Approximation of Periodic Functions
Belonging to W(L", &(t), (8 > 0))-Class
By (C 1. T) Means of Fourier Series

Smita Sonker

Abstract Various investigators such as Khan [3], Qureshi [8—10], Qureshi and Nema
[11], Leindler [6] and Chandra [1] have determined the degree of approximation of
functions belonging to the classes W (L", £(t)), Lip(&(t), r), Lip(a, r) and Lipa
using different summability methods with monotonocity conditions. Recently, Lal
[5] has determined the degree of approximation of the functions belonging to Lip«
and W(L", &(t)) classes by using Cesaro-Norlund (Cl.N p)—summability with non-
increasing weights { p,, }. In this paper, we shall determine the degree of approximation
of 2w -periodic function f belonging to the function classes Lipa and W(L", £())
by C! - T—means of Fourier series of f. Our theorems generalize the results of Lal
[5], and we also improve these results in the light of [7, 12, 13]. From our results,
we derive some corollaries also.

Keywords Trigonometric fourier series + W(L", £(t), (B > 0))-class - Fourier
series + Matrix means - Signals - Trigonometric polynomials

1 Introduction

For a given signal f € L" := L"[0,2x],r > 1, let

n

+ Z(ak coskx + by sinkx) = Zuk(f; x), (1)

k=1 k=0

ap
su(f) =su(f3x) = ?
denote the partial sums, called trigonometric polynomial of degree (or order) n, of the
first (n + 1) terms of the Fourier series of f. The matrix means of (1) are defined by
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n
ta(f) = ta(fix) = D anisk, n=0,1,2, ..,

where T = (a, ) is a lower triangular matrix with non-negative entries such that
an—1=0,Ap1 = Z;’:k an r sothat A, o = 1,Vn > 0. The Fourier series of f is
said to be T-summable to s, if 7,(f) — s asn — o0.

By superimposing C! summability upon 7' summability, we get the C! - T sum-
mability. Thus the C' . T means of {s,(f)} denoted by tnc 1'T( f) are given by

l‘nCl'T(f) e (n+ 1)71 Z (Zarksk(f))

r=0

If tnC LT, s1asn — o0, then the Fourier series of f is said to be C L. T—summable
to the sum s1. The regularity of methods C! and 7 implies regularity of method C'!-
Afunctlonf € Lipaif|f(x +1)— f(x)| = O(Jt|*),for0 < a <1, f € Lip(a, r)

it (7 1+ 0 - f@rds) = om0 <a <121,
o 1/r
feLip@@.nif (Ji7 17 + 0= fldx) " = 0w and
b . I/r
feww ewyif ([ 10/ +0 = f@)sinf (e/217dx) = 0@,

B > 0,r > 1, where £(¢) is a positive increasing function of ¢.
It B =0, W(L",&(2),) = Lip(§(t), r) and for £(1) = t*(a > 0), Lip(§(t), 1)
Lip(a,r). Lip(a,r) — Lipa asr — o0o. Thus

Lipa C Lip(a, 1) € Lip(§(1), 1) € W(L", §(1)).

The L"-norm off e L0, 2] is defined by
1= [ T ireorax) A < e <o and i fle = sup £

x€[0,27]
The degree of approximation of f € L” denoted by E,(f) is given by

En(f) = min || f(x) = Tp(x) [Ir,

in terms of n , where 7}, (x) is a trigonometric polynomial of degree n.
This method of approximation is called trigonometric Fourier approximation.
We also write

o) =fx + )+ flx —1)=2f(),

sin(r —k 4+ 1/2)¢
e (n+ I)ZZ T )

=0 k=0

and t = [1/1], the integral part of 1/¢.
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2 Known Results

Various investigators such as Khan [3], Qureshi [8—10], Qureshi and Nema [11],
Leindler [6] and Chandra [1] have determined the degree of approximation of func-
tions belonging to the classes W(L", £(¢)), Lip(&(t),r), Lip(«, r) and Lipa with
r > 1land 0 < @ < 1 using different summability methods with monotonocity con-
ditions on the rows of summability matrices. Recently, Lal [5] has determined the
degree of approximation of the functions belonging to Lipa and W (L", £(¢)) classes
by using Cesdro-Norlund (C!-N p)—summability with non-increasing weights {p, }.
He proved:

Theorem 1 Let N, be a regular Norlund method defined by a sequence {p,} such
that

P,y Pl=0@m+1). )

V=T

Let f € L'[0, 270] be a 2x-periodic function belonging to Lip o (0 < & < 1), then
the degree of approximation of f by C' - N p means of its Fourier series is given by

sup 1SN @) = OOl = 1SN = flloo =
0<x<2m

O((n+1)7%), O<a<l,
0 (logn + Dre/(n+ 1)), a=1.

