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Abstract Various investigators such asKhan [3],Qureshi [8–10],Qureshi andNema
[11], Leindler [6] and Chandra [1] have determined the degree of approximation of
functions belonging to the classes W (Lr , ξ(t)), Lip(ξ(t), r), Lip(α, r) and Lipα

using different summability methods with monotonocity conditions. Recently, Lal
[5] has determined the degree of approximation of the functions belonging to Lipα

and W (Lr , ξ(t)) classes by usingCesàro-Nörlund (C1 ·Np)—summabilitywith non-
increasingweights {pn}. In this paper,we shall determine the degree of approximation
of 2π -periodic function f belonging to the function classes Lipα and W (Lr , ξ(t))
by C1 · T—means of Fourier series of f . Our theorems generalize the results of Lal
[5], and we also improve these results in the light of [7, 12, 13]. From our results,
we derive some corollaries also.

Keywords Trigonometric fourier series · W (Lr , ξ(t), (β ≥ 0))-class · Fourier
series · Matrix means · Signals · Trigonometric polynomials

1 Introduction

For a given signal f ∈ Lr := Lr [0, 2π ], r ≥ 1, let

sn( f ) := sn( f ; x) = a0
2

+
n∑

k=1

(ak cos kx + bk sin kx) =
n∑

k=0

uk( f ; x), (1)

denote the partial sums, called trigonometric polynomial of degree (or order) n, of the
first (n + 1) terms of the Fourier series of f . The matrix means of (1) are defined by

S. Sonker (B)

Department of Mathematics, National Institute of Technology Kurukshetra,
Kurukshetra 136119, India
e-mail: smita.sonker@gmail.com

© Springer India 2015
P.N. Agrawal et al. (eds.), Mathematical Analysis and its Applications,
Springer Proceedings in Mathematics & Statistics 143,
DOI 10.1007/978-81-322-2485-3_6

73



74 S. Sonker

tn( f ) := tn( f ; x) =
n∑

k=0

an,ksk, n = 0, 1, 2, ...,

where T ≡ (an,k) is a lower triangular matrix with non-negative entries such that
an,−1 = 0, An,k = ∑n

r=k an,r so that An,0 = 1,∀n ≥ 0. The Fourier series of f is
said to be T -summable to s, if tn( f ) → s as n → ∞.

By superimposing C1 summability upon T summability, we get the C1 · T sum-
mability. Thus the C1 · T means of {sn( f )} denoted by tC1·T

n ( f ) are given by

tC1·T
n ( f ) := (n + 1)−1

n∑

r=0

( r∑

k=0

ar,ksk( f )

)
.

If tC1·T
n → s1 as n → ∞, then the Fourier series of f is said to beC1 · T—summable

to the sum s1.The regularity ofmethodsC1 and T implies regularity ofmethodC1 ·T .

A function f ∈ Lipα if | f (x + t)− f (x)| = O(|t |α), for 0 < α ≤ 1, f ∈ Lip(α, r)

if
(∫ 2π

0 | f (x + t) − f (x)|r dx
)1/r = O(|t |α), 0 < α ≤ 1, r ≥ 1,

f ∈ Lip(ξ(t), r) if
(∫ 2π

0 | f (x + t) − f (x)|r dx
)1/r = O(ξ(t)) and

f ∈ W (Lr , ξ(t)) if
(∫ 2π

0 |( f (x + t) − f (x)) sinβ(x/2)|r dx
)1/r = O(ξ(t)),

β ≥ 0, r ≥ 1, where ξ(t) is a positive increasing function of t .
If β = 0, W (Lr , ξ(t), ) ≡ Lip(ξ(t), r) and for ξ(t) = tα(α > 0), Lip(ξ(t), r) ≡
Lip(α, r). Lip(α, r) → Lipα as r → ∞. Thus

Lipα ⊆ Lip(α, r) ⊆ Lip(ξ(t), r) ⊆ W (Lr , ξ(t)).

