Approximation of Functions of Class $Lip(\alpha, p)$ in L_p -Norm

M.L. Mittal and Mradul Veer Singh

Abstract Mittal and Rhoades (Int. J. Math. Game Theory Algebra 9(4), 259–267, 1999 [9]; J. Comput. Anal. Appl. **2**(1) 1–10, 2000 [10]) and Mittal et al. (J. Math. Anal. Appl. **326**(1) 667–676, 2007 [7]; Appl. Math. Comput. **217**(9), 4483–4489, 2011 [8]) initiated the studies of error estimates $E_n(f)$ through trigonometric-Fourier approximation (tfa) for situations in which the summability matrix T does not have monotone rows. In this paper, we extend the results of Mittal et al. (Appl. Math. Comput. **217**(9), 4483–4489, 2011 [8]) to a more general $C_λ$ -method in view of Armitage and Maddox (Analysis **9**, 195–204, 1989 [1]), which in turn generalizes the several previous known results due to Mittal and Singh (Int. J. Math. Math. Sci., Art. ID **267383**, 1–6, 2014 [11]), Deger et al. (Proc. Jangjeon Math. Soc. **15**(2), 203–213, 2012 [4]), Leindler (J. Math. Anal. Appl. **302**, 129–136, 2005 [6]), Chandra (J. Math. Anal. Appl. **275**, 13–26, 2002 [3]) and Quade (Duke Math. J. **3**(3), 529–543, 1937 [15]).

Keywords Trigonometric Fourier approximation \cdot C_{λ} -method \cdot L_p -norm \cdot Class $Lip(\alpha, p)$

1 Introduction

For a given function $f \in L_p := L_p[0, 2\pi], p \ge 1$, let

$$s_n(f) := s_n(f; x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx) = \sum_{k=0}^n u_k(f; x)$$
 (1)

M.L. Mittal \cdot M.V. Singh (\boxtimes)

Department of Mathematics, Indian Institute of Technology Roorkee,

Roorkee 247667, India

e-mail: mradul.singh@gmail.com

M.L. Mittal

e-mail: mlmittal_iit@yahoo.co.in

© Springer India 2015

109

P.N. Agrawal et al. (eds.), *Mathematical Analysis and its Applications*, Springer Proceedings in Mathematics & Statistics 143, DOI 10.1007/978-81-322-2485-3_8

denote the partial sums, called trigonometric polynomials of degree (or order) n, of the first (n + 1) terms of the Fourier series of f at a point x.

A positive sequence $\mathbf{c} := \{c_n\}$ is called almost monotone decreasing (increasing) if there exists a constant $K := K(\mathbf{c})$, depending on the sequence \mathbf{c} only, such that for all $n \ge m$, $c_n \le Kc_m(Kc_n \ge c_m)$. Such sequences will be denoted by $\mathbf{c} \in AMDS$ and $\mathbf{c} \in AMIS$ respectively. A sequence which is either AMDS or AMIS is called almost monotone sequence and will be denoted by $\mathbf{c} \in AMS$.

Let \mathbb{F} be an infinite subset of \mathbb{N} and \mathbb{F} the range of strictly increasing sequence of positive integers, say $\mathbb{F} = {\{\lambda(n)\}_{n=1}^{\infty}}$. The Cesàro submethod C_{λ} is defined as

$$(C_{\lambda}x)_n = \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} x_k, (n = 1, 2, 3, ...),$$

where $\{x_k\}$ is a sequence of real or complex numbers. Therefore, the C_{λ} -method yields a subsequence of the Cesàro method C_1 , and hence it is regular for any λ . Matrix- C_{λ} is obtained by deleting a set of rows from Cesàro matrix. The basic properties of C_{λ} -method can be found in [1, 14]. Define

$$\tau_n^{\lambda}(f) = \tau_n^{\lambda}(f; x) = \sum_{k=0}^{\lambda(n)} a_{\lambda(n),k} s_k(f; x), \ \forall n \ge 0.$$

The trigonometric Fourier series of the signal f is said to be T^{λ} -summable to s if $\tau_n^{\lambda}(f) \to s$ as $n \to \infty$.

Throughout $T \equiv (a_{n,k})$, a linear operator, will denote an infinite lower triangular matrix with nonnegative entries and row sums 1. Such a matrix T is said to have monotone rows if, $\forall n, \{a_{n,k}\}$ is either nonincreasing or nondecreasing in $k, 0 \le k \le n$. A linear operator T is said to be regular if it is limit-preserving over the space of convergent sequences.

