Modified Baskakov-Szasz Operators
Based on g-Integers
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Abstract In the present paper we introduce the Stancu variant of certain g-modified
Baskakov Szasz operators. We estimate the moments of the operators and obtain some
direct results in terms of the modulus of continuity. Then, we study the Voronovskaja
type theorem and the rate of convergence of these operators in terms of the weighted
modulus of continuity. Further, we discuss the point-wise estimation using the Lip-
schitz type maximal function. Finally, we investigate the rate of statistical conver-
gence of these operators using weighted modulus of continuity.
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1 Introduction

In recent years, the most interesting area of research in approximation theory is
the application of g-calculus. In 1997, Phillips [20] first considered a modification
of Bernstein polynomials based on g-integers. He studied the rate of convergence
and Voronovskaja-type asymptotic formula for these operators. Very recently, Gupta
and Kim [14] considered g-Baskakov operators and they obtained some direct local
results and the degree of approximation in terms of modulus of continuity. Subse-
quently, several researchers have considered the different types of operators in this
direction and studied their approximation properties.

Let o and B8 be any two real numbers satisfying the condition that 0 < o < 8,
Stancu [21] defined in the following operators:
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SeP(f,x) = ank()( ﬂ) 0<x<lI,

where p;, r (x) is the Bernstein basis function.

Recently, Biiyiikyazici [7] considered the Stancu—Chlodowsky polynomials and
investigated their convergence. In 2012, Verma et al. [22] introduced a Stancu type
generalization of certain g-Baskakov Durrmeyer operators and discussed some local
direct results of these operators. For some other research papers where Stancu type
operators have been considered, we refer to [1, 3, 4, 13, 15], etc.

Now, we give some basic definitions and concepts of g-calculus [6, 17]. For any
real number g > 0, the g-integer [n], and g-factorial [n],! are defined as

(I-q" .
A T
my={a—qg "7
n, ifg=1
and

mv_[mhm—uwuLn=Lz”.
q: —

1, n=0.
The g-Pochhammer symbol is defined as

) _ (l—l—x)(l—I—qx)...(l—l—q"’lx),n:l,Z,...
(xa ‘I)n—[ 1’ n:0

The g-binomial coefficients are given by

(n) :L, 0<k<n.
k), lklgln —klg!

The g-derivative D, of a function f is given by

J() —f(gx)

P ===

if x #0.

The g-Jackson integrals and g-improper integrals are defined as

/ fx)dy (x)—(l—q)aZf(aq”)q, a>0,

n=0

and
oo/A

F@)dg@) = (1= q) Z f( )qX A>0.
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The g-Beta integral is defined by
=
I,(t) :/ "X E (—q)dyx, >0 (1)
0
which satisfies the following functional equation:

Ly + 1) =[1,T,(0), T,0)=1.

To approximate Lebesgue integrable functions on the interval [0, co), Agrawal and
Mohammad [2] introduced the following operators:

Mu(f(@):0) =1 puy() /O Ga— 1 OFOdi + (1 + 07F©O). ()
v=lI
where

-1
() = (n + v )xv(l + x)—(n—i-v)’ x € [0, 00)
)4

and

—nt v
(1) = % ¥ 1 € [0, 00).
In [2], Agrawal et al. studied the asymptotic approximation and error estimates in
terms of modulus of continuity in simultaneous approximation by (2).

In [16], Gupta and Srivastava considered a sequence of positive linear operators
combining the Baskakov and Szasz basis functions. Deo [8] studied the simultaneous
approximation by Lupas operators with the weight functions of Szasz operators.

Definition 1 For f € C,[0,00) := {f € C[0,00) : f(t) = O(e"") ast — o0
for some y > 0} and each positive integer n, the g-Baskakov operators [5] are
defined as

00 _ » k
vn,q(f;x)=2("+,f 1) g7 — f( Ky ) 3)

g (1 + 03T \ghnly

k=0
N k1, )
gpn,k(x)f(qkl[n]q :
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Remark 1 The first three moments of the g-Baskakov operators (see [5]) are
given by

X
Veoo(l;x) =1, V,,(t;:x)=x, V, tz; = —| 1 -).
n,q( X) n,q( X)=x n,q( X) = x + [n] ( + 6])

Definition 2 For f € C,[0,00),0 < ¢ < 1 and each positive integer n, the
g-Baskakov Szasz operators defined as

By =[nly > pl ) /0 0 gt <t)f(ik) 4)
k=0

n—+k— 1) kD) xk

k (1 + x)i*h

([nlg0)*
k]!

where p! | (x) = (

and sZ,k(t) = Ey(—[nlyt) (3)

have been considered by Gupta [12].

2 Construction of Operators

For f € C,[0, 00),0 < g < 1 and each positive integer n, the Stancu-type general-
ization of the operators (2) based on g-integers is defined as follows:

} B [nlgtq™* +
MEP (f: ) = [n]qank(x)/ “si i 1()f([?1]q—+ﬁ)dqt

i 6
+f([ ]q 4 IB)P,,,()(X)s ( )

where pZ’ ,(x) and sZ‘ . (1) are as defined in (5).