Theorem 2 If f is a 2m-periodic function and Lebesgue integrable on [0, 27 ] and

is belonging to W (L", £(1)) class then its degree of approximation by C' - N p means
of its Fourier series is given by

165N = fllr = 0 (0 + DFF7E (1 + 1),

provided & (t) satisfies the following conditions:

{&(t)/t} be a decreasing sequence, 3)
7/ (n+1) -\
( /0 (e @1sin® (1)/6)) dt) =0+, @
T ’ 1/r
( [ (o) dr) =0+ 1), 5)
7/(n+1)

where § is an arbitrary number such that s(1 — §) — 1 > 0, rlps i=1,r>1,
conditions (4) and (5) hold uniformly in x.

The improved version of above theorems with their generalization to non-monotone
weights {p, } can be seen in [13].
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3 Main Results

In this paper, we generalize Theorems 1 and 2 by replacing matrix N, with matrix
T in the light of Remarks 2.3 and 2.4 of [13, pp. 3—4]. More precisely, we prove:

Theorem 3 If T = (an i) is a lower triangular regular matrix with non-negative
and non-decreasing (with respect to k) entries which satisfy

D A =0+ 1), (©)

r=t

hold uniformly in T = [1/t], then the degree of approximation of a 2w -periodic
function f € Lipa (0 < a < 1) C L'[0, 27] by C' - T means of its Fourier series
is given by

O((n+1)7%), 0<a<l,

O ((log(n + 1))/(n + 1)), a=1. ™

1€ T (f) = F@)lloo = [

Theorem 4 If T = (an ) be a lower triangular regular matrix with non-negative
and non-decreasing (with respect to k) entries which satisfy condition (6), then the
degree of approximation of a 2m -periodic function withr > 1 and 0 < Bs < 1 by
C' - T means of its Fourier series is given by

I
55T () = £ @l = 0 ((n+ DPH7E 1+ 1), ®)
provided positive increasing function & (t) satisfies the conditions:

&(t)/t be a decreasing function, )

7/(n+1) . 1/r
( /O (Ip ()| sin (1/2) /£ (1)) dr) =0(m+D7Y", (10

T l/r
(/ (t—5|¢<r>|sinf’a/z)/sm)’dr) = 0((n+1)°"1/n), (11)

/(n+1)

where § is a real number such that B+ 1/r > § > rl ol p sl =1, r > 1. Also,
conditions (10) and (11) hold uniformly in x.

Remark 1 1If we take ay x = pp—i/ P, for k < n and a, ; = 0 for k > n such that
Pu(=2 % _opk #0) > ocoasn — ooand P_; = 0 = p_y, then C!. T means
reduce to C! - N, means and
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D Arre=D D ark=> > (pri/P)=D (P/P)=P Y P

r=t k=r—1 r=t k=r—1
.. .. 1
Therefore, condition (6) reduces to condition (2) and tnc T means reduce to t,f N

means. Hence our Theorems 3 and 4 are generalization of Theorems 1 and 2,
respectively.

4 Lemmas

We need the following lemmas for the proof of our theorems.
Lemma 1 Let {a,} be a non-negative sequence of real numbers, then
(€' T)(t)=0m+1), for0<t <nm/(n+1).

Proof Using sinnt < nt and sin(¢/2) > t/w for0 <t < /(n + 1), we have

D i sin((r — k + 1/2)1)/ sin(t/2)

r=0 k=0

(€ Tu)] = @rn+ 1)

= Qi+ 1) DD ap, i lsin((r — k + 1/2)1)/ sin(z/2)]

r=0 k=0

<@+ 1)) YD ank =k +1/2)1/(t/7)

r=0 k=0

<@+ > an @r =2k + 1)

r=0 k=0
n r
<@+ D Cr+ DD ar
r=0 k=0

=@@+1))"' D Cr+ DAL= 0@m+1).
r=0

Lemma 2 [4] If {a, i} is a non-negative and non-decreasing (with respect to k)
sequence, then for) <a < b < 00,0 <t <7 and for every r

b

Z ay g TR

k=a

= O(Ar,rfr)-
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Lemma 3 If{a,«} is non-negative and non-decreasing (with respect to k) sequence,
thenforO <t <m

n r
Z Z .y T

r=0 k=0

= O(I_l) + 0 (Z Ar,rr)v

r=t

holds uniformly in T = [1/t].

