Approximation of Periodic Functions Belonging to $W(L^r, \xi(t), (\beta \ge 0))$ **-Class** \bf{By} $(C^1 \cdot T)$ **Means of Fourier Series**

Smita Sonker

Abstract Various investigators such as Khan [\[3\]](#page-9-0), Qureshi [\[8](#page-10-0)[–10](#page-10-1)], Qureshi and Nema [\[11\]](#page-10-2), Leindler [\[6\]](#page-10-3) and Chandra [\[1](#page-9-1)] have determined the degree of approximation of functions belonging to the classes $W(L^r, \xi(t))$, $Lip(\xi(t), r)$, $Lip(\alpha, r)$ and $Lip\alpha$ using different summability methods with monotonocity conditions. Recently, Lal [\[5\]](#page-10-4) has determined the degree of approximation of the functions belonging to *Lip*α and $W(L^r, \xi(t))$ classes by using Cesàro-Nörlund $(C^1 \cdot N_p)$ —summability with nonincreasing weights $\{p_n\}$. In this paper, we shall determine the degree of approximation of 2π -periodic function *f* belonging to the function classes *Lip*α and $W(L^r, \xi(t))$ by $C^1 \cdot T$ —means of Fourier series of f. Our theorems generalize the results of Lal [\[5\]](#page-10-4), and we also improve these results in the light of [\[7](#page-10-5), [12](#page-10-6), [13](#page-10-7)]. From our results, we derive some corollaries also.

Keywords Trigonometric fourier series $\cdot W(L^r, \xi(t), (\beta > 0))$ -class \cdot Fourier series · Matrix means · Signals · Trigonometric polynomials

1 Introduction

For a given signal $f \in L^r := L^r[0, 2\pi]$, $r > 1$, let

$$
s_n(f) := s_n(f; x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx) = \sum_{k=0}^n u_k(f; x), \quad (1)
$$

denote the partial sums, called trigonometric polynomial of degree (or order) *n*, of the first $(n + 1)$ terms of the Fourier series of f. The matrix means of [\(1\)](#page-0-0) are defined by

S. Sonker (\boxtimes)

© Springer India 2015 P.N. Agrawal et al. (eds.), *Mathematical Analysis and its Applications*, Springer Proceedings in Mathematics & Statistics 143, DOI 10.1007/978-81-322-2485-3_6

Department of Mathematics, National Institute of Technology Kurukshetra, Kurukshetra 136119, India e-mail: smita.sonker@gmail.com

$$
t_n(f) := t_n(f; x) = \sum_{k=0}^n a_{n,k} s_k, \ \ n = 0, 1, 2, ...,
$$

where $T \equiv (a_{n,k})$ is a lower triangular matrix with non-negative entries such that $a_{n,-1} = 0$, $A_{n,k} = \sum_{n=k}^{n} a_{n,k}$ so that $A_{n,0} = 1$, $\forall n \ge 0$. The Fourier series of *f* is said to be *T*-summable to *s*, if $t_n(f) \to s$ as $n \to \infty$.

By superimposing C^1 summability upon *T* summability, we get the $C^1 \cdot T$ summability. Thus the $C^1 \cdot T$ means of $\{s_n(f)\}$ denoted by $t_n^{C^1 \cdot T}(f)$ are given by

$$
t_n^{C^1 \cdot T}(f) := (n+1)^{-1} \sum_{r=0}^n \left(\sum_{k=0}^r a_{r,k} s_k(f) \right).
$$

If $t_n^{C^1 \tcdot T} \to s_1$ as $n \to \infty$, then the Fourier series of f is said to be $C^1 \tcdot T$ —summable to the sum s_1 . The regularity of methods C^1 and T implies regularity of method $C^1 \cdot T$. A function $f \in Lip\alpha$ if $|f(x+t)-f(x)| = O(|t|^{\alpha})$, for $0 < \alpha \leq 1$, $f \in Lip(\alpha, r)$ if $\left(\int_0^{2\pi} |f(x+t) - f(x)|^r dx\right)^{1/r} = O(|t|^{\alpha}), 0 < \alpha \leq 1, r \geq 1,$ *f* ∈ *Lip*($\xi(t)$, *r*) if $\left(\int_0^{2\pi} |f(x + t) - f(x)|^r dx\right)^{1/r} = O(\xi(t))$ and $f \in W(L^r, \xi(t))$ if $\left(\int_0^{2\pi} |(f(x+t) - f(x))\sin^{\beta}(x/2)|^r dx\right)^{1/r} = O(\xi(t)),$ $\beta \geq 0, r \geq 1$, where $\xi(t)$ is a positive increasing function of *t*. If $\beta = 0$, $W(L^r, \xi(t)) = Lip(\xi(t), r)$ and for $\xi(t) = t^{\alpha} (\alpha > 0)$, $Lip(\xi(t), r) \equiv$ $Lip(\alpha, r)$. $Lip(\alpha, r) \rightarrow Lip(\alpha \text{ as } r \rightarrow \infty)$. Thus

