1 or less on a Hilbert space H. It is not difficult to show that for any two vectors a
and b of H, the operator a ⊗ b on H defined by

(a ⊗ b)(x) = 〈x, b〉a

is in K1(H) and that for every operator t in K1(H), there exists two unit vectors a
and b in H and a nonzero complex number α such that t = α(a ⊗ b). Using this, we
can prove the following result (see [4], Theorem2.8).

Proposition 13 Let V be the subset of the Hilbert space H consisting of exactly one
unit vector from each one-dimensional subspace of H. Let C∗ be the multiplicative
group of nonzero complex numbers and letP be defined on V ×V byP(x, y) = 〈y, x〉,
the inner product in H. Then the semigroup K1(H) of operators of rank one or less
on H is isomorphic with the Rees matrix semigroup T = M 0(C∗; V, V ;P) under
the map φ on T defined by φ(α, a, b) = α(a ⊗ b) and φ(0) = 0. �

Also, every finite rank operator t on H h as a unique generalized inverse t † (called
the Moore-Penrose inverse of t) such that t t t † and t †t are self-adjoint idempotents
([4], Theorem1.1, Theorem1.4). It is not difficult to prove that that in the above
construction, φ((α, a, b)†) = φ(α, a, b)†

In the semigroup T = M 0(C∗; V, V ;P) constructed above, C∗ is a topological
group with zero in the sense of our definition, since multiplication is continuous
in C and inversion is continuous in C

∗. Also, the set V consisting of exactly one
unit vector from each one-dimensional subspace of the Hilbert space H has the
relative topology induced by the norm topology on H . The map P is continuous,
since the inner product is continuous on H × H . It is also bounded, for if x and
y are in V , then ||x || = ||y|| = 1, so that by the Cauchy-Schwartz inequality,
|〈y, x〉| ≤ ||x || ||y|| = 1. It now follows that T is a topological semigroup with
respect to the topology Tc described above.

Also we have noted that the map φ in the last theorem above is an isomorphism
onto the semigroup K1(H). Hence with respect to the topology Tc on T and the
quotient topology Tφ induced by φ on T , the map φ is a homeomorphism of T onto
K1(H). Hence K1(H) is a topological semigroup with respect to the topology Tφ.
We can show that the t �→ t † is continuous on nonzero operators in K1(H) with
respect to this topology:

Proposition 14 The map t �→ t †, where t † is the Moore-Penrose inverse of t , is
continuous on K1(H) \ {0} with respect to the topology Tφ
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Proof Let t be a nonzero element ofK1(H) and let (si ) be a net inK1(H) converging
to t with respect to the topology Tφ. Then the net (φ−1(si )) converges to φ−1(t)
with respect to the topology Tc; and so by Proposition8, there exists k such that
φ−1(si ) �= 0 for all i ≥ k and φ−1(si ) converges to φ−1(t) in S = C × V × V with
respect to the product topology. Now since φ−1(si ) �= 0 for i ≥ k, there exist λi in
C and (xi ), (yi ) in V such that φ−1(si ) = (λi , xi , yi ) for each i ≥ k. Again, since
φ−1(t) �= 0, there exist α in C and a, b in V such that φ−1(t) = (α, a, b). Then
((λi , xi , yi )) converges to (α, a, b) in S with respect to the product topology, so that
(λi ) converges to α in C and (xi ), (yi ) converges to a, b, respectively, in V . Now
since si = φ(λi , xi , yi ) = λi (xi ⊗ yi ), we have si

† = λ−1(yi ⊗ xi ) and since t =
φ(α, a, b) = α(a ⊗ b), we have t † = α−1(b ⊗ a). Hence φ−1(si

†) = (λ−1
i , yi , xi )

and φ−1(t †) = (α−1, b, a). So,

lim
i≥k

φ−1(si
†) = lim

i≥k
(λ−1

i , yi , xi )

= (lim
i≥k

λ−1
i , lim

i≥k
yi , lim

i≥k
xi )

= (α−1, b, a)

= φ−1(t †)

using the fact that inversion is continuous on nonzero complex numbers. It follows
that (φ−1(si

†)) converges toφ−1(t †) in T with respect toTc and hence (si
†) converges

to t † in K1(H) with respect to Tφ.
Thus for every net (si ) converging to t with respect to Tφ inK1(H), the net (si

†)

converges to t † with respect to Tφ and so the map t �→ t † is continuous with respect
to Tφ. �
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Abstract Using fuzzy points the notions of prime fuzzy ideals, weakly prime fuzzy
ideals, completely prime fuzzy ideals, and weakly completely prime fuzzy ideals of
a po-�-semigroup have been introduced. Some important properties and character-
izations of these ideals have been obtained. The relations among various types of
primeness have also been investigated.
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1 Introduction

Uncertainty is an attribute of information and uncertain data are presented in various
domains. The most appropriate theory for dealing with uncertainties was introduced
by Zadeh [28] in 1965 by defining fuzzy set which has opened up keen insights and
applications in vast range of scientific fields. Rosenfeld [16] pioneered the study of
fuzzy algebraic structures by introducing the notions of fuzzy groups and showed
that many results in groups can be extended in an elementarymanner to develop alge-
braic concepts. After that Kuroki [12, 14] started the study of fuzzy ideal theory in
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semigroups. Xie [26] used the notion of fuzzy points to introduce prime fuzzy ideals
in semigroups. The notion of �-semigroups was introduced by M.K. Sen [22] as a
generalization of semigroups. T.K. Dutta and N.C. Adhikari [5] developed the theory
of �-semigroups by introducing the notion of operator semigroups. �-semigroups
have also been the object of study of many researchers like Chattopadhyay [1, 8],
Chinram et al. [2]. The notion of �-semigroups has been extended to fuzzy setting
by S.K. Sardar and S.K. Majumder [17–19]. They have studied fuzzy ideals, fuzzy
prime ideals, fuzzy semiprime ideals, and fuzzy ideal extensions in �-semigroups
directly as well as via operator semigroups. Sen and Seth [24] introduced the notion
of po-�-semigroups.Among the other papers of po-�-semigroupswe refer to [7, 25].
Kehayopulu has contributed a lot to the ordered semigroups by using fuzzy notion
[9, 10]. In this paper we investigate in po-�-semigroups the validity of various prop-
erties of prime fuzzy ideals of semigroups [26], �-semigroups [18, 21] as well as
of po-semigroups [10, 27]. We study here prime fuzzy ideals, weakly prime fuzzy
ideals, completely prime fuzzy ideals, and weakly completely prime fuzzy ideals in
po-�-semigroups by using the notion of fuzzy points.

It is important to mention here as to why different types of prime ideals arise in
fuzzy setting in contrast with the crisp setting of semigroups or �-semigroups.When
we formulate some fuzzy notions, to check the correctness of the formulation, we
always verify whether the level subset criterion and characteristic function criterion
are satisfied. Some situations are very nice where translations of crisp notions to
fuzzy setting become compatible with the level subset criterion and characteristic
function criterion. But in case of prime fuzzy ideals the situation is not so nice. Just
by analogy with the definition of prime ideal in crisp algebra (cf. Definition 4.1) if
we define prime fuzzy ideal (cf. Definition 4.3) in po-�-semigroups then we see that
level subset criterion does not hold (cf. Example 4.13). In order to make the notion
compatible with the level subset criterion (cf. Theorem 4.18) the notion of weakly
prime fuzzy ideal (cf. Definition 4.17) is introduced.

We organize the paper as follows. In Sect. 2 we recall some preliminary notions
of po-�-semigroups as well as of fuzzy subsets. In Sect. 3 we define fuzzy points and
their composition in a po-�-semigroup and subsequently characterize composition of
two fuzzy points in po-�-semigroups (cf.Theorem 3.2). Also some related properties
of fuzzy points are studied in this section. In Sect. 4 prime fuzzy ideals of po-�-
semigroups are defined. We then obtain various properties of prime fuzzy ideals (cf.
Proposition 4.8, Theorems 4.7, 4.10, Corollary 4.11). An important characterization
of prime fuzzy ideals is also obtained (cf. Theorem 4.15). Weakly prime fuzzy ideals
of �-semigroups are then defined and studied. It is shown that unlike prime fuzzy
ideals they satisfy level subset criterion (cf. Theorem 4.18). Some other important
properties of weakly prime fuzzy ideals are also obtained (cf. Theorem 4.23). In
Sect. 5 we introduce the notion of completely prime fuzzy ideals (cf. Definition 5.1)
and weakly completely prime fuzzy ideals (cf. Definition 5.2) in po-�-semigroups
and study their properties (cf. Theorems 5.3, 5.5–5.7).
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2 Preliminaries

In this section we recall some elementary notions for their use in the sequel.

Definition 2.1 ([23]) Let S = {x, y, z, . . .} and � = {α,β, γ . . .} be two nonempty
sets. Then S is called a �-semigroup if there exists a mapping S × � × S → S,
written as (a,α, b) → aαb satisfying (1) xγy ∈ S, (2) (xβy)γz = xβ(yγz), for
all x, y, z ∈ S,α,β, γ ∈ �.

Remark 2.2 Definition 2.1 is the definition of one-sided �-semigroup. It may be
noted here that in 1981, Sen [22] introduced the notion of both-sided �-semigroups.

Example 2.3 ([22]) Let S be the set of all 2 × 3 matrices over the set of positive
integers and � be the set of all 3 × 2 matrices over same set. Then S is a both-sided
as well as a one-sided �-semigroup with respect to the usual matrix multiplication.

The following example shows that there exists a one-sided �-semigroup which is
not a both-sided �-semigroup.

Example 2.4 ([1]) Let S be a set of all negative rational numbers. Obviously, S is
not a semigroup under usual product of rational numbers. Let � = {− 1

p : p is prime}.
Let a, b, c ∈ S and α,β ∈ �. Now if aαb is equal to the usual product of rational
numbers a,α, b then aαb ∈ S and (aαb)βc = aα(bβc). Hence S is a one-sided
�-semigroup. It is also clear that it is not a both-sided �-semigroup.

Definition 2.5 ([24]) A �-semigroup S is said to be a po-�-semigroup (partially
ordered �-semigroup) if (1) (S,≤) and (�,≤) are posets, (2) a ≤ b in S implies
that aαc ≤ bαc, cαa ≤ cαb in S and α ≤ β in � implies aαb ≤ aβb in S for all
a, b, c ∈ S and for all α,β ∈ �.

Example 2.6 ([24]) Let S be the set of all isotonemappings from a poset P to another
poset Q and � be the set of all isotone mappings from a poset Q to another poset
P . Let f, g ∈ S and α ∈ �. Then f αg denotes the usual mapping composition of
f,α and g. The relation ≤ on S defined by f ≤ g if and only if f (a) ≤ g(a) for all
a ∈ P is a partial order on S. In a similar fashion � can be made into a poset. It can
be verified that S is a po-�-semigroup.

Remark 2.7 Definition 2.5 is the definition of one-sided po-�-semigroups. It may
be noted that the definition of both-sided po-�-semigroups [7] was introduced by
T.K. Dutta and N.C. Adhikari. Throughout this paper unless otherwise mentioned S,
a po-�-semigroup, is considered to be one sided.

Definition 2.8 A po-�-semigroup S is called a commutative po-�-semigroup if
aαb = bαa, for all a, b ∈ S and α ∈ �.

Definition 2.9 ([13]) Let S be a po-�-semigroup. A nonempty subset I of S is said
to be a right ideal (left ideal) of S if (1) I�S ⊆ I (resp. S� I ⊆ I ), (2) a ∈ I and
b ≤ a imply b ∈ I. I is said to be an ideal of S if it is a right ideal as well as a left
ideal of S.
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Definition 2.10 ([13]) Let A be a subset of a po-� semigroup S. Then we define
(A] := {x ∈ S : x ≤ y for some y ∈ A}. If A is a singleton {a}, then for simplification
we write (a] instead of ({a}].
Proposition 2.11 ([11]) Let S be a po-�-semigroup, A and B be two nonempty
subsets of S. Then (A]�(B] ⊆ (A�B].

Moreover, if A and B are any two ideals (left, right or both sided) of S, then

(1) (A] = A, (B] = B,

(2) (A ∩ B] = (A] ∩ (B], and
(3) (A ∪ B] = (A] ∪ (B].
Definition 2.12 ([28]) A fuzzy subset μ of a nonempty set X is a function μ : X →
[0, 1].
Definition 2.13 ([4]) Let μ be a fuzzy subset of a nonempty set X. Then the set
μt = {x ∈ X : μ(x) ≥ t} for t ∈ [0, 1], is called the level subset or t-level subset of
μ.

Definition 2.14 ([20]) Let f and g be two fuzzy subsets of a po-�-semigroup S.

Then

( f ◦g)(x) =
{

sup
x≤yγz

{min{ f (y), g(z)}} if there exist y, z ∈ S, γ ∈ � with x ≤ yγz,

0 otherwise.

Definition 2.15 ([20]) A nonempty fuzzy subset f of a po-�-semigroup S is called
a fuzzy left (right) ideal of S if

(1) f (xαy) ≥ f (y) ( f (xαy) ≥ f (x)), for all x, y ∈ S, α ∈ �,
(2) b ≤ a ⇒ f (b) ≥ f (a), for all a, b ∈ S.

f is called a fuzzy ideal if f is both fuzzy left ideal and fuzzy right ideal.

3 Some Results of Fuzzy Points in Po-�-Semigroups

Definition 3.1 ([15]) Let S be a po-�-semigroup of S. Let a ∈ S and t ∈ (0, 1]. We
define a fuzzy subset at of S as follows:

at (x) =
{

t if x ≤ a,

0 otherwise

for all x ∈ S. We call at a fuzzy point or fuzzy singleton of S.

Theorem 3.2 ([15]) Let at and br be two fuzzy points of a po-�-semigroup S. Then

at ◦ br = ∪
γ∈�

(aγb)t∧r .
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Remark 3.3 For any fuzzy subset f of a po-�-semigroup S, f = ∪
at ⊆ f

at .

The following lemma follows easily.

Lemma 3.4 Let S be a po-�-semigroup, f, g, and h be fuzzy subsets of S. Then
f ◦ (g ∪ h) = ( f ◦ g) ∪ ( f ◦ h).

Definition 3.5 Let S be a po-�-semigroup and at be a fuzzy point of S. Then the
fuzzy ideal generated by at denoted by < at >, is defined to be the smallest fuzzy
ideal containing at in S.

Proposition 3.6 Let S be a po-�-semigroup and at be a fuzzy point of S. Then the
fuzzy ideal < at > generated by at is given by

< at > (x) =
{

t, if x ∈< a >,

0, otherwise,

for any x ∈ S, where < a > is the ideal of S generated by a.

Proof Let us consider a fuzzy subset g of S defined by

g(x) =
{

t, if x ∈< a >,

0, otherwise,

for any x ∈ S, where < a > is the ideal of S generated by a. Let x, y ∈ S and
γ ∈ �. If x, y ∈< a >, then xγy ∈< a >. So g(xγy) = t = g(x) = g(y).

Again if x, y �∈< a > but xγy ∈< a >, then g(xγy) = t ≥ 0 = g(x) = g(y).

If x, y �∈< a > and xγy �∈< a >, then g(xγy) = 0 = g(x) = g(y). Again if
x ∈< a > and y �∈< a >, then xγy ∈< a >. So g(xγy) = t = g(x) ≥ 0 = g(y).

Let x ≤ y in S. If y ∈< a >, then x ∈< a > whence g(x) = t = g(y). Again if
y �∈< a >, then g(x) ≥ 0 = g(y). So g is a fuzzy ideal.

Let f be a fuzzy ideal of S such that at ⊆ f. Then f (a) ≥ at (a) = t. Now
let z ∈< a >= ({a} ∪ a�S ∪ S�a ∪ S�a�S]. If z ≤ a, then f (z) ≥ f (a) ≥ t.
If z ≤ aαx for some x ∈ S and α ∈ �, then f (z) ≥ f (aαx) ≥ f (a) ≥ t (cf.
Definition 2.15). Similarly, we can show that f (z) ≥ t if z ≤ yβa or z ≤ xαaβy
for some x, y ∈ S and α,β ∈ �. It follows that g ⊆ f. Since g(x) ≥ at (x), for all
x ∈ S, g contains at . This completes the proof. �

Remark 3.7 From the above result, we notice that < at >= tC <a> where C <a>

is the characteristic function of < a >.

Proposition 3.8 Let S be a po-�-semigroup and at be a fuzzy point of S. Then

S ◦ at ◦ S(x) =
{

t, if x ∈ (S�a�S],
0, otherwise,

for all x ∈ S. Moreover, S ◦ at ◦ S is a fuzzy ideal of S.
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Proof Let x ∈ S. If x � wαzβy for any w, z, y ∈ S and α,β ∈ �, then x �∈
(S�a�S] and S ◦ at ◦ S(x) = 0. Now let x ≤ wαzβy for some w, z, y ∈ S and
α,β ∈ �. Then

S ◦ at ◦ S(x) = ∨
x≤pγq

{S ◦ at (p) ∧ S(q)}
= ∨

x≤pγq
{S ◦ at (p)}

= ∨
x≤sδrγq

{S(s) ∧ at (r)}
= ∨

x≤sδrγq
at (r).

If there exists one r = a, then at (r) = t whence S ◦ at ◦ S(x) = t . Thus if
x ∈ (S�a�S], then S ◦ at ◦ S(x) = t , otherwise S ◦ at ◦ S(x) = 0.

In order to prove the last part we see S◦(S◦at ◦S) ⊆ S◦at ◦S and (S◦at ◦S)◦S ⊆
S ◦ at ◦ S. Let x ≤ y in S. If x ∈ (S�a�S], then S ◦ at ◦ S(x) = t ≥ S ◦ at ◦ S(y). If
x �∈ (S�a�S], then y �∈ (S�a�S] whence S ◦ at ◦ S(x) = 0 = S ◦ at ◦ S(y). Hence
S ◦ at ◦ S is a fuzzy ideal of S. �

The following result is an easy consequence of the above proposition.

Corollary 3.9 Let S be a po-�-semigroup and at be a fuzzy point of S. Then

S ◦ at (x) =
{

t, if x ∈ (S�a],
0, otherwise,

and

at ◦ S(x) =
{

t, if x ∈ (a�S],
0, otherwise,

for all x ∈ S. Moreover, S ◦ at is a fuzzy left ideal of S and at ◦ S is a fuzzy right
ideal of S.

Remark 3.10 From Proposition 3.8 and Corollary 3.9 we notice that S ◦ at ◦ S =
tC(S�a�S], S ◦ at = tC(S�a], and at ◦ S = tC(a�S].

Proposition 3.11 Let S be a po-�-semigroup and at be a fuzzy point of S. Then
< at >= at ∪ at ◦ S ∪ S ◦ at ∪ S ◦ at ◦ S.

Proof By Proposition 3.6, for any x ∈ S,

< at > (x) =
{

t, if x ∈ < a >,

0, otherwise.

Let x ∈ S. If x �∈< a >, then < at > (x) = 0. In view of Proposition 2.11,
< a > = ({a} ∪ S�a ∪ a�S ∪ S�a�S] = ({a}] ∪ (S�a] ∪ (a�S] ∪ (S�a�S].
So x �∈ (S�a�S] whence S ◦ at ◦ S(x) = 0; x �∈ (S�a] whence S ◦ at (x) =
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0; x �∈ (a�S] whence at ◦ S(x) = 0; and x � a whence at (x) = 0. Hence
at ∪ at ◦ S ∪ S ◦ at ∪ S ◦ at ◦ S(x) = 0. If x ∈< a >, then < at > (x) = t.
Again in view of Proposition 2.11, < a > = ({a} ∪ S�a ∪ a�S ∪ S�a�S] = ({a}]
∪ (S�a] ∪ (a�S] ∪ (S�a�S]. Now x ∈ (S�a�S] whence S ◦ at ◦ S(x) = t ;
x ∈ (S�a] whence S ◦ at (x) = t ; x ∈ (a�S] whence at ◦ S(x) = t ; and x ≤ a
whence at (x) = t. Hence at ∪ at ◦ S ∪ S ◦ at ∪ S ◦ at ◦ S(x) = t. Consequently,
< at >= at ∪ at ◦ S ∪ S ◦ at ∪ S ◦ at ◦ S. �

We omit the proof of the following Corollary since it is similar to that of Corollary
1 of [21].

Corollary 3.12 Let S be a po-�-semigroup and at be a fuzzy point of S. Then
< at >3 ⊆ S ◦ at ◦ S.

Though the following proposition is easy to obtain, it is also useful for the devel-
opment of the paper.

Proposition 3.13 Let S be a po-�-semigroup, A and B be subset of S and CA be
the characteristic function of A. Then for any t, r ∈ (0, 1], the following statements
hold.

(i) tCA ◦ rCB = (t ∧ r)C(A�B].
(ii) tCA ∩ tCB = tCA∩B .

(iii) tC(A] = ∪
a∈A

at .

(iv) S ◦ tCA = tC(S�A].
(v) A is an ideal (right ideal, left ideal) of S if and only if tCA is a fuzzy ideal (fuzzy

right ideal, fuzzy left ideal) of S.

4 Prime Fuzzy Ideals and Weakly Prime Fuzzy Ideals
in Po-�-Semigroups

In this section, we deduce various properties and characterizations of prime fuzzy
ideals and weakly prime fuzzy ideals of po-�-semigroups.

Definition 4.1 ([3]) Let S be a po-�-semigroup. Then an ideal I ( �=S) of S is called
prime if for any two ideals A and B of S, A�B ⊆ I implies A ⊆ I or B ⊆ I.

Definition 4.2 ([3]) Let S be a po-�-semigroup. Then an ideal I ( �=S) of S is called
completely prime if for any a, b ∈ S, a�b ⊆ I implies a ∈ I or b ∈ I.

Definition 4.3 Let S be a po-�-semigroup. Then a fuzzy ideal f of S is called prime
fuzzy ideal if f is a nonconstant function and for any two fuzzy ideals g and h of S,
g ◦ h ⊆ f implies g ⊆ f or h ⊆ f.
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Example 4.4 Let S = Z
−
0 and � = Z

−
0 , where Z

−
0 denotes the set of all negative

integers with 0. Then S is a �-semigroup where aγb denotes the usual multiplication
of integers a, γ, b where a, b ∈ S and γ ∈ �. Again with respect to usual ≤ of Z, S
becomes a po-�-semigroup. Let p be a prime number. Now we define a fuzzy subset
f on S by

f (x) =
{

1, for x ∈ (pZ
−
0 ],

0.6, otherwise.

Then f is a prime fuzzy ideal of S.

Example 4.5 Let S = {a, b, c}. Let � = {α,β} be the nonempty set of binary
operations on S with the following Cayley tables.

α a b c β a b c
a a b b a b b b
b b b b b b b b
c c c c c c c c

By a routine verification, we see that S is a po-�-semigroup where the partial orders
on S and � are given by c ≤ b ≤ a and β ≤ α, respectively. Now we define a fuzzy
subset μ on S by μ(a) = 0.5, μ(b) = 1 = μ(c). It is easy to observe that μ is a prime
fuzzy ideal of S.

Though the proof of the following theorem is straightforward, it also characterizes
a prime fuzzy ideal.

Theorem 4.6 Let S be a commutative po-�-semigroup and f be a fuzzy ideal of S.
Then f is prime fuzzy ideal if and only if for any fuzzy subsets g and h of S, g◦h ⊆ f
implies g ⊆ f or h ⊆ f.

Theorem 4.7 Let S be a po-�-semigroup and I be an ideal of S. Then I is a prime
ideal of S if and only if CI , the characteristic function of I , is a prime fuzzy ideal of
S.

Proof Let I be a prime ideal of S. Then CI is a fuzzy ideal of S (cf. Proposition
3.13). Now let f and g be two fuzzy ideals of S such that f ◦ g ⊆ CI and f � CI .
Then there exists a fuzzy point xt ⊆ f (t > 0) such that xt � CI . Let yr ⊆ g
(r > 0). Then < xt > ◦ < yr >⊆ f ◦ g ⊆ CI . Again for all z ∈ S, in view of
Propositions 3.6 and 3.13, we obtain

< xt > ◦ < yr > (z) =
{

t ∧ r, if z ∈ (< x > � < y >],
0, otherwise.

Hence (< x > � < y >] ⊆ I. Using Proposition 2.11 we see that (< x >]�(<

y >] ⊆ (< x > � < y >] whence (< x >]�(< y >] ⊆ I . This together with
the hypothesis implies that (< x >] ⊆ I or (< y >] ⊆ I (cf. Definition 4.1). As
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< x >⊆ (< x >] and < y >⊆ (< y >], we have < x >⊆ I or < y >⊆ I . Since
xt � CI , t = xt (x) > CI (x). So CI (x) = 0 whence x �∈ I. Hence < x > � I .
Consequently, < y >⊆ I. Then yr ⊆ CI and so g ⊆ CI . Hence CI is a prime fuzzy
ideal of S.

Conversely, suppose CI is a prime fuzzy ideal of S. Then CI is a fuzzy ideal of
S which together with Proposition 3.13 implies that I is an ideal of S. Let A and B
be two fuzzy ideals of S such that A�B ⊆ I. Then (A�B] ⊆ I. Again CA, and CB

are fuzzy ideals of S and CA ◦ CB = C(A�B] ⊆ CI (cf. Proposition 3.13). So by
hypothesis, CA ⊆ CI or CB ⊆ CI . Hence A ⊆ I or B ⊆ I. Consequently, I is a
prime ideal of S. �

Proposition 4.8 Let S be a po-�-semigroup and f be a prime fuzzy ideal of S. Then
|I m f | = 2.

Proof By Definition 4.3, f is a nonconstant fuzzy ideal. So |I m f | ≥ 2. Suppose
|I m f | > 2. Then there exist x, y, z ∈ S such that f (x), f (y), f (z) are distinct.
Let us assume, without loss of generality, f (x) < f (y) < f (z). Then there exist
r, t ∈ (0, 1) such that f (x) < r < f (y) < t < f (z) · · · (1). Then for all u ∈ S,

< xr > ◦ < yt > (u) =
{

r ∧ t, if u ∈ (< x > � < y >],
0, otherwise.

Let u ∈ (< x > � < y >]. Then u ≤ aγb where a ∈< x >, b ∈< y > and γ ∈ �.
Since f is a fuzzy ideal of S, f (u) ≥ f (aγb) ≥ f (x) ∨ f (y) > r ∧ t. Therefore
< xr > ◦ < yt >⊆ f which, by Definition 4.3, implies that < xr >⊆ f or
< yt >⊆ f . Suppose< xr >⊆ f. Then f (x) ≥ < xr > (x) = r which contradicts
(1). Similarly, < yt >⊆ f contradicts (1). Hence |I m f | = 2. �

Theorem 4.9 Let S be a po-�-semigroup and f be a prime fuzzy ideal of S. Then
there exists x0 ∈ S such that f (x0) = 1.

Proof By Proposition 4.8, we have |I m f | = 2. Suppose I m f = {t, s} such that
t < s. Let if possible f (x) < 1, for all x ∈ S. Then t < s < 1. Let f (x) = t and
f (y) = s for some x, y ∈ S. Then f (x) = t < s = f (y) < 1. Now we choose
t1, t2 ∈ (0, 1) such that f (x) < t1 < f (y) < t2 < 1. Then by the similar argument
as applied in the proof of Proposition 4.8, we obtain < xt1 > ◦ < yt2 >⊆ f. Since
f is a prime fuzzy ideal of S, < xt1 >⊆ f or < yt2 >⊆ f whence f (x) ≥ t1 or
f (y) ≥ t2. This contradicts the choices of t1 and t2. Hence there exists an x0 ∈ S
such that f (x0) = 1. �

Theorem 4.10 Let S be a po-�-semigroup and f be a prime fuzzy ideal of S. Then
each level subset ft ( �=S), t ∈ (0, 1], if nonempty, is a prime ideal of S.

Proof Since f is a fuzzy ideal, each level subset ft , t ∈ (0, 1], if nonempty, is an
ideal of S (cf. Theorem 3.5 [20]). Let t ∈ (0, 1] be such that ft ( �=S) is nonempty.
Now let I, J be two ideals of S such that I� J ⊆ ft . Since ft is an ideal of S,
(I� J ] ⊆ ft . Then tC(I� J ] ⊆ f. By Proposition 3.13(v), g := tCI and h := tCJ
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are fuzzy ideals of S. Since g ◦ h = tCI ◦ tCJ = tC(I� J ] (cf. Proposition 3.13(i)),
g ◦ h ⊆ f. Since f is a prime fuzzy ideal, g ⊆ f or h ⊆ f. Hence either tCI ⊆ f or
tCJ ⊆ f whence we obtain I ⊆ ft or J ⊆ ft . Hence ft is a prime ideal of S. �

As a consequence of Theorems 4.9 and 4.10, we obtain the following result.

Corollary 4.11 If f is a prime fuzzy ideal of a po-�-semigroup S, then the level
subset f1 is a prime ideal of S.

Remark 4.12 The converse of Theorem 4.10 is not true which is illustrated in the
following example.