Ifo« = B = 0and g — 1—, the operators (6) reduce to the operators (2), which
is a modification of the operator given by (4) where the value of the function at zero
is considered explicitly. The aim of this paper is to study some direct results and
asymptotic formula for the operators (6). We also discuss the rate of convergence
and point-wise estimation. Lastly, we study the statistical approximation properties
of these operators.
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3 Basic Results

3.1 Moment Estimates

For o = B = 0, we denote the operator M,(féﬁ ) by My, 4.

Lemma 1 For the operators M, 4(f; x), the following equalities hold:
(i) Mn,q(hx) =1
(ii) Mn,q(t; X) = Xx;

2.y — 42 : [2]_qx
(iii) My q(17; %) = x (1 - Q[n]q) - [nlg

Proof First, for f(¢) = 1, we have

q
My g(1;%) = [0l 302, p ) fo' ™" g sna1()dgt + pil ().

Substituting [n]4t = gy and using (1)

M, 4(1; x) = [n]4 an k(x)/ g <! (q)i) 1! [[ ]qy]dqy "‘PZ,O(")
q' q

:Z nk<x> +pn0(x>

F”48 i

n,k(x)

S
S

Vi,q(1; x) = 1, in view of Remark 1.

Next, let f (1) = t, we have

_ ([nly)*!
Mgt %) = [n], Zp @ / 4 ) Gy

Again, substituting [n] = gy and using (1)

Mg (0:%) = [nlqu%pnkOc) / Fa D, 1T 7

1

_ ipq (x);/lfq Eq(—qy)y*dgy
PR gtk = gtgt =T Sy !

1

~
Il

~ g Lytk + 1)
2Pk G T
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k
P ) —e_

3'48

=1 [nlqq
o0
= S = Vaat '
k) ==—— = Vaq(t; x) = x, on applying Remark 1.
= [nlgq*

Finally, we give the second moment as follows:

2 ([n]gH* !

M (%) = [n]qank(x) / ““(—) Y Eg(~[nlgn)dyt.
lk—1],!

Again, substituting [n],t = gy, using (1) and [k + 1], = [k], + qk, we have

1
> ™ L E(—q) (@)? (@) g
My (1% x) = " /1 =
,q([ X) [n]q Z_;pn’k(x) 0 q 2k ([n]q)2 [k _ l]q'[n]q q

q
N P - — k+1
= ; n,k(x)qzk—z([n]q)z[k —11,! /o Ey(—gy)y*tld,y
=5
= ]; n,k(x)qzk—z([n]q)z[k — l]q!F(k + Z)q
S N — ,
= k; ,k(x)qzkfz([n]q)z[k]q([k]q + g9
S L I
= kg k( )([n]q)2q2k*2 [ kg k( ) k 1[ ]
q
= V(152 + @Vn,q(ﬁ x)

=x* + —(1 + f) + ol
[n]q q [n]q

1 2
=x2(1 + ) + L ]qx’ on using Remark 1.
qlnlq [nlq

Lemma 2 For M\%P (t™; x), m = 0, 1,2 we have

(i) M%P (15 %) = 1;

i) MP [nlgx + o
(0 Mn 050 = 5 2
2
(i) M (2 = DL A Il (2l + Bx

q([nly + B)? ([ng] + B)? ([nly + B)*
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Proof Using Lemma 1, we estimate the moments as follows:

For f(t) = 1, we have
00 .I_Ln

M&mwm=mhzyhmé TS dgt +p () = My g (1) = 1.
k=1 :

Next, we obtain the first-order moment

(a.B) ad # (nlgtq * + o
Myg? (t:3) = [nlg D pi () /0 q‘ksz,k_l(n("i)dqt + pZﬁ(x)(i)
k=1

["]q + 8 [n]q + 8
[n]q o

= My q(t; ———Mp 4(1;

g + 5D gt
_ [nlq x4 o

[”l]q + B ([n]q + B
_ [nlgx + «
Cnlg + B

Finally, for f (1) = 1> we obtain

» s g _ [n] tqik + « 2 o 2
M (i x) = [nly gpzvk(x)/o "y "sjjyk_,(t)("i) dyt +pj{_0(x)(m)

[”]q + B
(Inly)? ) 2Unl o2

= T Mg (P 0) + o My g (%) + s M,y o (1

Wy + pr O F g, gy M0 gy Mna )

[n12 2( 1 ) x(1 + q)] 2[nl, o?

=—+2 _{2(1+ + + +

([nly + B)? [x gqlnlq [nlq ([nlq + ﬁ)zx (Inly + B)?
[l + glnly) 5 | [nlg(12]y + 20) o’
= X X + .

q(nly + B)? (Inly + B)? (Inly + B)?