$$
Lip\alpha \subseteq Lip(\alpha,r) \subseteq Lip(\xi(t),r) \subseteq W(L^r,\xi(t)).
$$

The *L^{<i>r*}-norm of $f \in L^r[0, 2\pi]$ is defined by

$$
||f||_r = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |f(x)|^r dx \right\}^{1/r} (1 \le r < \infty) \text{ and } ||f||_{\infty} = \sup_{x \in [0, 2\pi]} |f(x)|.
$$

The degree of approximation of $f \in L^r$ denoted by $E_n(f)$ is given by

$$
E_n(f) = \min_{T_n} \| f(x) - T_n(x) \|_r,
$$

in terms of *n*, where $T_n(x)$ is a trigonometric polynomial of degree *n*.

This method of approximation is called trigonometric Fourier approximation. We also write

$$
\phi(t) = f(x+t) + f(x-t) - 2f(x),
$$

$$
(C^1 \cdot T)_n(t) = \frac{1}{2\pi(n+1)} \sum_{r=0}^n \sum_{k=0}^r a_{r,r-k} \frac{\sin(r-k+1/2)t}{\sin(t/2)},
$$

and $\tau = [1/t]$, the integral part of $1/t$.

2 Known Results

Various investigators such as Khan [\[3\]](#page-9-0), Qureshi [\[8](#page-10-0)[–10](#page-10-1)], Qureshi and Nema [\[11](#page-10-2)], Leindler [\[6](#page-10-3)] and Chandra [\[1](#page-9-1)] have determined the degree of approximation of functions belonging to the classes $W(L^r, \xi(t))$, $Lip(\xi(t), r)$, $Lip(\alpha, r)$ and $Lip\alpha$ with $r \geq 1$ and $0 < \alpha \leq 1$ using different summability methods with monotonocity conditions on the rows of summability matrices. Recently, Lal [\[5\]](#page-10-4) has determined the degree of approximation of the functions belonging to $Lip\alpha$ and $W(L^r, \xi(t))$ classes by using Cesáro-Nörlund ($C^1 \tcdot N_p$)—summability with non-increasing weights { p_n }. He proved:

Theorem 1 *Let* N_p *be a regular Nörlund method defined by a sequence* $\{p_n\}$ *such that*

$$
P_{\tau} \sum_{\nu=\tau}^{n} P_{\nu}^{-1} = O(n+1). \tag{2}
$$

Let $f \in L^1[0, 2\pi]$ *be a* 2π *-periodic function belonging to Lip* α ($0 < \alpha \leq 1$), *then the degree of approximation of f by* $C^1 \cdot N_p$ *means of its Fourier series is given by*

$$
\sup_{0 \le x \le 2\pi} |t_n^{CN}(x) - f(x)| = ||t_n^{CN} - f||_{\infty} = \begin{cases} O((n+1)^{-\alpha}), & 0 < \alpha < 1, \\ O(\log(n+1)\pi e/(n+1)), & \alpha = 1. \end{cases}
$$

Theorem 2 *If f is a* 2π -periodic function and Lebesgue integrable on [0, 2π] and *is belonging to* $W(L^r, \xi(t))$ *class then its degree of approximation by* $C^1 \cdot N_p$ *means of its Fourier series is given by*

$$
||t_n^{CN} - f||_r = O\left((n+1)^{\beta+1/r} \xi\left(1/(n+1)\right)\right),\,
$$

provided ξ(*t*) *satisfies the following conditions:*

 $\{\xi(t)/t\}$ *be a decreasing sequence*, (3)

$$
\left(\int_0^{\pi/(n+1)} \left(t|\phi(t)|\sin^{\beta}(t)/\xi(t)\right)^r dt\right)^{1/r} = O((n+1)^{-1}),\tag{4}
$$

$$
\left(\int_{\pi/(n+1)}^{\pi} \left(t^{-\delta} |\phi(t)|/\xi(t)\right)^r dt\right)^{1/r} = O((n+1)^{\delta}),\tag{5}
$$

where δ *is an arbitrary number such that* $s(1 - \delta) - 1 > 0$, $r^{-1} + s^{-1} = 1$, $r \ge 1$, *conditions [\(4\)](#page-2-0) and [\(5\)](#page-2-1) hold uniformly in x*.