Example 4.13 Let S be a po-�-semigroup and A be a prime ideal of S. Let

f (x) =
{

t, if x ∈ A,

0, otherwise.

Then f is a fuzzy ideal of S. Here ft1 = A, where 0 < t1 ≤ t . Hence each of
nonempty level subsets of f is a prime ideal of S. But if 0 < t < 1, then f is not a
prime fuzzy ideal of S (cf. Theorem 4.9).

Lemma 4.14 Let S be a po-�-semigroup. Then a fuzzy subset f of S satisfying (i)
and (i i),

(i) |I m f | = 2,
(ii) f1 is an ideal of S,

is a fuzzy ideal of S.

The following result also characterizes a prime fuzzy ideal of a po-�-semigroup.

Theorem 4.15 Let S be a po-�-semigroup. Then a fuzzy subset f of S is a prime
fuzzy ideal of S if and only if f satisfies the following conditions:

(i) |I m f | = 2.
(ii) f1 is a prime ideal of S.

Proof The direct implication follows easily from Proposition 4.8, Theorem 4.9 and
Corollary 4.11.

To prove the converse, we first observe that f is a fuzzy ideal of S (cf. Lemma
4.14). Then let g and h be two fuzzy ideals of S such that g ◦ h ⊆ f . If g �

f and h � f , then there exist x, y ∈ S such that g(x) > f (x) and h(y) >

f (y). Thus x, y �∈ f1. We claim that x�S�y � f1. To establish the claim we
suppose the contrary. Then (S�x�S�S�y�S] ⊆ f1 (as f1 is an ideal) and so
(S�x�S]�(S�y�S] ⊆ (S�x�S�S�y�S] ⊆ f1 (cf. Proposition 2.11) whence
(S�x�S] ⊆ f1 or (S�y�S] ⊆ f1 (as f1 is a prime ideal). Let us assume without
loss of generality (S�x�S] ⊆ f1. Then < x >3 ⊆ (S�x�S] ⊆ f1 which implies
that x ∈< x >⊆ f1, which is a contradiction. Hence x�S�y � f1. Then there
exist s ∈ S, α,β ∈ � such that xαsβy �∈ f1 which means f (xαsβy) < 1. So
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f (xαsβy) = t = f (x) = f (y), where I m f = {t, 1}. But by using Definitions 2.14
and 2.15, we obtain

(g ◦ h)(xαsβy) ≥ g(x) ∧ h(sβy)

≥ g(x) ∧ h(y)

> f (x) ∧ f (y)

= t.

Hence g ◦ h � f which is a contradiction. Hence f is a prime fuzzy ideal of S. �

Corollary 4.16 Let S be a po-�-semigroup and f be a prime fuzzy ideal of S. Then
there exists a prime fuzzy ideal g of S such that f is properly contained in g.

Proof ByTheorem4.15, there exists x0 ∈ S such that f (x0) = 1 and I m( f ) = {t, 1}
for some t ∈ [0, 1). Let g be a fuzzy subset of S defined by g(x) = 1, if x ∈ f1 and
g(x) = r , if x �∈ f1, where t < r < 1. Then by Theorem 4.15, g is a prime fuzzy
ideal and f � g. �

In Theorem 4.10we have shown that every nonempty level subset of a prime fuzzy
ideal is a prime ideal. But Example 4.13 shows that the converse need not be true.
In order to make the level subset criterion to hold, a new type of fuzzy primeness in
ideals of a po-�-semigroup can be defined what is called weakly prime fuzzy ideal.

Definition 4.17 Let S be a po-�-semigroup. A nonconstant fuzzy ideal f of S is
called a weakly prime fuzzy ideal of S if for all ideals A and B of S and for all
t ∈ (0, 1], tCA ◦ tCB ⊆ f implies tCA ⊆ f or tCB ⊆ f.

Theorem 4.18 Let S be a po-�-semigroup and f be a fuzzy ideal of S. Then f is a
weakly prime fuzzy ideal of S if and only if each level subset ft ( �= S), t ∈ (0, 1], is
a prime ideal of S for ft �= ∅.

Proof Let f be a weakly prime fuzzy ideal of S and t ∈ (0, 1] such that ft �= ∅ and
ft �= S. Then f is a fuzzy ideal of S. So ft is an ideal of S (cf. Theorem 3.5 [20]). Let
A and B be ideals of S with A�B ⊆ ft . Then ft being an ideal of S, (A�B] ⊆ ft .
Therefore, tC(A�B] ⊆ f which means tCA ◦ tCB ⊆ f (cf. Proposition 3.13). Hence
by hypothesis, tCA ⊆ f or tCB ⊆ f (cf. Definition 4.17). Hence either A ⊆ ft or
B ⊆ ft . Consequently, ft is a prime ideal of S.

Conversely, suppose each ft ( �=S) is a prime ideal of S, for all t ∈ (0, 1] with
ft �= ∅. Let A and B be ideals of S such that tCA ◦ tCB ⊆ f where t ∈ (0, 1].
Then tC(A�B] ⊆ f (cf. Proposition 3.13) whence (A�B] ⊆ ft . Now by Proposition
2.11, (A]�(B] ⊆ (A�B] ⊆ ft whence A�B ⊆ ft (as A, B are ideals). Hence by
hypothesis either A ⊆ ft or B ⊆ ft whence tCA ⊆ f or tCB ⊆ f. Hence f is a
weakly prime fuzzy ideal of S. �

As an easy consequence of Theorems 4.10 and 4.18, we obtain the following
corollary.
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Corollary 4.19 In a po-�-semigroup S, every prime fuzzy ideal is a weakly prime
fuzzy ideal.

That the converse of the above corollary is not always true is illustrated in the
following examples.

Example 4.20 The fuzzy ideal of Example 4.13 is a weakly prime fuzzy ideal (cf.
Theorem 4.18) but not a prime fuzzy ideal.

Example 4.21 Let S = {0, a, b, c}. Let � = {α,β, γ} be the nonempty set of binary
operations on S with the following Cayley tables.

α 0 a b c β 0 a b c γ 0 a b c
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 b a 0 0 0 b a 0 0 0 0
b 0 0 0 b b 0 0 0 b b 0 0 0 0
c b b b c c b b b b c 0 0 0 0

By a routine but tedious verification, we see that S is a po-�-semigroup where the
partial orders on S and � are given by 0 ≤ a ≤ b ≤ c and γ ≤ β ≤ α, respectively.
Now we define a fuzzy subset f on S by f (0) = f (a) = 0.8, f (b) = 0.3, and
f (c) = 0. It can be checked that f is a weakly prime fuzzy ideal of S. But f is not
a prime fuzzy ideal of S (cf. Theorem 4.15).

Remark 4.22 The above corollary and the example together shows that the notion
of weakly prime fuzzy ideal generalizes the notion of prime fuzzy ideal.

The following theorem characterizes weakly prime fuzzy ideals of po-�-
semigroups.

Theorem 4.23 Let S be a po-�-semigroup and f be a fuzzy ideal of S. Then the
following are equivalent.

(i) f is a weakly prime fuzzy ideal of S.

(ii) For any x, y ∈ S and r ∈ (0, 1], if xr ◦ S ◦ yr ⊆ f , then xr ⊆ f or yr ⊆ f.
(iii) For any x, y ∈ S and r ∈ (0, 1], if < xr > ◦ < yr >⊆ f , then xr ⊆ f or

yr ⊆ f.
(iv) If A and B are right ideals of S such that tCA ◦ tCB ⊆ f , then tCA ⊆ f or

tCB ⊆ f.
(v) If A and B are left ideals of S such that tCA ◦ tCB ⊆ f , then tCA ⊆ f or

tCB ⊆ f.
(vi) If A is a right ideal of S and B is a left ideal of S such that tCA ◦ tCB ⊆ f ,

then tCA ⊆ f or tCB ⊆ f.

Proof (i) ⇒ (ii).
Let f be a weakly prime fuzzy ideal of S. Let x, y ∈ S and r ∈ (0, 1] be

such that xr ◦ S ◦ yr ⊆ f. Then by Proposition 3.8, rC(S�x�S] ◦ rC(S�y�S] =
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(S ◦ xr ◦ S) ◦ (S ◦ yr ◦ S) ⊆ S ◦ (xr ◦ S ◦ yr ) ◦ S ⊆ S ◦ f ◦ S ⊆ f . Hence by
hypothesis, rC(S�x�S] ⊆ f or rC(S�y�S] ⊆ f whence S◦xr ◦S ⊆ f or S◦yr ◦S ⊆ f.
If S ◦ xr ◦ S ⊆ f , then < xr >3 ⊆ f (cf. Corollary 3.12). Hence (rC<x>)3 ⊆ f .
Since f is weakly prime fuzzy ideal, this implies that < xr >⊆ f whence xr ⊆ f .
Similarly, if S ◦ yr ◦ S ⊆ f , then yr ⊆ f .
(ii) ⇒ (iii).

Let x, y ∈ S and r ∈ (0, 1] be such that < xr > ◦ < yr >⊆ f . Then since
xr ◦ S ⊆< xr > and yr ⊆< yr >, xr ◦ S ◦ yr ⊆ f. Hence by (ii), xr ⊆ f or yr ⊆ f.
(iii) ⇒ (iv).

Let A, B be two right ideals of S such that tCA ◦ tCB ⊆ f and tCA � f . Then
there exists a ∈ A such that at � f. Now for any b ∈ B, by Proposition 3.13
and hypothesis, we obtain < at > ◦ < bt >= tC <a> ◦ tC <b> = tC( <a>� <b>]
⊆ tC((A�B)∪(S�A�B)] = tC(A�B]∪(S�A�B] = tC(A�B] ∪ tC(S�A�B] = tC(A�B] ∪
tC(S�(A]�(B]] ⊆ tC(A�B] ∪ tC(S�(A�B]] = (tCA ◦ tCB) ∪ (S ◦ tC(A�B]) = (tCA ◦
tCB) ∪ (S ◦ tCA ◦ tCB) (cf. Proposition 3.13) ⊆ f ∪ (S ◦ f ) ⊆ f. Hence by (iii),
bt ⊆ f . Consequently, tCB ⊆ f.
(iii) ⇒ (vi).

Let A be a right ideal and B be a left ideal of S such that tCA ◦ tCB ⊆ f and
tCA � f . Then there exists a ∈ A such that at � f.Now for any b ∈ B, < at > ◦ <

bt >= tC <a>◦tC <b> = tC( <a>� <b>] ⊆ tC((A�B)∪(A�B�S)∪(S�A�B)∪(S�A�B�S)]
= tC(A�B]∪(A�B�S]∪(S�A�B]∪(S�A�B�S] = tC(A�B] ∪ tC(A�B�S] ∪ tC(S�A�B] ∪
tC(S�A�B�S] = tC(A�B] ∪ tC((A]�(B]�S] ∪ tC(S�(A]�(B]] ∪ tC(S�(A]�(B]�S] ⊆
tC(A�B] ∪ tC((A�B]�S] ∪ tC(S�(A�B]] ∪ tC(S�(A�B]�S] = (tCA ◦ tCB) ∪ (tCA ◦
tCB ◦ S)∪ (S ◦ tCA ◦ tCB)∪ (S ◦ tCA ◦ tCB ◦ S) ⊆ f ∪ ( f ◦ S)∪ (S ◦ f )∪ (S ◦ f ◦ S)

⊆ f . Hence by (iii), bt ⊆ f . Consequently, tCB ⊆ f.
(iv) ⇒ (i), (v) ⇒ (i), (vi) ⇒ (i) are obvious and (iii) ⇒ (v) is similar to

(iii) ⇒ (iv). �

5 Completely Prime and Weakly Completely Prime Fuzzy
Ideals in Po-�-Semigroups

In this section, the notion of completely prime ideals of po-�-semigroups has been
generalized in fuzzy setting.

Definition 5.1 Let S be a po-�-semigroup.Anonconstant fuzzy ideal f of S is called
a completely prime fuzzy ideal if for any two fuzzy points xt , yr of S (t, r ∈ (0, 1]),
xt ◦ yr ⊆ f implies that xt ⊆ f or yr ⊆ f.

Definition 5.2 Let S be a po-�-semigroup. A nonconstant fuzzy ideal f of S is
called a weakly completely prime fuzzy ideal if for any fuzzy points xt , yt of S
(t ∈ (0, 1]), xt ◦ yt ⊆ f implies that xt ⊆ f or yt ⊆ f.
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Theorem 5.3 Let S be a po-�-semigroup and f be a fuzzy ideal of S. Then f
is completely prime fuzzy ideal if and only if for any fuzzy subsets f and g of S,
g ◦ h ⊆ f implies g ⊆ f or h ⊆ f.

Proof Let f be a completely prime fuzzy ideal and g, h be two fuzzy subsets such
that g ◦ h ⊆ f and g � f . Then there exists an xt ⊆ g such that xt � f. Since
g ◦ h ⊆ f, xt ◦ yr ⊆ f , for all yr ⊆ h. So yr ⊆ f , for all yr ⊆ h. Hence h ⊆ f.

The converse follows easily. �

Definitions 5.1, 5.2 and Theorems 5.3 and 4.6 together give rise to the following
result.

Corollary 5.4 Let S be a po-�-semigroup and f be a completely prime fuzzy ideal
of S. Then f is a prime fuzzy ideal and a weakly completely prime fuzzy ideal of
S. Further if S is commutative, then f is a prime fuzzy ideal if and only if f is a
completely prime fuzzy ideal.

The following theorem characterizes a completely prime fuzzy ideal.

Theorem 5.5 Let S be a po-�-semigroup and f be a fuzzy subset of S. Then f is a
completely prime fuzzy ideal of S if and only if f satisfies the following conditions:

(1) |I m f | = 2.
(2) f1 is a completely prime ideal of S.

Proof Let f be a completely prime fuzzy ideal of S. Then by Corollary 5.4, f is a
prime fuzzy ideal of S. So by Theorem 4.15, f1 is a prime ideal and |I m f | = 2. Let
x, y ∈ S such that x�y ∈ f1. Then f (xγy) = 1, for all γ ∈ �. So the fuzzy point
(xγy)1 ⊆ f , for all γ ∈ � whence ∪

γ∈�
(xγy)1 ⊆ f . Therefore x1 ◦ y1 ⊆ f (cf.

Theorem 3.2). Since f is a completely prime fuzzy ideal, x1 ⊆ f or y1 ⊆ f whence
x ∈ f1 or y ∈ f1. Hence f1 is a completely prime ideal of S.

Conversely, suppose the given conditions hold, i.e., I m( f ) = {t, 1} (t < 1) and
f1 is a completely prime ideal. Then f1 is a prime ideal of S. So by Theorem 4.15,
f is a prime fuzzy ideal. Hence f is a nonconstant fuzzy ideal of S. Let xr and ys

(r, s > 0) be two fuzzy points of S such that xr ◦ ys ⊆ f . If possible let xr � f
and ys � f , then f (x) < r and f (y) < s. So f (x) = f (y) = t . Thus x, y �∈ f1,
which implies x�y � f1 as f1 is completely prime. So there exists γ ∈ � such
that xγy �∈ f1 whence f (xγy) = t . Now (xr ◦ ys)(xγy) = ( ∪

β∈�
(xβy)r∧s)(xγy) =

r ∧ s > t = f (xγy). This is a contradiction to xr ◦ ys ⊆ f . Hence f is a completely
prime fuzzy ideal of S. �

The following theorem characterizes a weakly completely prime fuzzy ideal.

Theorem 5.6 Let S be a po-�-semigroup and f be a fuzzy ideal of S. Then f is
weakly completely prime fuzzy ideal if and only if inf

γ∈�
f (xγy) = max{ f (x), f (y)},

for all x, y ∈ S.
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Proof Let f be a weakly completely prime fuzzy ideal and x, y ∈ S. Since f
is a fuzzy ideal, f (xγy) ≥ max{ f (x), f (y)}, for all γ ∈ �. So inf

γ∈�
f (xγy) ≥

max{ f (x), f (y)}. Now let inf
γ∈�

f (xγy) = t where t ∈ [0, 1]. If t = 0, then

inf
γ∈�

f (xγy) ≤ max{ f (x), f (y)}. Otherwise, f (xγy) ≥ t , for all γ ∈ �, i.e.,

(xγy)t ⊆ f , for all γ ∈ �. So ∪
γ∈�

(xγy)t ⊆ f which means xt ◦ yt ⊆ f

(cf. Theorem 3.2). Since f is a weakly completely prime fuzzy ideal, xt ⊆ f or
yt ⊆ f , i.e., f (x) ≥ t or f (y) ≥ t . So max{ f (x), f (y)} ≥ t = inf

γ∈�
f (xγy). Hence

inf
γ∈�

f (xγy) = max{ f (x), f (y)}.
Conversely, suppose the condition holds, let xt and yt be two fuzzy points of S

such that xt ◦ yt ⊆ f where t ∈ (0, 1]. Then ∪
γ∈�

(xγy)t ⊆ f (cf. Theorem 3.2),

i.e., (xγy)t ⊆ f , for all γ ∈ �, i.e., f (xγy) ≥ t , for all γ ∈ � which implies
inf
γ∈�

f (xγy) ≥ t . So by the hypothesis max{ f (x), f (y)} ≥ t. Then f (x) ≥ t or

f (y) ≥ t , i.e., xt ⊆ f or yt ⊆ f . Hence f is a weakly completely prime fuzzy ideal
of S. �

Theorem 5.7 Let S be a po-�-semigroup and f be a fuzzy ideal of S. Then f is
weakly completely prime fuzzy ideal if and only if each ft , t ∈ (0, 1], is a completely
prime ideal of S for ft �= ∅.

Proof Let f be a weakly completely prime fuzzy ideal of S, x, y ∈ S and t ∈ (0, 1]
such that ft �= ∅. Let x�y ⊆ ft . Then f (xγy) ≥ t , for all γ ∈ � which means
inf
γ∈�

f (xγy) ≥ t. Somax{ f (x), f (y)} ≥ t (cf. Theorem 5.6) which implies f (x) ≥ t

or f (y) ≥ t , i.e., x ∈ ft or y ∈ ft . Hence ft is a completely prime ideal of S.
Conversely, suppose each ft , t ∈ (0, 1], is a completely prime ideal of S for

ft �= ∅. Let x, y ∈ S. Since f is a fuzzy ideal, f (xγy) ≥ max{ f (x), f (y)}, for
all γ ∈ �. So inf

γ∈�
f (xγy) ≥ max{ f (x), f (y)}. Now let inf

γ∈�
f (xγy) = t where

t ∈ [0, 1]. If t = 0, then inf
γ∈�

f (xγy) ≤ max{ f (x), f (y)}. Otherwise, f (xγy) ≥
t , for all γ ∈ �, i.e., xγy ∈ ft , for all γ ∈ �, i.e., x�y ∈ ft . Since ft is a
completely prime fuzzy ideal, x ∈ ft or y ∈ ft , i.e., f (x) ≥ t or f (y) ≥ t .
So max{ f (x), f (y)} ≥ t = inf

γ∈�
f (xγy). Hence inf

γ∈�
f (xγy) = max{ f (x), f (y)}

whence f is a weakly completely prime fuzzy ideal (cf. Theorem 5.6). �

By Theorems 4.18 and 5.7 we have the following result.

Corollary 5.8 Let S be a po-�-semigroup and f be a weakly completely prime fuzzy
ideal of S. Then f is a weakly prime fuzzy ideal of S.

Remark 5.9 Since in a both-sided po-�-semigroup the notions of prime ideals and
completely prime ideals coincide (cf. Theorem 2.9 [18]), in view of Theorems 4.18
and 5.7 the notions of weakly completely prime fuzzy ideals and weakly prime
fuzzy ideals coincide. Hence the above corollary is meaningless in a both-sided
po-�-semigroup.
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Remark 5.10 The proofs of results on completely prime and weakly completely
prime fuzzy ideals in po-�-semigroups indicate that these are also true in �-
semigroups without partial order.

To conclude this section, we give the following interrelations among various fuzzy
primeness studied in this paper.

prime fuzzy
ideal

completely prime
fuzzy ideal

weakly completely
prime fuzzy ideal

weakly prime
fuzzy ideal

6 Concluding Remark

Theorem 4.23 is analogous to Theorem 3.4 [6]. The said theorem of [6] plays an
important role in radical theory of �-semigroups. So Theorem 4.23 may help to
study radical theory in po-�-semigroups via fuzzy subsets. This possibility of study
of radical theory in po-�-semigroups is also indicated in the work of radical theory
in po-semigroups via weakly prime fuzzy ideals by Xie and Tang [27].
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Radicals and Ideals of Affine Near-Semirings
Over Brandt Semigroups
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Abstract This work obtains all the right ideals, radicals, congruences, and ideals of
the affine near-semirings over Brandt semigroups.
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1 Introduction

An algebraic structure (N ,+, ·) with two binary operations + and · is said to be
a near-semiring if (N ,+) and (N , ·) are semigroups and · is one-sided, say left,
distributive over +, i.e. a · (b + c) = a · b + a · c, for all a, b, c ∈ N . Typical
examples of near-semirings are of the form M(S), the set of all mappings on a
semigroup S. Near-semirings are not only the natural generalization of semirings
and near-rings, but also they have very prominent applications in computer science.
To name a few: process algebras by Bergstra and Klop [1], and domain axioms in
near-semirings by Struth and Desharnais [3].

Near-semirings were introduced by van Hoorn and van Rootselaar as a general-
ization of near-rings [11]. In [10], van Hoorn generalized the concept of Jacobson
radical of rings to zero-symmetric near-semirings. These radicals also generalize
the radicals of near-rings by Betsch [2]. In this context, van Hoorn introduced
14 radicals of zero-symmetric near-semiring and studied some relation between
them. The properties of these radicals are further investigated in the literature (e.g.,
[5, 12]). Krishna and Chatterjee developed a radical (which is similar to the Jacobson
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radical of rings) for a special class of near-semirings to test the minimality of linear
sequential machines in [6].

In this paper, we study the ideals and radicals of the zero-symmetric affine near-
semiring over a Brandt semigroup. First, we present the necessary background mate-
rial in Sect. 2. For the near-semiring under consideration, we obtain the right ideals in
Sect. 3 and ascertain all radicals in Sect. 4. Further, we determine all its congruences
and consequently obtain its ideals in Sect. 5.

2 Preliminaries

In this section, we provide a necessary backgroundmaterial through two subsections.
One is to present the notions of near-semirings, and their ideals and radicals. In the
second subsection, we recall the notion of the affine near-semiring over a Brandt
semigroup. We also utilize this section to fix our notations which used throughout
the work.

2.1 A Near-Semiring and Its Radicals

In this subsection, we recall some necessary fundamentals of near-semirings from
[5, 10, 11].

Definition 2.1 An algebraic structure (N ,+, ·) is said to be a near-semiring if

(1) (N ,+) is a semigroup,
(2) (N , ·) is a semigroup, and
(3) a · (b + c) = a · b + a · c, for all a, b, c ∈ N .

Furthermore, if there is an element 0 ∈ N such that

(4) a + 0 = 0 + a = a for all a ∈ N , and
(5) a · 0 = 0 · a = 0 for all a ∈ N ,

then (N ,+, ·) is called a zero-symmetric near-semiring.

Example 2.2 Let (S,+) be a semigroup and M(S) be the set of all functions on
S. The algebraic structure (M(S),+, ◦) is a near-semiring, where + is pointwise
addition and ◦ is composition of mappings, i.e., for x ∈ S and f, g ∈ M(S),

x( f + g) = x f + xg and x( f ◦ g) = (x f )g.

We write an argument of a function on its left, e.g., x f is the value of a function f
at an argument x . We always denote the composition f ◦ g by f g. The notions of
homomorphism and subnear-semiring of a near-semiring can be defined in a routine
way.
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Definition 2.3 LetN be a zero-symmetric near-semiring. A semigroup (S,+) with
identity 0S is said to be an N -semigroup if there exists a composition

(s, a) �→ sa : S × N −→ S

such that, for all a, b ∈ N and s ∈ S,

(1) s(a + b) = sa + sb,
(2) s(ab) = (sa)b, and
(3) s0 = 0S .

Note that the semigroup (N ,+) of a near-semiring (N ,+, ·) is anN -semigroup.
We denote this N -semigroup by N+.

Definition 2.4 Let S be anN -semigroup. A semigroup congruence ∼r of S is said
to be a congruence of N -semigroup S, if for all s, t ∈ S and a ∈ N ,

s ∼r t =⇒ sa ∼r ta.

Definition 2.5 An N -morphism of an N -semigroup S is a semigroup homomor-
phism φ of S into an N -semigroup S′ such that

(sa)φ = (sφ)a

for all a ∈ N and s ∈ S. The kernel of an N -morphism is called an N -kernel
of an N -semigroup S. A subsemigroup T of an N -semigroup S is said to be N -
subsemigroup of S if and only if 0S ∈ T and TN ⊆ T .

Definition 2.6 The kernel of a homomorphism of N is called an ideal of N . The
N -kernels of the N -semigroup N+ are called right ideals of N .

One may refer to [10, 11] for a few other notions, viz. strong ideal, modular
right ideal and λ-modular right ideal, a special congruence r ′′

� associated to a normal
subsemigroup� of a semigroup S, and, for various (ν,μ), theN -semigroups of type
(ν,μ). The homomorphism corresponding to r ′′

� is denoted by λ�.

Definition 2.7 Let s be an element of an N -semigroup S. The annihilator of s,
denoted by A(s), defined by the set {a ∈ N : sa = 0S}. Further, for a subset T of S,
the annihilator of T is

A(T ) =
⋂

s∈T

A(s) = {a ∈ N : T a = 0S}.

Theorem 2.8 ([5]) The annihilator A(S) of an N -semigroup S is an ideal of N .

We now recall the notions of various radicals in the following definition.

Definition 2.9 ([10]) Let N be a zero-symmetric near-semiring.
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Fig. 1 Relation between
various radicals of a
near-semiring

J(2,0) J(2,1)

J(1,0) J(1,1) J(1,2) J(1,3)

J(0,0) J(0,1) J(0,2) J(0,3)

R0 R1 R2 R3

(1) For ν = 0, 1 with μ = 0, 1, 2, 3 and ν = 2 with μ = 0, 1

J(ν,μ)(N ) =
⋂

S is of type(ν,μ)

A(S).

(2) R0(N ) is the intersection of all maximal modular right ideals of N .
(3) R1(N ) is the intersection of all modular maximal right ideals of N .
(4) R2(N ) is the intersection of all maximal λ-modular right ideals of N .
(5) R3(N ) is the intersection of all λ-modular maximal right ideals of N .

In any case, the empty intersection of subsets ofN isN . The relations between these
radicals are given in Fig. 1, where A → B means A ⊂ B.

Remark 2.10 ([2, 4, 9]) If N is a near-ring, then J(0,μ)(N ), μ = 0, 1, 2, 3 are the
radical J0(N ); J(1,μ)(N ), μ = 0, 1, 2, 3 are the radical J1(N ); J(2,μ)(N ), μ = 0, 1,
are the radical J2(N ); and Rν(N ), ν = 0, 1, 2, 3 are the radical D(N ) of Betsch.
Further, if N is a ring, then all the 14 radicals are the radical of Jacobson.

Definition 2.11 A zero-symmetric near-semiring N is called (ν,μ)-primitive if N
has an N -semigroup S of type (ν,μ) with A(S) = {0}.

2.2 An Affine Near-Semiring Over a Brandt Semigroup

In this subsection, we present the necessary fundamentals of affine near-semirings
over Brandt semigroups. For more details one may refer to [7, 8].

Let (S,+) be a semigroup. An element f ∈ M(S) is said to be an affine map if
f = g + h, for some endomorphism g and a constant map h on S. The set of all
affine mappings over S, denoted by Aff(S), need not be a subnear-semiring of M(S).
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The affine near-semiring, denoted by A+(S), is the subnear-semiring generated by
Aff(S) in M(S). Indeed, the subsemigroup of (M(S),+) generated by Aff(S) equals
(A+(S),+) (cf. [6, Corollary 1]). If (S,+) is commutative, then Aff(S) is a subnear-
semiring of M(S) so that Aff(S) = A+(S).

Definition 2.12 For any integer n ≥ 1, let [n] = {1, 2, . . . , n}. The semigroup
(Bn,+), where Bn = ([n] × [n]) ∪ {ϑ} and the operation + is given by

(i, j) + (k, l) =
{

(i, l) if j = k;
ϑ if j = k

and, for all α ∈ Bn , α + ϑ = ϑ + α = ϑ, is known as Brandt semigroup. Note that
ϑ is the (two sided) zero element in Bn .

Let ϑ be the zero element of the semigroup (S,+). For f ∈ M(S), the support
of f , denoted by supp( f ), is defined by the set

supp( f ) = {α ∈ S | α f = ϑ}.

A function f ∈ M(S) is said to be of k-support if the cardinality of supp( f ) is k,
i.e. |supp( f )| = k. If k = |S| (or k = 1), then f is said to be of full support (or
singleton support, respectively). For X ⊆ M(S), we write Xk to denote the set of all
mappings of k-support in X , i.e.