The Lr -norm of f ∈ Lr [0, 2π ] is defined by

‖ f ‖r =
{

1
2π

∫ 2π
0 | f (x)|r dx

}1/r
(1 ≤ r < ∞) and ‖ f ‖∞ = sup

x∈[0,2π ]
| f (x)|.

The degree of approximation of f ∈ Lr denoted by En( f ) is given by

En( f ) = min
Tn

‖ f (x) − Tn(x) ‖r ,

in terms of n , where Tn(x) is a trigonometric polynomial of degree n.
This method of approximation is called trigonometric Fourier approximation.

We also write

φ(t) = f (x + t) + f (x − t) − 2 f (x),

(C1 · T )n(t) = 1

2π(n + 1)

n∑

r=0

r∑

k=0

ar,r−k
sin(r − k + 1/2)t

sin(t/2)
,

and τ = [1/t], the integral part of 1/t .
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2 Known Results

Various investigators such as Khan [3], Qureshi [8–10], Qureshi and Nema [11],
Leindler [6] and Chandra [1] have determined the degree of approximation of func-
tions belonging to the classes W (Lr , ξ(t)), Lip(ξ(t), r), Lip(α, r) and Lipα with
r ≥ 1 and 0 < α ≤ 1 using different summability methods with monotonocity con-
ditions on the rows of summability matrices. Recently, Lal [5] has determined the
degree of approximation of the functions belonging to Lipα and W (Lr , ξ(t)) classes
by usingCesáro-Nörlund (C1 ·Np)—summabilitywith non-increasingweights {pn}.
He proved:

Theorem 1 Let Np be a regular Nörlund method defined by a sequence {pn} such
that

Pτ

n∑

v=τ

P−1
v = O(n + 1). (2)

Let f ∈ L1[0, 2π ] be a 2π -periodic function belonging to Lip α (0 < α ≤ 1), then
the degree of approximation of f by C1 · Np means of its Fourier series is given by

sup
0≤x≤2π

|tC N
n (x) − f (x)| = ‖tC N

n − f ‖∞ =
{

O((n + 1)−α), 0 < α < 1,
O (log(n + 1)πe/(n + 1)) , α = 1.

Theorem 2 If f is a 2π -periodic function and Lebesgue integrable on [0, 2π ] and
is belonging to W (Lr , ξ(t)) class then its degree of approximation by C1 · Np means
of its Fourier series is given by

‖tC N
n − f ‖r = O

(
(n + 1)β+1/r ξ (1/(n + 1))

)
,

provided ξ(t) satisfies the following conditions:

{ξ(t)/t} be a decreasing sequence, (3)

(∫ π/(n+1)

0

(
t |φ(t)| sinβ(t)/ξ(t)

)r
dt

)1/r

= O((n + 1)−1), (4)

(∫ π

π/(n+1)

(
t−δ|φ(t)|/ξ(t)

)r
dt

)1/r

= O((n + 1)δ), (5)

where δ is an arbitrary number such that s(1 − δ) − 1 > 0, r−1 + s−1 = 1, r ≥ 1,
conditions (4) and (5) hold uniformly in x .

The improved version of above theorems with their generalization to non-monotone
weights {pn} can be seen in [13].
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3 Main Results

In this paper, we generalize Theorems 1 and 2 by replacing matrix Np with matrix
T in the light of Remarks 2.3 and 2.4 of [13, pp. 3–4]. More precisely, we prove:

Theorem 3 If T ≡ (an,k) is a lower triangular regular matrix with non-negative
and non-decreasing (with respect to k) entries which satisfy

n∑

r=τ

Ar,r−τ = O(n + 1), (6)

hold uniformly in τ = [1/t], then the degree of approximation of a 2π -periodic
function f ∈ Lipα (0 < α ≤ 1) ⊂ L1[0, 2π ] by C1 · T means of its Fourier series
is given by

‖tC1·T
n ( f ) − f (x)‖∞ =

{
O((n + 1)−α), 0 < α < 1,
O ((log(n + 1))/(n + 1)) , α = 1.