We write

$$s_n(f;x) = \frac{1}{\pi} \int_0^{2\pi} f(x+t) D_n(t) dt, \quad D_n(t) = (\sin(n+1/2)t)/2 \sin(t/2),$$

$$A_{\lambda(n),k} = \sum_{r=k}^{\lambda(n)} a_{\lambda(n),r}, \quad A_{\lambda(n),0} \equiv 1, \forall n \ge 0.$$

The notation [x] means the greatest integer contained in x.

2 Known Results

Chandra [3] proved three theorems on the trigonometric approximation using Nörlund and Riesz matrices. Some of them give sharper estimates than the results proved by Quade [15], Mohapatra and Russell [12] and himself earlier [2]. Similar results

were proved by Khan [5] for generalized N_p -mean and Mohapatra et al. [13] for Taylor mean. Leindler [6] extended the results of Chandra [3] without the assumption of monotonicity on the generating sequence $\{p_n\}$. Leindler [6] proved the following:

Theorem 1 ([6]) If $f \in Lip(\alpha, p)$ and $\{p_n\}$ be positive. If one of the conditions (i) $p > 1, 0 < \alpha < 1 \text{ and } \{p_n\} \in AMDS$,

(ii)
$$p > 1, 0 < \alpha < 1$$
 and $\{p_n\} \in AMIS$ and

$$(n+1)p_n = O(P_n) holds, (2)$$

(iii)
$$p > 1, \alpha = 1 \text{ and } \sum_{k=1}^{n-1} k |\Delta p_k| = O(P_n),$$

(iv)
$$p > 1, \alpha = 1, \sum_{k=0}^{n-1} |\Delta p_k| = O(P_n/n)$$
 and (2) holds

(iii)
$$p > 1$$
, $\alpha = 1$ and $\sum_{k=1}^{n-1} k |\Delta p_k| = O(P_n)$,
(iv) $p > 1$, $\alpha = 1$, $\sum_{k=0}^{n-1} |\Delta p_k| = O(P_n/n)$ and (2) holds,
(v) $p = 1$, $0 < \alpha < 1$ and $\sum_{k=-1}^{n-1} |\Delta p_k| = O(P_n/n)$,
maintains, then

$$||f - N_n(f)||_p = O(n^{-\alpha}).$$
 (3)

Theorem 2 ([6]) Let $f \in Lip(\alpha, 1), 0 < \alpha < 1$. If the positive $\{p_n\}$ satisfies conditions (2) and $\sum_{k=0}^{n-1} |\Delta p_k| = O(P_n/n)$ hold, then

$$||f - R_n(f)||_1 = O(n^{-\alpha}).$$

Mittal et al. [7, 8] extended the work of Chandra to general matrices. Mittal et al. [8] proved the following:

Theorem 3 ([8]) Let $f \in Lip(\alpha, p)$ and let $T = (a_{n,k})$ be an infinite regular triangular matrix.

(i) If $p > 1, 0 < \alpha < 1, \{a_{n,k}\} \in AMS$ in k and satisfies

$$(n+1)\max\{a_{n,0}, a_{n,r}\} = O(1). \tag{4}$$

where $r := \lfloor n/2 \rfloor$ then

$$||f - \tau_n(f)||_p = O(n^{-\alpha}).$$
 (5)

(ii) If
$$p > 1$$
, $\alpha = 1$ and $\sum_{k=0}^{n-1} (n-k) |\Delta_k a_{n,k}| = O(1)$, or (iii) If $p > 1$, $\alpha = 1$ and $\sum_{k=0}^{n} |\Delta_k a_{n,k}| = O(a_{n,0})$, or (iv) If $p = 1$, $0 < \alpha < 1$ and $\sum_{k=0}^{n} |\Delta_k a_{n,k}| = O(a_{n,0})$, and also $(n+1)a_{n,0} = O(1)$, holds then (5) is satisfied.

Recently, Deger et al. [4] extended the results of Chandra [3] to more general C_{λ} method in view of Armitage and Maddox [1]. Deger et al. [4] proved:

Theorem 4 ([4]) Let $f \in Lip(\alpha, p)$ and $\{p_n\}$ be positive such that

$$(\lambda(n) + 1) p_{\lambda(n)} = O(P_{\lambda(n)}), \tag{6}$$

If either (i) $p > 1, 0 < \alpha \le 1$ and $\{p_n\}$ is monotonic or (ii) $p = 1, 0 < \alpha < 1$ and $\{p_n\}$ is nondecreasing then

$$||f - N_n^{\lambda}(f)||_p = O(n^{-\alpha}).$$

Theorem 5 ([4]) Let $f \in Lip(\alpha, 1), 0 < \alpha < 1$. If the positive $\{p_n\}$ satisfies condition (6) and nondecreasing, then $||f - R_n^{\lambda}(f)||_1 = O(n^{-\alpha})$.