Xk = { f ∈ X | f is of k-support}.

For ease of reference, we continue to use the following notations for the elements
of M(Bn), as given in [8].

Notation 2.13

(1) For c ∈ Bn , the constant map that sends all the elements of Bn to c is denoted
by ξc. The set of all constant maps over Bn is denoted by CBn .

(2) For k, l, p, q ∈ [n], the singleton support map that sends (k, l) to (p, q) is
denoted by (k,l)ζ(p,q).

(3) For p, q ∈ [n], the n-support map that sends (i, p) (where 1 ≤ i ≤ n) to (iσ, q)

using a permutation σ ∈ Sn is denoted by (p, q;σ). We denote the identity
permutation on [n] by id.

Note that A+(B1) = {(1, 1; id)} ∪ CB1 . For n ≥ 2, the elements of A+(Bn) are
given by the following theorem.

Theorem 2.14 ([8]) For n ≥ 2, A+(Bn) precisely contains (n! + 1)n2 + n4 + 1
elements with the following breakup.

(1) All the n2 + 1 constant maps.
(2) All the n4 singleton support maps.
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(3) The remaining (n!)n2 elements are the n-support maps of the form (p, q;σ),
where p, q ∈ [n] and σ ∈ Sn.

We are ready to investigate the radicals and ideals of A+(Bn)—the affine near-
semiring over a Brandt semigroup. Since the radicals are defined in the context of
zero-symmetric near-semirings, we extend the semigroup reduct (A+(Bn),+) to
monoid by adjoining 0 and make the resultant near-semiring zero-symmetric. In
what follows, the zero-symmetric affine near-semiring A+(Bn) ∪ {0} is denoted by
N , i.e.

(1) (N ,+) is a monoid with identity element 0,
(2) (N , ◦) is a semigroup,
(3) 0 f = f 0 = 0, for all f ∈ N , and
(4) f (g + h) = f g + f h, for all f, g, h ∈ N .

In this work, a nontrivial congruence of an algebraic structure is meant to be a
congruence which is neither equality nor universal relation.

3 Right Ideals

In this section, we obtain all the right ideals of the affine near-semiringN by ascer-
taining the concerning congruences of N -semigroups. We begin with the following
lemma.

Lemma 3.1 Let ∼ be a nontrivial congruence over the semigroup (N ,+) and f ∈
A+(Bn)n2+1. If f ∼ ξϑ, then ∼ = (A+(Bn) × A+(Bn)) ∪ {(0, 0)}.
Proof First, note that (A+(Bn) × A+(Bn)) ∪ {(0, 0)} is a congruence relation of
the semigroup (N ,+). Let f = ξ(p0,q0) and ξ(p,q) be an arbitrary full support map.
Since

ξ(p,q) = ξ(p,p0) + ξ(p0,q0) + ξ(q0,q) ∼ ξ(p,p0) + ξϑ + ξ(q0,q) = ξϑ,

we have ξ(p,q) ∼ ξϑ for all p, q ∈ [n]. Further, given an arbitrary n-support map
(k, l;σ), since ξ(p,l) ∼ ξϑ, we have

(k, l;σ) = (k, p;σ) + ξ(p,l) ∼ (k, p;σ) + ξϑ = ξϑ.

Thus, all n-support maps are related to ξϑ under ∼. Similarly, given an arbitrary
(k,l)ζ(p,q) ∈ A+(Bn)1, since ξ(p,q) ∼ ξϑ, for σ ∈ Sn such that kσ = q, we have

(k,l)ζ(p,q) = ξ(p,q) + (l, q;σ) ∼ ξϑ + (l, q;σ) = ξϑ.

Hence, all elements of A+(Bn) are related to each other under ∼. �
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Now, using Lemma 3.1, we determine the right ideals of N in the following
theorem.

Theorem 3.2 N and {0} are only the right ideals of N .

Proof Let I = {0} be a right ideal of N so that I = ker ϕ, where ϕ : N+ −→ S
is an N -morphism. Note that I = [0]∼r , where ∼r is the congruence over the N -
semigroupN+ defined by a ∼r b if and only if aϕ = bϕ, i.e. the relation ∼r onN
is compatible with respect to + and if a ∼r b then ac ∼r bc for all c ∈ N .

Let f be a nonzero element of N such that f ∼r 0. First, note that

ξϑ = f ξϑ ∼r 0ξϑ = 0.

Further, for any full support map ξ(p,q), we have

ξ(p,q) = f ξ(p,q) ∼r 0ξ(p,q) = 0

so that, by transitivity, ξ(p,q) ∼r ξϑ. Hence, by Lemma 3.1, ∼r = N × N so that
I = N . �

Remark 3.3 The ideal {0} is the maximal right ideal of N .

4 Radicals

In order to obtain the radicals of the affine near-semiringN , in this section, we first
identify an N -semigroup which satisfies the criteria of all types of N -semigroups
by van Hoorn. Using the N -semigroup, we ascertain the radicals of N . Further, we
observe that the near-semiring N is (ν,μ)-primitive (cf. Theorem 4.3).

Consider the subsemigroup C = CBn ∪ {0} of (N ,+) and observe that C is an
N -semigroup with respect to the multiplication in N . The following properties of
the N -semigroup C are useful.

Lemma 4.1

(1) Every nonzero element of C is a generator. Moreover, the N -semigroup C is
strongly monogenic and A(g) = {0} for all g ∈ C\{0}.

(2) The subsemigroup {0} is the maximal N -subsemigroup of C.
(3) The N -semigroup C is irreducible.

Proof

(1) Let g ∈ CBn . Note that gN ⊆ C because the product of a constant map with any
map is a constant map. Conversely, for f ∈ C, since g f = f , we have gN = C
for all g ∈ C \{0}. Further, since 0N = {0} and CN = C = {0}. Hence, C is
strongly monogenic.
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(2) We show that the semigroups C and {0} are the only N -subsemigroups of C.
Let T be an N -subsemigroup of C such that {0} = T � C. Then there exist
f ( = 0) ∈ T and g ∈ C \ T . Since f g = g ∈ T , we have TN � T ; a
contradiction to T is an N -subsemigroup. Hence, the result.

(3) By Lemma 4.1(1), theN -semigroup C is monogenic with any nonzero element
g as generator such that A(g) = {0}; thus, A(g) is maximal right ideal inN (cf.
Remark 3.3). Hence, by [10, Theorem 8], C is irreducible. �

Remark 4.2 Since a strongly monogenic N -semigroup is monogenic we have, for
μ = 0, 1, 2, 3, an N -semigroup of type (1,μ) is of type (0,μ).

Theorem 4.3 For ν = 0, 1 with μ = 0, 1, 2, 3 and ν = 2 with μ = 0, 1, we have
the following.

(1) The N -semigroup C is of type (ν,μ) with A(C) = 0.
(2) The near-semiring N is (ν,μ)-primitive for all ν and μ.
(3) J(ν,μ)(N ) = {0} for all ν and μ.

Proof In view of Remark 4.2, we prove (1) in the following cases.

Type (1,μ) Note that, by Lemma 4.1(1), the N -semigroup C is strongly mono-
genic.

(i) By Lemma 4.1(3), we have C is irreducible. Hence, C is of
type (1, 0).

(ii) By Lemma 4.1(1) and Remark 3.3, for any generator g, A(g)

is a maximal right ideal. Hence, C is of type (1, 1).
(iii) Note that the ideal {0} is strong right ideal so that for any

generator g, A(g) is a strongmaximal right ideal (see ii above).
Further, note that A(g) is a maximal strong right ideal (cf.
Remark 3.3). Hence, C is of type (1, 2) and (1, 3).

Type (2,μ) Since C is monogenic and, for any generator g of C, A(g) is a maximal
N -subsemigroup of C (cf. Lemma 4.1(1) and Lemma 4.1(2)). Thus,
C is of type (2, 1). By [10, Theorem 9], every N -semigroup of type
(2, 1) will be of type (2, 0). Hence, C is of type (2, 0).

Proofs for (2) and (3) follow from (1). �

Theorem 4.4 For ν = 0, 1, we have Rν(N ) = {0}.
Proof In view of Fig. 1, we prove the result by showing that the right ideal {0} is a
modular maximal right ideal. By Lemma 4.1(1), the N -semigroup C is monogenic
and has a generator g such that A(g) = {0}. Hence, the right ideal {0} is modular
(cf. [10, Theorem 7]). Further, since {0} is a maximal right ideal (cf. Remark 3.3),
we have {0} is a modular maximal right ideal. �
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Theorem 4.5 For ν = 2, 3, we have Rν(N ) = N .

Proof In view of Fig. 1 and Theorem 3.2, we prove that the homomorphism λ{0} is
not modular. Note that the congruence relation r ′′{0} is the equality relation on (N ,+),
where r ′′{0} is the transitive closure of the two-sided stable reflexive and symmetric
relation relation r{0} associated with a normal subsemigroup {0} of the semigroup
(N ,+). Consequently, the semigroup homomorphism λ{0} is an identity map on
(N ,+). If the morphism λ{0} is modular, then there is an element u ∈ N such that
x = ux for all x ∈ N , but there is no left identity element inN . Consequently, λ{0}
is not modular. Thus, there is no maximal λ-modular right ideal. Hence, for ν = 2, 3,
we have Rν(N ) = N . �

5 Ideals

In this section, we prove that there is only one nontrivial congruence relation on N
(cf. Theorem 5.1). Consequently, all the ideals of N are determined.

Theorem 5.1 The near-semiring N has precisely the following congruences.

(1) Equality relation
(2) N × N
(3) (A+(Bn) × A+(Bn)) ∪ {(0, 0)}
Hence, N and {0} are the only ideals of the near-semiring N .

Proof In the sequel, we prove the theorem through the following claims.

Claim 1 Let ∼ be a nontrivial congruence over the near-semiring N and f ∈ N \
{0, ξϑ}. If f ∼ ξϑ, then ∼ = (A+(Bn) × A+(Bn)) ∪ {(0, 0)}.
Proof First, note that (A+(Bn) × A+(Bn)) ∪ {(0, 0)} is a congruence relation of the
near-semiring N . If f ∈ A+(Bn)n2+1, since ∼ is a congruence of the semigroup
(N ,+), by Lemma 3.1, we have the result. Otherwise, we reduce the problem to
Lemma 3.1 in the following cases.

Case 1.1 f is of singleton support. Let f = (k,l)ζ(p,q). Since (k,l)ζ(p,q) ∼ ξϑ we
have

ξ(k,l)
(k,l)ζ(p,q) ∼ ξ(k,l)ξϑ

so that ξ(p,q) ∼ ξϑ.
Case 1.2 f is of n-support. Let f = (p, q;σ). Since (p, q;σ) ∼ ξϑ we have

ξ(k,p)(p, q;σ) ∼ ξ(k,p)ξϑ

so that ξ(kσ,q) ∼ ξϑ.
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Claim 2 If two nonzero elements are in one class under a nontrivial congruence over
N , then the congruence is (A+(Bn) × A+(Bn)) ∪ {(0, 0)}.
Proof Let f, g ∈ N \{0} such that f ∼ g under a congruence ∼ over N . If f or
g is equal to ξϑ, then by Claim 1, we have the result. Otherwise, we consider the
following six cases classified by the supports of f and g. In each case, we show that
there is an element h ∈ A+(Bn)\{ξϑ} such that h ∼ ξϑ so that the result follows
from Claim 1.

Case 2.1 f, g ∈ A+(Bn)1. Let f = (i, j)ζ(k,l) and g = (s,t)ζ(u,v). If (i, j) = (s, t),
we have

ξϑ = (i, j)ζ(k,l) + (s,t)ζ(v,v) ∼ (s,t)ζ(u,v) + (s,t)ζ(v,v) = (s,t)ζ(u,v).

Otherwise, (i, j) = (s, t) so that (k, l) = (u, v). Now, if k = u, then we
have

(i, j)ζ(k,l) = (i, j)ζ(k,k) + (i, j)ζ(k,l) ∼ (i, j)ζ(k,k) + (i, j)ζ(u,v) = ξϑ.

Similarly, if l = v, we have

ξϑ = (i, j)ζ(k,l) + (i, j)ζ(v,v) ∼ (i, j)ζ(u,v) + (i, j)ζ(v,v) = (i, j)ζ(u,v).

Case 2.2 f, g ∈ A+(Bn)n2+1. Let f = ξ(k,l) and g = ξ(u,v). By considering full
support maps whose images are the same as in various subcases of Case
1, we can show that there is an element in A+(Bn)\{ξϑ} that is related
to ξϑ under ∼.

Case 2.3 f, g ∈ A+(Bn)n . Let f = (i, j;σ) and g = (k, l; ρ). If l = j , then

(i, j;σ) = (i, j;σ) + ξ( j, j) ∼ (k, l; ρ) + ξ( j, j) = ξϑ.

Otherwise, we have (i, j;σ) ∼ (k, j; ρ). Now, if i = k, then

ξϑ = (k, k; id)(i, j;σ) ∼ (k, k; id)(k, j; ρ) = (k, j; ρ).

In case i = k,wehaveσ = ρ. Thus, there exists t ∈ [n] such that tσ = tρ.
Now, (i, j;σ) ∼ (i, j; ρ) implies ξ(k,i)(i, j;σ) ∼ ξ(k,i)(i, j; ρ), i.e.
ξ(kσ, j) ∼ ξ(kρ, j). Consequently,

ξ(kσ, j) = ξ(kσ,kσ) + ξ(kσ, j) ∼ ξ(kσ,kσ) + ξ(kρ, j) = ξϑ.

Case 2.4 f ∈ A+(Bn)1, g ∈ A+(Bn)n2+1. Let f = (k,l)ζ(p,q) and g = ξ(i, j).
Now, for (s, t) = (k, l), we have

ξϑ = ξ(s,t) f ∼ ξ(s,t)g = ξ(i, j).
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Case 2.5 f ∈ A+(Bn)n2+1, g ∈ A+(Bn)n . Let f = ξ(p,q) and g = (i, j;σ). Now,
for l = i , we have

(k,l)ζ(p,q) = (k,l)ζ(p,p) + f ∼ (k,l)ζ(p,p) + g = ξϑ.

Case 2.6 f ∈ A+(Bn)1, g ∈ A+(Bn)n . Let f = (k,l)ζ(p,q) and g = (i, j;σ).
Now, for l = i , we have

ξϑ = ξ(i,i) f ∼ ξ(i,i)g = ξ(iσ, j). �
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Operator Approximation

Balmohan V. Limaye

Abstract We present an introduction to operator approximation theory. Let T be a
bounded linear operator on a Banach space X over C. In order to find approximate
solutions of (i) the operator equation z x − T x = y, where z ∈ C and y ∈ X are
given, and (ii) the eigenvalue problem T ϕ = λϕ, where λ ∈ C and 0 �= ϕ ∈ X ,
one approximates the operator T by a sequence (Tn) of bounded linear operators on
X . We consider pointwise convergence, norm convergence, and nu convergence of
(Tn) to T . We give several examples to illustrate possible scenarios. In most classical
methods of approximation, each Tn is of finite rank. We give a canonical procedure
for reducing problems involving finite rank operators to problems involving matrix
computations.

Keywords Operator equation · Eigenvalue problem · Resolvent set · Resolvent
operator · Spectrum · Spectral projection · Approximate solution · Error estimate ·
Iterated version · Pointwise convergence · Norm convergence · Nu convergence ·
Integral operator · Degenerate kernel approximation · Projection approximation ·
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1 Introduction

Let X be a Banach Space over C, and let T : X → X be a bounded linear operator
on X, that is, T ∈ BL(X). We address the following problem:

“Given y ∈ X and z ∈ C, find x ∈ X such that z x − T x = y.”

Case I: Let z ∈ C, and suppose that for every y ∈ X there is unique x ∈ X such
that z x − T x = y. This means z is in the resolvent set ρ(T ) of the operator T . We
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let R(z) := (z I − T )−1, the resolvent operator of T at z. Clearly it is linear. By
the bounded inverse theorem, it is also bounded. Thus R(z) ∈ BL(X).

Case II: Let z ∈ C, and suppose that either there is y ∈ X such that z x − T x �= y
for any x ∈ X, or there are x1 �= x2 ∈ X such that z x1 − T x1 = y = z x2 − T x2.
This means z is in the spectrum σ(T ) of T .

We shall see later that the complex number z = 0 has a peculiar significance in
both cases. Both problems, especially the second, can be difficult to solve when the
Banach space X is infinite dimensional. As a result, one often replaces the operator
T by a “simpler” operator ˜T which is “nearb” T . This process gives rise to Operator
Approximation Theory which is a well-developed branch of the so-called Numer-
ical Functional Analysis. This article is an introduction to operator approximation.
It is not a comprehensive survey. It will include some classical methods as well as
some recent developments. Interested readers can pursue further study by consulting
the references given at the end of this article.

In Sect. 2, we treat Case I and in Sect. 3, we treat Case II. In Sect. 4, we consider
finite rank operators. They are often used to approximate compact operators.

We consider a sequence (Tn) in BL(X) which approximates T is a sense to be
made precise subsequently.

2 Solution of Operator Equations

Let z ∈ ρ(T ), that is, the operator z I − T is bijective. Fix n ∈ N and suppose
z ∈ ρ(Tn), that is, the operator z I − Tn is also bijective. Let Rn(z) := (z I − Tn)−1,

the resolvent operator of Tn at z.
Consider y ∈ X, and let x ∈ X be such that z x − T x = y. Consider yn ∈ X,

and let xn ∈ X be such that z xn − Tn xn = yn . Then

(z I − Tn)(xn − x) = z xn − Tn xn + Tn x − T x − z x + T x

= Tn x − T x + yn − y,

that is,
xn − x = Rn(z)(Tn x − T x + yn − y)

For n ∈ N, we may choose yn ∈ X such that yn → y. If Tn x → T x , and if the
sequence (‖Rn(z)‖) is bounded, then it follows that xn → x . We may then say that
(xn) is a sequence of approximate solutions of the operator equation z x −T x = y.

Thus we are led to consider the following mode of convergence:
Pointwise Convergence: Let Tn(x) → T (x) for every x ∈ X. We denote this

by Tn
p−→ T .

Next, we ask the following question: If Tn
p−→ T and z ∈ ρ(T ), will z ∈ ρ(Tn)

for all large n, and then will the sequence (‖Rn(z)‖) be bounded? The answers are
in the negative.
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Example 2.1 Let X := �2, the Banach space of all square-summable complex
sequences.

(i) For x := (x1, x2, . . .) ∈ X , let

T x := (x1, 0, 0, . . .) and Tn x := (x1, 0, . . . , 0,−xn, 0, 0, . . .).

Then Tn
p−→ T, −1 ∈ ρ(T ), but −1 /∈ ρ(Tn) for any n ∈ N.

(ii) For x := (x1, x2, . . .) ∈ X, let

T x := (0, 0, . . .) and Tn x := n − 1

n
(0, . . . , 0, xn, xn+1, . . .).

Then Tn
p−→ T and 1 ∈ ρ(T ) ∩ ρ(Tn) for every n ∈ N. However, (I − Tn)−1y =

(y1, . . . , yn−1, nyn, nyn+1, . . .) for y ∈ X , and so ‖Rn(1)‖ = n for every n ∈ N.
Hence the sequence (‖Rn(1)‖) is not bounded.

Thus we are led to consider a stronger mode of convergence:
Norm Convergence: Let ‖Tn − T ‖ → 0. We denote this by Tn

n−→ T .

For z ∈ ρ(T ) and n ∈ N, define Sn(z) := (Tn − T )R(z).

Proposition 2.2 Let Tn
n−→ T and z ∈ ρ(T ). Then Sn(z)

n−→ 0. If ‖Sn(z)‖ < 1, then
z ∈ ρ(Tn) and

‖Rn(z)‖ ≤ ‖R(z)‖
1 − ‖Sn(z)‖ .

In particular, (‖Rn(z)‖) is a bounded sequence.

Proof Let z ∈ ρ(T ). Then ‖Sn(z)‖ ≤ ‖Tn − T ‖ ‖R(z)‖, and so Sn(z)
n−→ 0. Also,

z I − Tn = (

I − (Tn − T )(z I − T )−1)(z I − T ) = [I − Sn(z)](z I − T ).

If ‖Sn(z)‖ < 1, then I − Sn(z) is invertible and the norm of its inverse is less than or
equal to 1/[1 − ‖Sn(z)‖], and so z ∈ ρ(Tn) and ‖Rn(z)‖ ≤ ‖R(z)‖/[1 − ‖Sn(z)‖].
It follows that (‖Rn(z)‖) is a bounded sequence. �

Corollary 2.3 Let Tn
n−→ T and z ∈ ρ(T ). Then z ∈ ρ(Tn) for all large n. If

z x − T x = y and z xn − Tn xn = yn, then for all large n,

‖xn − x‖ ≤ 2‖R(z)‖(‖Tn x − T x‖ + ‖yn − y‖).

Proof There is n0 ∈ N such that ‖Sn(z)‖ ≤ 1/2 for all n ≥ n0. Since xn − x =
Rn(z)(Tn x − T x + yn − y) whenever z ∈ ρ(T ) ∩ ρ(Tn), the result follows from
Proposition2.2. �

This result gives an error estimate for the approximate solution xn of the operator
equation z x − T x = y.
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Suppose z �= 0. Now x = (y + T x)/z. An iterated version of the approximate
solution x̃n of x is, therefore, defined by

x̃n := 1

z
(y + T xn).

Then x̃n − x = T (xn − x)/z, and x̃n would be a better approximation of x than xn

if ‖T (xn − x)‖ ≤ εn‖xn − x‖, where εn → 0. (See Remarks 3.10 and 3.12, and
Theorem 3.24 of [11]).

We thus note that existence and convergence of approximate solutions to the exact
solution of an operator equation is guaranteed under the norm convergence of the
sequence (Tn) to T , but not under the pointwise convergence of (Tn) to T . However, it
turns out that many classical sequences of operators used for approximating an oper-
ator T do not converge in the norm. We give some examples of norm convergence,
and also some examples where norm convergence fails.

Example 2.4 Let X = C([a, b]) and for x ∈ X , consider

(T x)(s) :=
∫ b

a
k(s, t)x(t)dt, s ∈ [a, b],

where the kernel k(·, ·) is continuous on [a, b] × [a, b]. Then T is a compact
operator.

(i) For n ∈ N, let

kn(s, t) :=
n

∑

j=1

xn, j (s) yn, j (t), s, t ∈ [a, b],

be a degenerate kernel, where xn, j and yn, j are complex-valued continuous func-
tions on [a, b]. Assume that ‖kn(·, ·) − k(·, ·)‖∞ → 0. For x ∈ X, define

(T D
n x)(s) :=

∫ b

a
kn(s, t)x(t)dt, s ∈ [a, b].

Then‖T D
n −T ‖ ≤ (b−a)‖kn(·, ·)−k(·, ·)‖∞ → 0.This is knownas thedegenerate

kernel approximation.
(ii) For n ∈ N, let en,1, . . . , en,n be the hat functionswith nodes at tn,1, . . . , tn,n,

where tn, j = a + (b − a) j/n. Consider the interpolatory projection πn : X → X
given by

πn x :=
n

∑

j=1

x(tn, j )en, j , x ∈ X.
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For x ∈ X, let T P
n x := πnT x . Then πn x → x for every x ∈ X and

‖T P
n − T ‖ = sup{‖πnT x − T x‖ : x ∈ X and ‖x‖ ≤ 1} → 0 as n → ∞,

since T is compact. However, if T S
n := T πn and T G

n := πnT πn , then ‖T S
n −T ‖ �→ 0

and ‖T G
n − T ‖ �→ 0, unless T = 0. (See Proposition 4.6 of [2], and the

preceding comment.) On the other hand, if T K
n := T P

n +T S
n −T G

n , then ‖T −T K
n ‖ =

‖(I − πn)T (I − πn)‖ ≤ ‖(I − πn)T ‖ ‖(I − πn)‖ → 0, since T is compact and
the sequence (‖πn‖) is bounded. The approximations T P

n , T S
n , and T G

n are known
as the projection approximation, the Sloan approximation, and the Galerkin
approximation of T , respectively. The approximation T K

n was introduced by
Kulkarni [9]. It may be called a modified projection approximation of T .

(iii) For n ∈ N, let

Qn x :=
n

∑

j=1

wn, j x(tn, j ), x ∈ X,

be a quadrature formula,wherewn,1, . . . , wn,n are theweights. Assume that Qn x →
∫ b

a
x(t)dt for every x ∈ X . For x ∈ X , define

(T N
n x)(s) :=

n
∑

j=1

wn, j k(s, tn, j )x(tn, j ), s ∈ [a, b].

The approximation T N
n is known as the the Nyström approximation of T . Then

‖T N
n − T ‖ �→ 0 unless T = 0. (See Proposition 4.6 of [2], and the preceding

comment).

To encompass all the above important examples, we seek a mode of convergence
which is weaker than the norm convergence, but which guarantees the boundedness
of the sequence (‖Rn(z)‖) as in Proposition2.2. Anselone and Moore [4], proposed
“collectively compact” convergence in this connection. See also Atkinson [5–7] and
Anselone [3]. The implications of this concept are captured in the following mode
of convergence.

Nu Convergence: Let Tn
p−→ T, ‖(Tn − T )T ‖ → 0 and ‖(Tn − T )Tn‖ → 0. We

denote this by Tn
ν−→ T .

It is based on the work of Ahues [1], Bouldin [8], and Nair [10]. In the book of
Ahues et al. [2], nu convergence was defined by the following conditions: (‖Tn‖) is
bounded, ‖(Tn − T )T ‖ → 0 and ‖(Tn − T )Tn‖ → 0, and was extensively used in

the context of spectral approximation. Note that if Tn
p−→ T , then (‖Tn‖) is bounded

by the uniform boundedness principle. Thus the definition of nu convergence stated
above is slightly stronger.
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Clearly, if Tn
n−→ T , then Tn

ν−→ T , and if Tn
ν−→ T , then Tn

p−→ T . More
importantly, it can be shown that T S

n
ν−→ T, T G

n
ν−→ T and T N

n
ν−→ T . (See [2], parts

(a) and (b) of Theorem 4.1, and part (a) of Theorem 4.5).

Proposition 2.5 Let T
ν−→ T and z ∈ ρ(T ) with z �= 0. Then [Sn(z)]2 n−→ 0. If

‖[Sn(z)]2‖ < 1, then z ∈ ρ(Tn) and

‖Rn(z)‖ ≤ ‖R(z)‖(1 + ‖Sn(z)‖)
1 − ‖[Sn(z)]2‖ .

In particular, (‖Rn(z)‖) is bounded.

Proof Let z ∈ ρ(T ). Then

[Sn(z)]2 = (Tn − T )R(z)(Tn − T )R(z)

= (Tn − T )
( I + T R(z)

z

)

(Tn − T )R(z)

= 1

z

(

(Tn − T )2 + (Tn − T )T R(z)(Tn − T )
)

R(z).

Now ‖(Tn − T )2‖ ≤ ‖(Tn − T )Tn‖ + ‖(Tn − T )T ‖ → 0 and (‖Tn‖) is bounded.
Hence ‖[Sn(z)]2‖ → 0. If ‖[Sn(z)]2‖ < 1, then I − Sn(z) is invertible and the norm
of its inverse is less than or equal to (1+‖Sn(z)‖)/(1−‖[Sn(z)]2‖), and since z I −
Tn = (I − Sn(z))R(z) as in Proposition2.2, z ∈ ρ(Tn) and ‖Rn(z)‖ ≤ ‖R(z)‖(1 +
‖Sn(z)‖)/(1 − ‖[Sn(z)]2‖). It follows that (‖Rn(z)‖) is a bounded sequence. �

Corollary 2.6 Let Tn
ν−→ T and z ∈ ρ(T ) with z �= 0. Then z ∈ ρ(Tn) for all large

n. If z x − T x = y and z xn − Tn xn = yn, then for all large n,

‖xn − x‖ ≤ 2‖R(z)‖(1 + ‖R(z)‖(α + ‖T ‖))(‖Tn x − T x‖ + ‖y − yn‖),

where α ∈ R is such that ‖Tn‖ ≤ α for all n ∈ N.

Proof There is n0 ∈ N such that ‖[Sn(z)]2‖ ≤ 1/2 for all n ≥ n0. Also, ‖Sn(z)‖ ≤
(‖Tn‖ + ‖T ‖)‖R(z)‖ for all n ∈ N. Since

xn − x = Rn(z)(Tn x − T x + yn − y)

whenever z ∈ ρ(T ) ∩ ρ(Tn), the result follows from Proposition2.5. �

Thus, if Tn
ν−→ T , then xn can be considered an approximate solution of the

operator equation z x − T x = y, and error estimates can be given as in the case of
the norm convergence.