(7)

Theorem 4 If T ≡ (an,k) be a lower triangular regular matrix with non-negative
and non-decreasing (with respect to k) entries which satisfy condition (6), then the
degree of approximation of a 2π -periodic function with r > 1 and 0 < β s < 1 by
C1 · T means of its Fourier series is given by

‖tC1·T
n ( f ) − f (x)‖r = O

(
(n + 1)β+1/r ξ (1/(n + 1))

)
, (8)

provided positive increasing function ξ(t) satisfies the conditions:

ξ(t)/t be a decreasing function, (9)

(∫ π/(n+1)

0

(|φ(t)| sinβ(t/2)/ξ(t)
)r

dt

)1/r

= O((n + 1)−1/r ), (10)

(∫ π

π/(n+1)

(
t−δ|φ(t)| sinβ(t/2)/ξ(t)

)r
dt

)1/r

= O((n + 1)δ−1/r ), (11)

where δ is a real number such that β +1/r > δ > r−1, r−1 + s−1 = 1, r > 1. Also,
conditions (10) and (11) hold uniformly in x .

Remark 1 If we take an,k = pn−k/Pn for k ≤ n and an,k = 0 for k > n such that
Pn(= ∑n

k=0 pk �= 0) → ∞ as n → ∞ and P−1 = 0 = p−1, then C1 · T means
reduce to C1 · Np means and
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n∑

r=τ

Ar,r−τ =
n∑

r=τ

r∑

k=r−τ

ar,k =
n∑

r=τ

r∑

k=r−τ

(pr−k/Pr ) =
n∑

r=τ

(Pτ /Pr ) = Pτ

n∑

r=τ

P−1
r .

Therefore, condition (6) reduces to condition (2) and tC1·T
n means reduce to tC N

n
means. Hence our Theorems 3 and 4 are generalization of Theorems 1 and 2,
respectively.

4 Lemmas

We need the following lemmas for the proof of our theorems.

Lemma 1 Let {ar,k} be a non-negative sequence of real numbers, then

(C1 · T )n(t) = O(n + 1), for 0 < t ≤ π/(n + 1).

Proof Using sin nt ≤ nt and sin(t/2) ≥ t/π for 0 < t ≤ π/(n + 1), we have

∣∣∣(C1 · T )n(t)
∣∣∣ = (2π(n + 1))−1

∣∣∣∣∣

n∑

r=0

r∑

k=0

ar,r−k sin((r − k + 1/2)t)/ sin(t/2)

∣∣∣∣∣

= (2π(n + 1))−1
n∑

r=0

r∑

k=0

ar,r−k |sin((r − k + 1/2)t)/ sin(t/2)|

≤ (2π(n + 1))−1
n∑

r=0

r∑

k=0

ar,r−k(r − k + 1/2)t/(t/π)

≤ (4(n + 1))−1
n∑

r=0

r∑

k=0

ar,r−k(2r − 2k + 1)

≤ (4(n + 1))−1
n∑

r=0

(2r + 1)
r∑

k=0

ar,r−k

= (4(n + 1))−1
n∑

r=0

(2r + 1)Ar,0 = O(n + 1).

Lemma 2 [4] If {ar,k} is a non-negative and non-decreasing (with respect to k)
sequence, then for 0 ≤ a < b ≤ ∞, 0 < t ≤ π and for every r

∣∣∣∣∣

b∑

k=a

ar,r−kei(r−k)t

∣∣∣∣∣ = O(Ar,r−τ ).
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Lemma 3 If {ar,k} is non-negative and non-decreasing (with respect to k) sequence,
then for 0 < t ≤ π