Very recently, in [11], the authors of this paper generalized two theorems of Deger et al. [4], by dropping the monotonicity on the elements of the matrix rows. These results also generalize the results of Leindler [6] to more general C_{λ} -method.

Theorem 6 ([11]) If $f \in Lip(\alpha, p)$ and $\{p_n\}$ be positive. If one of the following conditions

- (i) $p > 1, 0 < \alpha < 1 \text{ and } \{p_n\} \in AMDS$,

(iii)
$$p > 1, \alpha = 1 \text{ and } \sum_{k=1}^{\lambda(n)-1} k |\Delta p_k| = O(P_{\lambda(n)}),$$

(ii)
$$p > 1, 0 < \alpha < 1$$
 and $\{p_n\} \in AMIS$ and (6) holds,
(iii) $p > 1, \alpha = 1$ and $\sum_{k=1}^{\lambda(n)-1} k|\Delta p_k| = O(P_{\lambda(n)})$,
(iv) $p > 1, \alpha = 1, \sum_{k=0}^{\lambda(n)-1} |\Delta p_k| = O\left(\frac{P_{\lambda(n)}}{\lambda(n)}\right)$ and (6) holds,

(v)
$$p = 1, 0 < \alpha < 1$$
 and $\sum_{k=-1}^{\lambda(n)-1} |\Delta p_k| = O\left(\frac{P_{\lambda(n)}}{\lambda(n)}\right)$,

maintains, then

$$||f - N_n^{\lambda}(f)||_p = O\left((\lambda(n))^{-\alpha}\right). \tag{7}$$

Theorem 7 ([11]) Let $f \in Lip(\alpha, 1), 0 < \alpha < 1$. If the positive $\{p_n\}$ satisfies (6) and the condition $\sum_{k=0}^{\lambda(n)-1} |\Delta p_k| = O\left(\frac{P_{\lambda(n)}}{\lambda(n)}\right)$ holds, then

$$||f - R_n^{\lambda}(f)||_1 = O\left((\lambda(n))^{-\alpha}\right). \tag{8}$$

3 Main Results

Mittal and Rhoades [9, 10] initiated the studies of error estimates through trigonometric-Fourier approximation (tfa) for situations in which the summability matrix T does not have monotone rows. In continuation of Mittal and Singh [11], in this paper, we generalize Theorem 3 of Mittal et al. [8] using more general C_{λ} method. We prove the following:

Theorem 8 Let $f \in Lip(\alpha, p)$ and let $T = (a_{n,k})$ be an infinite regular triangular matrix.

(i) If $p > 1, 0 < \alpha < 1, \{a_{n,k}\} \in AMS$ in k and satisfies

$$(\lambda(n) + 1)\max\{a_{\lambda(n),0}, a_{\lambda(n),r}\} = O(1), \tag{9}$$

where $r := [\lambda(n)/2]$ then

$$||f - \tau_n^{\lambda}(f)||_p = O((\lambda(n))^{-\alpha}). \tag{10}$$

(ii) If p > 1, $\alpha = 1$ and

$$\sum_{k=0}^{\lambda(n)-1} (\lambda(n)-k)|\Delta_k a_{\lambda(n),k}| = O(1), or$$
(11)

(iii) If p > 1, $\alpha = 1$ and

$$\sum_{k=0}^{\lambda(n)} |\Delta_k a_{\lambda(n),k}| = O(a_{\lambda(n),0}), or$$
(12)

(iv) If $p = 1, 0 < \alpha < 1$ and

$$\sum_{k=0}^{\lambda(n)} |\Delta_k a_{\lambda(n),k}| = O(a_{\lambda(n),0}), \tag{13}$$

and also

$$(\lambda(n) + 1)a_{\lambda(n),0} = O(1), \tag{14}$$

holds then (10) is satisfied.

Remarks (1) If $\lambda(n) = n$, then our Theorem 8 generalizes Theorem 3.