Hence, the proof is completed. (]

Remark 2 By simple computation, we have

@B (¢ _ oy vy LT PY
Mn,q ((t x)"x) - [l’l]q + IB,
M@H (¢ — 2% x) = A(nlg + B> x(12)4lnly — 2aB) @
" gl + B2 Wy + B (g T PP

Lemma 3 For every g € (0, 1) we have

M(a’ﬁ)((t—x)2;x) < [2]q(1 + ,32)

2
ng = 4l + B (¢ 0+

1
(Inly + ﬂ))’
where ¢ (x) = /x(1 + x),x € [0, 00).
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Proof
M@P (¢ — e py = 2y + BY) | x(2lglnly — 20p) o
ma ’ q([nl, + B)? (Inl; + B)? (Inl, + B)?
(21,01, + BY o?
=g, + 2 O G, w2
21,(nly + BY 5 o?
T R L (P v
[2],[nl,(1 + B%) ., o?
= T, £ 82 O G, 1 p2
21, + 8% , o?
=, + A" G, a2
[2]4(1 + /32)( ) 1 )
=, + pH POt )
This completes the proof. O

4 Main Results

If g = {g.} be a sequence in (0, 1) satisfying the following conditions:

lim g, =1and lim ¢" =¢, (0 <c < 1). 7)
n—oo n— 00

Our first result is a basic convergence theorem for the operators M,(fq’f ).

Theorem 1 Let g, € (0,1) and lim ¢, = ¢, (0 < ¢ < 1). Then the sequence
n—oo

M,g‘i}f)(f; x) converges to f uniformly on [0,A], A > 0, for each f € C,[0, 00) if
and only if lim ¢q, = 1.
n—od

Remark 3 If lim g, = 1, then in view of Remark 2, M,g‘zf)((t —x)2%: x) — 0 uni-

n— oo
formly on [0, A] as n — oo. Therefore, the well-known Korovkin theorem implies

that {M,g‘i}f )(f ; x)} converges to f uniformly on [0, A] for each f € C, [0, 00). The
converse part follows on proceeding in a manner similar to the proof of [3], Theo-
rem 1.
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4.1 Direct Theorem

Let Cp[0, c0) be the space of all continuous and bounded functions f defined on the
interval [0, o), endowed with the norm ||.|| on the space given by

Ifll = sup [f@x)][. ®)

0<x<oo

If§ > 0and W2 = {g € Cp[0, 0) : g, g € Cz[0, c0)}, then the K-functional is
defined as

K> (f,8) = inf{llf — gl + Slg"ll : g € W?}. 9)

By ([9], p. 177, Theorem 2, 4) there exists an absolute constant C > 0 such that
Ky (f.8) < Can(f. V),

where second order modulus of the smoothness of f € Cp[0, 00) is defined as

wa(f, x/g) = sup sup |f(x+2h)—=2f(x+h)+ fx)].
0<h=<./8 0=x<oo

The first-order modulus of continuity is defined as

o(f,8) = sup sup [f(x + h)—f@x)].
0<h<.,/§ 0<x<o0

The next result is a direct local approximation theorem for the operators M,(fq’ﬂ ),

Theorem 2 Ler f € Cg[0, 00) and let {q,} be sequence satisfying the conditions
(7). Then, for every x € [0, 0c0) we have

M[z ;}) (Ia—ﬂx\)
aly = 1” O G, m)) TN, 8)

Proof We introduce auxiliary operator L,(f‘,}ﬂ ) as follows:

| MEP (0 — (0 1 = Con (f, \/

—,B)C

L@B) £ oy = M @B (£ yy — ETPx
ng (30 =Mugm 50 =1 (” (nly + B)

) + f(x). (10)

These operators are linear and preserve the linear functions. Hence, we have
L&t — x:x) = 0. (11)

Let ¢ € W2. From the Taylor’s expansion of g, we get
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t
gt) = g(x) + &) —x) + / (t —wg" wydu, t € [0, 00).
X
In view of (10), we get

L& (g x) = g(x) + L&D ( / (t— u)g”(u)du;x)

L ( / (t — w)g" (wydu; x)
t
( / (t — w)g" (wydu; x)

| LR (g1 x) — g(x) | =

TR o — Bx ”
+ (x + i, + B — u)g (u)du
M(“ ‘9)( / (t —wg" wdu ;x)
+ ([n]q+ﬁ) a — Bx p
+ / R e u) 18" ()ldu

< P -t + (2 )2]||g”||
=M G ) T

(12)

( o — Bx )2 (@ —2apx + B2 - o + 2aBx + B2x2 - B2(1 + 2x + x2)
(nlg +B) —  (nlg+B2  ~—  (nlg+P* ~  (nlg + B)?