The improved version of above theorems with their generalization to non-monotone weights $\{p_n\}$ can be seen in [\[13\]](#page-10-7).

3 Main Results

In this paper, we generalize Theorems [1](#page-2-2) and [2](#page-2-3) by replacing matrix N_p with matrix *T* in the light of Remarks 2.3 and 2.4 of [\[13,](#page-10-7) pp. 3–4]. More precisely, we prove:

Theorem 3 If $T \equiv (a_{n,k})$ is a lower triangular regular matrix with non-negative *and non-decreasing (with respect to k) entries which satisfy*

$$
\sum_{r=\tau}^{n} A_{r,r-\tau} = O(n+1),
$$
 (6)

hold uniformly in $\tau = [1/t]$, *then the degree of approximation of a* 2π -periodic *function* $f \in Lip\alpha$ $(0 < \alpha < 1) \subset L^1[0, 2\pi]$ *by* $C^1 \cdot T$ *means of its Fourier series is given by*

$$
||t_n^{C^1 \cdot T}(f) - f(x)||_{\infty} = \begin{cases} O((n+1)^{-\alpha}), & 0 < \alpha < 1, \\ O((\log(n+1))/(n+1)), & \alpha = 1. \end{cases}
$$
 (7)

Theorem 4 *If* $T \equiv (a_{n,k})$ *be a lower triangular regular matrix with non-negative and non-decreasing (with respect to k) entries which satisfy condition [\(6\)](#page-3-0), then the degree of approximation of a* $2π$ -*periodic function with* $r > 1$ *and* $0 < β$ *s* < 1 *by ^C*¹ · *T means of its Fourier series is given by*

$$
||t_n^{C^1 \cdot T}(f) - f(x)||_r = O\left((n+1)^{\beta+1/r} \xi\left(1/(n+1)\right)\right),\tag{8}
$$

provided positive increasing function ξ(*t*) *satisfies the conditions:*

$$
\xi(t)/t
$$
 be a decreasing function, (9)

$$
\left(\int_0^{\pi/(n+1)} \left(|\phi(t)|\sin^{\beta}(t/2)/\xi(t)\right)^r dt\right)^{1/r} = O((n+1)^{-1/r}),\tag{10}
$$

$$
\left(\int_{\pi/(n+1)}^{\pi} \left(t^{-\delta} |\phi(t)| \sin^{\beta}(t/2)/\xi(t)\right)^{r} dt\right)^{1/r} = O((n+1)^{\delta - 1/r}),\tag{11}
$$

where δ *is a real number such that* $\beta + 1/r > \delta > r^{-1}$, $r^{-1} + s^{-1} = 1$, $r > 1$. *Also*, *conditions [\(10\)](#page-3-1) and [\(11\)](#page-3-2) hold uniformly in x*.

Remark 1 If we take $a_{n,k} = p_{n-k}/P_n$ for $k \le n$ and $a_{n,k} = 0$ for $k > n$ such that $P_n (= \sum_{k=0}^n p_k \neq 0) \to \infty$ as $n \to \infty$ and $P_{-1} = 0 = p_{-1}$, then $C^1 \cdot T$ means reduce to $C^1 \cdot N_p$ means and

Approximation of Periodic Functions ... $\frac{77}{2}$

$$
\sum_{r=\tau}^{n} A_{r,r-\tau} = \sum_{r=\tau}^{n} \sum_{k=r-\tau}^{r} a_{r,k} = \sum_{r=\tau}^{n} \sum_{k=r-\tau}^{r} (p_{r-k}/P_r) = \sum_{r=\tau}^{n} (P_{\tau}/P_r) = P_{\tau} \sum_{r=\tau}^{n} P_r^{-1}.
$$

Therefore, condition [\(6\)](#page-3-0) reduces to condition [\(2\)](#page-2-4) and $t_n^{C^1 \tcdot T}$ $t_n^{C^1 \tcdot T}$ $t_n^{C^1 \tcdot T}$ means reduce to t_n^{CN} *means*. Hence our Theorems [3](#page-3-3) and [4](#page-3-4) are generalization of Theorems 1 and [2,](#page-2-3) respectively.