∣∣∣∣∣

n∑

r=0

r∑

k=0

ar,r−kei(r−k)t

∣∣∣∣∣ = O(t−1) + O

(
n∑

r=τ

Ar,r−τ

)
,

holds uniformly in τ = [1/t].
Proof For 0 < t ≤ π, we have

∣∣∣∣∣

n∑

r=0

r∑

k=0

ar,r−kei(r−k)t

∣∣∣∣∣ ≤
∣∣∣∣∣

τ−1∑

r=0

r∑

k=0

ar,r−kei(r−k)t +
n∑

r=τ

r∑

k=0

ar,r−kei(r−k)t

∣∣∣∣∣

≤
τ−1∑

r=0

r∑

k=0

ar,r−k |ei(r−k)t | +
∣∣∣∣∣

n∑

r=τ

r∑

k=0

ar,r−kei(r−k)t

∣∣∣∣∣

≤
τ−1∑

r=0

r∑

k=0

ar,r−k +
n∑

r=τ

∣∣∣∣∣

r∑

k=0

ar,r−kei(r−k)t

∣∣∣∣∣

≤
τ−1∑

r=0

1 +
n∑

r=τ

O(Ar,r−τ ) = (τ − 1 + 1) + O

(
n∑

r=τ

Ar,r−τ

)

= O(t−1) + O

(
n∑

r=τ

Ar,r−τ

)
,

in view of Lemma 2.

Lemma 4 If {ar,k} is non-negative and non-decreasing (with respect to k) sequence
and satisfies the condition (6), then

|(C1 · T )n(t)| = O
(

t−2/(n + 1)
)

+ O(t−1), for π/(n + 1) < t ≤ π.

Proof Using sin(t/2) ≥ t/π , for π/(n + 1) < t ≤ π and Lemma 3, we have

|(C1 · T )n(t)| = (2π(n + 1))−1

∣∣∣∣∣

n∑

r=0

r∑

k=0

ar,r−k sin((r − k + 1/2)t)/ sin(t/2)

∣∣∣∣∣

≤ (2π(n + 1))−1

∣∣∣∣∣

n∑

r=0

r∑

k=0

ar,r−k sin((r − k + 1/2)t)/(t/π)

∣∣∣∣∣

= (2t (n + 1))−1

∣∣∣∣∣

n∑

r=0

r∑

k=0

ar,r−k sin(r − k + 1/2)t

∣∣∣∣∣

≤ (2t (n + 1))−1

∣∣∣∣∣

n∑

r=0

r∑

k=0

ar,r−kei(r−k+1/2)t

∣∣∣∣∣
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= (2t (n + 1))−1

∣∣∣∣∣e
it/2

n∑

r=0

r∑

k=0

ar,r−kei(r−k)t

∣∣∣∣∣

= (2t (n + 1))−1

∣∣∣∣∣

n∑

r=0

r∑

k=0

ar,r−kei(r−k)t

∣∣∣∣∣

= (2t (n + 1))−1

∣∣∣∣∣O(t−1) + O

(
n∑

r=τ

Ar,r−τ

)∣∣∣∣∣ = O
(

t−2/(n + 1)
)

+ O(t−1),

in view of condition (6).

5 Proof of Theorem 3

Following Titchmarsh [14], we have

sn( f ; x) − f (x) = 1

2π

∫ π

0
φ(t)(sin(n + 1/2)t/ sin(t/2))dt

Denoting C1 · T means of {sn( f ; x)} by tC1·T
n ( f ), we write

tC1·T
n ( f ) − f (x) =

∫ π

0
φ(t)(2π(n + 1))−1

n∑

r=0

r∑

k=0

ar,r−k sin((r − k + 1/2)t)/ sin(t/2)dt

=
∫ π/(n+1)

0
φ(t)(C1 · T )n(t)dt +

∫ π

π/(n+1)
φ(t)(C1 · T )n(t)dt

= I1 + I2, say. (12)

Using Lemma 1 and the fact that f ∈ Lip α ⇒ φ ∈ Lip α {[2], Lemma 5.27}, we
have

|I1| ≤
∫ π/(n+1)

0
|φ(t)||(C1 · T )n(t)|dt = O(n + 1)

∫ π/(n+1)