_ 20+ 8%

~ q(nlg + B)

204 8%

" q(nlg + B)

1
1 -
[” +”+(mq+m]

[¢2<x> + (13)

1
ww|
On the other hand, from (6), (10) and Lemma 2, we have

LGP (01 < IMEP (.0l + 2011 < IFIMGP (52 + 2171 < 3IF1.
From (12) and (13), we have

4(1 2
| L) (g x) — g(o) | s&i&(xw

1 4
a(nly + B) (nl, + ) ]”g I
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Hence

I MEP (0 — o | <1 LESP (= g0 — F =20 |+ L% (g0 — g0 |

n p(x n 7’%‘) )
([nlg + B)

41 + B%) { )
40f —
<4|f —gll + P #2(x) +

Lo — B |
+wamq+m)

Now, taking infimum on the right-hand side over all g € W2, we get

——L—1MW
([nlg + B)

A1 + B2) 1
| e c (/—[ ? —])
ng (0 —f) | < Con|f q([nly + B) #70) + (Inlg + B)

Lo — x|
+“’(f’ [n]q+ﬂ)'

Hence, the proof is completed. (]

4.2 Rate of Convergence

Let B,2[0, 0o) be the space of all functions defined on [0, o0) and satisfying the
condition |f (x)| < My(1 + x?), where My is aconstant depending onf. Let C,2[0, 00)
be the subspace of all continuous functions belonging to B,2[0, 00). Also, C* %10, c0)

is the subspace of all functions f € C,2[0, 0o), for which hm f_(:‘) is finite. The

lf(X)I

norm on C;‘z [0, 00) is defined as ||f||,2:= sup 132

x€[0,00)
the usual modulus of continuity is defined as

For any positive number a,

wa(f,8) = sup IF (@) = f )l

|t—x|<8, x,t€[0,a]

We observe that for a function f € C,2[0, 00), the modulus of continuity w,(f, §)

tends to zero as § — 0. Now we give a rate of convergence theorem for the operator
M%P,

Theorem 3 Letf € C2[0, 00), g, € (0, 1) such that g, — 1 asn — 00 and wq + 1
be its modulus of continuity on the finite interval [0, a + 1] C [0, 00), where a > 0,
then we have the following inequality:
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MR (fx) — fF)] < [¢2(x) +

1
gn([nlg, + B) ([nlg, + ﬂ)]

2(1 + ,32) ( 1 ))
2 a 9 N 2 . b
e “(f \/ ol + H\T O T L5

where K = 8My(1 + a*)(1 + B2).

Proof Forx € [0,alandt > a + 1, sincet —x > 1, we have

(1) —fO)] < M2 + x* + 17) < MyQ2 + 3% + 2(t —x)%)
< My(t —x)>Q2 + 3x% + 2) < My (1 — x> + 3d%)
[ (1) = fO)] < 4Mp(1 + a®)(t — x)°. (14)

Forx € [0,a]and t < a + 1, we have

|t — x|
8

)a)a+1(f, 8), with § > 0.
(15)

@) —F O] < @it (F It —x]) < (1 N

From (14) and (15), for all ¢ € [0, 00) and x € [0, a] we can write

|t — x|

F() —f)] < 4Mp(1 + a)(t —x)* + (1 + )waH(f, 8. (16

Hence, using Schwarz inequality,

IMEP (f; x) — f )] < MEP(F (@) — f )5 %)
<4Mr(1 + az)M(O‘»B)((l _ x)2; X)

n,gn
1 1
+ wa+1(f, 8)(1 + E{anﬁ>((t—x)2;x)}z).
In view of Lemma 3, for x € [0, a]

8Mr(1 + a®)(1 + B2)
Qn([n]q,, + B)

17 21 + 8% (2 1 )]z]
et (01 4 2| 2P _ L
+ war1(f )[ * a[qn<[n1qn+ﬂ) R T

P (f: ) — f@)] < l¢2(x> +

1
(["]qn + ﬂ)]

21 + p2) ( ) 1 )
il + O T L )

desired result. O

Now, by choosing § = \/ we get the
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4.3 Voronovskaja Type Theorem

In this section we establish a Voronovskaja type asymptotic formula for the operators
(@, 8)
My g

Lemma 4 Assume that g, € (0, 1), g, — 1 asn — oo. Then, for every x € [0, 00)
there hold

11m [n]an(o‘ Bt —x;x) =a — Bx

and

lim [n],, M(o‘ ﬁ)((t 0% x) =x> + 2x.

n—oo

In view of Remark 2, the proof of this Lemma easily follows. Hence the details are
omitted.

Theorem 4 Let 0 < g, < 1 and g, — 1 asn — oo. Then, for all f € C,2[0, co)
we have

Jim MR (F) —flle = 0.

Proof Using [11], it is sufficient to verify the following conditions:

lim [[M%P (¢ x) — x™||,2 =0, form=0,1,2. (17)
n— 00 Hn
Since M,(f;f)(l; x) =1, form = 0, (17) holds. By Lemma 2, we have

mh
My g, (t; x) — x|
P (1 x) —xlp = sup —dn DT

x€[0,00) (1 + x2)

[n]qnx+01 _
g, v A

< sup
x€[0,00) 1+ x?