4 Lemmas

We need the following lemmas for the proof of our theorems.

Lemma 1 *Let* $\{a_{r,k}\}$ *be a non-negative sequence of real numbers, then*

$$
(C^1 \cdot T)_n(t) = O(n+1), \text{ for } 0 < t \le \pi/(n+1).
$$

Proof Using $\sin nt \le nt$ and $\sin(t/2) \ge t/\pi$ for $0 < t \le \pi/(n + 1)$, we have

$$
\left| (C^1 \cdot T)_n(t) \right| = (2\pi (n+1))^{-1} \left| \sum_{r=0}^n \sum_{k=0}^r a_{r,r-k} \sin((r-k+1/2)t) / \sin(t/2) \right|
$$

\n
$$
= (2\pi (n+1))^{-1} \sum_{r=0}^n \sum_{k=0}^r a_{r,r-k} |\sin((r-k+1/2)t) / \sin(t/2)|
$$

\n
$$
\le (2\pi (n+1))^{-1} \sum_{r=0}^n \sum_{k=0}^r a_{r,r-k} (r-k+1/2)t / (t/\pi)
$$

\n
$$
\le (4(n+1))^{-1} \sum_{r=0}^n \sum_{k=0}^r a_{r,r-k} (2r-2k+1)
$$

\n
$$
\le (4(n+1))^{-1} \sum_{r=0}^n (2r+1) \sum_{k=0}^r a_{r,r-k}
$$

\n
$$
= (4(n+1))^{-1} \sum_{r=0}^n (2r+1) A_{r,0} = O(n+1).
$$

Lemma 2 [\[4\]](#page-10-8) If $\{a_{r,k}\}\$ is a non-negative and non-decreasing (with respect to k) *sequence, then for* $0 \le a < b \le \infty$, $0 < t \le \pi$ *and for every r*

$$
\left|\sum_{k=a}^{b} a_{r,r-k} e^{i(r-k)t}\right| = O(A_{r,r-\tau}).
$$

Lemma 3 *If* $\{a_{r,k}\}$ *is non-negative and non-decreasing (with respect to k) sequence, then for* $0 < t \leq \pi$

$$
\left|\sum_{r=0}^{n}\sum_{k=0}^{r} a_{r,r-k}e^{i(r-k)t}\right| = O(t^{-1}) + O\left(\sum_{r=\tau}^{n} A_{r,r-\tau}\right),\,
$$

holds uniformly in $\tau = [1/t]$ *.*

Proof For $0 < t \leq \pi$, we have

$$
\left| \sum_{r=0}^{n} \sum_{k=0}^{r} a_{r,r-k} e^{i(r-k)t} \right| \leq \left| \sum_{r=0}^{\tau-1} \sum_{k=0}^{r} a_{r,r-k} e^{i(r-k)t} + \sum_{r=\tau}^{n} \sum_{k=0}^{r} a_{r,r-k} e^{i(r-k)t} \right|
$$

\n
$$
\leq \sum_{r=0}^{\tau-1} \sum_{k=0}^{r} a_{r,r-k} |e^{i(r-k)t}| + \left| \sum_{r=\tau}^{n} \sum_{k=0}^{r} a_{r,r-k} e^{i(r-k)t} \right|
$$

\n
$$
\leq \sum_{r=0}^{\tau-1} \sum_{k=0}^{r} a_{r,r-k} + \sum_{r=\tau}^{n} \left| \sum_{k=0}^{r} a_{r,r-k} e^{i(r-k)t} \right|
$$

\n
$$
\leq \sum_{r=0}^{\tau-1} 1 + \sum_{r=\tau}^{n} O(A_{r,r-\tau}) = (\tau - 1 + 1) + O\left(\sum_{r=\tau}^{n} A_{r,r-\tau}\right)
$$

\n
$$
= O(t^{-1}) + O\left(\sum_{r=\tau}^{n} A_{r,r-\tau}\right),
$$

in view of Lemma [2.](#page-4-0)