- (2) If $T \equiv (a_{n,k})$ is a Nörlund N_p (or weighted R_p) matrix then-
- (a) If $\lambda(n) = n$, then condition (9) (or (14)) reduces to (2) while the conditions (11), (12), (13) reduce to conditions in (iii), (iv) and (v) of Theorem 1 respectively. Thus our Theorem 8 generalizes Theorems 1 and 2.
- (b) Deger et al. [4] used the monotone sequences $\{p_n\}$ in Theorems 4 and 5 while our Theorem 8 claims less than the requirement of their theorems. For example, condition (11) of Theorem 8 is automatically satisfied if $\{p_n\}$ is nonincreasing sequence, i.e., L.H.S. of (11) gives

$$\sum_{k=0}^{\lambda(n)-1} (\lambda(n) - k) \left| \frac{\Delta_k p_{\lambda(n)-k}}{P_{\lambda(n)}} \right| = \frac{1}{P_{\lambda(n)}} \sum_{k=0}^{\lambda(n)-1} (\lambda(n) - k) |p_{\lambda(n)-k} - p_{\lambda(n)-k-1}|$$

$$= \frac{P_{\lambda(n)-1} - \lambda(n) p_{\lambda(n)}}{P_{\lambda(n)}} = O(1) = R.H.S.,$$

while the condition (12) is always satisfied if $\{p_n\}$ is nondecreasing, i.e.,

$$\begin{split} \sum_{k=0}^{\lambda(n)} \left| \frac{\triangle_k p_{\lambda(n)-k}}{P_{\lambda(n)}} \right| &= \frac{1}{P_{\lambda(n)}} \sum_{k=0}^{\lambda(n)} |p_{\lambda(n)-k} - p_{\lambda(n)-k-1}| \\ &= \frac{1}{P_{\lambda(n)}} [p_{\lambda(n)} - p_{\lambda(n)-1} + p_{\lambda(n)-1} - p_{\lambda(n)-2} + \dots + p_0 - p_{-1}] \\ &= O\left(\frac{p_{\lambda(n)}}{P_{\lambda(n)}}\right). \end{split}$$

Further, condition (9) (or (14)) of Theorem 8 reduces to (6) of Theorem 4. Thus our Theorem 8 generalizes the Theorems 4 and 5 of Deger et al. [4] under weaker assumptions and gives sharper estimate because all the estimates of Deger et al. [4] are in terms of n while our estimates are in terms of $\lambda(n)$ and $(\lambda(n))^{-\alpha} \leq n^{-\alpha}$ for $0 < \alpha < 1$.

(c) Also, Theorem 8 extends Theorems 6 and 7 of Mittal, Singh [11] where two theorems of Deger et al. [4] were generalized by dropping the monotonicity on the elements of matrix rows.

4 Lemmas

We shall use the following lemmas in the proof of our Theorem:

Lemma 1 ([15]) *If* $f \in Lip(1, p)$, *for* p > 1 *then*

$$||\sigma_n(f) - s_n(f)||_p = O(n^{-1}), \ \forall n > 0.$$

Lemma 2 ([15]) If $f \in Lip(\alpha, p)$, for $0 < \alpha \le 1$ and p > 1. Then

$$||f - s_n(f)||_p = O(n^{-\alpha}), \ \forall n > 0.$$

Note: We are using sums upto $\lambda(n)$ in the *n*th partial sums s_n and σ_n and writing these sums s_n^{λ} and σ_n^{λ} , respectively, in the above lemmas for our purpose in this paper.

Lemma 3 Let T have AMS rows and satisfy (4). Then, for $0 < \alpha < 1$,

$$\sum_{k=0}^{\lambda(n)} a_{\lambda(n),k} (k+1)^{-\alpha} = O\left((\lambda(n)+1)^{-\alpha}\right).$$

Proof Suppose that the rows of T are AMDS. Then there exists a K > 0 such that

$$\sum_{k=0}^{\lambda(n)} a_{\lambda(n),k} (k+1)^{-\alpha} = \sum_{k=0}^{\lambda(n)} K a_{\lambda(n),0} (k+1)^{-\alpha} = K a_{\lambda(n),0} \sum_{k=0}^{\lambda(n)} (k+1)^{-\alpha}$$
$$= O(a_{\lambda(n),0}(\lambda(n)+1)^{1-\alpha}) = O((\lambda(n)+1)^{-\alpha}).$$

A similar result can be proved if the rows of T are AMIS.