Before we conclude this section, we give an upper bound for ‖Rn(z)‖ when
z �= 0, z ∈ ρ(T ) ∩ ρ(Tn) and ‖R(z)‖ ‖(Tn − T )Tn‖ < |z| a la Theorem 4.1.1 of
Atkinson’s book [6]: Since I + R(z)Tn = (

z I − R(z)(Tn − T )Tn
)

Rn(z), we obtain
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‖Rn(z)‖ ≤ 1 + ||R(z)‖ ‖Tn‖
|z| − ‖R(z)‖ ‖(Tn − T )Tn‖ .

If ‖(Tn − T )Tn‖ → 0, then there is n0 ∈ N such that ‖R(z)‖ ‖(Tn − T )Tn‖ ≤ |z|/2
for all n ≥ n0, and so ‖Rn(z)‖ ≤ 2(1 + ‖R(z)‖ ‖Tn‖)/|z|. Hence (‖Rn(z)‖) is a
bounded sequence, provided (‖Tn‖) is a bounded sequence.

3 Spectral Values and Eigenvalues

The spectrum of T ∈ BL(X) is defined by

σ(T ) := {λ ∈ C : λI − T is not bijective}.

Let (Tn) be a sequence in BL(X) such that Tn
p−→ T or Tn

ν−→ T or Tn
n−→ T . The

following two questions arise naturally.

Question 1: If λn ∈ σ(Tn) for n ∈ N and λn → λ, must λ ∈ σ(T )?
Question 2: If λ ∈ σ(T ), is there λn ∈ σ(Tn) for n ∈ N such that λn → λ?

3.1 Answer to Question 1

If Tn
p−→ T , then the answer to Question 1 is in the negative: In part (i) of

Example2.1, Tn
p−→ T,−1 ∈ σ(Tn) for each n, but −1 �∈ σ(T ).

Modifications of this example show that multiplicities of the eigenvalues of Tn

and T need not be the same. As in Example2.1, let X := �2. For x := (x1, x2, . . .) ∈
X and n ∈ N, let T x := (x1, 0, 0, . . .) and Tn x := (x1, 0, . . . , 0, xn, 0, 0, . . .).

Then Tn
p−→ T , 1 is an eigenvalue of T of multiplicity 1, while it is an eigenvalue

of each Tn of multiplicity 2. On the other hand, if T x := (x1, x2, 0, 0, . . .) and

Tn x := (x1, x2 − x2/n, 0, 0, . . .) for x ∈ X , then Tn
p−→ T , 1 is an eigenvalue of T

of multiplicity 2, while it is an eigenvalue of each Tn of multiplicity 1.
If Tn

ν−→ T , then the answer to Question 1 is in the affirmative. To show this, we
prove a preliminary resultwhose proof depends on ideaswehave already encountered
in Propositions2.2 and2.5.

Lemma 3.1 Let Tn
ν−→ T . Let E be a closed and bounded subset of C which is

disjoint from σ(T ). Then E is disjoint from σ(Tn) for all large n.

Proof Since Tn
p−→ T , there is α > 0 such that ‖Tn‖ ≤ α for all n ∈ N. Also, since

E is closed and bounded, and the function z 
−→ ‖R(z)‖ ∈ R is continuous on E ,
there is β > 0 such that ‖R(z)‖ ≤ β for all z ∈ E .

Recall that Sn(z) = (Tn − T )R(z) for z ∈ ρ(T ).
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Assume first that 0 ∈ E . For z ∈ E ,

‖Sn(z)‖ = ‖(Tn − T )T T −1R(z)‖ ≤ ‖(Tn − T )T ‖ ‖T −1‖ ‖R(z)‖
≤ ‖T −1‖β‖(Tn − T )T ‖ → 0.

Hence for all large n ∈ N and all z ∈ E , ‖Sn(z)‖ < 1, and so by Proposition2.2,
z ∈ ρ(Tn), that is, E is disjoint from σ(Tn).

Next, assume that 0 �∈ E . Since E is closed, there is δ > 0 such that |z| ≥ δ for
all z ∈ E . As in the proof of Proposition2.5, for z ∈ E, we have

‖[Sn(z)]2‖ = 1

|z| ‖
(

(Tn − T )2 + (Tn − T )T R(z)(Tn − T )
)

R(z)‖

≤ 1

δ

(‖(Tn − T )2‖ + ‖(Tn − T )T ‖β(α + ‖T ‖))β → 0.

Hence for all large n ∈ N and all z ∈ E , [‖Sn(z)]2‖ < 1, and so by Proposition2.5,
z ∈ ρ(Tn), that is, E is disjoint from σ(Tn). �

Proposition 3.2 Let Tn
ν−→ T . If λn ∈ σ(Tn) and λn → λ, then λ ∈ σ(T ).

Proof Suppose λ �∈ σ(T ). Since σ(T ) is a closed subset of C, there is r > 0 such
that E := {z ∈ C : |z − λ| ≤ r} is disjoint from σ(T ). By Lemma3.1, E is disjoint
from σ(Tn) for all large n. Then λn ∈ σ(Tn) and λn → λ is impossible. �

In particular, if Tn
n−→ T , λn ∈ σ(Tn) and λn → λ, then λ ∈ σ(T ).

3.2 Answer to Question 2

The answer to Question 2 is in the negative even when Tn
n−→ T .

Example 3.3 Let X := �2(Z), the space of all square summable “doubly infi-
nite” complex sequences. For x := (. . . , x−2, x−1, x0, x1, x2, . . .), let T x :=
(. . . , x−2, x−1, 0, x1, x2, . . .) and Tn x := (. . . , x−2, x−1, x0/n, x1, x2, . . .). Then
‖Tn x − T x‖ = |x0|/n for all x ∈ X, so that ‖Tn − T ‖ = 1/n → 0 as
n → ∞. However, it can be shown that σ(T ) = {λ ∈ C : |λ| ≤ 1}, whereas
σ(Tn) = {λ ∈ C : |λ| = 1}. (See Example 2.8 of [2]). Thus if λ ∈ C and |λ| < 1,
then λ ∈ σ(T ), but there is no λn ∈ σ(Tn) such that λn → λ.

Faced with this negative conclusion, we consider some special points of σ(T )

about which positive results can be obtained.

Proposition 3.4 (i) If λ is an isolated point of σ(T ) and Tn
n−→ T , then there is

λn ∈ σ(Tn) such that λn → λ.
(ii) If λ is a nonzero isolated point of σ(T ) and Tn

ν−→ T, then there is λn ∈ σ(Tn)

such that λn → λ.
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The proof of this proposition involves the spectral projection

P(T,�) := − 1

2πi

∫

C
R(z)dz,

where � is a closed subset of σ(T ) such that σ(T )\� is also closed, and C is a
Cauchy contour separating � from σ(T )\�. (See Corollary 2.13 of [2]).

Further, if � = {λ}, C is a circle separating λ from σ(T )\{λ}, and P(T, {λ})
is of finite rank m, then λ is an eigenvalue of T, and for all large n, there are m
eigenvalues λn,1, . . . ,λn,m of Tn (counted according to their algebraic multipicities)
inside C, and their arithmetic mean ̂λn := (λn,1 + · · · + λn,m)/m → λ. It is also
possible to give error estimates for |̂λn − λ|. (See part (b) of Theorem 2.18 of [2]).

Remark 3.5 Let us comment on the special place of the complex number 0 in our
discussion. If Tn

ν−→ T, then the case z = 0 in Proposition2.5 and the case λ = 0 in
Proposition3.4 remain out of our reach.

If the Banach space X is infinite dimensional and if T is a compact operator,
then it cannot be bounded below, and so 0 �∈ ρ(T ), that is, 0 ∈ σ(T ). Compact
operators, such as the integral operators considered in Sect. 2, are often approximated
by operators whose range is finite dimensional. In the treatment of these operators,
we need to avoid the complex number 0, as we shall see in the next section.

4 Finite Rank Operators

Let X be a linear space. A linear operator ˜T : X → X is said to be of finite rank
if the range of ˜T is finite dimensional. In this section, we shall give a canonical
way of reducing the solution of the operator equation z x − ˜T x = y and also of the
eigenequation ˜T x = λ x , to matrix computations, provided z �= 0 and λ �= 0. In the
classical literature, different ways were followed for this discretization depending
on the nature of the finite rank operator. Whitley [12] suggested a canonical way
applicable to all finite rank operators.

Let ˜T be a finite rank operator on a linear space X . Then there are x1, . . . , xm ∈ X
and linear functionals f1, . . . , fm on X such that

˜T x :=
m

∑

i=1

fi (x)xi for x ∈ X.

Neither the elements x1, . . . , xm nor the functionals f1, . . . , fm are assumed to be
linearly independent. In this section, we shall assume that ˜T : X → X is presented
to us as above.

Proposition 4.1 Let X be a linear space, and ˜T : X → X be a linear operator of
finite rank. Let A denote the m × m matrix having fi (x j ) as the entry in the i th row
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and the j th column. Let 0 �= z ∈ C and y ∈ X. Define v := [ f1(y), . . . , fm(y)]t .

Then for x ∈ X and u := [u1, . . . , um]t ∈ C
m×1,

z x − ˜T x = y and u = [ f1(x), . . . , fm(x)]t

if and only if

z u − Au = v and x = 1

z

(

y +
m

∑

j=1

u j x j

)

.

Proof Let vi := fi (y) for i = 1, . . . , m. We note that for u := [u1, . . . , um]t ,

z u − Au = v ⇐⇒ z ui −
m

∑

j=1

fi (x j )u j = vi for i = 1, . . . , m. (1)

Assume that x ∈ X and z x − ˜T x = y and u = [ f1(x), . . . , fm(x)]t . Then

z x = y +
m

∑

j=1

f j (x)x j .

Applying fi to the above equation, we obtain z fi (x) = fi (y) + ∑m
j=1 f j (x) fi (x j ).

Since ui = fi (x) and vi = fi (y) for i = 1, . . . , m, we obtain z ui = vi +
∑m

j=1 fi (x j )u j for i = 1, . . . , m, that is, z u − Au = v. Also, x = (y +
∑m

j=1 u j x j )/z.
Conversely, assume that z u − Au = v and x = (y + ∑m

j=1 u j x j )/z. Then
∑m

j=1 fi (x j )u j = z ui − vi for i = 1, . . . , m by (1). Hence

˜T x =
m

∑

i=1

fi (x)xi = 1

z

m
∑

i=1

[

fi (y) +
m

∑

j=1

u j fi (x j )
]

xi

= 1

z

m
∑

i=1

[vi + z ui − vi ]xi =
m

∑

i=1

ui xi

= z x − y.

Also, for i = 1, . . . , m,

z ui = vi +
m

∑

j=1

fi (x j )u j = vi + fi

(

m
∑

j=1

u j x j

)

= fi (y) + fi (z x − y) = z fi (x),

and so ui = fi (x) since z �= 0. This completes the proof. �
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Thus to solve the operator equation z x − ˜T x = y, where ˜T is of finite rank and
z �= 0, we may solve the matrix equation z u − Au = v, where A := [ fi (x j )] and
v := [ f1(y), . . . , fm(y)]t , and then let x := 1

z

(

y +
m

∑

j=1

u j x j

)

.

Corollary 4.2 Any nonzero λ ∈ C is an eigenvalue of a finite rank operator ˜T on a
linear space X if and only if λ is an eigenvalue of the m×m matrix A := [ fi (x j )], and

ϕ ∈ X is an eigenvector of ˜T corresponding to λ if and only if ϕ =
(

∑m
j=1 u j x j

)

/λ,

where u := [u1, . . . , um]t is an eigenvector of A corresponding to λ.

Proof Let y := 0 in Proposition4.1. Then v := [ f1(0), . . . , fm(0)]t = 0. Writing
λ for z ∈ C, and ϕ for x ∈ X , we see that λϕ − ˜T ϕ = 0 and ui = fi (ϕ) for

i = 1, . . . , m if and only if λu − Au = 0 and ϕ =
(

∑m
j=1 u j x j

)

/λ. Further, if

u = 0, that is, u j = 0 for all j = 1, . . . , m, then clearly ϕ = 0. Also, if ϕ = 0,
then ui = fi (ϕ) = 0 for i = 1, . . . , m, that is, u = 0. Thus ϕ is an eigenvector of ˜T
corresponding to λ if and only if u is an eigenvector of A corresponding to λ. �

Thus to solve the operator eigenequation ˜T ϕ = λϕ, where ˜T is of finite rank and
λ �= 0, we may solve the matrix eigenequation Au = λu, where A := [ fi (x j )], and
then let ϕ :=

(

∑m
j=1 u j x j

)

/λ, where u := [u1, . . . , um]t .

The finite rank operators such as T D
n , T P

n , T S
n , T G

n , T N
n appearing inmost classical

methods of approximation are always presented to us in the form
∑m

j=1 f j (x)x j , x ∈
X , considered here. This will be apparent from the following typical examples.

Example 4.3 Let X := C([a, b]).
(i) For x ∈ X, let

(T D
n x)(s) :=

∫ b

a

n
∑

j=1

xn, j (s) yn, j (t)x(t)dt, s ∈ [a, b].

Then T D
n x =

n
∑

j=1

f j (x)x j , where x j := xn, j , and f j (x) :=
∫ b

a
yn, j (t)x(t)dt for

x ∈ X, j = 1, . . . , n.
(ii) For x ∈ X , let

T P
n x :=

n
∑

j=1

(T x)(tn, j )en, j .

Then T P
n x =

n
∑

j=1

f j (x)x j , where x j := en, j , and f j (x) := (T x)(tn, j ) for x ∈
X, j = 1, . . . , n.
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(iii) For x ∈ X , let

(T N
n x)(s) :=

n
∑

j=1

wn, j k(s, tn, j )x(tn, j ), s ∈ [a, b].

Then T N
n x =

n
∑

j=1

f j (x)x j , where x j (s) := k(s, tn, j ) for s ∈ [a, b], and f j (x) :=
wn, j x(tn, j ) for x ∈ X, j = 1, . . . , n.

We conclude this article by considering two integral operators with apparently
similar kernels. Let [a, b] := [0, 1]. Define h(s, t) := es+t and k(s, t) := est for
s, t ∈ [0, 1]. For x ∈ C([0, 1]), let

(˜T x)(s) :=
∫ 1

0
h(s, t)x(t)dt and (T x)(s) :=

∫ 1

0
k(s, t)x(t)dt, s ∈ [0, 1].

Then ˜T is a finite rank operator. In fact, for x ∈ C([0, 1]), ˜T x = f1(x)x1, where

x1(s) := es for s ∈ [0, 1], and f1(x) :=
∫ 1

0
et x(t)dt for x ∈ X. On the other

hand, T is not of finite rank. Noting that est =
∞
∑

j=0

s j t j

j ! for s, t ∈ [0, 1], where the

series converges uniformly on [0, 1] × [0, 1], we may let kn(s, t) :=
n

∑

j=0

s j t j

j ! for

s, t ∈ [0, 1]. Then ‖k(·, ·) − kn(·, ·)‖∞ → 0 as n → ∞. For x ∈ C([0, 1]), define

(T D
n x)(s) :=

∫ 1

0
kn(s, t)x(t)dt, s ∈ [0, 1].

Then T D
n

n−→ T . In fact, for each fixed n ∈ N, (T D
n )(x) =

n
∑

j=0

f j (x)x j , where

x j (s) := s j

j ! for s ∈ [0, 1], and f j (x) :=
∫ 1

0
t j x(t)dt for x ∈ C([0, 1]), j =

1, . . . , n.
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The Nullity Theorem, Its Generalization
and Applications

S.H. Kulkarni

Abstract The Nullity theorem says that certain pairs of submatrices of a square
invertible matrix and its inverse (known as complementary submatrices) have the
same nullity. Though this theorem has been around for quite some time and also has
found several applications, some how it is not that widely known. We give a brief
account of the Nullity Theorem, consider its generalization to infinite dimensional
spaces, called the Null Space Theorem and discuss some applications.

Keywords Nullity theorem · Null space theorem · Tridiagonal operator · Rank ·
Generalized inverse
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1 Introduction

This article is based on the talks given byme at several places including the one at the
International Conference on Semigroups, Algebras and Operator Theory (ICSAOT)-
2014 held at the Department of Mathematics, Cochin University of Science and
Technology. It has two objectives. The first is to make the Nullity Theorem known
more widely. I myself started taking interest in this topic after listening to a talk by
Prof. R.B. Bapat in a workshop on Numerical Linear Algebra at I. I. T. Guwahati.
The second is to consider its generalization to infinite dimensional spaces and some
applications of this generalization. We begin with some motivation for the Nullity
Theorem.

Recall that a square matrix A = [αij] of order n is called tridiagonal if

αij = 0 for |i − j | > 1
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It is well known that the tridiagonal matrices form a very useful class of matrices
with applications in many areas. Tridiagonal matrices have a close relationship with
the second-order linear differential equations. (See [8] for more discussion on this
topic.) In particular, thefinal step in solving a second-order linear differential equation
numerically by finite differencemethod involves solving a system of linear equations
whose coefficient matrix is tridiagonal. Also the transition probability matrix in a
Birth and Death Process happens to be a tridiagonal matrix.

Such a tridiagonal matrix is described completely by 3n − 2 numbers (n on the
main diagonal and n − 1 on each of superdiagonal and subdiagonal). In general, if a
tridiagonal matrix is invertible, its inverse need not be tridiagonal. It is very easy to
construct examples to illustrate this. However, we may still expect that the inverse
can be described completely by 3n − 2 parameters. This is indeed true. It is known
that if A is a tridiagonal matrix of order n and if A is also invertible, then every
submatrix of A−1 that lies on or above the main diagonal is of rank ≤ 1. Similar
statement is true of submatrices lying on or below the main diagonal. This result is
known at least since 1979. (See [2]) Several proofs of this result are available in the
literature. The article [8] contains some of these proofs, references to these and other
proofs, and also a brief history and comments about possible generalizations.

In view of this result, the inverse can be described using 3n − 2 parameters as
follows: To start with we can choose 4n numbers a j , b j , c j , d j , j = 1, . . . n such
that

(A−1)ij = ai b j for i ≤ j and

= ci d j for j ≤ i

These 4n numbers have to satisfy following constraints.

ai bi = ci di for i = 1, . . . , n and a1 = 1 = c1

This result has been used to construct fast algorithms to compute the inverse of
a tridiagonal matrix or to find solutions of a linear system whose coefficient matrix
is tridiagonal. (See [8]) One proof of this theorem depends on the Nullity Theorem.
This theorem uses the idea of complementary submatrices. Let A and B be square
matrices of order n. Suppose M is a submatrix of A and N is a submatrix of B.
We say that M and N are complementary if row numbers not used in one are the
column numbers used in the other. More precisely, let I and J be subsets of the
set {1, 2, . . . , n} and let I c denote the complement of I . Let A(I, J ) denote the
submatrix of A obtained by choosing rows in I and columns in J . Then A(I, J )

and B(J c, I c) are complementary submatrices. With this terminology, the Nullity
Theorem has a very simple formulation.

Theorem 1.1 (Nullity Theorem) Complementary submatrices of a square matrix
and its inverse have the same nullity.

As an illustration we can consider the following. Suppose k < n and a square
matrix M of order n is partitioned into submatrices as follows:
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M =
[

Ak Bk

Ck Dk

]

Here Ak is the submatrix obtained from A by choosing the first k rows and the
first k columns. Assume that M is invertible and its inverse is partitioned similarly
as follows:

M−1 =
[

Pk Qk

Rk Sk

]

Then the Nullity Theorem says that

nullity(Ak) = nullity(Sk), nullity(Dk) = nullity(Pk)

nullity(Bk) = nullity(Qk), nullity(Ck) = nullity(Rk)

This Nullity Theorem has been in the literature for quite some time (at least since
1984), but it does not seem to be that widely well known. In [8], Gilbert Strang
and Tri Ngyuen have given an account of this Nullity Theorem. They have given a
proof of this theorem and discussed its consequences for ranks of some submatrices.
In particular, they prove a very interesting fact that the submatrices of a banded
invertible matrix lying above or below the main diagonal have low ranks. While
discussing literature and alternative proofs, the authors make the following remark.

“A key question will be the generalization to infinite dimensions.”
We give a brief account of such a generalization called the “Null Space Theorem”.

This was also reported in [5].
We recall a few standard notations, definitions, and results that are used to prove

the main result. For vector spaces X, Y , we denote by L(X, Y ) the set of all linear
operators from X to Y . For an operator T ∈ L(X, Y ), N (T ) denotes the null space
of T and R(T ) denotes the range of T . Thus N (T ) := {x ∈ X : T (x) = 0} and
R(T ) := {T (x) : x ∈ X}.

As usual, L(X, X) will be denoted by L(X). A map P ∈ L(X) is called a
projection if P2 = P . Let P ∈ L(X) and Q ∈ L(Y ) be projections. The restriction
of QT P to R(P) can be viewed as a linear operator from R(P) to R(Q). This is called
a section of T by P and Q and will be denoted by TP,Q . It is called a finite section, if
R(P) and R(Q) are finite dimensional.When T is invertible, the section T −1

IY −Q,IX −P

of T −1 is called the complementary section of TP,Q . With this terminology, our Null
Space Theorem can be stated in the following very simple form.

There is a linear bijection between the null spaces of the complementary sections
of T and T −1 (Theorem 2.1).

Its proof is also very simple. It is given in the next section. When X and Y are
finite dimensional, T is represented by a matrix and complementary submatrices
correspond to complementary sections. (See [8]) Thus there is a linear bijection
between the null spaces of the complementary submatrices of T and T −1. Hence
they have the same nullity. This is the Nullity Theorem (Theorem 1.1).
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The authors of [8] have discussed several applications of the Nullity Theorem.
For example, if T is an invertible tridiagonal matrix, then every submatrix of T −1

that lies on or above the main diagonal or on and below the main diagonal is of
rank ≤ 1. However, proofs of these applications involve the famous Rank–Nullity
Theorem (called the “Fundamental Theorem of Linear Algebra” in [7]) apart from
the Nullity Theorem. Hence a straightforward imitation of these proofs to infinite
dimensional case may or may not work, though the results may very well be true.
Such an approach may work when the sections can be viewed as operators on finite
dimensional spaces. In general, we need a different approach. This is attempted in
the third section. We prove that if a tridiagonal operator on a Banach space with a
Schauder basis is invertible, then certain sections of T −1 are of rank ≤ 1. (Theorem
3.1) This is followed by some illustrative examples and remarks about possible
extensions.

2 Main Result

Theorem 2.1 (TheNull SpaceTheorem) Let X, Y be vector spaces, P ∈ L(X), Q ∈
L(Y ) be projections and T ∈ L(X, Y ) be invertible. Then there is a linear bijection
between the null space of the section TP,Q of T and the null space of its complemen-
tary section T −1

IY −Q,IX −P of T −1.

Proof (See also [5]) Let x ∈ N (TP,Q) . This means that x ∈ R(P) so that P(x) = x
and QT P(x) = 0. Hence QT (x) = 0, that is, (IY − Q)T (x) = T (x). Thus
T (x) ∈ R(IY − Q). Also, (IX − P)T −1(IY − Q)T (x) = (IX − P)T −1T (x) =
(IX − P)(x) = 0. Hence T (x) ∈ N ((IX − P)T −1(IY − Q)). This means T (x) ∈
N (T −1

IY −Q,IX −P ). This shows that the restriction of T to N (TP,Q) maps N (TP,Q)

into N ((IX − P)T −1(IY − Q)). Since T is invertible, this map is already injective.
It only remains to show that it is onto. For this let y ∈ N (T −1

IY −Q,IX −P ). This means

y ∈ R(IY − Q) and (IX − P)T −1(IY − Q)(y) = 0. We shall show that T −1(y) ∈
N (TP,Q) . Since y ∈ R(IY − Q) , we have (IY − Q)(y) = y. Thus Q(y) = 0. Next,
0 = (IX − P)T −1(IY − Q)(y) = (IX − P)T −1(y). This implies that PT −1(y) =
T −1(y), that is , T −1(y) ∈ R(P). Also QT PT −1(y) = QT T −1(y) = Q(y) = 0.
Thus T −1(y) ∈ N (QT P). Hence T −1(y) ∈ N (TP,Q). �
Remark 2.2 As pointed out in the Introduction, this Null Space Theorem implies
the Nullity Theorem (Theorem 1.1).

3 Ranks of Submatirces

While considering infinite matrices, the products involve infinite sums, leading natu-
rally to the questions of convergence. Hence it is natural to consider these questions
in the setting of a Banach space X with a Schauder basis A = {a1, a2, . . .}. We refer
to [4, 6] for elementary concepts in Functional Analysis.
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Theorem 3.1 Let X be a Banach space with a Schauder basis A = {a1, a2, . . .}.
Let T be a bounded (continuous) linear operator on X. Suppose the matrix of T with
respect to A is tridiagonal. If T is invertible, then every submatrix of the matrix of
T −1 with respect to A that lies on or above the main diagonal (or on or below the
main diagonal) is of rank ≤ 1.

Proof Let M be the matrix of T with respect to A. Then M is infinite matrix of the
form

M =

⎡

⎢

⎢

⎢

⎢

⎣

δ1 α1 0 0 .

β2 δ2 α2 0 .

0 β3 δ3 α3 .

0 0 . . .

. . . . .

⎤

⎥

⎥

⎥

⎥

⎦

Then the matrix of T −1 with respect to A is M−1. Let M−1 = [γi, j ]. Let C j denote
the j-th column of M−1 and Ri denote the i-th row of M−1. Thus

M−1 = [

C1 C2 . . .
] =

⎡

⎢

⎢

⎢

⎢

⎣

R1
R2
.

.

.

⎤

⎥

⎥

⎥

⎥

⎦

Further for a fixed natural number k, let Ck
j denote the column vector obtained by

deleting the first k − 1 entries from C j . Thus

Ck
j =

⎡

⎢

⎢

⎢

⎢

⎣

γk, j

γk+1, j

.

.

.

⎤

⎥

⎥

⎥

⎥

⎦

Similarly, let Rk
i denote the row vector obtained by deleting first k − 1 entries

from Ri .
Next let Pk denote the submatrix of M−1 given by

Pk = [γi, j , i ≥ k, 1 ≤ j ≤ k] = [

Ck
1 Ck

2 . . Ck
k

]

Similarly, let Qk denote the submatrix of M−1 given by



154 S.H. Kulkarni

Qk = [γi, j , 1 ≤ i ≤ k, j ≥ k] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Rk
1

Rk
2
.

.

Rk
k

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Note that every submatrix of M−1 that lies on or above the main diagonal is a
submatrix of Qk for some k and every submatrix of M−1 that lies on or below the
main diagonal is a submatrix of Pk for some k. Thus it is sufficient to show that Pk

and Qk are of rank ≤ 1 for each k.
We shall give two proofs of this assertion.

First proof:

The assertion is evident for k = 1.
Now consider the equation M−1M = I , that is,

[

C1 C2 . . .
]

⎡

⎢

⎢

⎢

⎢

⎣

δ1 α1 0 0 .

β2 δ2 α2 0 .

0 β3 δ3 α3 .

0 0 . . .

. . . . .

⎤

⎥

⎥

⎥

⎥

⎦

= [

e1 e2 . . .
]

where, as usual, e j denotes the column matrix whose j-th entry is 1 and all other
entries are 0.

Equating the first columns on both sides of the above equation, we get

δ1C1 + β2C2 = e1

This, in particular, implies that at least one of δ1, β2 is not zero.
Deleting the first entries from all the column vectors in the above equation,

we get
δ1C2

1 + β2C2
2 = e21 = 0

This shows that {C2
1 , C2

2 } is a linearly dependent set, that is the matrix

P2 = [

C2
1 C2

2

]

is of rank ≤ 1.
Next we equate the second column on both sides of the equation. Then

α1C1 + δ2C2 + β3C3 = e2

Hence one of α1, δ2, β3 is not zero.
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Now deleting the first two entries from all the vectors appearing in this equation,
we get

α1C3
1 + δ2C3

2 + β3C3
3 = e32 = 0

Since {C2
1 , C2

2 } is a linearly dependent set, one of the vectors, say C2
2 is a scalar

multiple of the other, that is, C2
1 . This implies that C3

2 is a scalar multiple of C3
1 . Now

the above equation shows that C3
3 is also a scalar multiple of C3

1 . Hence

P3 = [

C3
1 C3

2 C3
3

]

is of rank ≤ 1.
Proceeding in this way (more precisely, byMathematical Induction), we can show

that
Pk is of rank ≤ 1 for each k.
Following essentially the same technique, equating the rows of both sides of the

equation M M−1 = I , we can show that Qk is of rank ≤ 1 for each k.
This completes the first proof.