Lemma 4 *If* $\{a_{r,k}\}$ *is non-negative and non-decreasing (with respect to k) sequence and satisfies the condition [\(6\)](#page-3-0), then*

$$
|(C^1 \cdot T)_n(t)| = O\left(t^{-2}/(n+1)\right) + O(t^{-1}), \text{ for } \pi/(n+1) < t \leq \pi.
$$

Proof Using $\sin(t/2) \ge t/\pi$, for $\pi/(n+1) < t \le \pi$ and Lemma [3,](#page-4-1) we have

$$
|(C^1 \cdot T)_n(t)| = (2\pi (n+1))^{-1} \left| \sum_{r=0}^n \sum_{k=0}^r a_{r,r-k} \sin((r-k+1/2)t) / \sin(t/2) \right|
$$

\n
$$
\leq (2\pi (n+1))^{-1} \left| \sum_{r=0}^n \sum_{k=0}^r a_{r,r-k} \sin((r-k+1/2)t) / (t/\pi) \right|
$$

\n
$$
= (2t(n+1))^{-1} \left| \sum_{r=0}^n \sum_{k=0}^r a_{r,r-k} \sin(r-k+1/2)t \right|
$$

\n
$$
\leq (2t(n+1))^{-1} \left| \sum_{r=0}^n \sum_{k=0}^r a_{r,r-k} e^{i(r-k+1/2)t} \right|
$$

Approximation of Periodic Functions … 79

$$
\begin{split}\n&= (2t(n+1))^{-1} \left| e^{it/2} \sum_{r=0}^{n} \sum_{k=0}^{r} a_{r,r-k} e^{i(r-k)t} \right| \\
&= (2t(n+1))^{-1} \left| \sum_{r=0}^{n} \sum_{k=0}^{r} a_{r,r-k} e^{i(r-k)t} \right| \\
&= (2t(n+1))^{-1} \left| O(t^{-1}) + O\left(\sum_{r=\tau}^{n} A_{r,r-\tau}\right) \right| = O\left(t^{-2}/(n+1)\right) + O(t^{-1}),\n\end{split}
$$

in view of condition [\(6\)](#page-3-0).

5 Proof of Theorem [3](#page-3-3)

Following Titchmarsh [\[14](#page-10-9)], we have

$$
s_n(f; x) - f(x) = \frac{1}{2\pi} \int_0^{\pi} \phi(t) (\sin(n + 1/2)t / \sin(t/2)) dt
$$

Denoting $C^1 \cdot T$ means of $\{s_n(f; x)\}\$ by $t_n^{C^1 \cdot T}(f)$, we write

$$
t_n^{C^1 \cdot T}(f) - f(x) = \int_0^{\pi} \phi(t) (2\pi (n+1))^{-1} \sum_{r=0}^n \sum_{k=0}^r a_{r,r-k} \sin((r-k+1/2)t) / \sin(t/2) dt
$$

=
$$
\int_0^{\pi/(n+1)} \phi(t) (C^1 \cdot T)_n(t) dt + \int_{\pi/(n+1)}^{\pi} \phi(t) (C^1 \cdot T)_n(t) dt
$$

= $I_1 + I_2$, say. (12)

Using Lemma [1](#page-4-2) and the fact that $f \in Lip \alpha \Rightarrow \phi \in Lip \alpha$ {[\[2\]](#page-9-2), Lemma 5.27}, we have

$$
|I_1| \le \int_0^{\pi/(n+1)} |\phi(t)| |(C^1 \cdot T)_n(t)| dt = O(n+1) \int_0^{\pi/(n+1)} t^{\alpha} dt
$$

= $O(n+1)((n+1)^{-\alpha-1}) = O((n+1)^{-\alpha}).$ (13)

Now, using Lemma [4](#page-5-0) and the fact that $f \in Lip \, \alpha \Rightarrow \phi \in Lip \, \alpha$,

$$
|I_2| \le \int_{\pi/(n+1)}^{\pi} |\phi(t)| \left| (C^1 \cdot T)_n(t) \right| dt \le \int_{\pi/(n+1)}^{\pi} |\phi(t)| O\left[(t^{-2}/(n+1)) + t^{-1} \right] dt
$$