5 Proof of the Theorem 8

Case I. $p > 1, 0 < \alpha < 1$. We have

$$\tau_n^{\lambda}(f) - f = \sum_{k=0}^{\lambda(n)} a_{\lambda(n),k} s_k(f) - f = \sum_{k=0}^{\lambda(n)} a_{\lambda(n),k} (s_k(f) - f)$$
 (15)

Thus in view of Lemmas 2 and 3 we have

$$||\tau_n^{\lambda}(f) - f||_p \le \sum_{k=0}^{\lambda(n)} a_{\lambda(n),k} ||s_k(f) - f||_p = \sum_{k=0}^{\lambda(n)} a_{\lambda(n),k} O((k+1)^{-\alpha})$$

$$= O\left((\lambda(n) + 1)^{-\alpha}\right).$$

Case III. $p > 1, \alpha = 1$. We have

$$||\tau_n^{\lambda}(f) - f||_p \le ||\tau_n^{\lambda}(f) - s_n^{\lambda}(f)||_p + ||s_n^{\lambda}(f) - f||_p.$$

Again using the Lemma 2, we get

$$||\tau_n^{\lambda}(f) - f||_p \le ||\tau_n^{\lambda}(f) - s_n^{\lambda}(f)||_p + O\left((\lambda(n))^{-1}\right).$$
 (16)

So, it remains to show that

$$||\tau_n^{\lambda}(f) - s_n^{\lambda}(f)||_p = O\left((\lambda(n))^{-1}\right). \tag{17}$$

Since $A_{\lambda(n),0} = 1$, we have

$$\tau_n^{\lambda}(f) - s_n^{\lambda}(f) = \sum_{k=1}^{\lambda(n)} (A_{\lambda(n),k} - A_{\lambda(n),0}) u_k(f) = \sum_{k=1}^{\lambda(n)} \left(\frac{A_{\lambda(n),k} - A_{\lambda(n),0}}{k} \right) (k u_k(f)).$$

Thus using Abel's transformation, we get

$$||\tau_{n}^{\lambda}(f;x) - s_{n}^{\lambda}(f;x)||_{p} \leq \sum_{k=1}^{\lambda(n)-1} \left| \Delta_{k} \left(\frac{A_{\lambda(n),k} - A_{\lambda(n),0}}{k} \right) \right| . ||\sum_{j=1}^{k} j u_{j}(f)||_{p}$$

$$+ \left| \frac{A_{\lambda(n),\lambda(n)} - A_{\lambda(n),0}}{\lambda(n)} \right| . ||\sum_{j=1}^{\lambda(n)} j u_{j}(f)||_{p}. \quad (18)$$

Let $\sigma_n(s)$ denote the *n*th term of the (C, 1) transform of the sequence s, then

$$s_n^{\lambda}(f) - \sigma_n^{\lambda}(f) = \frac{1}{(\lambda(n) + 1)} \sum_{j=1}^{\lambda(n)} j u_j(f).$$

Using Lemma 1, we get

$$||\sum_{j=1}^{\lambda(n)} j u_j||_p = (\lambda(n) + 1)||s_n^{\lambda}(f) - \sigma_n^{\lambda}(f)||_p = (\lambda(n) + 1)O\left((\lambda(n))^{-1}\right) = O(1).$$
(19)

Note that

$$\left| \frac{A_{\lambda(n),0} - A_{\lambda(n),\lambda(n)}}{\lambda(n)} \right| \le (\lambda(n))^{-1} A_{\lambda(n),0} = O\left((\lambda(n))^{-1}\right).$$

Thus

$$\left| \frac{A_{\lambda(n),0} - A_{\lambda(n),\lambda(n)}}{\lambda(n)} \right| \cdot \left| \sum_{j=1}^{\lambda(n)} j u_j(f) \right| \right|_p = O\left((\lambda(n))^{-1}\right). \tag{20}$$

Now

$$\Delta_{k} \left(\frac{A_{\lambda(n),k} - A_{\lambda(n),0}}{k} \right) = \frac{1}{k} \Delta_{k} (A_{\lambda(n),k} - A_{\lambda(n),0}) + \frac{A_{\lambda(n),k+1} - A_{\lambda(n),0}}{k(k+1)} \\
= \frac{1}{k(k+1)} \left[(k+1) \Delta_{k} A_{\lambda(n),k} + \sum_{r=k+1}^{\lambda(n)} a_{\lambda(n),r} - \sum_{r=0}^{\lambda(n)} a_{\lambda(n),r} \right] \\
= \frac{1}{k(k+1)} \left[(k+1) a_{\lambda(n),k} - \sum_{r=0}^{k} a_{\lambda(n),r} \right]. \tag{21}$$

Next we claim that $\forall k \in N$,

$$\left|\sum_{r=0}^{k} a_{\lambda(n),r} - (k+1)a_{\lambda(n),k}\right| \le \sum_{r=0}^{k-1} (r+1)|a_{\lambda(n),r} - a_{\lambda(n),r+1}|,\tag{22}$$