Proof For 0 <t < m, we have

n r =1 r n r
i (r—k)t i (r—k)t i (r—k)t
r=0 k=0 r=0 k=0 r=t k=0
-1 r nor
i (r—k)t i(r—k)t
= Zzar,r—k|el(r ) | + Zzanr—kel(r )
r=0 k=0 r=t k=0
-1 r n r
S5 3)TRED 3) SIRTLEL
r=0 k=0 r=t k=0

IA

T—1 n n
21420 = -1+D+0 (Z A)
r=0 r=t r=t
n
ot H+o0 (Z Ar.r_f),
r=t

in view of Lemma 2.

Lemma 4 If{a,} is non-negative and non-decreasing (with respect to k) sequence
and satisfies the condition (6), then

I(C - T, (1) = O (t_z/(n + 1)) FOu™Y), form/n+1) <t <.

Proof Using sin(t/2) > t/m,forw/(n + 1) <t < w and Lemma 3, we have

z Za,,,_k sin((r — k + 1/2)1)/ sin(1/2)
r=0 k=0
DD anrksin((r =k +1/2)0)/(t/7)

r=0 k=0

(- T = Qe+ 1)

< Qrn+1))"!

n

DD aprgsinGr —k+1/2)t
r=0 k=0
n r

z Z a’_’r_kei(r—k+l/2)t

r=0 k=0

=Qtn+1)"

< @m+1)7!
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n r
= Qi+ 1) e Zzar.r_kei(r—k)t

r=0 k=0

n r
=@+ 1)) DD ar g

r=0 k=0

=@+ o+ 0 (Z A)

=0 (™ /m+1)+ o0,

in view of condition (6).

5 Proof of Theorem 3

Following Titchmarsh [14], we have
1 T
() = () = 5 / $()(sin(n + 1/2)1/ sin(t/2))d1
0

Denoting C! - T means of {s,(f; x)} by tnCl'T(f), we write
OENOR / " pOCrn+ 1) DY arxsin( — k +1/2)0) sin(/2dr
0 =0 k=0
/(n+1) T
= / $(O(C - T (0)dr + / S - T)u(0)dr
0 7/(n+1)

= 11 + I, say. (12)

Using Lemma 1 and the fact that f € Lipa = ¢ € Lip«a {[2], Lemma 5.27}, we
have

w/(n+1) 7/(n+1)
n < / BWOIIC" - Thn()]di = On + 1)/ dt
0 0
=0+ D((n+ 1) H=0(m+1)™). (13)

Now, using Lemma 4 and the fact that f € Lipa = ¢ € Lip«,

b < / 6] |(C" - T)u ()] di s/ 6010 [/ + 1)) + 17V de
/(n+1) w/(n+1)
= O(I21) + O(I), say, (14)
where
_ a9 [T a2, { O((n+1)7%), O<a<l,
b =@+1 ~/77/(’1+1)[ M=10(ogn+ D/ +1). a=1. IV
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and

In=0 (/n t”‘]dt) =0(n+1)7%). (16)

/(n+1)

Collecting (12)—(16), we get

O((n+1)™%), O<a<l,

cl.r -
t, (f)—f(x)—[0(1og(n+1)/(n+1)), a=1

Thus

1S T () = flloo= sup {11€T0x) = FOOI) =

0=<x=<2m

O((n+1)7%), O<a<l,
O((log(n + 1))/(n + 1)), a=1.