= $O(I_{21}) + O(I_{22})$, say, (14)

where

$$
I_{21} = (n+1)^{-1} \int_{\pi/(n+1)}^{\pi} t^{\alpha-2} dt = \begin{cases} O((n+1)^{-\alpha}), & 0 < \alpha < 1, \\ O(\log(n+1)/(n+1)), & \alpha = 1. \end{cases}
$$
 (15)

and

$$
I_{22} = O\left(\int_{\pi/(n+1)}^{\pi} t^{\alpha-1} dt\right) = O((n+1)^{-\alpha}).\tag{16}
$$

Collecting (12) – (16) , we get

$$
t_n^{C^1 \cdot T}(f) - f(x) = \begin{cases} O((n+1)^{-\alpha}), & 0 < \alpha < 1, \\ O(\log(n+1)/(n+1)), & \alpha = 1. \end{cases}
$$

Thus

$$
||t_n^{C^1 \cdot T}(f) - f||_{\infty} = \sup_{0 \le x \le 2\pi} \{|t_n^{C^1 \cdot T}(x) - f(x)|\} = \begin{cases} O((n+1)^{-\alpha}), & 0 < \alpha < 1, \\ O((\log(n+1))/(n+1)), & \alpha = 1. \end{cases}
$$

6 Proof of Theorem [4](#page-3-4)

Following the proof of Theorem [3,](#page-3-3)

$$
t_n^{C^1 \cdot T}(f) - f(x) = \int_0^{\pi/(n+1)} \phi(t)(C^1 \cdot T)_n(t)dt + \int_{\pi/(n+1)}^{\pi} \phi(t)(C^1 \cdot T)_n(t)dt
$$

= $I_1 + I_2$, say. (17)

Using Hölder's inequality, $\phi(t) \in W(L^r, \xi(t))$, condition [\(10\)](#page-3-1), Lemma [1](#page-4-2) and mean value theorem for integrals, we have

$$
|I_{1}'| = \left| \lim_{\varepsilon \to 0} \int_{\varepsilon}^{\pi/(n+1)} \left[(\phi(t) \sin^{\beta}(t/2)/\xi(t)) \cdot (\xi(t) (C^{1} \cdot T)_{n}(t)) / (\sin^{\beta}(t/2)) \right] dt \right|
$$

\n
$$
\leq \left[\int_{0}^{\pi/(n+1)} \left(|\phi(t)| \sin^{\beta}(t/2)/\xi(t) \right)^{r} dt \right]^{1/r}
$$

\n
$$
\cdot \left[\lim_{\varepsilon \to 0} \int_{\varepsilon}^{\pi/(n+1)} \left(\xi(t) | (C^{1} \cdot T)_{n}(t) | / (\sin^{\beta}(t/2))^{s} dt \right]^{1/s}
$$

\n
$$
= O((n+1)^{-1/r}) \left[\lim_{\varepsilon \to 0} \int_{\varepsilon}^{\pi/(n+1)} \left| \xi(t) (n+1) / (\sin^{\beta}(t/2)) \right|^{s} dt \right]^{1/s}
$$

\n
$$
= O(n+1)^{1-1/r} (\xi(\pi/(n+1)) \left[\lim_{\varepsilon \to 0} \int_{\varepsilon}^{\pi/(n+1)} t^{-\beta s} dt \right]^{1/s}
$$

\n
$$
= O(\xi(1/(n+1)(n+1)^{\beta+1-1/r-1/s}) = O((n+1)^{\beta} \xi(1/(n+1)), \qquad (18)
$$

Approximation of Periodic Functions ... 81

in view of condition [\(9\)](#page-3-5), i.e. $(\xi(\pi/(n + 1)) / (\pi/(n + 1))) \leq (\xi(1/(n + 1)) / (\pi/(n + 1)))$ $(1/(n + 1))).$

Using Lemma [4,](#page-5-0) we have

$$
|I_2| = \left[\int_{\pi/(n+1)}^{\pi} |\phi(t)| \left[O\left(t^{-2}/(n+1) \right) + O\left(t^{-1} \right) \right] dt \right]
$$

= $O \left[\int_{\pi/(n+1)}^{\pi} t^{-2} |\phi(t)|/(n+1) dt \right] + O \left[\int_{\pi/(n+1)}^{\pi} t^{-1} |\phi(t)| dt \right]$
= $O(I_{21}) + O(I_{22}).$ (19)