If k = 1, then the inequality (22) reduces to

$$|\sum_{r=0}^{1} a_{\lambda(n),r} - 2a_{\lambda(n),1}| = |a_{\lambda(n),0} - a_{\lambda(n),1}|.$$

Thus (22) holds for k = 1. Now let us assume that (22) is true for k = m, i.e.,

$$\left|\sum_{r=0}^{m} a_{\lambda(n),r} - (k+1)a_{\lambda(n),m}\right| \le \sum_{r=0}^{m-1} (r+1)|a_{\lambda(n),r} - a_{\lambda(n),r+1}|. \tag{23}$$

Let k = m + 1, using (23), we get

$$\begin{split} &|\sum_{r=0}^{m+1} a_{\lambda(n),r} - (m+2)a_{\lambda(n),m+1}| \\ &= |\sum_{r=0}^{m} a_{\lambda(n),r} - (m+1)a_{\lambda(n),m} + (m+1)a_{\lambda(n),m} - (m+1)a_{\lambda(n),m+1}| \\ &\leq \sum_{r=0}^{m-1} (r+1)|a_{\lambda(n),r} - a_{\lambda(n),r+1}| + (m+1)|a_{\lambda(n),m} - a_{\lambda(n),m+1}| \\ &= \sum_{r=0}^{(m+1)-1} (r+1)|a_{\lambda(n),r} - a_{\lambda(n),r+1}|. \end{split}$$

Thus (22) is true $\forall k$. Using (12), (14), (21), (22), we get

$$\sum_{k=1}^{\lambda(n)} |\Delta_k \left(\frac{A_{\lambda(n),k} - A_{\lambda(n),0}}{k} \right)| = \sum_{k=1}^{\lambda(n)} \frac{1}{k(k+1)} \left| (k+1)a_{\lambda(n),k} - \sum_{r=0}^{k} a_{\lambda(n),r} \right| \\
\leq \sum_{k=1}^{\lambda(n)} \frac{1}{k(k+1)} \sum_{m=0}^{k-1} (m+1)|a_{\lambda(n),m} - a_{\lambda(n),m+1}| \\
= \sum_{k=1}^{\lambda(n)} \frac{1}{k(k+1)} \sum_{m=1}^{k} m|a_{\lambda(n),m-1} - a_{\lambda(n),m}| \\
\leq \sum_{m=1}^{\lambda(n)} m|\Delta_m a_{\lambda(n),m-1}| \sum_{k=m}^{\infty} \frac{1}{k(k+1)} \\
= \sum_{k=0}^{\lambda(n)-1} |\Delta_k a_{\lambda(n),k}| = O(a_{\lambda(n),0}) = O\left((\lambda(n))^{-1}\right). \tag{24}$$

Combining (18), (19), (20) and (24) yields (17). From (17) and (16), we get

$$||\tau_n^{\lambda}(f) - f||_p = O\left((\lambda(n))^{-1}\right).$$

Case II. p > 1, $\alpha = 1$. For this we first prove that the condition $\sum_{k=0}^{\lambda(n)-1} (\lambda(n) - k) |\Delta_k a_{\lambda(n),k}| = O(1)$ implies that

$$\sum_{k=1}^{\lambda(n)} \left[\Delta_k \left(\frac{A_{\lambda(n),k} - A_{\lambda(n),0}}{k} \right) \right] = O\left((\lambda(n))^{-1} \right). \tag{25}$$

As in case (iii), using (22) and taking $r := [\lambda(n)/2]$ throughout the case, we have

$$\begin{split} \sum_{k=1}^{\lambda(n)} \left| \triangle_k \left(\frac{A_{\lambda(n),k} - A_{\lambda(n),0}}{k} \right) \right| &= \sum_{k=1}^{\lambda(n)} \frac{1}{k(k+1)} \left| (k+1)a_{\lambda(n),k} - \sum_{m=0}^{k} a_{\lambda(n),m} \right| \\ &= \sum_{k=1}^{\lambda(n)} \frac{1}{k(k+1)} \sum_{m=0}^{k-1} (m+1)|a_{\lambda(n),m} - a_{\lambda(n),m+1}| \\ &= \left(\sum_{k=1}^{r} + \sum_{k=r+1}^{\lambda(n)} \right) k^{-1} (k+1)^{-1} \sum_{m=1}^{k} m|\triangle_m a_{\lambda(n),m-1}| \\ &:= B_1 + B_2, say. \end{split}$$