6 Proof of Theorem 4

Following the proof of Theorem 3,

Y

()(C" - T, (t)dt + / G (1)(C" - T, (1)dt

w/(n+1)
= I, + I, say. (17)

w/(n+1)

€T () = F ) =/0

Using Holder’s inequality, ¢ (1) € W(L", £(t)), condition (10), Lemma 1 and mean
value theorem for integrals, we have

/ 7/ (n+1)
1| = |lim / [@@sin(1/2)/60) - EO(C" - T)u0)/sin (1/2)) ] ar

7/(n+1) . 1/r
= [/0 (|¢(t)lsin’3(t/2)/§(t)) dz}

7 /(1) s 1
- L@O [ (orct o) dr]

7/(n+1) ; 1/s
=0+ |:lirr})/ &) (n + 1)/ (sinf (1/2))] dz]

7/ (n+1) ls
=0+ D'""VE@/(n+ 1) |:lin})/ t‘ﬂsdt]

= 0E1/(n 4+ D(n + DAY=y — o+ DPe(l/(n + 1), (18)
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in view of condition (9), i.e. (§(w/(n + 1))/(x/(n + 1)) < (E(A/(n + 1))/
(I/(n + 1))).

Using Lemma 4, we have

L] = [/;(HH) 16(0))| [0 (t_z/(n n 1)) +0 (f‘)] dti|

=0 [/ 20|/ (n + 1)dt] +0 [/ t1|¢(t)|dt:|
/(n+1) 7/(n+1)
= O(ly)) + O(l). (19)

Using Holder’s inequality, | sin#| < 1, sin(t/2) > (¢/m) and condition (11), we
have

byl =+ D7 [ / o [ @lsin@/2)/60) - €0/ sint/2))) dr]
7 /(n+
T 1/r
<(+Dn7h [ / O] sinﬁ(r/2>/5(z>|’dt]
Jr/(n+1)

T s 1/s
: [ / ’5(1) / (f‘“z sinf (¢ /2)) dz]
w/(n+1)

T 1/r
=0((mn+D7hH [/ [t~ (1) sin (1/2) /&(0)| dr}
7 /(n+1)

| Uﬂznﬂ) e/ (2 sinf /)| dz] :

=0+ Ho ((n + 1)6—1/’) [/ﬂ )g(r)/ (r—‘m sin’s(t/Z)))s dz}l/s

w/(n+1)

= 0((n + 1)~ [/ﬂ

/(n+1)

(S(I)/I—8+2+ﬁ)3 dt] 1/s

T

1/s
=0((n+ D"/ + 1) [ / f“‘”‘*ﬂ)‘dr}

/(n+1)
= O0((n+ D"V /(n + 1)) [(n + l)(“5+1+ﬁ)‘1/5dz]

=0E1/(n+ D+ 1F) (20)

in view of decreasing nature of £(r)/t and r~! + s~ = 1.
Similarly, as above, we have

o = / tH@)ldr = / (Ple@)Isin (1/2)/60) (80)/ '~ sin” (1/2))) di

/(n+1) /(n+1)
4 1/r e 5 1/s
< [ / |t 1 (1)) sin (1/2) /£ (0)|" dt] [ / [/ (1 sin /)| dz]
/(n+1) /(n+1)

oforrt [ o]
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e

0 ((n + 1)5“—‘/’)5(1/@ + 1) [/

0 (4 1P ) 501/ 1)+ DO

OE(/(n + 1)) (n + 1YFHI=1/r=1/s
OE/(n+ 1) + 1. .

1/s
t(ﬁ—ﬂ)sdt]
/(n+1)

Collecting (17)—(21), we have

1 T(F) = £ = 0 ((n+ DPEA/(n + 1))
Hence,

2

1/r
1T = Ol = (1/2n/0 €T () — f(x)de) =0 (n+DPg1/n+ D).

Remark 2 The proof of Theorem 3, for r = 1, i.e. s = 0o can be written by using
sup norm while using Holder’s inequality.

7 Corollaries

The following corollaries can be derived from Theorem 4

LIf B =0, then for f € Lip(§(1),r), III,,CI'T(f) — [l =0 (E1/n)).
2. =0,6(t) =1t“(0 <o < 1), then for f € Lip(a, r)(ax > 1/r),

1T () = fll, = 0 (n7%). (22)

3.If r — oo in Corollary 2, then for f € Lipa(0 < o < 1), (22) gives

1€ T(f) = @)oo = O™).

Remark 3 In view of Remark 2, corollaries of Lal [5, p. 350] are particular cases of
our Corollaries 2 and 3, respectively.
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