Using Hölder's inequality, $|\sin t| \leq 1$, $\sin(t/2) \geq (t/\pi)$ and condition [\(11\)](#page-3-2), we have

$$
|I'_{21}| = (n + 1)^{-1} \left[\int_{\pi/(n+1)}^{\pi} \left\{ (t^{-\delta} |\phi(t)| \sin^{\beta}(t/2)/\xi(t)) \cdot (\xi(t)/(t^{-\delta+2} \sin^{\beta}(t/2))) \right\} dt \right]
$$

\n
$$
\leq ((n + 1)^{-1}) \left[\int_{\pi/(n+1)}^{\pi} |t^{-\delta} |\phi(t)| \sin^{\beta}(t/2)/\xi(t)|^{r} dt \right]^{1/r}
$$

\n
$$
\cdot \left[\int_{\pi/(n+1)}^{\pi} |\xi(t)/\left(t^{-\delta+2} \sin^{\beta}(t/2)\right)|^{s} dt \right]^{1/s}
$$

\n
$$
= O((n + 1)^{-1}) \left[\int_{\pi/(n+1)}^{\pi} |t^{-\delta} |\phi(t)| \sin^{\beta}(t/2)/\xi(t)|^{r} dt \right]^{1/r}
$$

\n
$$
\cdot \left[\int_{\pi/(n+1)}^{\pi} |\xi(t)/\left(t^{-\delta+2} \sin^{\beta}(t/2)\right)|^{s} dt \right]^{1/s}
$$

\n
$$
= O((n + 1)^{-1}) O\left((n + 1)^{\delta-1/r} \right) \left[\int_{\pi/(n+1)}^{\pi} |\xi(t)/\left(t^{-\delta+2} \sin^{\beta}(t/2)\right)|^{s} dt \right]^{1/s}
$$

\n
$$
= O((n + 1)^{\delta-1-1/r}) \left[\int_{\pi/(n+1)}^{\pi} \left(\xi(t)/t^{-\delta+2+\beta} \right)^{s} dt \right]^{1/s}
$$

\n
$$
= O((n + 1)^{\delta-1/r}) \xi(\pi/(n + 1)) \left[\int_{\pi/(n+1)}^{\pi} t^{-(-\delta+1+\beta)s} dt \right]^{1/s}
$$

\n
$$
= O((n + 1)^{\delta-1/r}) \xi(\pi/(n + 1)) \left[(n + 1)^{(-\delta+1+\beta)-1/s} dt \right]
$$

\n
$$
= O(\xi(1/(n + 1)(n + 1)^{\beta})
$$
 (20)

in view of decreasing nature of $\xi(t)/t$ and $r^{-1} + s^{-1} = 1$. Similarly, as above, we have

$$
|I'_{22}| = \int_{\pi/(n+1)}^{\pi} t^{-1} |\phi(t)| dt = \int_{\pi/(n+1)}^{\pi} (t^{-\delta} |\phi(t)| \sin^{\beta}(t/2)/\xi(t)) (\xi(t)/(t^{1-\delta} \sin^{\beta}(t/2))) dt
$$

\n
$$
\leq \left[\int_{\pi/(n+1)}^{\pi} |t^{-\delta} |\phi(t)| \sin^{\beta}(t/2)/\xi(t)|^r dt \right]^{1/r} \left[\int_{\pi/(n+1)}^{\pi} \left| \xi(t)/\left(t^{1-\delta} \sin^{\beta}(t/2)\right) \right|^{s} dt \right]^{1/s}
$$

\n
$$
= O\left((n+1)^{\delta-1/r} \right) \left[\int_{\pi/(n+1)}^{\pi} \left(\xi(t)/t^{1-\delta+\beta} \right)^s dt \right]^{1/s}
$$

$$
= O\left((n+1)^{\delta+1-1/r}\right) \xi(1/(n+1)) \left[\int_{\pi/(n+1)}^{\pi} t^{(\delta-\beta)s} dt\right]^{1/s}
$$

= $O\left((n+1)^{\delta+1-1/r}\right) \xi(1/(n+1))(n+1)^{(-\delta+\beta)-1/s}$
= $O(\xi(1/(n+1))(n+1)^{\beta+1-1/r-1/s}$
= $O(\xi(1/(n+1))(n+1)^{\beta}$. (21)