Second proof:

Recall that since A = {a1, a2, . . .} is a Schauder basis of X , every x ∈ X can be
expressed uniquely as x = ∑∞

j=1 α j a j for some scalars α j . Let Xn denote the
linear span of An := {a1, a2, . . . an} and define a map πn : X → X by πn(x) =
∑n

j=1 α j a j . Then πn is a projection with R(πn) = Xn . Also note that for each k,

Pk as defined above is the matrix of the section T −1
πk ,I−πk−1

of the operator T −1. As
noted earlier, this can be viewed as an operator on R(πk) = Xk . By the Null Space
Theorem (Theorem 2.1), there is a linear bijection between the null space of this
section and its complementary section, that is, the section Tπk−1,I−πk of the operator
T . This can be viewed as an operator on R(πk−1) = Xk−1. It can be seen (in many
ways) that this is in fact the zero operator on Xk−1. (The matrix of this section is the
submatrix of M obtained by choosing the first k − 1 columns and not choosing the
first k rows. This is a zeromatrix because M is tridiagonal.) Thus the null space of the
section Tπk−1,I−πk coincides with Xk−1. Hence the null space of the complementary
section T −1

πk ,I−πk−1
is also of dimension k − 1. This implies that its rank is 1 as it is

an operator on Xk .
Thus Pk is of rank 1 for each k.
In a similar way, we can show that Qk is of rank 1 for each k.
This completes the second proof �

Example 3.2 Let �2 denote the Hilbert space of square summable sequences and let
E = {e1, e2, . . .} be the orthonormal basis, where as usual e j denotes the sequence
whose j-th entry is 1 and all other entries are 0. Let R denote the Right Shift operator
given by

R(x) = (0, x(1), x(2), . . .), x ∈ �2.
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Consider a complex number c with |c| < 1 and let T = I − cR. Then the matrix of
T with respect to the orthonormal basis E is tridiagonal and is given by

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 . .

−c 1 0 0 .

0 −c 1 0 .

. . . . .

. . . . .

⎤

⎥

⎥

⎥

⎥

⎦

It can be easily checked that T is invertible and

T −1 =
∞
∑

j=0

c j R j

Thus the matrix of T −1 with respect to the orthonormal basis E is given by

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 . .

c 1 0 0 .

c2 c 1 0 .

. . . . .

. . . . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

It is easily seen that every submatrix of the above matrix of T −1 that lies on or above
(or on or below ) the main diagonal is of rank 0 or 1.

Remark 3.3 In view of the above Theorem, T −1 or equivalently, M−1 = [γi, j ] can
be described completely by using four sequences {an}, {bn}, {cn}, {dn} as follows:
γi, j = ai b j for j ≥ i and γi, j = ci d j for j ≤ i . Also, since for i = j , γi,i =
ai bi = ci di , these are essentially only three sequences. This should be expected as
the tridiagonal operator T (matrix M) is completely described by three sequences,
namely, {αn}, {βn}, {δn}. This can be useful in devising fast methods of computing
T −1. (See the Introduction of [8].)

Remark 3.4 It is also easy to see that the above proof can be easily modified in an
obvious manner to a natural generalization that allows the matrix M of T to have a
wider band. Suppose M = [mi, j ] is such that mi, j = 0 for |i − j | > p. (Thus p = 1
corresponds to tridiagonal operator.) Then using the same method, we can prove the
following: every submatrix of the matrix of M−1 that lies above the pth subdiagonal
or below the pth superdiagonal is of rank ≤ p.

A careful look at the proof of Theorem 3.1 in fact shows that we have actually
proved a more general result.
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Theorem 3.5 Let X be a Banach space with a Schauder basis A = {a1, a2, . . .}.
Let T be a bounded (continuous) linear operator on X. Suppose the matrix of T with
respect to A is tridiagonal. If T has a bounded left inverse S, then every submatrix
of the matrix of S with respect to A that lies on or below the main diagonal is of
rank ≤ 1. Similarly, if T has a bounded right inverse U, then every submatrix of the
matrix of U with respect to A that lies on or above the main diagonal is of rank ≤ 1.

Remark 3.6 As a simple example of the above Theorem 3.5, we may again consider
the right shift operator R on �2 discussed in Example 3.2. Let L denote the Left Shift
operator given by

L(x) = (x(2), x(3), . . .), x ∈ �2.

Then L is a left inverse of R. Clearly, every submatrix of the matrix of L with respect
to A that lies on or below the main diagonal is of rank ≤ 1.

Remark 3.7 Since left (right) inverse is one among the family of generalized inverses,
Theorem 3.5 also raises an obvious question: Is there an analogue of Theorem 3.5
for other generalized inverses, in particular for Moore–Penrose pseudoinverse? Such
results are known for matrices. (See [1]) Information on generalized inverses of
various types can be found in [3].

Remark 3.8 In order to draw significant conclusions in the context of differential
equations, we need an extension of Theorem 3.1 for unbounded operators.

Acknowledgments The author thanks Prof. Gilbert Strang and Prof. R.B. Bapat for several useful
discussions.
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Role of Hilbert Scales in Regularization
Theory

M.T. Nair

Abstract Hilbert scales, which are generalizations of Sobolev scales, play crucial
roles in the regularization theory. In this paper, it is intended to discuss some important
properties of Hilbert scales with illustrations through examples constructed using
the concept of Gelfand triples, and using them to describe source conditions and for
deriving error estimates in the regularized solutions of ill-posed operator equations.
We discuss the above with special emphasis on some of the recent work of the author.

Keywords Hilbert scales · Sobolev scales · Ill-posed equations · Regularization ·
Tikhonov regularization ·Source sets ·Discrepancyprinciple ·Order optimal gelfand
triple · Ill-posed problem · Gelfand triple
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1 What are Hilbert Scales?

Definition 1.1 A family of Hilbert spaces Hs, s ∈ R, is called a Hilbert scale if
Ht ⊆ Hs whenever t > s and the inclusion is a continuous embedding, i.e., there
exists cs,t > 0 such that

‖x‖s ≤ cs,t‖x‖t ∀ x ∈ Ht . �

Examples of Hilbert scales are constructed by first defining Hs for s ≥ 0, and
then defining Hs for s < 0 using the concept of a Gelfand triple. So, let us consider
the definition and properties of Gelfand triples.

Throughout the paper, we shall consider the scalar field is K which is either the
field R of real numbers of the field C of complex numbers.
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1.1 Gelfand Triple

Let V be a dense subspace of a Hilbert space H with norm ‖ · ‖. Suppose V is also
a Hilbert space with respect to a norm ‖ · ‖V such that the inclusion of V into H is
continuous, i.e., there exists c > 0 such that

‖x‖ ≤ c‖x‖V ∀ x ∈ V .

For x ∈ H , let
‖x‖∗ := sup{|〈u, x〉| : v ∈ V, ‖v‖V ≤ 1}.

It can be easily seen that ‖ · ‖∗ is a norm on H . In fact, it is weaker than the original
norm ‖ · ‖. Indeed, for x ∈ H, v ∈ V

|〈x, v〉| ≤ ‖x‖ ‖v‖ ≤ c‖x‖ ‖v‖V

so that
‖x‖∗ ≤ ‖x‖ ∀ u ∈ H.

Let ˜V be the completion of H with respect to the norm ‖ · ‖∗.
Definition 1.2 The triple (V, H, ˜V ) is called a Gelfand triple. �

We show that ˜V is linearly isometric with V ′, the dual of V of all continuous
linear functionals on V . For this purpose, for each x ∈ H , consider the the map
fx : V → K defined by

fx (v) = 〈v, x〉, v ∈ V .

Then fx is linear and

| fv(u)| = |〈u, v〉| ≤ ‖u‖ ‖v‖ ≤ c‖u‖1‖v‖, u ∈ H1.

Hence,
fx ∈ V ′, ‖ fx‖ = ‖x‖∗

and the map x → fx is a linear isometry from H into ˜V . Further, we have the
following.

Theorem 1.3 The subspace { fx : x ∈ H} of V ′ is dense in V ′.
Proof By Hahn–Banach extension theorem, it is enough to prove that for ϕ ∈ V ′′,
ϕ( fx ) = 0 for all x ∈ H implies x = 0. So, let ϕ ∈ V ′′ such that ϕ( fx ) = 0 for all
x ∈ H . Since V is reflexive, there exists u ∈ V such that

ϕ( f ) = f (u) ∀ f ∈ V ′.

Thus, fx (u) = 0 for all x ∈ H , i.e., 〈u, x〉 = 0 for all x ∈ H . Hence, x = 0. �
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As a consequence of the above theorem and the remarks preceding the theorem,
we obtain the following.

Theorem 1.4 The space ˜V is linearly isometric with V ′,

V ⊆ H ⊆ ˜V

and the inclusions are continuous embeddings.

2 Examples of Hilbert Scales

Example 2.1 Let H be a Hilbert space and L : D(L) ⊆ H → H be a densely
defined strictly positive self adjont operator which is also coercive, i.e.,

〈Lx, x〉 ≥ γ‖x‖2 ∀ x ∈ H

for some γ > 0. Consider the dense subspace X = ∩∞
k=1D(Lk), and for s > 0, let

〈u, v〉s := 〈Lsu, Lsv〉, u ∈ X.

‖u‖s := ‖Lsu‖, u ∈ X.

Then 〈·, ·〉s is an inner product on X with the corresponding norm

‖u‖s := ‖Lsu‖, u ∈ X.

Here, for s ∈ R, the operator Ls is defined via spectral theorem, i.e.,

Ls =
∫ ∞

0
λsd Eλ,

where {Eλ}λ∈R is the resolution of identity associated with the operator L .
Let Hs be the completion of X with respect to ‖ · ‖s . It can be seen that Hs is a

dense subspace of H as a vector space. Also, since L is bounded below, Ls is also
bounded below, so that there exists cs > 0 such that

‖Lsu‖ ≥ cs‖u‖ ∀ u ∈ X.

Thus, Hs is continuously embedded in H . Thus, we have the Gelfand triple
(Hs, H, H−s) with H−s := ˜Hs . Note that

s ≤ t =⇒ Ht ⊆ Hs
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and the inclusion is continuous, with H0 = H . Thus, the family {Hs : s ∈ R} is a
Hilbert scale, called the Hilbert scale generated by L . �

Example 2.2 Let H be a separable Hilbert space and {un : n ∈ N} be an orthonormal
basis of H . Let (σn) be a sequence of positive real numbers with σn → 0. For
s ≥ 0, let

Hs := {x ∈ H :
∞
∑

n=1

|〈x, un〉|2
σ2s

n
< ∞}.

Then Hs is a Hilbert space with inner product

〈x, y〉s :=
∞
∑

n=1

〈x, un〉〈un, y〉
σ2s

n
.

The corresponding norm ‖ · ‖s is given by

‖x‖2s :=
∞
∑

n=1

|〈x, un〉|2
σ2s

n
.

We may observe that
‖x‖ ≤ ‖x‖s ∀ x ∈ Hs, s > 0.

Thus, (Hs, H, H−s), with H0 = H and H−s := ˜Hs , is a Gelfand triple for each
s > 0, and {Hs : s ∈ R} is a Hilbert scale.

Let T : H → H be defined by

T x =
∞
∑

n=1

σn〈x, un〉un .

Then T is an injective, compact, positive self adjoint operator on H , and for s > 0,
we have

T s x =
∞
∑

n=1

σs
n〈x, un〉un, x ∈ H.

Thus,

‖x‖2s :=
∞
∑

n=1

|〈x, un〉|2
σ2s

n
= ‖T −s x‖2, x ∈ R(T s).

Note that

R(T s) := {x ∈ H :
∞
∑

n=1

|〈x, un〉|2
σ2s

n
converges}.



Role of Hilbert Scales in Regularization Theory 163

Thus the Hilbert scale {Hs : s ∈ R} is generated by L := T −1. Observe that

〈T −1x, x〉 =
∞
∑

n=1

|〈x, un〉|2
σn

≥ 1

maxn σn
‖x‖2

so that T −1 is strictly coercive, positive self adjoint operator on D(T −1)

:= R(T ). �

Theorem 2.3 Let {Hs : s ∈ R} be as in Example 2.2 and u(s)
n := σs

nun for s ∈ R

and n ∈ N.

(i) {u(s)
n : n ∈ N} is an orthonormal basis of Hs.

(ii) For s < t , the identity map Is,t : Ht → Hs is a compact embedding.

Proof For x ∈ Hs , we have

〈x, u(s)
j 〉s =

∞
∑

n=1

〈x, un〉〈un, u(s)
j 〉

σ2s
n

=
∞
∑

n=1

σs
i
〈x, un〉〈un, u j 〉

σ2s
n

= 〈x, u j 〉
σs

j
. (2.1)

Hence,

〈u(s)
i , u(s)

j 〉s = 〈u(s)
i , u j 〉
σs

j
= σ

(s)
i 〈ui , u j 〉

σs
j

= δi j .

Further, for every x ∈ Hs , by (2.1),

x =
∞
∑

n=1

〈x, un〉un =
∞
∑

n=1

σs
n〈x, u(s)

n 〉s un =
∞
∑

n=1

〈x, u(s)
n 〉s u(s)

n .

Hence, {u(s)
n : n ∈ N} is an orthonormal basis of Hs .

Also, for x ∈ Ht , by (1),

x =
∞
∑

n=1

〈x, un〉un =
∞
∑

n=1

σt
n〈x, u(t)

n 〉t un =
∞
∑

n=1

σt−s
n 〈x, u(t)

n 〉t u(s)
n

Thus,

Is,t x =
∞
∑

n=1

σt−s
n 〈x, u(t)

n 〉u(s)
n , x ∈ Ht .

Since σt−s
n → 0, the inclusion map is a compact operator. �
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Example 2.4 For s ≥ 0, recall that the Sobolev space

Hs(Rk) := { f ∈ L2(Rk) :
∫

Rk
(1 + |ξ|2)s | f̂ (ξ)|2dξ < ∞}

is a Hilbert space with inner product

〈 f, g〉s :=
∫

Rk
(1 + |ξ|2)s f̂ (ξ)ĝ(ξ)dξ

and the corresponding norm

‖ f ‖s :=
[∫

Rk
(1 + |ξ|2)s | f̂ (ξ)|2dξ

]1/2

.

For s < 0, Hs(Rk) is defined via Gelfand triple. It can be shown that for s < t ,
the inclusion Ht ⊆ Hs is continuous, and hence {Hs(Rk) : s ∈ R} is a Hilbert
scale. �

3 Interpolation Inequality in Hilbert Scales

Let {Hs}s∈R be a Hilbert scale. We know that for r < s < t , Ht ⊆ Hs ⊆ Hr and
there exist constants c(1)

r,s and c(2)
s,t such that

c(2)
s,t ‖x‖t ≤ ‖x‖s ≤ c(1)

r,s ‖x‖r ∀ x ∈ Ht .

In most of the standard Hilbert scales, we have another inequality

‖x‖s ≤ ‖x‖1−λ
r ‖x‖t

t , ∀ x ∈ Ht ,

whenever r < s < t , where λ := s−r
t−r so that s = (1 − λ)r + λt . This inequality is

called the interpolation inequality on {Hs}s∈R.

Theorem 3.1 Let {Hs}s∈R be the Hilbert scale as in Example 2.2. For r < s < t
and the interpolation inequality

‖x‖s ≤ ‖x‖1−λ
r ‖x‖λ

t , λ := t − s

t − r

holds for all x ∈ Ht .

Proof Let r < s < t and u ∈ Ht . Since s = (1−λ)r +λt with λ := (t − s)/(t − r)

we write
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∞
∑

n=1

|〈x, un〉|2
σ2s

n
=

∞
∑

n=1

|〈x, un〉|2
σ
2[(1−λ)r+λt]
n

=
∞
∑

n=1

[ |〈x, un〉|2(1−λ)

σ
2(1−λ)r
n

] [ |〈u, un〉|2λ
σ2λt

n

]

.

Applying Hölder’s inequality by taking p = 1/(1 − λ) and q = 1/λ, we have

∞
∑

n=1

|〈x, un〉|2
σ2s

n
=

∞
∑

n=1

[ |〈x, un〉|2(1−λ)

σ
2(1−λ)r
n

] [ |〈u, un〉|2λ
σ2λt

n

]

≤
{ ∞

∑

n=1

|〈x, un〉|2
σ2r

n

}1−λ { ∞
∑

n=1

|〈x, un〉|2
σ2t

n

}λ

=
{

‖x‖2r
}1−λ {

‖x‖2t
}λ

.

Thus, ‖x‖s ≤ ‖x‖1−λ
r ‖x‖λ

t . �

Theorem 3.2 Consider the Hilbert scale {Hs(Rk)}s∈R as in Example 2.4. For r <

s < t , the interpolation inequality

‖ f ‖s ≤ ‖ f ‖1−λ
r ‖ f ‖λ

t

holds for all f ∈ Hs(Rk), where λ is such that s = (1 − λ)r + λt , i.e., λ := t−s
t−r .

Proof Since s = (1 − λ)r + λt , Hölder’s inequality gives

‖ f ‖2s =
∫

Rk
(1 + |ξ|2)s | f̂ (ξ)|2dξ

=
∫

Rk
[(1 + |ξ|2)r | f̂ (ξ)|2](1−λ) [(1 + |ξ|2)t | f̂ (ξ)|2]λdξ

≤
[∫

Rk
(1 + |ξ|2)r | f̂ (ξ)|2dξ

]1−λ [∫

Rk
(1 + |ξ|2)t | f̂ (ξ)|2

]λ

dξ

= ‖ f ‖2(1−λ)
r ‖ f ‖2λt .

Thus, ‖ f ‖s ≤ ‖ f ‖1−λ
r ‖ f ‖λ

t . �

Theorem 3.3 Let {Hs}s∈R be the Hilbert scale as in Example 2.1. For r < s < t
and the interpolation inequality

‖x‖s ≤ ‖x‖1−λ
r ‖x‖λ

t

holds for all x ∈ Ht , where λ is such that s = (1 − λ)r + λt , i.e., λ := t−s
t−r .
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Proof In this case, we have

‖x‖2s = 〈Ls x, x〉 =
∫ ∞

0
λsd〈Eλx, x〉 =

∫ ∞

0
λr(1−λ)λtλd〈Eλx, x〉,

Hence, by Hölder’s inequality,

‖x‖2s ≤
(

∫ ∞

0
λr d〈Eλx, x〉

)1−λ(

∫ ∞

0
λt d〈Eλx, x〉

)λ = ‖x‖2(1−λ)
r ‖x‖2λt .

Thus ‖x‖s ≤ ‖x‖1−λ
r ‖x‖λ

t . �

4 Ill-Posed Operator Equations

Let X and Y be Banach spaces. For a given y ∈ Y , consider the problem of finding
a solution x of the operator equation

F(x) = y, (4.1)

where F is a function defined on a subset D(F) of X taking values in Y . According
to Hadamard [5], the above problem is said to be well-posed if

(1) for every y ∈ Y there is a solution x ,
(2) the solution x is unique, and
(3) the solution depends continuously on the data (y, F), in the sense that if (ỹ, F̃)

is a perturbed data which is close to (y, F) in some sense, then the corresponding
solution x̃ is close to x .

If it is not a well-posed problem, it is called an ill-posed problem. Operator theoretic
formulation of many of the inverse problems that appear in science and engineering
are ill-posed. Here are two typical examples of ill-posed problems:

Example 4.1 (Compact operator equation) Let X and Y be Banach spaces and T :
X → Y be a compact operator. If R(T ) is not closed, then T cannot have a continuous
inverse. Hence, the problem of solving the equation

T x = y

is an ill-posed problem.

In the setting of Hilbert spaces, the ill-posedness of a compact operator equation
can be illustrated with the help of singular value decomposition. Suppose X and Y
are Hilbert spaces and K : X → Y is a compact operator of infinite rank. Then it
can be represented as
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K x =
∞
∑

n=1

σn〈x, un〉vn, x ∈ X,

where {un : n ∈ N} is an orthonormal basis of N (K )⊥, {vn : n ∈ N} ⊆ R(K ) is an
orthonormal basis of N (K ∗)⊥ = R(K ), and (σn) is a sequence of positive scalars
such that σn → 0 as n → ∞. The above representation of K is called its singular
value representation. Let x ∈ X and y = K x . For k ∈ N, let

yk = y + √
σkvk, xk = x + 1√

σk
uk .

Then we have
K xk = yk ∀ k ∈ N.

Note that, as k → ∞,

‖y − yk‖ = √
σk → 0 but ‖x − xk‖ = 1√

σk
→ ∞.

As a prototype of a compact operator equation, one may consider the Fredholm
integral equation of the first kind,

∫

�

k(s, t)x(t) dt = y(s), x ∈ X, s ∈ �,

where k(·, ·) is a nondegenerate kernel in L2(� × �), and � is a measurable subset
of Rk . Then the operator T : L2(�) → L2(�) defined by

(T x)(s) =
∫

�

k(s, t)x(t) dt, x ∈ X, s ∈ �,

is a compact operator with nonclosed range. Thus, the problem of solving such
integral equations is ill-posed.

It may be remarked that Fredholm integral equations of the first kind appears
in many inverse problems of practical importance [3]; for example, problems
in Computerized tomography, Geophysical prospecting, and Image reconstruction
problems. �

Example 4.2 (Parameter identification problem in PDE) Let� be a bounded domain
inRn for some n ∈ N and q(·) ∈ L∞(�) be such that q(·) ≥ c0 a.e. for some c0 > 0.
Then for every f ∈ L2(�), there exists a unique u ∈ H1

0 (�) such that

−∇.(q(x)∇u) = f
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is satisfied in the weak sense. Now, for a fixed f ∈ L2(�), the map

F : q → u

defined on the subset

D(F) := {q ∈ L∞(�) : q ≥ c0 a.e.}

is a nonlinear operator which does not have a continuous inverse. Thus, the problem
of solving the nonlinear equation

F(q) = u

is an ill-posed equation.
Such ill-posed nonlinear problems appear in many applications, e.g., diffraction

tomography, impedance tomography, oil reservoir simulation, and aquifer calibration
(see, e.g., [1, 2, 17]).

Let us illustrate the nonlinearity and ill-posedness of the above problem using its
one-dimensional formulation:

d

dt

[

q(t)
du

dt

]

= f (t), 0 < t < 1,

where f ∈ L2(0, 1). Note that

u(t) =
∫ t

0

[

1

q(τ )

∫ τ

0
f (s)ds

]

dτ .

Thus, the problem is same as that of solving the equation

F(q)(t) :=
∫ t

0

[

1

q(τ )

∫ τ

0
f (s)ds

]

dτ = u(t),

where q ∈ L∞(0, 1) with q ≥ q0 a.e. for some q0 > 0. Clearly, this equation is
nonlinear. Note also that

q(t) = 1

u′(t)

∫ t

0
f (s)ds.

Suppose u(t) is perturbed to ũ(t), say

ũ(t) = u(t) + ε(t).
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Suppose q̃(t) is the corresponding solution. Then we have

q(t) − q̃(t) =
[

1

u′(t)
− 1

u′(t) + ε′(t)

] ∫ t

0
f (s)ds

= 1

u′(t)

[

ε′(t)
u′(t) + ε′(t)

] ∫ t

0
f (s)ds.

Hence,
ε′(t) ≈ ∞ =⇒ |q(t) − q̃(t)| ≈ |q(t)|.

There can be perturbations ε(t) such that

ε(t) ≈ 0 but ε′(t) ≈ ∞.

For example, for large n,

εn(t) = (1/n) sin(n2x) ≈ 0 but ε′
n(t) = n cos(n2x) ≈ ∞.

Thus, the problem is ill-posed. �

5 Regularization

For an ill-posed problem (4.1) with (ỹ, F̃) in place of (y, F), one looks for a family
{x̃α}α>0 of approximate solutions such that each x̃α is a solution of a well-posed
problem and α := α(ỹ, F̃) is chosen in such a way that

x̃α → x as (ỹ, F̃) → (y, F).

Theprocedure offinding such a stable approximate solution is called a regularization
method.

5.1 Tikhonov Regularization

When X and Y are Hilbert spaces and F̃ = F , Tikhonov regularization is one such
regularization methods which is widely used in applications. In Tikhonov regulariza-
tion, one looks of an approximate solution x̃α which is a minimizer of the Tikhonov
functional

Jα : x → ‖F(x) − ỹ‖2 + α‖x − x∗‖2.
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Here, x∗ is an initial guess of the solution which can be taken as 0 in the linear case.
For the case of a linear ill-posed operator equation,

T x = y

with x∗ = 0, the above regularized problem, that is, the problem of finding the
minimizer of

x → ‖T x − ỹ‖2 + α‖x‖2

has a unique solution and it satisfies the well-posed operator equation

(T ∗T + αI )x̃α = T ∗ ỹ.

It is known (see e.g., Nair [15]) that if ‖ỹ − y‖ ≤ δ for some δ > 0, the best possible
error estimate is

‖x̂ − x̃α‖ = O(δ2/3)

which is order optimal for the source set

{x ∈ X : x = (T ∗T )u : ‖u‖ ≤ ρ}

and it is attained by an a priori choice of α, namely, α ∼ δ2/3 or by the a posteriori
choice of Arcangeli’s method (see Nair [11]),

‖T x̃α − ỹ‖ = δ√
α

.

5.2 Improvement Using Hilbert Scales

Now, the question is whether we can modify the above procedure, probably by
requiring more regularity for the regularized solution and the sought for unknown
solution, to yield better order in the error estimate. That is exactly what Natterer [16]
suggested using Hilbert scales. Natterer’s idea was to look for a modification of the
Tikhonov regularization which yield an approximation of the LRN-solution which
minimizes the function

x → ‖x‖s,

where ‖ · ‖s for s > 0 is the norm on the Hilbert space Hs corresponding to a Hilbert
scale {Hs : s ∈ R} for which the interpolation inequality

‖u‖s ≤ ‖u‖1−λ
r ‖u‖λ

t , λ := t − s

t − r
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holds for r ≤ s ≤ t . This purpose was served by considering the minimizer x̃α,s of

x → ‖T x − ỹ‖2 + α‖x‖2s .

Natterer showed that if T satisfies

‖T x‖ ≥ c‖x‖−a ∀ x ∈ X

for some a > 0 and c > 0, and if x̂ ∈ Ht where 0 ≤ t ≤ 2s+a and the regularization

parameter α is chosen such that α ∼ δ
2(a+s)

a+t , then

‖x̃α,s − x̂‖ = O(δ
t

t+a ). (5.1)

Thus, higher smoothness requirement on x̂ and with higher level of regularization
gives higher order of convergence.

5.3 Further Improvements Under Stronger Source Conditions

For obtaining further improvements on the error estimates, another modification
considered extensively in the literature was to look for an approximation of the
LRN-solution which minimizes the function

x → ‖Lx‖,

where L : D(L) ⊆ X → X is a closed densely defined operator. It is known (cf.
Nair et al. [12]) that such an LRN-solution exists whenever

y ∈ R(T|D(L)
) + R(T )⊥.

Accordingly, the associated modification in the regularization method is done by
looking for the unique minimizer of the function

x → ‖T x − ỹ‖2 + α‖Lx‖2, x ∈ D(L),

Throughout this paper, we shall assume that R(T ) is not closed and (T, L) satisfies
the following condition:

Completion condition: The operators T and L satisfy the condition

‖T x‖2 + ‖Lx‖2 ≥ γ‖x‖2 ∀ x ∈ D(L), (5.2)

for some positive constant γ.
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Regarding the existence, uniqueness and convergence of the regularized solutions,
we have the following theorem (cf. Locker and Prenter [6], Nair et al. [12]).

Theorem 5.1 Suppose the operators T and L satisfy the condition (5.2). Then for
every y ∈ Y and α > 0, the function

x → ‖T x − ỹ‖2 + α‖Lx‖2, x ∈ D(L),

has a unique minimizer and it is the solution xα(y) of the well-posed equation

(T ∗T + αL∗L)x = T ∗y.

Further, if y ∈ R(T|D(L)
) + R(T )⊥, then

xα(y) → x̂ as α → 0,

where x̂ is the unique LRN-solution which minimizes the map x → ‖Lx‖.

Note that for L = I , we obtain the ordinary Tikhonov regularization, and (5.2)
is satsifed, if for example L is bounded below, which is the case for many of the
differential operators that appear in applications.

When we have the perturbed data yδ with

‖y − ỹ‖ ≤ δ,

the regularized solution is the minimizer of

x → ‖T x − ỹδ‖2 + α‖Lx‖2, x ∈ D(L);

equivalently, the solution xδ
α of the well-posed equation

(T ∗T + αL∗L)xδ
α = T ∗yδ.

In this case, it is required to choose the regularization parameter α := α(δ, yδ)

appropriately so that
xδ
α → x̂ as α → 0.