< L Su Y + 9 Su ]

= Wnlgy + B relioey L+ 22 (g + B xejome) 1 + 2
L atB
= gy + B)

=o(l) as n— oo.

Hence, the condition (17) holds for m = 1.
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Again, by Lemma 2, we obtain

|M(a’ﬁ)(t2;x) — X

(a,B) 2 2 n,qn
|M @5x) —x“| 2= sup
in ¥ x€[0,00) 1+ x2)
(1) (1 + Gnlmlgy)x> | [lgy (1+gn +20)x o2
gn([nlg, +B)? (Inlg, + B)? ((nlg, + B)?
= sup 3
x€[0,00) I+ x
o gy +20:8) + 2 2
an(nlgy + B> xef0,00 1 + 12
[n]qn(l + gn + 2a) sup X
(g, + B?  xef0,00) (1 + x?)

a?

1
+ sup
(nlg, + B)? xef0.00) 1 + X2

=o0(l) as n— oo,

which implies that the condition (17) holds for m = 2. This completes the proof. [J
Theorem 5 Assume that g, € (0,1), g, — 1 as n — oo. Then, for any f €
C510, 00) such that f', f" € C%[0, 00) we have

1
Jim [nlg, M0 () = ) = (@ = Bf () + 2" ()67 + 20),
uniformly in x € [0,A], A > 0.

Proof Letf,f', f" € C[0, 00) and x € [0, A] be fixed. By Taylor’s expansion, we
may write

1
@O =f@ + @@ —x + zf”(x)(t—x)z +r(t, ) —x)?%  (18)

where r(¢,x) is Peano form of the remainder, r(.,x) € C:z[O, oo) and
l]im r(t,x) =0.
—>X

Applying M\%? to the above Eq. (18) we obtain

[n)g, MP (F; x) — £ () —f(x)[n]q,lM(aﬁ)(t—x;x)

+ f”(x) [, M%P (¢ — x)%: x)

+ [n]an(“ ) (r(t, xX)(t — x)%: x).
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By Cauchy Schwarz inequality, we have

M,(laqf) (r(t, x)(t — x)2; x) < \/M,(,?tq‘f) (rz(t, X); x) \/M,(féf) ((t — x4 x).

19)

We observe that rz(x, x) = 0 and r2(.,x) € C:Z [0, 00)). Then, it follows from
Theorem 3 that

lim [n]g, (M%7 (% (2, x), x) = r*(x,x) = 0, (20)
n—oo oan

uniformly with respect to x € [0, A]. Now, from (19)—(20) and in view of the fact
that

1 2
M (@ 0t 0 = 0( )

[n]qn

we obtain

lim [n]an(”"ﬁ)(r(t, X)(—x)>%,x) =0,
n— 00

n,qn
uniformly in x € [0, A]. Thus, we obtain
lim [n]g, (M,g?;f)(f X) —f (x)) = lim [n]g, (f’(x)M,gf’,;f)((t —X);X)
+ %f”(x)M,‘,?‘,;f) ((r = )% x)
+ M,g‘f‘(}f)(r(t, x)(t — x)%, x))

1
= (= pOf ) + of" () o2 + 2x),

uniformly in x € [0, A]. (Il

Corollary 1 Let g = g, satisfy 0 < q, < 1 and let g, — 1 as n — oo. For each
f € C2[0, 00) and p > 0, we have

M (2 x) — £ (o)
sup =0.

x€[0,00) (I + x2)1+p
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Proof For any fixed xp > 0

Mgy (50 —fOl _ M) (F: %) =) IMASE (5 %) — F )l
< su + sup ———
xe[0,00) (1 + x2)l+p x<xo (] + x2)1+p x>x0 (1 + x2)l+p

M@ 2

1+ 1%, x)

wh) Mg, (1 + 17, %)

= M2 ) = Fllcoa + Iflle S9p =350y
[f ()1

RN TETET @D
Since |f(x)] < My(1 + x?), we have
X M, My
suplf(—2)|l_sup f2 < f2 .
x>xp (1 + x°) tp x>xg (1 + x=)P a+ xo)p
Let ¢ > 0 be arbitrary. Then, we can choose x( to be so large that
M
—fz <& (22)
a+xpr 3
and in view of Theorem 4, we obtain
e tim M)A+ 2 A D le _ Ifle  __IWle e (23)
X a +x2)1+p (1 +x2)1+p - 1+ x2)p ~d+ X%)p 3
Using Theorem 3, we see that the first term of inequality (21) implies that
e
1Myl (D = Flicio) < 3 as n— oo, (24)
Combining (22)-(24), we get the desired result. O

4.4 Point-Wise Estimates

Now, we establish some pointwise estimates of the rate of convergence of the oper-
ators (6). First, we give the relationship between the local smoothness of f and local
approximation.