Now interchanging the order of summation and using (11), we get

$$B_{1} = \sum_{k=1}^{r} k^{-1} (k+1)^{-1} \sum_{m=1}^{k} m |\Delta_{m} a_{\lambda(n),m-1}| \leq \sum_{m=1}^{r} m |\Delta_{m} a_{\lambda(n),m-1}| \sum_{k=m}^{\infty} k^{-1} (k+1)^{-1}$$

$$= \sum_{m=1}^{r} |\Delta_{m} a_{\lambda(n),m-1}| = \sum_{m=\lambda(n)-r+1}^{\lambda(n)} |\Delta_{\lambda(n)-m} a_{\lambda(n),\lambda(n)-m}|$$

$$= \sum_{m=r-1}^{\lambda(n)} |\Delta_{\lambda(n)-m} a_{\lambda(n),\lambda(n)-m}| \cdot \left(\frac{m}{r-1}\right)$$

$$\leq \frac{1}{r-1} \sum_{m=1}^{\lambda(n)} m |\Delta_{\lambda(n)-m} a_{\lambda(n),\lambda(n)-m}| = \frac{1}{r-1} \sum_{k=0}^{\lambda(n)-1} (\lambda(n)-k) |\Delta_{k} a_{\lambda(n),k}|$$

$$= \frac{1}{r-1} O(1) = O\left((\lambda(n))^{-1}\right). \tag{26}$$

Now
$$B_2 = \sum_{k=r}^{\lambda(n)} k^{-1} (k+1)^{-1} \sum_{m=1}^{k} m |\Delta_m a_{\lambda(n),m-1}|$$

$$\leq \sum_{k=r}^{\lambda(n)} k^{-1} (k+1)^{-1} \left[\left(\sum_{m=1}^{r} + \sum_{m=r}^{k} \right) m |\Delta_m a_{\lambda(n),m-1}| \right] := B_{21} + B_{22}, say.$$

Furthermore, using again our assumption, we get

$$B_{21} = \sum_{k=r}^{\lambda(n)} k^{-1} (k+1)^{-1} \sum_{m=1}^{r} m |\Delta_m a_{\lambda(n),m-1}|$$

$$\leq r^{-1} \sum_{k=r}^{\lambda(n)} (k+1)^{-1} \sum_{m=1}^{\lambda(n)} m |\Delta_{\lambda(n)-m} a_{\lambda(n),\lambda(n)-m}|$$

$$= r^{-1} \sum_{k=r}^{\lambda(n)} (k+1)^{-1} \sum_{k=0}^{\lambda(n)-1} (\lambda(n)-k) |\Delta_k a_{\lambda(n),k}|$$

$$= O(r^{-1}) \sum_{k=r}^{\lambda(n)} (k+1)^{-1} = O\left((\lambda(n))^{-1}\right). \tag{27}$$

Again interchanging the order of summation and using (11), we get

$$B_{22} = \sum_{k=r}^{\lambda(n)} k^{-1} (k+1)^{-1} \sum_{m=r}^{k} m |\Delta_m a_{\lambda(n),m-1}| \le \sum_{k=r}^{\lambda(n)} (k+1)^{-1} \sum_{m=r}^{k} |\Delta_m a_{\lambda(n),m-1}|$$

$$\le \sum_{m=r}^{\lambda(n)} |\Delta_m a_{\lambda(n),m-1}| \sum_{k=m}^{\lambda(n)} (k+1)^{-1} \le (r+1)^{-1} \sum_{m=r}^{\lambda(n)} |\Delta_m a_{\lambda(n),m-1}| \sum_{k=m}^{\lambda(n)} 1$$

$$= (r+1)^{-1} \sum_{m=r}^{\lambda(n)} (\lambda(n) - m + 1) |\Delta_m a_{\lambda(n),m-1}|$$

$$= (r+1)^{-1} \sum_{k=r-1}^{\lambda(n)-1} (\lambda(n) - k) |\Delta_k a_{\lambda(n),k}|$$

$$= (r+1)^{-1} O(1) = O\left((\lambda(n))^{-1}\right).$$
(28)