In order to obtain error estimates, it is necessary to impose some smoothness assump-
tions on x̂ , by requiring it to belong to certain source set. This aspect has been con-
sidered extensively in the literature in recent years by assuming that the operator L
is associated with a Hilbert scale {Xs}s∈R in an appropriate manner (see, e.g., [7, 13,
16]). One such relation is as in the following.
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Hilbert scale conditions:

(i) There exists a > 0, c > 0 such that

‖T x‖ ≥ c‖x‖−a ∀ x ∈ X. (5.3)

(ii) There exists b ≥ 0, d > 0 such that D(L) ⊆ Xb and

‖Lx‖ ≥ d‖x‖b ∀x ∈ D(L). (5.4)

Theorem 5.2 ( Nair [10]) If the Hilbert scale conditions (5.3) and (5.4) are satisfied
and if x̂ belongs to the source set

Mρ = {x ∈ D(L) : ‖Lx‖ ≤ ρ} (5.5)

for some ρ > 0, α is chosen according to the Morozov discrepancy principle

c1δ ≤ ‖T xδ
α − yδ‖ ≤ c0δ (5.6)

with c0, c1 ≥ 1, then

‖x̂ − x̃α‖ ≤ 2
(ρ

d

) a
a+b

(δ

c

) b
a+b

. (5.7)

Remark 5.3 The estimate in (5.7) corresponds to the estimate (5.1) obtained by
Natterer for the case t = s = b. The discrepancy principle considered in Nair [10]
was ‖T xd

α − yδ‖ = δ, which can be easily modified to (5.6). ♦
For obtaining further improved estimate, two more source sets are considered in

Nair [14], namely,
˜Mρ = {x ∈ D(L) : ‖L∗Lx‖ ≤ ρ}, (5.8)

Mρ,ϕ := {x ∈ D(L∗L) : L∗Lx = [ϕ(T ∗T )]1/2u, ‖u‖ ≤ ρ} (5.9)

for some constant ρ > 0, and for some index function, i.e., a strictly monotonically
increasing continuous functionϕ : [0,∞) → [0,∞) such that lim

λ→0
ϕ(λ) = 0, which

is also concave.

Theorem 5.4 (Nair [14]) Suppose the Hilbert scale conditions (5.3) and (5.4) are
satisfied and α is chosen according to the Morozov discrepancy principle (5.6).

(i) If x̂ belongs to the source set ˜Mρ defined in (5.8), then

‖x̂ − x̃α‖ ≤ 2
( ρ

d2

) a
2a+b

(δ

c

) 2b
a+2b

.
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(ii) If x̂ belongs to the source set Mρ,ϕ defined in (5.9), then

‖x̂ − x̃α‖ = (1 + c0)
( ρ

d2

) a
a+2b

(

δ

c

) 2b
a+b [

ψ−1
p

(

ε2δ

)] a
2(a+2b)

where p = a/(a + 2b), εδ := c
(

d2δ
cρ

) a
a+2b

and ψp(λ) := λ1/pϕ−1(λ).

In a recent paper [8], the author has obtained results by replacing the Hilbert scale
conditions (5.3) and (5.4) by a single condition involving T and T , as given below.

θ-condition:
There exist η > 0 and 0 ≤ θ < 1 such that

η‖x‖ ≤ ‖T x‖θ‖Lx‖1−θ ∀ x ∈ D(L). (5.10)

We may observe that the case of θ = 0 corresponds to L being bounded below
so that R(L) is closed and L−1 : R(L) → X is a bounded operator. This case also
include the choice L = I , the identity operator. Note that the value θ = 1 is excluded,
as it would imply that T has a continuous inverse.

It has been shown that the θ-condition implies the completion condition (5.2) with
γ = η2, and it is implied by the Hilbert scales conditions (5.3) and (5.4) with

θ = b

a + b
, η = c

b
a+b d

a
a+b .

Among other results, the following theorem has been proved in Nair [8], which
unifies results in the setting of general unbounded stabilizing operator as well as for
Hilbert scale and Hilbert scale-free settings.

Theorem 5.5 (Nair [8]) Suppose the θ-condition (5.10) is satisfied and α is chosen
according to the Morozov discrepancy principle (5.6).

(i) If x̂ belongs to the source set Mρ defined in (5.5), then

‖x̂ − xδ
αδ

‖ ≤ 2η−1ρ1−θδθ.

(ii) If x̂ belongs to the source set ˜Mρ defined in (5.8), then

‖x̂ − xδ
αδ

‖ ≤ (1 + c0)

(

1

η2

) 1
1+θ

ρ
1−θ
1+θ δ

2θ
1+θ .

(iii) If x̂ belongs to the source set Mρ,ϕ defined in (5.9) and δ2 ≤ γ2
1ϕ(1) where

γ1 = 4ρ/γ, then

‖x̂ − xδ
αδ

‖ ≤ (1 + c0)

(

1

η2

) 1
1+θ

ρ
1−θ
1+θ δ

2θ
1+θ [ψ−1

p (ε2δ)]1/2p,
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where

p := 1 + θ

1 − θ
, εδ := η

2
1+θ

(

δ

ρ

)1/p

.

Remark 5.6 The results in Theorems 5.2 and 5.4 are recovered from Theorem 5.5

by taking θ = b

a + b
and η = c

b
a+b d

a
a+b .

In the ordinary Tikhonov regularization, i.e., for the case of L = I , equivalently,

θ = 0, in part (iii) of the above theorem, we have p = 1 and εδ = η2
(

δ
ρ

)

. Hence,

the estimate reduces to

‖x̂ − xδ
αδ

‖ ≤ (1 + c0)

(

1

η2

)
√

ψ−1
1 (η2δ2/ρ2).

Thus, from the above, we recover the error estimate under the general source condi-
tion derived in [7]. ♦
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Abstract It is shown that being a GCR algebra is a three-space property for C∗-
algebras using the structure of composition series of ideals present in GCR algebras.
A procedure is presented to construct a composition series for a C∗-algebra from the
unique composition series for any GCR ideal and the corresponding GCR quotient
being aC∗-algebra.We deduce as a consequence that, a GCR algebra is a three-space
property. While noting that being a CCR algebra is not a three-space property for
C∗-algebras, sufficient additional conditions required on a C∗-algebra for the CCR
property to be a three-space property are also presented. Relevant examples are also
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did not formally appear until the middle 1970s when Enflo, Lindenstrauss and Pisier
settled in the negative a question of Palais: If Y ⊂ X and X/Y are Hilbert spaces, is
X isomorphic to a Hilbert space; see [4].

Several three-space problems settled in the affirmative and negative exist in
Banach space setting. We will cite a few of them here. In [5], it is proved that
admitting a locally uniformly reflexive norm is a three-space property, whereas in
[8], the problem is settled in the negative for properties, ‘to be complemented in
a dual space’ and ‘to be isomorphic to a dual space’. For a detailed discussion of
the three-space problem for Banach spaces and related topics, we refer to [2]. In [9]
three-space problems are settled in the affirmative and the negative for certain classes
of L1-preduals and also for general Banach spaces with the additional assumption
that the subspace in question is an M-ideal.

Now we look at the three-space problem in the context of C∗-algebras where the
problem needs to be reformulated appropriately.

As several important properties ofC∗-algebras are often completely characterized
by the ideal reduction condition that both the ideal and the corresponding quotient
should possess the same property as the original C∗-algebra, it is important and
interesting to address the three-space problems in the theory of C∗-algebras. But,
in the C∗-algebra setting, the natural formulation of the three-space problem is as
follows:

Let A be a C∗-algebra and let I be a closed two-sided ideal of A. Is it true that
A has property P when both I and the quotient A/I have the property P? As before,
if the answer to the question is affirmative, then we call P a three-space property for
C∗-algebras.

Three-space problem in the setting of C∗-algebras also has results for important
properties. For example, a C∗-algebra A is of type I if and only if both I and the
quotient A/I are of type I, or A is nuclear if and only if both I and the quotient A/I
are nuclear and so on (see [3]), whereas to be a dual C∗-algebra is not a three-space
property (see [6]).

In this work, we study three-space problem for GCR and CCR properties of
C∗-algebras. We show that for C∗-algebras, being a GCR algebra is a three-space
property. While observing that being a CCR algebra is not a three-space property for
C∗-algebras, we investigate conditions so that a C∗-algebra is a CCR algebra if an
ideal of it and the corresponding quotient are CCR algebras.

In this introductory section, we establish our notation and terminology for general
C∗-algebras and use the next section to discuss GCR and CCR algebras before
addressing the three-space problem for them in the last section. We refer to [1] for
our terminology and notation on C∗-algebras.

Let A be a C∗-algebra. A representation π of A on a Hilbert space H is a ∗-
homomorphism of A into the C∗-algebra L(H) of all bounded operators on H . We
call π to be non-degenerate if the C∗-algebra of operators π(A) has trivial null space
which is equivalent to saying that the closed linear span of {π(x)ξ : x ∈ A, ξ ∈
H} = [π(A)H ] = H .
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Two representations π and σ of A represented on Hilbert spaces H and K ,
respectively, are said to be (unitarily)equivalent if there exists a unitary operator
U : H �→ K � σ(x) = Uπ(x)U∗,∀x ∈ A. A non-zero representation π of A is
called irreducible if π(A) is an irreducible operator algebra. i.e., it commutes with
no non-trivial (self-adjoint) projections. Since π(A) is a C∗-algebra, irreducibility
is equivalent to saying that π(A) has no non-trivial closed invariant subspaces.

The ideals we consider here are closed two-sided ideals. In general, a representa-
tion of a subalgebra of a C∗-algebra on a Hilbert space H cannot be extended to to a
representation of the whole algebra A on H . But, if the subalgebra happens to be an
ideal, then extension is possible. In fact, we have, if J is a ideal of A and π a non-
degenerate representation of J on a Hilbert space H , then for each x ∈ A, there is a
unique bounded linear operator π̃(x) on H satisfying π̃(x)π(y) = π(xy),∀y ∈ J
(see [1]). The restriction to non-degenerate representation is not a serious one as, in
the general case, we can pass from H to the subspace [π(J )H ], where we can still
get a unique extension π̃ of π to A � π̃(A) acts on [π(J )H ].

An operator T ∈ L(H) is said to be compact if T(U) has compact closure, where
U is the unit ball in H . The set C(H) of all compact operators on H is an ideal in
L(H) and is therefore a C∗-algebra in its own right. Recall that C(H) has no non-
trivial proper irreducible subalgebras and as a result it has no non-trivial ideals. Also,
any irreducible representation of C(H) is equivalent to the identity representation
of C(H).

2 C∗-algebras of Type CCR and GCR

In this section we introduce the important classes of CCR and GCR algebras. We
also present the very important notion of composition series of ideals in aC∗-algebra
which are very relevant for our classes. Examples of these algebras are also given to
explain how they are related.

Definition 2.1 A CCR algebra is a C∗-algebra A such that for every irreducible
representation π of A, π(A) consists of compact operators.

Clearly, every C∗-algebra of compact operators is CCR. Also, every commutative
C∗-algebra is CCR since each of its irreducible representation is one dimensional.

Let A be a general C∗-algebra and π be an irreducible representation of A on
a Hilbert space H . we define : Cπ = {x ∈ A : π(x) ∈ C(H)} and CCR(A) =
⋂

π Cπ , where the intersection ranges over all irreducible representations π of A.
Thus CCR(A) is the maximal CCR ideal in A.

Definition 2.2 A C∗-algebra A is said to be GCR if CCR(A/I ) 	= 0 for every ideal
I of A.
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Any irreducible representation of the quotient A/I of a C∗-algebra A may be
composed with the quotient map of A into A/I . It follows that every quotient of a
CCRalgebra isCCRandhence everyCCRalgebra isGCR. In factCCR(A/I ) = A/I
if A is CCR.

The definition of a GCR algebra we have given above is not a convenient one to
work with as one has to find all ideals I in a given algebra A before examining the
quotients A/I . The following result gives a rather simple characterization for GCR
algebras similar to the definition of CCR algebras, but it is very hard to prove.

Theorem A (see [3]) A C∗-algebra A is GCR if and only if for every irreducible
representation π of A, π(A) contains a non-zero compact operator and hence all of
them.

We will give another structural condition equivalent to the GCR property, which
can be easily proved using the definition of GCR algebras only. Before stating the
theorem we need the following definition.

Definition 2.3 Acomposition series in aC∗-algebra A is a family of ideals {Jα : 0 ≤
α ≤ α0} indexed by the ordinals α, 0 ≤ α ≤ α0, having the following properties:
(i) For all α ≤ α0, Jα is contained properly in Jα+1;
(ii) J0 = 0 and Jα0 = A;
(iii) If β is a limit ordinal then Jβ is the norm closure of

⋃

α<β Jα .

Theorem B (see [1]) Every GCR algebra A has exactly one composition series
{Jα : 0 ≤ α ≤ α0} with the property that Jα+1/Jα is the largest CCR ideal
in A/Jα for every α, 0 ≤ α ≤ α0. Conversely, if A admits a composition series
{Jα : 0 ≤ α ≤ α0} such that each quotient Jα+1/Jα is CCR, then A is GCR.

The CCR, GCR and C∗scenario are illustrated with a couple of examples below.

Example 2.4 An example of a C∗-algebra which is GCR but not CCR:
Let H be an infinite dimensional Hilbert space and T an irreducible non-compact

operator on H with its imaginary part compact. Then, the C∗-algebra C∗(T ) gener-
ated by T and the identity operator 1 is clearly not CCR. However, since imaginary
part of T is compact, C∗(H) ⊂ C∗(T ). Further, C∗(T )/C(H) is commutative and
hence CCR. Thus, {0, C(H), C∗(T )} is a composition series for C∗(T ) with CCR
quotients. Hence C∗(T ) is GCR.

By taking A = C(H) + C1 and I = C(H) the above situation is explained in a
simpler way.

Example 2.5 An example of a C∗-algebra which is not GCR:
Let H be an infinite dimensional Hilbert space. Consider the C∗-algebra L(H).

Note that C(H) is the only nontrivial ideal in L(H) and so K (H) = L(H)/C(H)

is simple. So {0, C(H), L(H)} is the only composition series for L(H). Since H
is infinite dimensional and K (H) is simple, we conclude that for any irreducible
representation π of K (H), π(e) cannot be compact, where e is the identity element
of K (H). So K (H) is not CCR. Hence L(H) is not GCR.
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3 CCR, GCR Algebras and Three-Space Property
for C∗-algebras

Here we ask whether being a CCR algebra and being a GCR algebra are three-space
properties for C∗-algebras.

The CCR case is considered first where we have a negative answer to our ques-
tion by citing a counterexample and then look for additional conditions to get an
affirmative answer.

The Example 2.4 can be used to show that being aCCR algebra is not a three-space
property for C∗-algebras. Recall that the ideal C(H) and the quotient C∗(T )/C(H)

are CCR algebras, whereasC∗(T ) in not a CCR algebra.We look for some additional
conditions on A which will make A a CCR algebra. We explore the topological
properties of the spectrum of A for achieving this.

We denote by Â the spectrumof A, that is, the equivalence classes of non-zero irre-
ducible representations of A equipped with the Jacobson topology. Since irreducible
representations of an ideal I of A extends uniquely to an irreducible representation
of A, we may identify Î as a subset of Â. In fact I → Î is a one-to-one mapping
from the collection of all closed ideals of A onto the collection of all open sets in Â.
Also, Â/I may be identified with the closed set Â/ Î .

It is known that aGCR algebra A is CCR if and only if its dual Â is a T1 topological
space. Also, it can be shown that if the open central projection corresponding to I ,
satisfying I = pA∗∗ ∩ I is a multiplier for A, then Â/I is open in Â (see [6], Lemma
2.1). Thus we have the following result:

Proposition 3.1 Let A be a C∗-algebra and I be an ideal of A such that I and A/I
are CCR and the open central projection corresponding to I is a multiplier of A.
Then A is also CCR.

Proof Since I and A/I are CCR, both Î and Â/I are T1. Also, since the open central
projection corresponding to I is a multiplier for A, Â/I is open. Hence Â = Î ∪ Â/I
is T1 and thus A is CCR. �

Now we consider the GCR case and we have the following theorem.

Theorem 3.2 A C∗-algebra A is GCR if and only if there exist an ideal I of A such
that both I and the quotient A/I are GCR. Thus the property of being a GCR algebra
is a three-space property.

Proof Let A be a GCR algebra. Then by definition CCR(A/I ) 	= 0 for every ideal
I of A. In particular CCR(A) 	= 0. Let I = CCR(A), which is clearly GCR. By
Theorem B, A has a unique composition series {Jα:0≤ α ≤ α0} such that Jα+1/Jα

= CCR(A/Jα). Then {Jα/I : 0 ≤ α ≤ α0} is the composition series for A/I with
Jα+1/I/Jα/I = CCR(A/I/Jα/I ). Hence A/I is also GCR.
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Conversely, assume that A has an ideal I such that both I and A/I are GCR. Let
{Iα : 0 ≤ α ≤ α0} and {Jα/I : 0 ≤ α ≤ α0} be composition series for I and
A/I , respectively, with the quotients Iα+1/Iα and Jα+1/I/Jα/I CCR (here Jα are
ideals in A). If we are able to cook up a composition series for A using these two
composition series, we will be done.

For this, first we will show that Iα are ideals in A also.
Let x ∈ A and y ∈ Iα then xy ∈ I .
Let e1, e2, e3, ... be the local approximate identity for y in Iα so that lim ||yen − y||
= 0.
Now, ||xyen − xy|| ≤ ||x ||||yen − y|| and
therefore lim ||xyen − xy|| = 0.
Since xyen ∈ Iα , we see that xy ∈ Iα .
Hence Iα are ideals in A also. Thus { Iα : 0 ≤ α ≤ α0} ∪ {Jα : 0 ≤ α ≤ α0}
is a composition series for A with the respective quotients Iα+1/Iα and Jα+1/Jα

CCR. �

Remark 3.3 If A is a C∗-algebra and I is a GCR ideal of A such that A/I is also
GCR, then by Theorem A we can easily conclude that A is also GCR. Here in the
above theorem, we make use of the concept of composition series for GCR algebras
which captures the ideal structure of the algebra completely to deduce the same
result.

Remark 3.4 In Theorem 3.2, if we start with the unique composition series for I
and A/I , then the resulting composition series for A will be its unique composition
series if and only is CCR(A/Iα) = CCR(I/Iα), for all α < α0. Note that CCR(A) =
CC R(I ) need not imply that CCR(A/Iα) = CC R(I/Iα). For example, let T be the
operator in Example 2.4. Let A = C∗(T ) and let I be the ideal generated by T2 in A.
Then C(H) ⊂ I ⊂ A. So CCR(A/C(H)) = A/C(H) whereas CCR(I/C(H)) =
I/C(H).

In the following theoremwe employ the tool of composition series to easily deduce
that ideals and associated quotients of a GCR algebra inherit the GCR property.

Theorem 3.5 If A is a GCR algebra and I is an ideal in A, then I and A/I are
GCR algebras.

Proof Suppose that A is a GCR algebra and I is an ideal in A. Let {Jα : 0 ≤ α ≤ α0}
be a composition series for A such that the quotients Jα+1/Jα = CC R(A/Jα). Let
Iα = Jα ∩ I , and α1 be that first ordinal � Iα = I . we claim that {Iα : 0 ≤ α ≤ α1}
is a composition series for I . For let β < α1 be a limit ordinal. Then the norm
closure of

⋃

α<β Jα = Jβ . Clearly,
⋃

α<β Iα ⊆ Iβ and hence the norm closure of
⋃

α<β Iα ⊆ Iβ .
To get the reverse inclusion, let x ∈ Iβ be a self-adjoint element and ε > 0. Then

there exist a self-adjoint y∈ Jα for some α < α0 such that ||x − y|| < ε/2 (if y is
not self-adjoint replace y by (y + y*)/2). Let f be a continuous real valued function
with f(t) = 0 for |t | < ε/2, f(t) = t for |t | ≥ ε and linear in between. Then f(x)∈ I ,
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f(y)∈ Jα and f(x – y) = 0 so that f(x)∈ Iα . Also || f (x) − x || = || f (y) − x || =
3||y||/ε||(εy/3||y|| − εx/3||y||)|| = ||x − y|| < ε. Therefore, x is in the norm
closure of

⋃

α<β Iα . Hence {Iα : 0 ≤ α ≤ α0} is a composition series for I . Also,
being a subalgebra of Jα+1/Jα , Iα+1/Iα is CCR. Thus I is GCR.

Next we will show that {Jα + I/I : 0 ≤ α ≤ α0} is a composition series for A/I .
Let β < α0 be a limit ordinal. Clearly, Jβ + I ⊆ norm closure of

⋃

α<β Jα + I .
Now,

⋃

α<β Jα + I ⊂ Jβ + I . Therefore,
⋃

α<β Jα + I ⊂ Jβ + I , since Jβ + I
being the sum of two closed ideals in a C∗-algebra is closed (see [3]). Hence, norm
closure of

⋃

α<β Jα + I = Jβ+1. Thus {Jα + I/I : 0 ≤ α ≤ α0} is a composition
series for A/I .

Also Jα+1 + I/I/Jα/I ∼= Jα+1 + I/Jα + I ∼= Jα+1/Jα+1 ∩ Jα + I ⊆ Jα+1/Jα .
Therefore Jα+1 + I/I/Jα + I/I is CCR. Hence A/I is GCR. �

Remark 3.6 In the previous theorem, if we start with the unique composition series
{Jα : 0 ≤ α ≤ α0} for A, then we can show that the composition series {Jα ∩ I :
0 ≤ α ≤ α1}and {Jα + I/I : 0 ≤ α ≤ α0} are the unique composition series for I
and A/I , respectively, as follows.

Let x1 ∈ Jα∩ I andπ be an irreducible representation of I/Jα∩ I .We can identify
I/Jα ∩ I with an ideal in A/Jα , by means of the function φ : I/Jα ∩ I �→ A/Jα

given by φ(x + (Jα ∩ I )) = x + Jα . Now, let π1 be the irreducible extension of
π to A/Jα . Then, π(x1 + (Jα ∩ I )) = π1(x1 + Jα) is compact since Jα+1/Jα =
CCR(A/Jα). Hence Jα+1 ∩ I/Jα ∩ I = CC R(I/Jα).

Now, let x2 ∈ Jα+1 + I and π be an irreducible representation of A/(Jα + I ).
Define an irreducible representation π1 of A/Jα by letting π1(x + Jα) = π(y +
(Jα + I )).

Then, π(x2 + (Jα + I )) = π(x2 + Jα) is compact since Jα+1/Jα = CCR(A/Jα).
Therefore Jα+1 + I/Jα + I = CC R(A/Jα + I ).
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Spectral Approximation of Bounded
Self-Adjoint Operators—A Short Survey

K. Kumar

Abstract Normal categories are essentially those arising as the category of prin-
cipal left [right] ideals of a regular semigroup. These categories have been used in
describing the structure of regular semigroups. The structure theory in this context is
known as cross connection theory. Several associated categories can be derived from
a normal category which are also of interest in the structure theory of regular semi-
groups. The subcategory of inclusions, the subcategory of retractons, the groupoid
of isomorphisms etc. are some of the associated categories.
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1 Introduction

The fundamental question “How to approximate spectra of linear operators on sepa-
rable Hilbert spaces?” was considered by many mathematicians, starting from Szegö
in [21]. Several attempts have beenmade tomake use of the finite dimensional theory
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in the computation of the spectrum of bounded operators in an infinite dimensional
space through an asymptotic way. This approach found success in getting good esti-
mates in the case of some self-adjoint operators. Significant efforts have been done
by many mathematicians to build up a general theory for the approximation of the
spectrum of bounded self-adjoint operators on an infinite dimensional Hilbert space.
To quote some of the recent contributions in this direction are due to W.B. Arveson
[1], Albrecht Böttcher et al. [4], E.B. Davies et al. [6, 7], I. Gohberg et al. [9], A.
Hansen [11], etc. The list is nevertheless incomplete.

A short survey is presented here on various techniques used to approximate the
spectrum of a bounded self-adjoint operator A on a separable complex Hilbert space
H. The finite dimensional compressions An of A are considered here. The asymptotic
values of spectrum of An are used to study the nature of spectrum of A.

1.1 The Problem

Let {e1, e2, . . .} be an orthonormal basis for H and Pn be the projection of H onto
the finite dimensional subspace Ln = span{e1, e2, . . . , en}. The finite dimensional
truncations An = Pn APn of A can be treated as finite matrices by restricting their
domains to the image of Pn . If we denote the infinite matrix (ai, j ) = (

〈

Ae j , ei
〉

) to
be the matrix representation of A associated to the orthonormal basis {e1, e2, . . .},
then the n × n matrix (ai, j )1≤i, j≤n coincides with the matrix representation of An

restricted to the image of Pn .
Here we consider the following fundamental question. Can we approximate the

spectrum of A using the eigenvalue sequences of the matrices (ai, j )1≤i, j≤n . There
are some disappointing examples in which the eigenvalues of truncations give little
information about the spectrum. For instance, in the case of the right shift operator on
the sequence space l2(Z), the eigenvalue sequence of the truncations is the constant
sequence 0, while the spectrum is the whole closed unit circle. For a self-adjoint
example, one can consider the operator A on l2(N), defined as follows:

A(xn) = (xπ(n)), (1.1)

where π is a suitably chosen permutation on N. The essential properties required for
the permutation π, are discussed in [1], due to which the truncation method fails to
approximate the spectrum.

This article is a survey of some recent developments in this area. In the next
section, we discuss the class of operators introduced by W.B. Arveson in [1] for
which the spectrum is fully determined by the eigenvalues of their truncations except
for some discrete eigenvalues that may lie between the bounds of essential spectrum.
Also, the use of the truncation method to approximate the bounds and the discrete
eigenvalues lying outside the bounds of the essential spectrum of a bounded self-
adjoint operator is explained in this section. The recent advances in the spectral
gap prediction problems are also discussed there. The use of preconditioners to
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modify the truncation method is explained with a couple of more recent results. In
the third section, we briefly explain the quadratic projection method and second-
order relative spectra with some recent modifications. A concluding section on the
further possibilities ends the article.

2 Algebraic and Linear Algebraic Approach

First we report some of the algebraic developments in this area. The major contribu-
tions are due to W.B. Arveson, who generalized the notion of band-limited matrices
in [1], and achieved some success in the case of a special class of operators. We start
with some definitions and results below which will play a very important role in the
approximation of the spectrum of bounded self-adjoint operators. The notation An

is used to denote the matrix (ai, j )1≤i, j≤n .

Definition 2.1 A filtration of a Hilbert spaceH is a sequence of finite dimensional
subspaces of H, {Ln; n ∈ N} such that Ln ⊂ Ln+1 and closure of the union

⋃

n Ln

is H.

Example 2.2 A typical example for filtration in a Hilbert space with an orthonormal
basis is the following. Let {en : n ∈ Z} be the bilateral orthonormal basis for H
and let {Ln} be defined by Ln = span{e−n, e−n+1, . . . en}. Then {Ln; n ∈ Z} is a
filtration.

Definition 2.3 Let {Ln : n ∈ N} be a filtration. And Pn be the projection onto Ln.

The degree of a bounded operator A on H is defined by

deg(A) = sup
n≥1

rank(Pn A − APn).

Corresponding to each filtration, a Banach ∗−algebra of operators called Arve-
son’s class can be defined as follows.

Definition 2.4 A is an operator in the Arveson’s class if A = ∑∞
n=1 An, where

deg(An) < ∞ for every n and convergence is in the operator norm, in such a way
that

∑∞
n=1(1 + deg(An)

1
2 )‖An‖ < ∞.

In case each Ln is the span of finite number of elements in the basis as defined in
Example2.2, the following gives a concrete description of operators in the Arveson’s
class.

Theorem 2.5 ([1]) Let {Ln; n ∈ Z} be the filtration defined in Example2.2. Also let
(ai, j ) be the matrix representation of a bounded operator A, with respect to {en},
and for every k ∈ Z let

dk = sup
i∈Z

|ai+k,i |
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be the sup norm of the kth diagonal of (ai, j ). Then A will be in the Arveson’s class
whenever the series

∑

k |k|1/2dk converges.

In particular, any operator whose matrix representation (ai, j ) is band-limited,
in the sense that ai, j = 0 whenever |i − j | is sufficiently large, must be in the
Arveson’s class. Before stating the spectral inclusion theorems for arbitrary self-
adjoint operators and for operators in theArveson’s class, recall the notion of essential
points and transient points.

Definition 2.6 Essential point: A real number λ is an essential point of A, if for
every open set U containing λ, limn→∞ Nn(U ) = ∞, where Nn(U ) is the number
of eigenvalues of An in U.

Definition 2.7 Transient point: A real number λ is a transient point of A if there
is an open set U containing λ, such that sup Nn(U ) with n varying on the set of all
natural number, is finite.

Remark 2.8 It should be noted that a number can be neither transient nor essential.

Denote � = {λ ∈ R;λ = lim λn,λn ∈ σ(An)} and �e as the set of all essential
points. The following spectral inclusion results for a bounded self-adjoint operator
A is of high importance.

Theorem 2.9 ([1]) The spectrum of a bounded self-adjoint operator is contained
in the set of all limit points of the eigenvalue sequences of its truncations. Also, the
essential spectrum is contained in the set of all essential points, i.e.,

σ(A) ⊆ � ⊆ [m, M] and σe(A) ⊆ �e.

Equality in one of the above inclusion for bounded self-adjoint operators in the
Arveson’s class, was also proved in [1]. The precise result is the following.

Theorem 2.10 ([1]) If A is a bounded self-adjoint operator in the Arveson’s class,
then σe(A) = �e and every point in � is either transient or essential.