0
tαdt

= O(n + 1)((n + 1)−α−1) = O((n + 1)−α). (13)

Now, using Lemma 4 and the fact that f ∈ Lip α ⇒ φ ∈ Lip α,

|I2| ≤
∫ π

π/(n+1)
|φ(t)| ∣∣(C1 · T )n(t)

∣∣ dt ≤
∫ π

π/(n+1)
|φ(t)|O [

(t−2/(n + 1)) + t−1] dt

= O(I21) + O(I22), say, (14)

where

I21 = (n + 1)−1
∫ π

π/(n+1)
tα−2dt =

{
O((n + 1)−α), 0 < α < 1,
O (log(n + 1)/(n + 1)) , α = 1.

(15)
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and

I22 = O

(∫ π

π/(n+1)
tα−1dt

)
= O((n + 1)−α). (16)

Collecting (12)–(16), we get

tC1·T
n ( f ) − f (x) =

{
O((n + 1)−α), 0 < α < 1,
O(log(n + 1)/(n + 1)), α = 1.

Thus

‖tC1·T
n ( f ) − f ‖∞ = sup

0≤x≤2π
{|tC1·T

n (x) − f (x)|} =
{

O((n + 1)−α), 0 < α < 1,
O((log(n + 1))/(n + 1)), α = 1.

6 Proof of Theorem 4

Following the proof of Theorem 3,

tC1·T
n ( f ) − f (x) =

∫ π/(n+1)

0
φ(t)(C1 · T )n(t)dt +

∫ π

π/(n+1)
φ(t)(C1 · T )n(t)dt

= I
′
1 + I

′
2, say. (17)

Using Hölder’s inequality, φ(t) ∈ W (Lr , ξ(t)), condition (10), Lemma 1 and mean
value theorem for integrals, we have

|I ′
1| =

∣∣∣∣∣ limε→0

∫ π/(n+1)

ε

[
(φ(t) sinβ(t/2)/ξ(t)) · (ξ(t)(C1 · T )n(t))/(sinβ(t/2))

]
dt

∣∣∣∣∣

≤
[∫ π/(n+1)

0

(|φ(t)| sinβ(t/2)/ξ(t)
)r

dt

]1/r

·
[
lim
ε→0

∫ π/(n+1)

ε

(
ξ(t)|(C1 · T )n(t)|/(sinβ(t/2)

)s
dt

]1/s

= O((n + 1)−1/r )

[
lim
ε→0

∫ π/(n+1)

ε

∣∣ξ(t)(n + 1)/(sinβ(t/2))
∣∣s

dt

]1/s

= O(n + 1)1−1/r (ξ(π/(n + 1))

[
lim
ε→0

∫ π/(n+1)

ε

t−βsdt

]1/s

= O(ξ(1/(n + 1)(n + 1)β+1−1/r−1/s) = O((n + 1)βξ(1/(n + 1)), (18)
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in view of condition (9), i.e. (ξ(π/(n + 1))/(π/(n + 1))) ≤ (ξ(1/(n + 1))/
(1/(n + 1))).

Using Lemma 4, we have

|I ′
2| =

[∫ π

π/(n+1)
|φ(t)|

[
O

(
t−2/(n + 1)

)
+ O

(
t−1

)]
dt

]

= O

[∫ π

π/(n+1)
t−2|φ(t)|/(n + 1)dt

]
+ O

[∫ π

π/(n+1)
t−1|φ(t)|dt

]

= O(I
′
21) + O(I

′
22). (19)

Using Hölder’s inequality, | sin t | ≤ 1, sin(t/2) ≥ (t/π) and condition (11), we
have

|I ′
21| = (n + 1)−1

[∫ π

π/(n+1)

{
(t−δ |φ(t)| sinβ(t/2)/ξ(t)) · (ξ(t)/(t−δ+2 sinβ(t/2)))

}
dt

]

≤ ((n + 1)−1)

[∫ π

π/(n+1)