Collecting (17) – (21) , we have

$$
|t_n^{C^1 \cdot T}(f) - f(x)| = O\left((n+1)^{\beta} \xi(1/(n+1))\right).
$$

Hence,

$$
||t_n^{C^1 \cdot T}(f) - f(x)||_r = \left(1/2\pi \int_0^{2\pi} |t_n^{C^1 \cdot T}(f) - f(x)|^r dx\right)^{1/r} = O\left((n+1)^{\beta} \xi\left(1/(n+1)\right)\right).
$$

Remark 2 The proof of Theorem [3,](#page-3-3) for $r = 1$, *i.e.* $s = \infty$ can be written by using sup norm while using Hölder's inequality.

7 Corollaries

The following corollaries can be derived from Theorem [4](#page-3-4)

1. If $\beta = 0$, then for $f \in Lip(\xi(t), r)$, $||t_n^{C^1 \cdot T}(f) - f(x)||_r = O(\xi(1/n))$. 2. If $\beta = 0$, $\xi(t) = t^{\alpha}(0 < \alpha \le 1)$, then for $f \in Lip(\alpha, r)(\alpha > 1/r)$,

$$
\|t_n^{C^1 \cdot T}(f) - f(x)\|_{r} = O\left(n^{-\alpha}\right). \tag{22}
$$

3. If $r \to \infty$ in Corollary 2, then for $f \in Lip\alpha(0 < \alpha < 1)$, [\(22\)](#page-9-3) gives

$$
||t_n^{C^1 \cdot T}(f) - f(x)||_{\infty} = O(n^{-\alpha}).
$$

Remark 3 In view of Remark [2,](#page-9-4) corollaries of Lal [\[5](#page-10-4), p. 350] are particular cases of our Corollaries 2 and 3, respectively.

References

- 1. Chandra, P.: Trigonometric approximation of functions in *L ^p*-norm. J. Math. Anal. Appl. **275**(1), 13–26 (2002)
- 2. Faddeen, L.M.: Absolute Nörlund summability. Duke Math. J. **9**, 168–207 (1942)
- 3. Khan, H.: On the degree of approximation of functions belonging to the class $Lip(\alpha, p)$, Indian. J. Pure Appl. Math. **5**(2), 132–136 (1974)

Approximation of Periodic Functions …

- 4. Kishore, N., Hotta, G.C.: On absolute matrix summability of Fourier series Indian. J. Math. **13**(2), 99–110 (1971)
- 5. Lal, S.: Approximation of functions belonging to the generalized Lipschitz Class by *C*1.*N p* summability method of Fourier series. Appl. Math. Comput. **209**, 346–350 (2009)
- 6. Leindler, L.: Trigonometric approximation in *L ^p*-norm. J. Math. Anal. Appl. **302**(1), 129–136 (2005)
- 7. Lenski, W., Szal, B.: Approximation of functions belonging to the class $L^p(w)$ _β by linear operators. Acta ET Commentationes Universitatis Tartuensis DeMathematica **13**, 11–24 (2009)
- 8. Qureshi, K.: On the degree of approximation of a periodic function *f* by almost Nörlund means. Tamkang J. Math. **12**(1), 35–38 (1981)
- 9. Qureshi, K.: On the degree of approximation of a function belonging to the Class $Lip\alpha$, Indian. J. Pure Appl. Math. **13**(8), 560–563 (1982)
- 10. Qureshi, K.: On the degree of approximation of a function belonging to weighted $W(L^p, \xi(t))$ - class. Indian J. Pure Appl. Math. **13**(4), 471–475 (1982)
- 11. Qureshi, K., Nema, H.K.: On the degree of approximation of functions belonging to weighted class. Ganita **41**(1–2), 17–22 (1990)
- 12. Rhoades, B.E., Ozkoklu, K., Albayrak, I.: On the degree of approximation of functions belonging to a Lipschitz class by Hausdorff means of its Fourier series. Appl. Math. Comput. **217**, 6868–6871 (2011)
- 13. Singh, U., Mittal, M.L., Sonker, S.: Trigonometric approximation of signals (functions) belonging to $W(L^p, \xi(t))$ −class by matirx (C^1, N_p) operator. Int. J. Math. Math. Sci. 2012, 1–11 (2012)
- 14. Titchmarsh, E.C.: The Theory of Functions, pp. 402–403. Oxford University Press, Oxford (1939)