Remark 2.11 The above two theorems enable us to confine our attention to the
limiting set � and the essential points �e, in the task of computation of spectrum
and essential spectrum of a bounded self-adjoint operator, respectively. Now the
following issues may arise. The limiting set � may contain points which does not
belong to the spectrum. Such points are called spurious eigenvalues. In the case of an
operator in the Arveson’s class, the essential points will give all information about
essential spectrum, while the transient points may be misleading. Here we loose only
information about eigenvalues of finite multiplicity. But this is very important if such
points exist between the lower and upper bounds of essential spectrum, since they
lead to the existence of spectral gaps between these bounds.
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2.1 Operators with Connected Essential Spectrum

Things can be more difficult in the case of an arbitrary bounded self-adjoint operator.
There may exist essential points, which are not spectral values. The operator given
by the Eq. (1.1) is of that kind. However, the inclusion in Theorem2.9 helps us
to determine the spectrum, with an additional assumption of connectedness of the
essential spectrum. The details of this claim are given below, which is a brief review
of the article [4] with some slight modifications. This will play a key role in the
forthcoming sections.

Recall that, for a bounded self-adjoint operator A, the spectrum σ(A) is contained
in the interval [m, M] and the essential spectrum σe(A) in [ν,μ] ,where m, M, ν,μ,
are bounds of σ(A) andσe(A), respectively. The following definitions and prelimi-
nary results are needed further.

Definition 2.12 Consider the singular number sk , k natural number,

sk (A) = inf {‖A − F‖ ; F ∈ B(H), rank F ≤ k − 1}

is the kth approximation number of A.

Clearly, we have ‖A‖ = s1 (A) ≥ s2 (A) ≥ · · · ≥ 0

Theorem 2.13

• [9] limk→∞ sk (A) = ‖A‖ess where ‖A‖ess is the essential norm.
• [4] limn→∞ sk (An) = sk (A) .

Remark 2.14 For |A| = (A∗ A)
1/2 , in case A is a finite matrix, the approximation

numbers are the eigenvalues of |A|. That is sk (A) = λk(|A|), where λk (|A|) is the
kth eigenvalue of |A|.
Theorem 2.15 ([9]) The set σ(|A|) − [

0, ‖A‖ess

]

is at most countable, ‖A‖ess is
the only possible accumulation point, and all the points of the set are eigenvalues
with finite multiplicity of |A|. Furthermore if

λ1(|A|) ≥ λ2(|A|) ≥ · · · ≥ λN (|A|)

are those N eigenvalues (N can be infinity), then

sk (A) =
{

λk(|A|), if N = ∞ or 1 ≤ k ≤ N
‖A‖ess, if N < ∞ and k ≥ N + 1

(2.1)

Corollary 2.16

lim
n→∞ λk (|An|) = lim

n→∞ sk (An) = sk (A) =
{

λk (|A|) i f N = ∞ or 1 ≤ k ≤ N
‖A‖ess i f N < ∞ and k ≥ N + 1
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Remark 2.17 The above result will play a key role in the approximation of spec-
trum. Considering the positive operator A − m I, it can be deduced that the set
σ(A) ∩ (μ, M] is at most countable and that consists of eigenvalues of finite multi-
plicity by Theorem2.15. Also μ is the only possible accumulation point. Let these
eigenvalues be

λ+
R(A) ≤ · · · ≤ λ+

2 (A) ≤ λ+
1 (A).

Similarly by considering the operator M I − A, it can be observed that σ(A) ∩
[m, ν) consists of at most countably many eigenvalues of finite multiplicity with
only possible accumulation point ν. Let

λ−
1 (A) ≤ λ−

2 (A) ≤ · · · ≤ λ−
S (A)

be those eigenvalues. Also the numbers R and S can be infinity. Arrange the eigen-
values of An as

λ1(An) ≥ λ2(An) ≥ · · · ≥ λn(An).

From here onwards, the above notations will be used.

Now we prove the following result from [4] which is the major tool that is used
frequently in this note.

Theorem 2.18 For every fixed integer k we have

lim
n→∞ λk(An) =

{

λ+
k (A), if R = ∞ or 1 ≤ k ≤ R

μ, if R < ∞ and k ≥ R + 1

lim
n→∞ λn+1−k(An) =

{

λ−
k (A), if S = ∞ or 1 ≤ k ≤ S

ν, if S < ∞ and k ≥ S + 1

In particular,

lim
k→∞ lim

n→∞ λk(An) = μ and lim
k→∞ lim

n→∞ λn+1−k(An) = ν.

Proof The following observations are made first.

|A − m I | = A − m I, Pn(A − m I )Pn = An − m In, and |An − m In| = An − m In.

Hence from the above corollary, we have

lim
n→∞ λk(An − m In) =

{

λk(A − m I ), if R = ∞ or 1 ≤ k ≤ R
‖A − m I‖ess, if R < ∞ and k ≥ R + 1

(2.2)
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Similarly, by considering the operator M I − A, we get

lim
n→∞ λk(M In − An) =

{

λk(M I − A), if S = ∞ or 1 ≤ k ≤ S
‖M I − A‖ess, if S < ∞ and k ≥ S + 1

(2.3)

Also we have the following identities

‖A − m I‖ess = μ − m, ‖M I − A‖ess = M − ν. (2.4)

λk(An − m In) = λk(An) − m, λk(M In − An) = M − λn+1−k(An). (2.5)

λk(A − m I ) = λ+
k (A) − m, λk(M I − A) = M − λ−

k (A). (2.6)

Substituting them in Eqs. (2.2) and (2.3), we get

lim
n→∞ λk(An) =

{

λ+
k (A), if R = ∞ or 1 ≤ k ≤ R

μ, if R < ∞ and k ≥ R + 1

lim
n→∞ λn+1−k(An) =

{

λ−
k (A), if S = ∞ or 1 ≤ k ≤ S

ν, if S < ∞ and k ≥ S + 1

Hence the proof. �

Remark 2.19 The above results are also true ifwe replace An by someother sequence
A1n of self-adjoint operators with the property that

‖An − A1n‖ → 0 as n → ∞

In order to justify this, we need only to recall an important inequality concerning
the eigenvalues of self-adjoint matrices A, B (refer e.g. to [2])

|λk (A) − λk (B)| ≤ ‖A − B‖ .

Remark 2.20 By Theorem2.18, all the discrete spectral values lying outside the
bounds of essential spectrum and the upper and lower bounds of the essential spec-
trum can be approximated. Note that, the theorem points out exactly the particular
sequence that converges to a discrete spectral value. But how fast does the conver-
gence take place, is still not known. Looking at some concrete situations, one may
hope for a better rate of convergence.

Even the rate of convergence is not estimated, it can be proved that the order of
convergence is the same as the order of convergence of approximation numbers. The
following theorem gives a vague idea about the rate of convergence.

Theorem 2.21 ([14]) If sk(An) − sk(A) = O(θn), where θn goes to 0 as n tends to
∞, then
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λk(An) =
{

λ+
k (A) + O(θn), if R = ∞ or 1 ≤ k ≤ R

μ + O(θn), if R < ∞ and k ≥ R + 1

λn+1−k(An) =
{

λ−
k (A) + O(θn), if S = ∞ or 1 ≤ k ≤ S

ν + O(θn), if S < ∞ and k ≥ S + 1

where R and S are the same notations used in Theorem2.18.

Proof Let N be the number of eigenvalues lying in σ(|A|) − [

0, ‖A‖ess

]

. From
identity (2.1), and the the fact that sk(An) = λk(|An|),we have the following identity.

sk(An) − sk(A) =
{

λk(|An|) − λk(|A|), if N = ∞ or 1 ≤ k ≤ N
λk(|An|) − ‖A‖ess , if N<∞ and k ≥ N + 1

Since by hypothesis, sk(An) − sk(A) = O(θn),

λk(|An|) − λk (|A|) = O(θn), if N = ∞ or 1 ≤ k ≤ N ,

λk(|An|) − ‖A‖ess = O(θn), if N < ∞ and k ≥ N + 1.

Applying this to the positive operators A−m I , and M I − A, with the notations used
in Theorem2.18, we get the following conclusions.

λk(An − m In) =
{

λk (A − m I ) + O(θn), if R = ∞ or 1 ≤ k ≤ R
‖A − m I‖ess + O(θn), if R < ∞ and k ≥ R + 1

and

λk(M In − An) =
{

λk (M I − A) + O(θn), if S = ∞ or 1 ≤ k ≤ S
‖M I − A‖ess + O(θn), if S < ∞ and k ≥ S + 1

Also from the identities (2.4)–(2.6), we get the desired conclusions

λk(An) =
{

λ+
k (A) + O(θn), if R = ∞ or 1 ≤ k ≤ R

μ + O(θn), if R < ∞ and k ≥ R + 1

λn+1−k(An) =
{

λ−
k (A) + O(θn), if S = ∞ or 1 ≤ k ≤ S

ν + O(θn), if S < ∞ and k ≥ S + 1

Hence the proof. �

The above theorem is the first result regarding the rate of convergence in the
approximations done in Theorem2.18. So far there is no evidence of remainder
estimation and the error estimation in these approximations in the case of an arbitrary
self-adjoint operator to the best of our knowledge. The subsequent theorem taken
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from [4] denies the existence of spurious eigenvalues (points in � those are not part
of the spectrum) under the assumption of connectedness of essential spectrum.

Theorem 2.22 ([4]) If A is a self-adjoint operator and if σe(A) is connected, then
σ(A) = �.

Remark 2.23 It is worthwhile to notice that the connectedness of essential spectrum
enables us to compute the spectrum using finite dimensional truncations. Thus, if we
cannot determine the spectrum fully by the truncations, then the essential spectrum
is not connected. In short, if there is a spurious eigenvalue, then there exists a gap in
the essential spectrum.

Remark 2.24 The converse of the above observation need not be true. That is the
existence of a spectral gap does not lead to the existence of a spurious eigenvalue. For
example, if we take A to be be the projection operator on to some closed subspace of
H, then the eigenvalues of truncations are 0 and 1 only. There we have � = σ(A) =
{0, 1}. Hence no spurious eigenvalues, but still there is a gap.

In summary, the upper and lower bounds of the essential spectrum can be com-
puted using the sequence of eigenvalues of finite dimensional truncations. Also the
discrete eigenvalues lying below and above these bounds can be computed. The
above results pinpointing the particular sequence of eigenvalues that converges to a
particular eigenvalue of the operator. Now the remaining part is the computation of
essential spectrum. The problem is whether it is possible to locate the gaps in the
essential spectrum using these truncations. If it is possible, then the spectrum is fully
determined up to some discrete eigenvalues that may have trapped between these
gaps.

2.2 Gaps in the Essential Spectrum

The following theorem is an attempt to predict the existence of spectral gaps, using
the finite dimensional truncations. The notation #S is used to denote the number
of elements in the set S and wnk is used to denote an averaging sequence. That is

0 ≤ wnk ≤ 1, and
n
∑

k=1
wnk = 1.

Theorem 2.25 ([13]) Let A be a bounded self-adjoint operator, and λn1(An) ≥
λn2(An) ≥ · · · ≥ λnn(An) be the eigenvalues of An arranged in decreasing order.

For each positive integer n, let an =
n
∑

k=1
wnkλnk be the convex combination of

eigenvalues of An. If there exists a δ > 0 and K > 0 such that

#
{

λnj ;
∣

∣an − λnj

∣

∣ < δ
}

< K (2.7)

and in addition if σe(A) and σ(A) have the same upper and lower bounds, then
σe(A) has a gap.



194 K. Kumar

Remark 2.26 There is possibility for the presence of discrete eigenvalues inside the
gaps in the above case.

Remark 2.27 The special case which is more interesting is when wnk = 1
n , for all

n. In that case, we are actually looking at the averages of eigenvalues of truncations
and these averages can be computed using the trace at each level.

Remark 2.28 It is to be noted that all the points of the form an =
n
∑

k=1
wnkλnk are in

the numerical range of An . Therefore, the result can be made simpler in the language
of numerical range. However it is not easy to compute the numbers in the expression
(2.7). Herewe treated it as a deviation from themean value. Hence the condition (2.7)
may be interpreted as a restriction to the deviation of the eigenvalues of truncations
from their central tendency. Nevertheless the computations still remain difficult.

In Theorem2.25, the weighted mean of the eigenvalues at each level and its
deviation is analyzed. The following special choice of the weights are interesting.

Special Choice

Let us consider an instance where these weights wnk arise naturally associated to

a self-adjoint operator on a Hilbert space. Let An =
n
∑

k=1
λn,k Qn,k be the spectral

resolution of An . Define wnk = 〈

Qn,ke1, e1
〉

. Then 0 ≤ wnk ≤ 1 and
n

∑

k=1
wnk = 1.

Now

n
∑

k=1

wnkλnk =
n

∑

k=1

λnk
〈

Qn,ke1, e1
〉 = 〈Ane1, e1〉 = 〈Ae1, e1〉 = a11.

Therefore by Theorem2.25, if there exists a δ > 0 and a K > 0, such that

#
{

λnj ;
∣

∣a11 − λnj

∣

∣ < δ
}

< K

then there exists a gap in the essential spectrum of A. Hence if the first entry in the
matrix representation of A, is not an essential point, then there exists a gap in the
essential spectrum.

Remark 2.29 All points of the form 〈Aei , ei 〉 = aii are in the numerical range which
lies between the bounds of the essential spectrum, in the case that the bounds coincide
with the bounds of the spectrum. Hence in that case, if aii is not an essential point for
some i , then that will lead to the existence of a spectral gap. That means if any one of
the diagonal entries in the matrix representation of A is not an essential point, then
there exists a gap in the essential spectrum as indicated in the above special choice
of wnk .

The following is an example where the first entry a11 is a transient point and the
spectral gap prediction is valid.
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Example 2.30 Define a bounded self-adjoint operator A on l2(N), as follows.

A(xn) = (xn−1 + xn+1) + (vn xn), x0 = 0;

where the periodic sequence (vn) = (1, 2, 3, 1, 2, 3, . . .). The matrix representation
of A, associated to the standard orthonormal basis, is tridiagonal. The diagonal entries
are the entries in the periodic sequence (vn) and upper and lower diagonal will be
1. Such matrices can be identified as the block Toeplitz operator with corresponding
matrix valued symbol given by

f̃ (θ) =
⎡

⎣

1 1 eiθ

1 2 1
e−iθ 1 3

⎤

⎦ .

By our special choice above, Theorem2.25 guarantees that if 〈A(e1), e1〉 = 1 is
a transient point, then σe(A) has a gap. The fact that 1 is a transient point, is a
consequence of discrete Borg theorem [8, 10] and some numerical computations.

The interval
(

3−√
5

2 , 5−√
5

2

)

is a spectral gap an 1 lies in that gap.

2.3 Preconditioners in Spectral Approximation

Here we try to modify the truncation method with the help of the notions of pre-
conditioners and the convergence of matrix sequences in the sense of eigenvalue
clustering. Recall that in the numerical analysis literature, the preconditioner associ-
ated with a matrix is used to make the iteration process more efficient. Here we use
different notions of matrix convergence in the sense of eigenvalue clustering to study
the spectral approximation by preconditioners. That is, the An’s will be replaced by
its preconditioner to perform approximation of spectrum.

We start with defining different notions of convergence of matrix sequences in the
sense of eigenvalue clustering. Such notions were used in the special case of Toeplitz
matrices in [20], and generalized into the arbitrary case in [12].

Definition 2.31 Let {An} and {Bn} be two sequences of n × n Hermitian matrices.
We say that An − Bn converges to 0 in the strong cluster sense if for any ε > 0,
there exist integers N1,ε, N2,ε such that all the singular values σ j (An − Bn) lie in the
interval [0, ε) except for at most N1,ε (independent of the size n) singular values for
all n > N2,ε.

If the number N1,ε does not depend on ε, we say that An − Bn converges to 0 in
the uniform cluster sense. And if N1,ε depends on ε, n and is of o(n), we say that
An − Bn converges to 0 in weak cluster sense.

Here the aim is to modify the truncation method by replacing An by some other
simpler sequence of matrices Bn , where {An} − {Bn} converges to 0 in the strong
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cluster sense (weak or uniform cluster sense, respectively). We study the effect of
this replacement in the well-known results obtained by truncation method. We prove
a couple of results which show that the convergence in the strong or uniform cluster
sense is equivalent to the compact perturbation of operators. These are the modified
versions of the results proved in [15].

Theorem 2.32 Let A, B ∈ B(H) be self-adjoint operators. Then the operator R =
A − B is compact if and only if the sequence of truncations An − Bn converges to
the zero matrix in the strong cluster.

Proof First assume that R = A − B is compact and its spectrum σ(R) = {λk(R) :
k = 1, 2, 3, . . .} ⋃ {0}. Here 0 is the only accumulation point of the spectrum. Hence
λk(R) → 0 as k → ∞. Hence for any given ε > 0, there exists a positive integer
N1,ε such that

λk(R) ∈
(−ε

2
,

ε

2

)

, for every k > N1,ε.

Also since R is compact, the truncation Rn = An − Bn converges to R in the
operator norm topology. Therefore, the eigenvalues of truncations converges to the
eigenvalues of R. That is

λk(Rn) → λk(R) as n → ∞, for each k.

In particular, for every k > N1,ε, there exists a positive integer N2,ε such that

λk(Rn) − λk(R) ∈
(−ε

2
,

ε

2

)

, for every n > N2,ε.

Therefore, when n > N2,ε, all the eigenvalues λk(Rn) of Rn = An − Bn , except for
at most N1,ε eigenvalues, are in the interval (−ε, ε). That is Rn = An − Bn converges
to 0 in the strong cluster.

For the converse part, assume that An − Bn converges to the zero matrix in the
strong cluster. Then for any λ �= 0, choose an ε > 0 such that λ is outside the
interval (−ε, ε). Corresponding to this ε, there exist positive integers N1,ε, N2,ε such
that σ(An − Bn) is contained in (−ε, ε), for every n > N2,ε, except for possibly N1,ε

eigenvalues. Now consider the counting function Nn(U ) of eigenvalues of An − Bn

in U . For any neighborhood U of λ that does not intersect with (−ε, ε), Nn(U ) is
bounded by the number N1,ε. Hence λ is not an essential point of A− B. Therefore, it
is not in the essential spectrum (see Theorem 2.3 of [1]). Since λ �= 0 was arbitrary,
this shows that the essential spectrum of A − B is the singleton set {0}. Hence it is
a compact operator and the proof is completed. �

Theorem 2.33 Let A, B ∈ B(H) be self-adjoint operators. Then the operator R =
A − B is of finite rank if and only if the truncations An − Bn converges to the zero
matrix in the uniform cluster.
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Proof The proof is an imitation of the proof of Theorem2.32, differs only in the
choice of N1,ε to be independent of ε. However the details are given below. First
assume that R=A−B is a finite rank operatorwith rank N1, and its spectrumσ(R) =
{λk(R) : k = 1, 2, 3, . . . N1} ⋃ {0}. Since the truncation Rn = An − Bn converges
to R in the operator norm topology, the eigenvalues of truncations converges to the
eigenvalues of R. That is

λk(Rn) → λk(R) as n → ∞, for each k = 1, 2, 3, . . . N1.

For every k > N1, λk(Rn) converges to 0 by [4]. Hence for a given ε > 0, there
exists a positive integer N2,ε such that

λk(Rn) ∈ (−ε, ε) , for every n > N2,ε and for each k > N1.

Therefore, when n > N2,ε, all the eigenvalues λk(Rn) of Rn = An − Bn , except for
the first N1 eigenvalues, are in the interval (−ε, ε). That is An − Bn converges to 0
in the uniform cluster.

For the converse part, assume that An − Bn converges to the zero matrix in the
uniform cluster. Then for any ε > 0, there exist positive integers N1, N2,ε such that
σ(An − Bn) is contained in (−ε, ε), for every n > N2,ε, except for possibly N1

eigenvalues. As in the proof of Theorem2.32, we obtain 0 is the only element in
the essential spectrum. Hence R = A − B is a compact operator. In addition to
this, R can have at most N1 eigenvalues. To see this, notice that all the eigenvalues
of a compact operator are obtained as the limits of sequence of eigenvalues of its
truncations. In this case at most N1 such sequence can go to a nonzero limit. Hence
R is a finite rank operator and the proof is completed. �

Remark 2.34 The above results have the following implications. Since a compact
perturbation may change the discrete eigenvalues, the above results show that the
convergence of preconditioners in the sense of eigenvalue clustering, is not sufficient
to use them in the spectral approximation problems. Nevertheless one can use it in the
spectral gap prediction problems, since the compact perturbation preserves essential
spectrum.

Remark 2.35 The analysis of weak convergence is yet to be carried out.

We end this section with the example of Frobenius optimal preconditioners, which
are useful in the context of infinite linear systems with Toeplitz structure (see [20]
for details).

Example 2.36 Let {Un} be a sequence of unitary matrices over C, where Un is of
order n for each n. For each n, we define the commutative algebra MUn of matrices
as follows.

MUn = {

A ∈ Mn (C) ; Un
∗ AUn complex diagonal

}
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Recall that Mn (C) is a Hilbert space with respect to the classical Frobenius scalar
product,

〈A, B〉 = trace (B∗ A).

Observe that MUn is a closed convex set in Mn (C) and hence, corresponding to each
A ∈ Mn (C), there exists a unique matrix PUn (A) in MUn such that

‖A − X‖22 ≥ ∥

∥A − PUn (A)
∥

∥

2
2 for every X ∈ MUn .

For each A ∈ B(H), consider the sequence of matrices PUn (An) as the Frobenius
optimal preconditioners of An . In the case A is the Toeplitz operator with continuous
symbol, there are many good examples of matrix algebras such that the associated
Frobenius optimal preconditioners are of low complexity and have faster rate of
convergence.

3 Analytical Approach

The concepts of second-order relative spectra and quadratic projectionmethod,which
are almost synonyms of the other, were used in the spectral pollution problems and
in determining the eigenvalues in the gaps by E.B. Davies, Levitin, Shagorodsky, etc.
(see [5–7, 17]). In all these articles, the idea is to reduce the spectral approximation
problems into the estimation of a particular function, related to the distance from
the spectrum. This particular function is usually approximated by a sequence of
functions related to the eigenvalues of truncations of the operator under concern.

First, we shall briefly mention the work done by E.B. Davies [6] and E.B. Davies
and M. Plum [7], which is of great interest, where he considered functions which are
related to the distance from the spectrum.

3.1 Distance from the Spectrum

In the paper published in 1998 [6], E.B. Davies considered the function F defined by

F(t) = inf

{‖A(x) − t x‖
‖x‖ : 0 �= x ∈ L

}

(3.1)

where L is a subspace of H. Then he observed the following.

• F is Lipschitz continuous and satisfies |F(s) − F(t)| ≤ |s − t |, for all s, t ∈ R.

• F(t) ≥ d(t,σ(A)) = dist (t,σ(A)).

• If 0 ≤ F(t) ≤ δ, then σ(A) ∩ [t − δ, t + δ] �= ∅.
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From these observations, he obtained some bounds for the eigenvalues in the
spectral gap of A, and found it useful in some concrete situations. For the efficient
computation of the function F, he considered family of operators N (s) on the given
finite dimensional subspace L, defined by

N (s) = A∗
L

AL − 2s P AL + s2 IL (3.2)

where P is the projection onto L and the notation AL means A restricted to L. The
eigenvalues of these family of finite dimensional operators form sequence of real
analytic functions (functions which map s to the eigenvalues of N (s)). He used these
sequence to approximate the function F and thereby obtain information about the
spectral properties of A. The main result is stated below, under the assumption that
A is bounded.

Theorem 3.1 Suppose {Ln}∞n=1 is an increasing sequence of closed subspaces of
H. If Fn is the functions associated with Ln according to (3.1), then Fn decreases
monotonically and converge locally uniformly to d(.,σ(A)). In particular, s ∈ σ(A)

if and only if
lim

n→∞ Fn(s) = 0.

In the article on spectral pollution [7] in 2004, the above method was linked with
various techniques due to Lehmann [16], Behnke et al. [3], Zimmerman et al. [22].
The problem of spurious eigenvalues in a spectral gap was addressed by considering
the following function.

F(t) = inf{‖A(x) − t x‖ : x ∈ L, ‖x‖ = 1}

If we define Fn(t) = inf{‖A(x) − t x‖ : x ∈ Ln, ‖x‖ = 1}, then the following
results shall be obtained.

• Given ε > 0, there exists an Nε such that n ≥ Nε implies

F(t) ≤ Fn(t) ≤ F(t) + ε for all t ∈ R

• σ(A) ∩ [t − Fn(t), t + Fn(t)] �= ∅ for every t ∈ R.

These observations were useful in obtaining some bounds for the eigenvalues
between the bounds of essential spectrum. This was established with some numerical
evidence in [7] for bounding eigenvalues for some particular operators.

Levitin and Shargorodsky considered the problem of spectral pollution in [17].
They suggested the usage of second-order relative spectra, to deal the problem. For
the sake of completion, the definition is given below.

Definition 3.2 ([17]) Let L be a finite dimensional subspace ofH. A complex num-
ber z is said to belong to the second-order spectrum σ2(A,L) of A relative to L if
there exists a nonzero u in L such that
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〈(A − z I )u, (A − z̄ I )v〉 = 0, for every v ∈ L

They proved that the second-order relative spectrum intersects with every disk
in the complex plane with diameter is an interval which intersect with the spectrum
of A (Lemma 5.2 of [17]). They also provided some numerical results in case of
some Multiplication and Differential operators, which indicated the effectiveness of
second-order relative spectra in avoiding the spectral pollution. In [5], Boulton and
Levitin used the quadratic projection method to avoid spectral pollution in the case
of some particular Schrodinger operators.

3.2 Distance from the Essential Spectrum

To predict the existence of a gap in the essential spectrum, we need to know whether
a number λ in (ν,μ) belongs to the spectrum or not. If it is not a spectral value,
then there exists an open interval between (ν,μ) as a part of the compliment of the
spectrum, since the compliment is an open set. We observe that the spectral gap
prediction is possible by computing values of the following function.

Definition 3.3 Define the nonnegative valued function f on the real line R as fol-
lows.

f (λ) = νλ = inf σe((A − λI )2).

The primary observation is that we can predict the existence of a gap inside
the essential spectrum by evaluating the function and checking whether it attains a
nonzerovalue.Thenonzerovalues of this functiongive the indicationof spectral gaps.

Theorem 3.4 The number λ in the interval (ν,μ) is in the gap if and only if f (λ) >

0. Also one end point of the gap will be λ ± √
f (λ).

The advantage of considering f (λ) is that, it is the lower bound of the essential
spectrum of the operator (A − λI )2, which we can compute using the finite dimen-
sional truncations with the help of Theorem2.18. So the computation of f (λ), for
each λ, is possible. This enables us to predict the gap using truncations. Also here
we are able to compute one end point of a gap. The other end point is possible to
compute by Theorem 2.3 of [18], which is stated below.

Theorem 3.5 ([18]) Let A be a bounded self-adjoint operator and σe(A) =
[a, b] ⋃ [c, d], where a < b < c < d. Assume that b is known and not an accu-
mulation point of the discrete spectra of A. Then c can be computed by truncation
method.
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Coming back to the Arveson’s class, we observe that the essential points and
hence the essential spectrum is fully determined by the zeros of the function in the
Definition 3.3.

Corollary 3.6 If A is a bounded self-adjoint operator in the Arveson’s class, then
λ is an essential point if and only if f (λ) = 0.

When one wishes to apply the above results to determine the gaps in the essential
spectrumof a particular operator, one has to face the following problems. To check for
each λ in (ν,μ), is a difficult task from the computational point of view. Also taking
truncations of the square of the operator may lead to difficulty. Note that (Pn APn)

2

and Pn A2Pn are entirely different. So we may have to do more computations to
handle the problem.

Another problem is the rate of convergence and estimation of the remainder term.
For each λ in (ν,μ), the value of the function f (λ) has to be computed. This com-
putation involves truncation of the operator (A − λI )2 and the limiting process of
sequence of eigenvalues of each truncation. The rate of convergence of these approx-
imations and the remainder estimate are the questions of interest.

Below, the function f (.) is approximated by a double sequence of functions,
which arise from the eigenvalues of truncations of operators.

Theorem 3.7 ([14]) Let fn,k be the sequence of functions defined by fn,k (λ) =
λn+1−k

(

Pn (A − λI )2 Pn
)

. Then f (.) is the uniform limit of a subsequence of
{ fn,k (.)} on all compact subsets of the real line.

The following result makes the computation of f (λ) much easier for a particular
class of operators. When the operator is truncated first and square the truncation
rather than truncating the square of the operator, the difficulty of squaring a bounded
operator is reduced. The computation needs only to square the finite matrices.

Theorem 3.8 ([14]) If ‖Pn A − APn‖ → 0 as n → ∞, then

lim
k→∞ lim

n→∞ λn+1−k
(

Pn (A − λI )2 Pn
) = lim

k→∞ lim
n→∞ λn+1−k (Pn (A − λI ) Pn)

2 .