We know that a function f € Cg[0, 00) isin Lipysy onD, y € (0, 1], D C [0, c0)
if it satisfies the condition

If @) —f(x)| < M|t —x|”, tel0,00)and x € D,

where M is a constant depending only on y and f.
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Theorem 6 Letf € Cp[0, 00) () Lipmy, y € (0, 11, and D be any bounded subset
of the interval [0, 00). Then, for each x € [0, 00) we have

Y
2

(@8) 21,1 + /32)( 2 1 )} )
M, ;X)) — <M{\\———— _— 2(d(x, D))V ),
Mg (F3 ) = f 0] < ({ e GRS | B GO

where d(x, D) represents the distance between x and D.

Proof Let E be the closure of the set D in [0, 0o). Then, there exists at least one
point xo € D such that

d(x,D) = |x — xgp].
By the definition of Lipyy, we get

IMSP) (F: ) — F )] < MEP(F (1) = f o)l x) + MEP (I (x0) — F ()5 x)

< M[M,Sii;ﬁ)(n —x0l”; %) + Ixo —x|V]
< M[M,E?lf)(n —x|”,x) + 2|x —x0|V].
Now, by Holder’s inequality with p = % and é =1- zl?’ we have

1 L
MR (30 — F @ < M[ [P e = xrs 0] [P a9, 0] + 20, D))V}

< M[ [Mf,?;’”qr —x|2;x>]7 + 2(d(x, D))y]

IA

21,1 + /32)( 5 1 )]2 )
M| ——— _— 2(d(x, D))" ).
( iy + O G ) TREED)

Hence, the proof is completed. ]

Now, we give local direct estimate for the operators M,(,fxq’ﬂ ) using the Lipschitz
type maximal function of order y studied by Lenze [18]

5, 0= sp LOTIOU 000y and y 1. @25

t#x,e0,00) 1= X[V

Theorem 7 Lety € (0, 1] and f € Cpg[0, 00). Then, for all x € [0, 00), we have

2] (1+ﬁ2)( 1 )]
(Ol B) q 2
(i) —f @ <&y (. x )[ PGSR ey | i
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Proof From (25), we have

[F @) —f )| < @y (f, 0|t — x|¥
and hence

M (F2 0 = f @) < MEGP (1) = f @)1 ) < @y (LM (1t = xI7 5 0).

Now, applying Holder’s inequality with p = % and % =1- 113’ we have

- Y
MEGPF50) = F0) < @y (F, OMEGP (1 = 0% 0)F.

On using Lemma 3, we have our assertion. O

4.5 Statistical Approximation

A sequence (x,), is said to be statistically convergent to a number L denoted by
st — limx, = L if for every ¢ > 0,
n

SneN:|x, —L| > e} =0,

where

1 n
8(K) = lim — _lexm‘)
]:

is the natural density of K € N and x is the characteristic function of K. We note
that every convergent sequence is statistically convergent, but the converse need not
be true.

For example, let
o — [logign. ne {10, k € N}
ne 1, otherwise.

It follows that the sequence {x;} converges statistically to 1, but lim x,, does not
n

exit.

Theorem 8 Foranyf € C;‘z [0, o0) and a sequence (qy), in (0, 1) such that

1
st —limg, =1, st —lim(g,)" =a, (0 < a < 1), st — lim =0, (26)
n n n [n]qn
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the operator M,(,?Zﬂ ) (f; x) statistically converges to f (x), that is

st —lim || MGP(F) = f ll,2=0.

Proof Let us define e;(x) = x,i = 0,1,2. It is sufficient to prove that
st —1im [|[M{%P (e;) — eill 2 = 0, for i = 0, 1, 2. Itis clear that
n sYn

st —lim [|M% (e0: ) — eoll 2 = 0.

From Lemma 2

(a,B)
IMGP (e x) — e ()]
IM&P (15 ) —erllp = sup 24 )
xe[0,00) (T + x%)

[n]qnx +a _
Tlgn B x‘

< sup ———
x€[0,00) 1+ x2

=< lleoll,2 lle1ll.2

o + B
([n]qn + B) ([n]q,, + B)
o B

. 27
S, v/ T, 1 B @D

Since, by the conditions (26), we get

o

-
([nlg, + B)

st — lim
n
and

st — lim

P _
n ([n]q,, + ,3)

For ¢ > 0, let us define the following sets:
E:= {n N M%) (er; ) — ey || 2> e}
n,qn I X = )

o £
E| = N:— > —
! [”e ([nlg, + B) Z2]’

. . B 2
= [”GN' e, + B) 22]'

By (27), itis clear that E C E; | E> which implies that §(E) < §(E) + §(E2) =0,
and hence

st —1lim |M %P (e1; ) — eq],2 = 0.
n

n,qn
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Similarly, we can estimate