∣∣t−δ |φ(t)| sinβ(t/2)/ξ(t)
∣∣r dt

]1/r

·
[∫ π

π/(n+1)

∣∣∣ξ(t)/
(

t−δ+2 sinβ(t/2)
)∣∣∣

s
dt

]1/s

= O((n + 1)−1)

[∫ π

π/(n+1)

∣∣t−δ |φ(t)| sinβ(t/2)/ξ(t)
∣∣r dt

]1/r

·
[∫ π

π/(n+1)

∣∣∣ξ(t)/
(

t−δ+2 sinβ(t/2)
)∣∣∣

s
dt

]1/s

= O((n + 1)−1)O
(
(n + 1)δ−1/r

) [∫ π

π/(n+1)

∣∣∣ξ(t)/
(

t−δ+2 sinβ(t/2)
)∣∣∣

s
dt

]1/s

= O((n + 1)δ−1−1/r )

[∫ π

π/(n+1)

(
ξ(t)/t−δ+2+β

)s
dt

]1/s

= O((n + 1)δ−1/r )ξ(π/(n + 1))

[∫ π

π/(n+1)
t−(−δ+1+β)sdt

]1/s

= O((n + 1)δ−1/r )ξ(π/(n + 1))
[
(n + 1)(−δ+1+β)−1/sdt

]

= O(ξ(1/(n + 1)(n + 1)β) (20)

in view of decreasing nature of ξ(t)/t and r−1 + s−1 = 1.
Similarly, as above, we have

|I ′
22| =

∫ π

π/(n+1)
t−1|φ(t)|dt =

∫ π

π/(n+1)

(
t−δ |φ(t)| sinβ(t/2)/ξ(t)

) (
ξ(t)/(t1−δ sinβ(t/2))

)
dt

≤
[∫ π

π/(n+1)

∣∣t−δ |φ(t)| sinβ(t/2)/ξ(t)
∣∣r dt

]1/r [∫ π

π/(n+1)

∣∣∣ξ(t)/
(

t1−δ sinβ(t/2)
)∣∣∣

s
dt

]1/s

= O
(
(n + 1)δ−1/r

) [∫ π

π/(n+1)

(
ξ(t)/t1−δ+β

)s
dt

]1/s
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= O
(
(n + 1)δ+1−1/r

)
ξ(1/(n + 1))

[∫ π

π/(n+1)
t (δ−β)sdt

]1/s

= O
(
(n + 1)δ+1−1/r

)
ξ(1/(n + 1))(n + 1)(−δ+β)−1/s

= O(ξ(1/(n + 1))(n + 1)β+1−1/r−1/s

= O(ξ(1/(n + 1))(n + 1)β . (21)

Collecting (17)–(21), we have

|tC1·T
n ( f ) − f (x)| = O

(
(n + 1)βξ(1/(n + 1))

)
.

Hence,

‖tC1·T
n ( f ) − f (x)‖r =

(
1/2π

∫ 2π

0
|tC1·T

n ( f ) − f (x)|r dx

)1/r

= O
(
(n + 1)βξ (1/(n + 1)

)
.

Remark 2 The proof of Theorem 3, for r = 1, i.e. s = ∞ can be written by using
sup norm while using Hölder’s inequality.

7 Corollaries

The following corollaries can be derived from Theorem 4
1. If β = 0 , then for f ∈ Lip(ξ(t), r), ‖tC1·T

n ( f ) − f (x)‖r = O (ξ(1/n)) .

2. If β = 0, ξ(t) = tα(0 < α ≤ 1), then for f ∈ Lip(α, r)(α > 1/r),

‖tC1·T
n ( f ) − f (x)‖r = O

(
n−α

)
. (22)

3. If r → ∞ in Corollary 2, then for f ∈ Lipα(0 < α < 1), (22) gives

‖tC1·T
n ( f ) − f (x)‖∞ = O(n−α).

Remark 3 In view of Remark 2, corollaries of Lal [5, p. 350] are particular cases of
our Corollaries 2 and 3, respectively.
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