Summing up our partial results (26), (27), (28) we verified (25). Thus (16), (18), (19), (25) and Lemma 2, again yield

$$||f - \tau_n^{\lambda}(f)||_p = O\left((\lambda(n))^{-1}\right).$$

Case IV. $p = 1, 0 < \alpha < 1.$

Using Abel's transformation, conditions (13), (14), convention $a_{n,n+1} = 0$ and the result of Quade [15], we obtain

$$\begin{split} &||\tau_{n}^{\lambda}(f) - f||_{1} = ||\sum_{k=0}^{\lambda(n)} a_{\lambda(n),k} s_{k}(f) - f||_{1} = ||\sum_{k=0}^{\lambda(n)} a_{\lambda(n),k} (s_{k}(f) - f)||_{1} \\ &= ||\sum_{k=0}^{\lambda(n)-1} \left(\triangle_{k} a_{\lambda(n),k} \right) \sum_{r=0}^{k} (s_{r}(f) - f) + (a_{\lambda(n),\lambda(n)} - a_{\lambda(n),\lambda(n)+1}) \sum_{r=0}^{\lambda(n)} (s_{r}(f) - f)||_{1} \\ &= ||\sum_{k=0}^{\lambda(n)} \left(\triangle_{k} a_{\lambda(n),k} \right) \sum_{r=0}^{k} (s_{r}(f) - f)||_{1} = ||\sum_{k=0}^{\lambda(n)} \left(\triangle_{k} a_{\lambda(n),k} \right) (k+1) (\sigma_{k}(f) - f)||_{1} \\ &\leq \sum_{k=0}^{\lambda(n)} (k+1) |\triangle_{k} a_{\lambda(n),k}| \cdot ||\sigma_{k}(f) - f)||_{1} = O\left(\sum_{k=0}^{\lambda(n)} (k+1)^{1-\alpha} |\triangle_{k} a_{\lambda(n),k}|\right) \\ &= O\left(\lambda(n)^{1-\alpha}\right) \sum_{k=0}^{\lambda(n)} |\triangle_{k} a_{\lambda(n),k}| = O\left(\lambda(n)^{1-\alpha}\right) O\left(a_{\lambda(n),0}\right) = O\left((\lambda(n))^{-\alpha}\right). \end{split}$$

This completes the proof of case (iv) and hence the proof of Theorem 8 is complete.

References

- 1. Armitage, D.H., Maddox, I.J.: A new type of Cesáro mean. Analysis 9, 195–204 (1989)
- Chandra, P.: A note on degree of approximation by Nörlund and Riesz operators. Mat. Vestnik 42, 9–10 (1990)
- 3. Chandra, P.: Trigonometric approximation of functions in L_p -norm. J. Math. Anal. Appl. 275, 13–26 (2002)
- Değer, U., Dağadur, İ., Küçükaslan, M.: Approximation by trigonometric polynomials to functions in L_p-norm. Proc. Jangjeon Math. Soc. 15(2), 203–213 (2012)
- Khan, H.H.: On the degree of approximation of functions belonging to class Lip(α, p). Indian J. Pure Appl. Math. 5(2), 132–136 (1974)
- 6. Leindler, L.: Trigonometric approximation in L_p -norm. J. Math. Anal. Appl. **302**, 129–136 (2005)
- Mittal, M.L., Rhoades, B.E., Mishra, V.N., Singh, U.: Using infinite matrices to approximate functions of class Lip(α, p) using trigonometric polynomials. J. Math. Anal. Appl. 326(1), 667–676 (2007)
- 8. Mittal, M.L., Rhoades, B.E., Sonker, S., Singh, U.: Approximation of signals of class $Lip(\alpha, p)$ by linear operators. Appl. Math. Comput. **217**(9), 4483–4489 (2011)
- Mittal, M.L., Rhoades, B.E.: On the degree of approximation of continuous functions by using linear operators on their Fourier series. Int. J. Math. Game Theory Algebra 9(4), 259–267 (1999)
- Mittal, M.L., Rhoades, B.E.: Degree of approximation to functions in a normed space. J. Comput. Anal. Appl. 2(1), 1–10 (2000)
- Mittal, M.L., Singh, M.V.: Approximation of signals (functions) by trigonometric polynomials in L_p-norm. Int. J. Math. Math. Sci. Art. ID 267383, 1–6 (2014)
- Mohapatra, R.N., Russell, D.C.: Some direct and inverse theorems in approximation of functions. J. Aust. Math. Soc. Ser. A 34(2), 143–154 (1983)
- Mohapatra, R.N., Holland, A.S.B., Sahney, B.N.: Functions of class Lip(α, p) and their Taylor mean. J. Approx. Theory 45, 363–374 (1985)
- 14. Osikiewicz, J.A.: Equivalence results for Cesáro submethods. Analysis 20(1), 35–43 (2000)
- 15. Quade, E.S.: Trigonometric approximation in the mean. Duke Math. J. 3(3), 529–543 (1937)