(a,B)
M5 (e2: ) — ex ()]
M%) (e2: ) — ea]l,2 = sup —2 5
xe[0,00) 1+ x7)
1y, (14 gnlnly,)x* 4 [an (1 +dn+ 200 o? _ 2
an (Mg, + B)? (Inlg, +B)? (g, +B)?
= sup 3
xe[0,00) 1 4+ x
((n)g, (1 + 2g.8) + B%) [nlg, (1 + gn + 20)
< I P el + T I T T )
gn([nlg, + B) (nlg, + B
0(2
+ ———— ol
(Inlg, + B
_ (g, (1 + 2guB) + B%) | [nlg, (1 + gu + 2e) o?
Qn([”]qn + ,3)2 ([n]qn + /3)2 ([n]q” + /3)2
(28)

Again, using (26), we get

. ([nlg,(1 + 2g,8) + B
st — lim
n Qn([n]q,, + ﬂ)z

[”]qn(l + gn + 20) -0

=0,

st — lim
n ([n]qn + ,8)2
2
st —1lim —> .
n ([n]qn + ,3)2

For a given ¢ > 0, we consider the following sets:

Fi={neN:iM&GP () - e oz e,

2
Fi:={neN: (e, (1 + 2g0) + ) Zf ,
CIn([n]q,, + ,3)2 3
Fr = [n eN: Lrlg, (1 + gn +22a) > f],
([nlg, + B) 3

F'_[neN'—Ol2 >£]
2T (g, + B2 73]

Consequently, by (28) we obtain F C F; | F» | F3, which implies that §(F) <
8(F1) + 8(F2) + 8(F3) = 0. Hence, we get

st —1lim |M %P (ey; ) — e 2 = 0.
n

n,4qn

This completes the proof of the theorem. ]
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4.5.1 Rate of Statistical Convergence

Forf € C;z [0, 00), following Freud [10], the weighted modulus of continuity of f

is defined as L
ooy sap LEEW IO
x=0,0<h<s 1 + (x + h)

Lemmas [19]. Letf € C;‘z [0, 00). Then,

(i) $22(f, 8) is a monotone increasing function of §,
(ii) girr%)i?z(f, 8) =0,
(iii) For any A € [0, 00), $22(f, X8) < (1 + A)$212(f, 3).

Theorem 9 Let f € C:z [0, 00) and (qn)n be a sequence satisfying (26). Then, for
sufficiently large n.

MR x) — f(x)] < K22(F, 8,)(1 + x*T%), x € [0, 00),

n.qn

[2lg, (1 +8%)

where k= 1, 6n = | G5

and K is a positive constant independent f and n.
Proof

P (1330 = Feol < MEP (F @) = F @)l )
< Mé?i;f){u + o+ |z—x|>2>(1 + ";—x');x]rzz(f,&

Ll

gM,(,f"éf){(l (4 2x)2)(1 + );x}(zz(f,S)

o 1 o
< (Mf,,,;f)wx(r); X) Mg Qa0 x))nz(f, 5),

where (1) = 1 + (r + 2x)? and ¥ (1) = |t — x|.

Now, using Cauchy—Schwarz inequality to the second term on the right-hand side,
we obtain

. Wy .
MR (3 — f ) < (Mn(?'f;,‘%x: 0+ MEGD W MG 0 x))Qz(f, 5).

(29)

From Lemma 2

MR+ x) = (1 4 oA galnly,) 5 (g, (g + 22) “ )

gy, + B2 (nly + B2 " (nly, + B

which implies that there exists a constant C| > 0 such that
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1 1 1 2
b y(,a ﬁ)(l + l x) = 5 [n]‘h( + qn[n]gn) X .
L a2 I+ x an(lnly, + B 1+ x
[I’l]qn([Z]q + 2a) X
([n]q,, + ﬁ)Z 1+ x2
o? 1
+ 2 27
([n]qn + ﬁ) 1 —|— X
< ({1 + Cy), for sufficiently large n . (30)
We have

@ =14 2x + %> <1 + 24x* + 27%). (31)

From (30) and (31), there is a positive constant K1, such that

M@P () x) < Ki(1 + x?), for sufficiently large n.

n,qn

Similarly, from Lemma 2
MEP (3 (1) x) = M,i‘f;f)((l + (2x + r)z)z;x),
= My ((1 + 2047 + 2r2>)2;x),
< 64(M,§‘f‘q’f)(1 + ) + (1 + MG+ Pix)
+ 1+ AU x)).

Since

T+ x M,(l"‘qf)(l + t4;x) < (1 + (), for some constant C; > 0 when n is sufficiently large ,

there exists a positive constant K, such that

M%P (12(1); x) < Ka(1 + x?), for sufficiently large n.