Remark 3.9 The function f (.) that is considered here is directly related to the
distance from the essential spectrum, while Davies’ function was related with
the distance from the spectrum. Here the approximation results in [4], especially
Theorem2.18 are used to approximate the function. But it is still not known to us
whether these results are useful from a computational point of view. The methods
due to Davies et al. were applied in the case of some Schrodinger operators with a
particular kind of potentials in [5, 17]. We hope that a combined use of both methods
may give a better understanding of the spectrum.
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4 Concluding Remarks and Further Problems

The goal of such developments is to use the finite dimensional techniques into the
spectral analysis of bounded self-adjoint operators on infinite dimensional Hilbert
spaces. This also leads to a large number of open problems of different flavors. We
shall quote some of them here.

• The numerical algorithms have to be developed to approximate spectrum and
essential spectrum using the eigenvalue sequence of truncations, with emphasis
on the computational feasibility.

• The random versions of the spectral approximation problems are another area to
be investigated. The related work is already under progress in [14].

• The use of preconditioners has its origin in the numerical linear algebra literature,
especially in the case of Toeplitz operators. One can expect good estimates on such
concrete examples.

• The unbounded operators shall be considered and the approximation techniques
have to be developed.
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On k-Minimal and k-Maximal Operator
Space Structures

P. Vinod Kumar and M.S. Balasubramani

Abstract Let X be a Banach space and k be a positive integer. Suppose that we have
matrix norms on M2(X), M3(X),…, Mk(X) that satisfy Ruan’s axioms. Then it is
always possible to define matrix norms on Mk+1(X), Mk+2(X), . . . , such that X
becomes an operator space. As in the case of minimal and maximal operator spaces,
here also we have a minimal and a maximal way to complete the sequence of matrix
norms on X and this leads to k-minimal and k-maximal operator space structures
on X . These spaces were first noticed by Junge [10] and more generally studied by
Lehner [11]. Recently, the relationship of k-minimal and k-maximal operator space
structures to norms that have been used in quantum information theory have been
investigated by Johnston et al. [9]. We discuss some properties of these operator
space structures.

Keywords Operator spaces · Completely bounded mappings ·Minimal and maxi-
mal operator spaces · k-minimal operator space · k-maximal operator space

AMS Mathematics Subject Classification (2000) No 46L07 · 47L25

1 Introduction

The theory of operator spaces is a fairly new and rapidly developing branch of
functional analysis and it can be regarded as the quantization of the theory of Banach
spaces. The observables of classical mechanics are scalar valued functions, and in
Heisenberg’s theory of QuantumMechanics these are replaced with infinite matrices
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which can be regarded as operators on a Hilbert space. Through this quantization,
noncommutativity comes into the picture and noncommutative or quantized versions
of classical mathematical theories began to emerge as generalizations. A Banach
space is a space of continuous functions on a compactHausdorff space up to isometric
isomorphism, where as an operator space is a space of operators on a Hilbert space,
up to complete isometric isomorphism. So the operator spaces can be regarded as
noncommutative normed spaces and their theory can be viewed as noncommutative
functional analysis or quantized functional analysis. The main difference between
the category of Banach spaces and that of operator spaces lies not in the spaces, but
in the morphisms. A Banach space can be viewed as an operator space in a natural
way,where as operator spaces areBanach spaces but herewe simultaneously consider
spaces of matrices associated with it. The appropriate morphisms for operator spaces
are the completely bounded maps, that is, linear maps which induces uniformly
bounded linear mappings on the associated spaces of matrices.

Given a Hilbert space H, let B(H) be the space of all bounded linear operators
onH. If X is a linear space, for each natural number n, Mn(X) denotes the space of
all n × n matrices over X and is called the nth matrix level of X .

If X and Y are linear spaces and ϕ : X → Y is a linear map, we can have
natural amplifications (linear) ϕ(n) : Mn(X) → Mn(Y ), for each n ∈ N, given by
[xi j ] → [ϕ(xi j )], where [xi j ] ∈ Mn(X). Suppose that each of the matrix levels of X
and Y has given norms ‖.‖Mn(X) and ‖.‖Mn(Y ), respectively.

A map ϕ : X → Y is said to be k-bounded, if ϕ(k) : Mk(X) → Mk(Y ) is
bounded. The map ϕ is completely bounded if sup{∥∥ϕ(n)

∥

∥ | n ∈ N} < ∞ and we set
‖ϕ‖cb = sup{∥∥ϕ(n)

∥

∥ | n ∈ N} = sup{∥∥[ϕ(xi j )]
∥

∥

Mn(Y )
| ∥

∥[xi j ]
∥

∥

Mn(X)
≤ 1, n ∈ N}.

The map ϕ is said to be a complete isometry if each map ϕ(n) : Mn(X) → Mn(Y )

is an isometry. If ϕ is a complete isometry, then ‖ϕ‖cb = 1. The map ϕ is said to be
completely contractive if ‖ϕ‖cb ≤ 1. If ϕ : X → Y is a completely bounded linear
bijection and if its inverse is also completely bounded, thenϕ is said to be a complete
isomorphism.We denote the closed unit ball {x ∈ X | ‖x‖ ≤ 1} of X as Ball(X).

A (concrete) operator space X is a closed linear subspace of B(H). Here, in
each matrix level Mn(X), we have a norm ‖.‖n , induced by the inclusion Mn(X) ⊂
Mn(B(H)), where the norm in Mn(B(H)) is given by the natural identification
Mn(B(H)) ≈ B(Hn), where Hn denotes the Hilbert space direct sum of n copies
of H.

An abstract operator space,or simply an operator space is a pair (X, {‖.‖n}n∈N)

consisting of a linear space X and a complete norm ‖.‖n on Mn(X) for every n ∈
N, such that there exists a linear complete isometry ϕ : X → B(H) for some
Hilbert space H. The sequence of matrix norms {‖.‖n}n∈N is called an operator
space structure on the linear space X . An operator space structure on a normed
space (X, ‖.‖) will usually mean a sequence of matrix norms {‖.‖n}n∈N as above,
but with ‖.‖1 = ‖.‖. Two abstract operator spaces are considered to be the same if
there is a complete isometric isomorphism from X to Y . In that case, we write X ≈ Y
completely isometrically. In 1988, Z-J. Ruan characterized abstract operator spaces
in terms of two properties of matrix norms.
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Theorem 1.1 (Ruan [19]) Suppose that X is a linear space and that for each n ∈ N,
we are given a norm ‖.‖n on Mn(X). Then X is completely isometrically isomorphic
to a linear subspace of B(H) for some Hilbert space H if and only if

(R1) ‖αxβ‖n ≤ ‖α‖ ‖x‖n ‖β‖ for all α,β ∈ Mn and for all x ∈ Mn(X), and
(R2) ‖x ⊕ y‖m+n = max{‖x‖m , ‖y‖n} for all x ∈ Mm(X), and for all y ∈

Mn(X),

where x ⊕ y denotes the matrix

[

x 0
0 y

]

in Mm+n(X) where 0 stands for zero matrices

of appropriate orders.
The conditions (R1) and (R2) are usually known as Ruan’s axioms.

Thus we see that an abstract operator space is simply a Banach space X together
with a sequence of matrix norms that satisfies the Ruan’s axioms. If X is a concrete
operator space, then in each matrix level Mn(X), we have a norm ‖.‖n , induced
by the inclusion Mn(X) ⊂ Mn(B(H)), where the norm in Mn(B(H)) is given by
the natural identification Mn(B(H)) ≈ B(Hn). Also, these induced matrix norms
satisfy Ruan’s axioms. Thus, every concrete operator space can be regarded as an
abstract operator space. Ruan’s theorem allows us to view an operator space in an
abstract way free of any concrete representation on a Hilbert space and so, we no
longer distinguish between concrete and abstract operator spaces.

Many concepts from Banach space theory can be formulated in the settings of
this quantized theory of Banach spaces, and this provided important generalizations
of many results. Studies have shown that this theory gives a more general setup to
study the structure of operator algebras. Certain invariants of operator algebras like
injectivity, exactness, and local reflexivity can be understood in a better way as the
properties of their underlying operator space structures. Also, the matricial orderings
and sequence of matrix norms played an important role in the algebraic classification
of operator algebras. Operator space theory, thus, serves as a bridge between the the-
ory of Banach spaces and that of operator algebras. More information about operator
spaces and completely bounded mappings may be found in the papers [4, 5, 14, 18]
or in the recent monographs [3, 6, 16, 17].

2 Operator Space Structures on Banach Spaces

Given a Banach space X , there are many operator space structures possible on X ,
which all have X as their first matrix level. Blecher and Paulsen [1] observed that
the set of all operator space structures admissible on a given Banach space X admits
a minimal and maximal element namely Min(X) and Max(X), which represent,
respectively, the smallest and the largest operator space structures admissible on X .

These structures were further investigated by Paulsen in [14, 15]. Much work has
been done in understanding these operator space structures on a Banach space X ,
and these studies have played a vital role in the theory of operator spaces and in the
theory of C*-algebras.
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Let X be a Banach space and X∗ be its dual space. Let K = Ball(X∗) be the
unit closed ball of the dual space of X with its weak∗ topology. Then the canonical
embedding J : X → C(K ), defined by J (x)( f ) = f (x), x ∈ X and f ∈ K is a
linear isometry. Since by Gelfand–Naimark theorem, subspaces of C*-algebras are
operator spaces, this identification of X induces matrix norms on Mn(X) that makes
X an operator space. The matrix norms on X are given by

∥

∥[xi j ]
∥

∥

n = sup{∥∥[ f (xi j )]
∥

∥ | f ∈ K }

for all [xi j ] ∈ Mn(X) and for all n ∈ N.
Just as Banach spaces may be regarded as the subspaces of commutative C*-

algebras, by Ruan’s theorem, operator spaces may be viewed as the subspaces of
B(H), or by Gelfand–Naimark theorem, they are exactly the subspaces of general
C*-algebras. So we can regard operator spaces as noncommutative Banach spaces.

The above-defined operator space structure on X is called the minimal operator
space structure on X , and we denote this operator space as Min(X). For [xi j ] ∈
Mn(X), we write

∥

∥[xi j ]
∥

∥

Min(X)
to denote its norm as an element of Mn(Min(X)).

This minimal quantization of a normed space is characterized by the property that
for any arbitrary operator space Y and for any bounded linear mapϕ : Y → Min(X)

is completely bounded and satisfies ‖ϕ : Y → Min(X)‖cb = ‖ϕ : Y → X‖. Thus,
if X and Y are Banach spaces and ϕ ∈ B(X, Y ), then ϕ is completely bounded and
‖ϕ‖cb = ‖ϕ‖, when considered it as a map X → Min(Y ).

If X is an operator space, for any x ∈ Mn(X), there exists a complete contraction
[6], ϕ : X → Mn such that ‖ϕn(x)‖ = ‖x‖. Therefore, for [xi j ] ∈ Mn(X), we have
∥

∥[xi j ]
∥

∥

n = sup{∥∥ fn([xi j ])
∥

∥ | f ∈ Ball(C B(X, Mn))}. This shows that Min(X)

is the smallest operator space structure on X . We say that an operator space X is
minimal if Min(X) = X . An operator space is minimal if and only if it is completely
isomorphic to a subspace of a commutative C*-algebra [6].

If X is a Banach space, there is a maximal way to consider it as an operator space.
The matrix norms given by

∥

∥[xi j ]
∥

∥

n = sup{∥∥[ϕ(xi j )]
∥

∥ | ϕ ∈ Ball(B(X, Y ))}

where the supremum is taken over all operator spaces Y and all linear maps
ϕ ∈ Ball(B(X, Y )), makes X an operator space. We denote this operator space as
Max(X) and is called themaximal operator space structure on X.For [xi j ] ∈ Mn(X),
we write

∥

∥[xi j ]
∥

∥

Max(X)
to denote its norm as an element of Mn(Max(X)). We say

that an operator space X is maximal if Max(X) = X . By Ruan’s Theorem1.1, we
also have

∥

∥[xi j ]
∥

∥

Max(X)
= sup{∥∥[ϕ(xi j )]

∥

∥ | ϕ ∈ Ball(B(X, B(H)))}
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where the supremum is taken over all Hilbert spaces H and all linear maps ϕ ∈
Ball(B(X, B(H))). By the definition of Max(X), any operator space structure that
we can put on X , must be smaller than Max(X).

This maximal quantization of a normed space is characterized by the property that
for any arbitrary operator space Y and for any bounded linearmapϕ : Max(X) → Y
is completely bounded and satisfies ‖ϕ : Max(X) → Y‖cb = ‖ϕ : X → Y‖. Thus,
if X and Y are Banach spaces and ϕ ∈ B(X, Y ), then ϕ is completely bounded and
‖ϕ‖cb = ‖ϕ‖, when considered it as a map Max(X) → Y . If X is any operator
space, then the identity map on X defines completely contractive maps Max(X) →
X → Min(X).

For any Banach space X , we have the duality relations Min(X)∗ = Max(X∗)
and Max(X)∗ = Min(X∗) completely isometrically [2].

By Hahn–Banach theorem, any subspace of a minimal operator space is again
minimal, but the quotient of a minimal space need not be minimal. The subspace of a
maximal space need not be maximal and such spaces are called submaximal spaces.
But quotient spaces inherits the maximality. Subspace structure of various maximal
operator spaces were studied in [12]. In [20], the notion of hereditarily maximal
spaces is introduced. Hereditarily maximal spaces determine a subclass of maximal
operator spaces with the property that the operator space structure induced on any
subspace coincides with the maximal operator space structure on that subspace.
An operator space X is homogeneous if each bounded linear operator ϕ on X is
completely bounded with ‖ϕ‖cb = ‖ϕ‖ [17]. The spaces Min(X) and Max(X) are
homogeneous, but in general, submaximal spaces need not be homogeneous.

3 k-Minimal and k-Maximal Operator Spaces

We now focus on some generalizations of minimal and maximal operator space
structure on a Banach space X . Let X be a Banach space, and k be a positive inte-
ger. Suppose that we have matrix norms on M2(X), M3(X), . . . , Mk(X) that satisfy
Ruan’s axioms. Then it is always possible to define matrix norms on Mk+1(X),
Mk+2(X), . . . , such that X becomes an operator space. As in the case of minimal
and maximal operator spaces, here also we have a minimal and a maximal way to
complete the sequence of matrix norms on X and this leads to k-minimal and k-
maximal operator space structures on X . These spaces were first noticed by Junge
[10] and more generally studied by Lehner [11]. Recently, the relationship of k-
minimal and k-maximal operator space structures to norms that have been used in
quantum information theory [7, 8] have been investigated by Johnston et al. [9].

If we define the matrix norms on Mn(X) for n > k as the matrix norms in
Mn(Min(X)), the resulting operator space is called the k-minimal operator space
and is denoted by Mink(X). An operator space X is said to be k-minimal if
Mink(X) = X .

Similarly, if we set the norms on Mn(X) for n > k as the matrix norms in
Mn(Max(X)), the resulting operator space is called the k-maximal operator space
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and is denoted by Maxk(X). An operator space X is said to be k-maximal if
Maxk(X) = X .

If (X, {‖.‖Mn(X)}) is any operator space, the matrix norms in Mink(X) and
Maxk(X) are explicitly given ([9, 13]) as follows:

‖[xi j ]‖Mn(Mink (X)) = sup{‖[ϕ(xi j )]‖ | ϕ : X → Mk, ‖ϕ‖cb ≤ 1},

and

‖[xi j ]‖Mn(Maxk (X)) =sup{‖[ϕ(xi j )]‖ | ϕ : X → B(H), ‖ϕ(k)‖ ≤ 1,

all Hilbert spaces H}

If {‖.‖′
Mn(X)} be any operator space structure on X , such that for 1 ≤ n ≤ k,

‖[xi j ]‖′
Mn(X) = ‖[xi j ]‖Mn(X), then

‖[xi j ]‖Mn(Mink (X)) ≤ ‖[xi j ]‖′
Mn(X) ≤ ‖[xi j ]‖Mn(Maxk (X))

for all [xi j ] ∈ Mn(X) and for all n ∈ N.
From the definitions of minimal and maximal operator spaces, we see that, when

k = 1, the k-minimal and the k-maximal operator space structures on X coincides
with the minimal and the maximal operator space structures on X , respectively.

The notions of k-minimal and k-maximal operator spaces help us to obtain several
different operator space structures on a given operator space X . For instance, for any
k ∈ N, the space Mink(Maxk−1(X)) is the space whose matrix norms up to the
(k − 1)th level are the same as those of X , on the kth level, the norms in Max(X),
and from (k + 1)th level onward, are the matrix norms from Min(X).

Remark 3.1 Let X be an operator space. It can be noted that the formal identity
maps Maxk(X) → X → Mink(X) are completely contractive. Also, for n ≤ k,
the formal identity maps id : Mn(Mink(X)) → Mn(X) → Mn(Maxk(X)) are
isometries. From the definition, it follows that for [xi j ] ∈ Mn(X), the sequence
{‖[xi j ]‖Mn(Mink (X))} increases to‖[xi j ]‖Mn(X) and the sequence {‖[xi j ]‖Mn(Maxk (X))}
decreases to ‖[xi j ]‖Mn(X) as k → ∞.

The following duality relations [13] hold:
(Mink(X))∗ ∼= Maxk(X∗) and (Maxk(X))∗ ∼= Mink(X∗) completely isometri-
cally.

4 Universal Properties of k-Minimal and k-Maximal Spaces

From the definitions of k-minimal and k-maximal spaces, the following observation
is straightaway.
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Proposition 4.1 Let X be an operator space and k, h ∈ N. Then the formal identity
mapping, id : Mink(X) → Minh(X) is completely contractive whenever k ≥ h,
and id : Maxk(X) → Maxh(X) is completely contractive whenever k ≤ h.

We now show that k-minimal and k-maximal operator spaces are characterized
up to complete isometric isomorphism in terms of some universal properties. A part
of these characterizations can be found in [13] where these are described in a slightly
different terminology.

Theorem 4.2 An operator space Y is a k-minimal operator space up to complete
isometric isomorphism if and only if for any operator space X and for any bounded
linear map ϕ : X → Y , we have ‖ϕ : X → Y‖cb = ‖ϕ(k)‖.

Proof Assume that Y = Mink(Y ). We have,

‖ϕ : X → Y‖cb =
∥

∥

∥ϕ : X → Mink(Y )

∥

∥

∥

cb

= sup{∥∥[ϕ(xi j )]
∥

∥

Mn(Mink (Y ))
| ∥

∥[xi j ]
∥

∥

Mn(X)
≤ 1, n ∈ N}

= sup{sup{∥∥[ψ(ϕ(xi j ))]
∥

∥ | ψ : Y → Mk, ‖ψ‖cb ≤ 1},
∥

∥[xi j ]
∥

∥

Mn(X)
≤ 1, n ∈ N}

= sup{sup{
∥

∥

∥(ψ ◦ ϕ)(n)([xi j ])
∥

∥

∥ | ∥

∥[xi j ]
∥

∥

Mn(X)
≤ 1, n ∈ N},

ψ : Y → Mk, ‖ψ‖cb ≤ 1}
= sup{‖ψ ◦ ϕ‖cb | ψ : Y → Mk, ‖ψ‖cb ≤ 1} (1)

Now, ψ ◦ ϕ : X → Mk , by [18], ‖ψ ◦ ϕ‖cb = ∥

∥(ψ ◦ ϕ)(k)
∥

∥ ≤ ∥

∥ψ(k)
∥

∥

∥

∥ϕ(k)
∥

∥. Thus,
from the above equation (1), ‖ϕ : X → Y‖cb ≤ ‖ϕ(k)‖.
Thus, ‖ϕ : X → Y‖cb = ‖ϕ(k)‖.

For the converse, take X = Mink(Y ) and ϕ = id, the identity mapping. Then by
assumption, ‖id : Mink(Y ) → Y‖cb = ‖id(k)‖.

Since, ‖[xi j ]‖Mn(Y ) = ‖[xi j ]‖Mn(Mink (Y )) for 1 ≤ n ≤ k, ‖id(k)‖ = 1.
Also, ‖id−1 : Y → Mink(Y )‖cb = ‖id : Y → Mink(Y )‖cb ≤ 1. Thus, id is a

complete isometric isomorphism. �

Theorem 4.3 An operator space X is a k-maximal operator space up to complete
isometric isomorphism if and only if for any operator space Y and for any bounded
linear map ϕ : X → Y , we have ‖ϕ : X → Y‖cb = ‖ϕ(k)‖.

Proof Assume that X = Maxk(X). Let ϕ : X → Y be any bounded linear map. Set

v = ϕ

‖ϕ(k)‖ . Then, v : X → Y ⊂ B(H) is bounded and ‖v(k)‖ ≤ 1. Therefore, by

the definition of matrix norms in Maxk(X), ‖[v(xi j )]‖Mn(Y ) ≤ ‖[xi j ]‖Mn(Maxk (X)),
for every [xi j ] ∈ Mn(X) and for all n ∈ N. Thus, ‖v‖cb ≤ 1, implies that ‖ϕ‖cb ≤
‖ϕ(k)‖. Hence follows the desired result.
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For the converse, take Y = Maxk(Y ) and ϕ = id, the identity mapping. Then by
assumption, ‖id : X → Maxk(X)‖cb = ‖id(k)‖ = 1.

Also, ‖id−1 : Maxk(X) → X‖cb ≤ 1. Thus, id is a complete isometric isomor-
phism. �

Corollary 4.4 Let X and Y be operator spaces, k ∈ N, and ϕ : X → Y be a
bounded linear map. Then,

(i) ϕ is k-bounded if and only if ϕ : Maxk(X) → Y is completely bounded.
(ii) ϕ is k-bounded if and only if ϕ : X → Mink(Y ) is completely bounded.

Since a subspace of a maximal operator space need not be maximal, a subspace
of a k-maximal space need not be k-maximal. But, subspaces of k-minimal spaces
are again k-minimal.

Theorem 4.5 If Y is a subspace of the operator space X, then Mink(Y ) is a subspace
of Mink(X).

Proof We have to prove that
∥

∥[yi j ]
∥

∥

Mn(Mink (Y ))
= ∥

∥[yi j ]
∥

∥

Mn(Mink (X))
, ∀[yi j ] ∈

Mn(Y ) and ∀n ∈ N. By definition,

∥

∥[yi j ]
∥

∥

Mn(Mink (Y ))
= sup{‖[ϕ(yi j )]‖ | ϕ : Y → Mk, ‖ϕ‖cb ≤ 1},

and

∥

∥[yi j ]
∥

∥

Mn(Mink (X))
= sup{‖[ϕ̃(xi j )]‖ | ϕ̃ : X → Mk, ‖ϕ̃‖cb ≤ 1}.

Now, if ϕ̃ : X → Mk is a complete contraction, then ϕ̃|Y : Y → Mk is also a
complete contraction.

On the other hand, since Mk is injective, any complete contraction ϕ : Y → Mk

extends to a complete contraction ϕ̃ : X → Mk such that ‖ϕ̃‖cb = ‖ϕ‖cb. Hence,
both the matrix norms are the same. �

We know that for any Banach space X , the operator spaces Min(X) and Max(X)

are homogeneous. Now we discuss the case of k-minimal and k-maximal spaces.

Theorem 4.6 Let X be an operator space and k ∈ N.

(i) The spaces Mink(X) and Maxk(X) are λ-homogeneous for some λ > 0.
(ii) If X is homogeneous, so are Mink(X) and Maxk(X).

(iii) If X is homogeneous, then for any bounded linear operator ϕ on X, we have
‖ϕ : X → Mink(X)‖cb = ‖ϕ‖ and ‖ϕ : Maxk(X) → X‖cb = ‖ϕ‖.

Proof We prove the results only for the k-minimal spaces. The other case will follow
in a similar way.

Let ϕ : Mink(X) → Mink(X) be a bounded linear map. Then we have,
‖ϕ : Mink(X) → Mink(X)‖cb = ‖ϕ(k)‖. Now, by using the operator space

matrix norm inequalities,
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‖ϕ(k)‖ = sup{‖[ϕ(xi j )]‖Mk (Mink (X)) | ‖[xi j ]‖Mk (Mink (X)) ≤ 1}
≤ sup{�i, j‖ϕ(xi j )‖ | ‖[xi j ]‖Mk (Mink (X)) ≤ 1}
≤ k2‖ϕ‖

Thus, if X is any operator space, Mink(X) is λ-homogeneous for some λ > 0.
Now, to prove (ii), consider a bounded linear map ϕ : Mink(X) → Mink(X).

Then by Theorem 4.2,

‖ϕ : Mink(X) → Mink(X)‖cb = ‖ϕ(k) : Mk(Mink(X)) → Mk(Mink(X))‖
= ‖ϕ(k) : Mk(X) → Mk(X)‖
≤ ‖ϕ : X → X‖cb

= ‖ϕ‖

Thus, Mink(X) is homogeneous, if X is homogeneous.
For proving (iii), let ϕ : X → Mink(X) be a bounded linear map. Let ϕ0

denote the same map ϕ but, regarded as a map from Mink(X) → Mink(X). Then
ϕ = ϕ0 ◦ id, where id : X → Mink(X) is the identity map.

Since id : X → Mink(X) is a complete contraction and by using (ii), we have
‖ϕ‖cb = ‖ϕ0 ◦ id‖cb ≤ ‖id‖cb‖ϕ0‖cb ≤ ‖ϕ0‖ = ‖ϕ‖. �

By using the universal properties of k-minimal and k-maximal spaces, we now
obtain expressions for the cb-norm of the identity mappings id : Mink(X) → X
and id : X → Maxk(X).

Theorem 4.7 Let X be an operator space and k ∈ N.
(i) The identity mapping id : Mink(X) → X is completely bounded if and only if for
every operator space Y and every k-bounded linear map ϕ : Y → X is completely

bounded. Moreover, ‖id : Mink(X) → X‖cb = sup{ ‖ϕ‖cb

‖ϕ(k)‖} where the supremum

is taken over all k-bounded nonzero linear maps ϕ : Y → X and all operator spaces
Y .
(ii) The identity mapping id : X → Maxk(X) is completely bounded if and only if for
every operator space Y and every k-bounded linear map ϕ : X → Y is completely

bounded. Moreover, ‖id : X → Maxk(X)‖cb = sup{ ‖ϕ‖cb

‖ϕ(k)‖} where the supremum

is taken over all k-bounded nonzero linear maps ϕ : X → Y and all operator spaces
Y .

Proof Weprove only (i) and (ii) will follow in a similar way. Assume that the identity
mapping id : Mink(X) → X is completely bounded. Let ϕ : Y → X is k-bounded.
Let ϕ̃ be the same map as ϕ but with Mink(X) as the range. Then ϕ = id ◦ ϕ̃. Now
by Theorem 4.2, ‖ϕ̃‖cb = ‖ϕ̃(k)‖ = ‖ϕ(k)‖ < ∞. Since ϕ is the composition of two
completely bounded maps, it is completely bounded.
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For proving the converse, take Y = Mink(X) and ϕ = id.
Now, id(k) = Mk(Mink(X)) → Mk(X) is an isometry, and by assumption, we

see that id : Mink(X) → X is completely bounded.
Since, ϕ = id ◦ ϕ̃, ‖ϕ‖cb ≤ ‖ϕ̃‖cb‖id‖cb. But ‖ϕ̃‖cb = ‖ϕ̃(k)‖ = ‖ϕ(k)‖, so

that
‖ϕ‖cb

‖ϕ(k)‖ ≤ ‖id‖cb. Since id : Mink(X) → X is also a member of the right side

collection, we get the desired equality. �

Theorem 4.8 Let X be an operator space, and k ∈ N. Then X is k-minimal (k-
maximal) if and only if the bidual X∗∗ is k-minimal (k-maximal).

Proof Assume that X = Mink(X). Then by duality relations, X∗ = (Mink(X))∗ =
Maxk(X∗), so that X∗∗ = (Maxk(X∗))∗ = Mink(X∗∗). Thus X∗∗ is k-minimal.
Since X ⊂ X∗∗, if X∗∗ is k-minimal, by Theorem 4.5, we see that X is k-minimal.
The k-maximal case will follow in a similar way, where the reverse implication can
be obtained by using the universal property. �
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Approximating an infinite dimensional operator by its finite dimensional trunca-
tions were useful to approximate the eigenvalues of compact operators. The lack of
operator norm convergence makes it difficult in the case of non compact operators.
In 1994, W.B. Arveson identified a class of operators for which the finite dimen-
sional truncations are useful in the spectral approximation. The C*-algebraic
approach due to Arveson was a landmark in the theory of spectral approximation.
Later, some progress was made with the crucial assumption; connectedness of the
essential spectrum. The spectral pollution problems and spectral gap problems were
also addressed by many mathematicians. The use of the quadratic projection
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method and second order relative spectra are also discussed in this article. Some of
the recent results in the spectral gap prediction problems are explained here. Also,
we try to modify the truncation method by using the notion of preconditioners and
matrix convergence in the sense of eigenvalue clustering.
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