Also, from Lemma 3 we have

21, (1 + 62 214, (1 + 8%
MEPD W50 < — 2P () +
n,qn (I/IX (t) X) = Qn([n]qn + ,3)¢ (X) CIn([n]fin + ﬁ)z

Now from (29), we have
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M x) = F0O < 20(F, 6)

214, (1 2 214, (1 2
[]qn(+ﬁ)¢2(x)+[]qn(+l3)).

2 2)1
(Kl(l 29 + K+ x )5/(1,,([111% ) qn(lnlg, + B)*

. R, 0+8H .
Choosing § = ‘/—qn([n]q,, B = 8, wWe obtain

MR (5 x) = f(0)] < 22, 8) (1 + ) (K1 + Kav/1 + ¢2(x)), for sufficiently large n.

Hence, for sufficiently large n

IMED (F: ) — f(0] < Ko 82)(1 + x*T4), x € [0, 00),

4n

where A > 1 and K is a positive constant. This completes the proof of the theo-
rem. =

Acknowledgments The authors are extremely grateful to the reviewers for careful reading of the
manuscript and for making valuable suggestions leading to better presentation of the paper. The
last author is thankful to the “University Grants Commission” India, for financial support to carry
out the above research work.

References

11.

12.
13.

Agrawal, PN., Gupta, V., Kumar, A.S.: On g-analogue of Bernstein-Schurer-Stancu operators.
Appl. Math. Comput. 219, 7754-7764 (2013)

Agrawal, P.N., Mohammad, A.J.: On simultaneous approximation by a linear combination of
a new sequence of linear positive operators. Turkish J. Math. 28(4), 353-365 (2004)

. Agrawal, PN., Kumar, A.S., Sinha, T.A.K.: Stancu type generalization of modified Schurer

operators based on g-intgers. Appl. Math. Comput. 226, 765-776 (2014)

Aral, A., Gupta, V.: On the g-analogue of Stancu-Beta operators. Appl. Math. Lett. 25(1),
67-71 (2012)

Aral, A., Gupta, V.: Generalized g-Baskakov operators. Mathematica Slovaca 61(4), 619-634
(2011)

Aral, A., Gupta, V., Agrawal, R.P.: Applications of g-Calculus in Operator Theory. Springer,
New York (2013)

Biiyiikyazici, I.: Approximation by Stancu-Chlodowsky polynomials. Comput. Math. Appl.
59(1), 274-282 (2010)

Deo, N.: Simultaneous approximation by Lupas modified operators with weighted function of
Sazsz operators, JIPAM. J. Inequal Pure Appl. Math. 5(4) Article 113 (2004) Spp

DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)

Freud, G.: Investigations on weighted approximation by polynomials. Studia Sci. Math. Hungar
8, 285-305 (1973)

Gadzjiev, A.D.: Therems of the type of P. P. Korovkin type theorems, Math. Zametki. 20(5),
781-786 (1976)

Gupta, V.: A note on g-Baskakov-Szasz operators. Lobachevskii J. Math. 31(4), 359-366 (2010)
Gupta, V., Agarwal, R.P.: Convergence Estimates in Approximation Theory. Springer, Berlin
(2014)



108 PN. Agrawal and A. Kajla

14. Gupta, V., Kim, T.: On a g-analogue of Baskakov basis functions. Russ. J. Math. Phys. 20(3),
276-282 (2013)

15. Gupta, V., Karsli, H.: Some approximation properties by g-Szasz-Mirakyan-Baskakov-Stancu
operators. Lobachevskii J. Math. 33(2), 175-182 (2012)

16. Gupta, V., Srivastava, G.S.: Simultaneous approximation by Baskakov-Szasz type operators,
Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 37(85), 73-85 (1993)

17. Kac, V., Cheung, P.: Quantum Calculus (Universitext). Springer, New York (2002)

18. Lenze, B.: On Lipschitz-type maximal functions and their smoothness spaces. Nederl. Akad.
Wetensch. Indag. Math. 50(1), 53-63 (1988)

19. Lopez-Moreno, A.J.: Weighted simultaneous approximation with Baskakov type operators.
Acta Math. Hungar. 104(1-2), 143-151 (2004)

20. Phillips, G.M.: Bernstein polynomials based on the g-integers. Ann. Numer. Math. 4, 511-518
(1997)

21. Stancu, D.D.: Approximation of functions by a new class of linear polynomial operators. Rev.
Roumaine Math. Pures Appl. 13, 1173-1194 (1968)

22. Verma, D.K., Agrawal, P.N.: Approximation by Baskakov-Durrmeyer-Stancu operators based
on g-integers. Lobachevskii J. Math. 34(2), 187-196 (2013)



	Modified Baskakov-Szász Operators  Based on q-Integers
	1 Introduction
	2 Construction of Operators
	3 Basic Results
	3.1 Moment Estimates

	4 Main Results
	4.1 Direct Theorem
	4.2 Rate of Convergence
	4.3 Voronovskaja Type Theorem
	4.4 Point-Wise Estimates
	4.5  Statistical Approximation

	References


