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Abstract We analyze the following average sampling problem: Let h be a non-
negative measurable function supported in

[ − 1
2 ,

1
2

]
. Given a sequence of samples

{yn}n∈Z ∈ R
Z of polynomial growth, find a multiply generated spline f of polyno-

mial growth such that
∫ 1

2

− 1
2

f (n − t)h(t)dt = yn , n ∈ Z. It is shown that the solution

to this problem is unique over certain subspaces of the multiply generated spline
space of polynomial growth.

Keywords Interpolation · Multiply generated splines · Average sampling

1 Introduction

The sampling theorem is one of the widely used results in the signal processing field.
The well-known Shannon sampling theorem states that, any bandlimited signal f
is completely determined by its samples [4, 8]. Although the Shannon sampling
theorem is very useful, it has a number of problems when using it for practical appli-
cations. The bandlimited functions have analytic continuation to the entire complex
plane and hence they are of infinite duration which is not always realistic. On the
other hand, the sinc function has a very slow decay. Further, the measured samples
are not exact in practical problems and they are the average of the signal around
the sampling point and the averaging function depends on the aperture device used
for capturing the samples. For these reasons, sampling and local average sampling
have been investigated in several other classes of signals. In general, spline spaces
yield many advantages in their generation and numerical treatment so that there are
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many practical applications in signal, image processing, and communication the-
ory. In the literature [1–8] many authors have investigated the generalized sampling
technique for multiply generated shift-invariant spaces and spline subspaces. The
multiply generated spline space is defined in [5, 6] as

S =
{

f : f =
r∑

i=1

∑

n∈Z
ai (n)βdi (t − n)

}

with suitable coefficients ai (n), where βdi is the cardinal central B-spline of degree
di and is defined by,

βdi = χ[− 1
2 , 12 ] � χ[− 1

2 , 12 ] � · · · � χ[− 1
2 , 12 ](di + 1 terms),

where � represents the convolution (The convolution of two functions f and g is
defined as f � g(n) = ∫

f (t)g(n − t)dt). We consider the following subspace of the
multiply generated spline space:

SN :=
{

f : f =
∑

n∈Z
an

r∑

i=1

βdi (t − n)

}

If M = max{d1, d2, . . . , dr } and m = min{d1, d2, . . . , dr }, then f ∈ SN provided
that f (x) ∈ Cm−1(R) and that the restriction of f (x) to any interval between con-
secutive knots is identical with a polynomial of degree not exceeding M. If di ’s are
distinct, then

∑r
i=1 βdi (. − n), n ∈ Z are globally linearly independent.

We consider the following local average sampling problem:
Problem: Let {yn}n∈Z be a given sequence of real numbers. Find a spline f ∈ SN

such that f � h(n) = yn, n ∈ Z, where h ∈ L1(R) and
(
h �

∑r
i=1 βdi

)
(n) �= 0, for

some n ∈ Z and

supp(h) ⊆
[
−1

2
,
1

2

]
, h(t) ≥ 0, t ∈ R, 0 <

0∫

− 1
2

h(t)dt < ∞, 0 <

1
2∫

0

h(t)dt < ∞.

(1)

We show that this problem has infinitely many solutions. The uniqueness of so-
lution is obtained by imposing the following growth conditions on the samples and
the splines as that of Schoenberg [9]:

SN ,γ = {
f (t) ∈ SN : f (t) = O(|t |γ ) as t → ±∞}

and
Dγ = {{yn} : yn = O(|n|γ ) as n → ±∞}

.
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This problem over the singly generated spline space is analyzed in [10]. It is
shown in [10] that the local average sampling problem has a unique solution for
d ≤ 4 when the spline space is generated by a single central B-spline. For d > 4 the
same problem has been posed as an open problem. The same authors have analyzed
the problem for d ≥ 5 by reducing the support of h. They have shown in [11] that
the local average sampling problem for singly generated spline has a unique solution
when h is supported in

[− l
2 ,

l
2

]
, l < 1.

Lemma 1 Let ψ(x) = ∑r
i=1 βdi (x) and let A be the greatest integer such that

h � ψ(n) = 0,∀n < A, and let N1 be the smallest nonnegative integer such that
h�ψ(n) = 0,∀n > A+N1. Then the solutions of the problem form a linear manifold
in SN of dimension N1. Moreover, N1 = M + 1, if M is odd and N1 = M, if M is
even.

Proof When N1 = 0 this problem has a unique solution. For N1 > 0, we consider
the linear map from C

Z toSN defined by

{an}n∈Z 
−→
∑

n∈Z
anψ(t − n).

Since the integer translates of ψ are globally linearly independent, this map is an
isomorphism from C

Z onto SN . Therefore h � f (n) = yn in CZ if and only if,

N1∑

k=0

h � ψ(A + k)an−A−k = yn,∀n ∈ Z.

This forms a linear difference equation of order N1 with constant coefficients. Hence
the solution space is an N1 dimensional manifold inSN . �

2 Local Average Sampling Theorems

Theorem 1 (Main Theorem) Let di ≤ 4 and let h(t) be an integrable function
satisfying condition (1). Then for a given sequence of numbers {yn}n∈Z ∈ Dγ , there
exists a unique f ∈ SN ,γ such that

f � h(n) = yn, n ∈ Z. (2)

We define the function

G(z) :=
r∑

i=1

Gi (z)
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where
Gi (z) :=

∑

n∈Z
h � βdi (n)zn .

The exponential Euler spline is defined as

ϒz,di (t) =
∑

n∈Z
znβdi (n − t).

In terms of the exponential Euler spline we can write Gi (z) = ∫ 1
2

− 1
2

h(t)ϒz,di (t)dt.

Hence

G(z) =
∫ 1

2

− 1
2

h(t)ϒz(t)dt,

where ϒz(t) = ∑r
i=1 ϒz,di (t) = ∑

n∈Z zn ∑r
i=1 βdi (n − t).

We need some properties of ϒz(t).

Lemma 2 For d ∈ N, n ∈ Z and z ∈ C \ {0}, we have:

(i) ϒz−1(−t) = ϒz(t),
(ii) ϒz(t + n) = (z)nϒz(t),

(iii) d
dt (ϒz,di +1(t)) =

(
1 − 1

z

)
ϒz,di

(
t + 1

2

)
,

(iv) ϒ−1,di

( 1
2

) = 0 and ϒ−1,di (t) > 0 for t ∈ (− 1
2 ,

1
2

)
.

Proof (i)

ϒz−1(−t) =
∑

n∈Z
z−n

r∑

i=1

βdi (n + t)

=
∑

n∈Z
z−n

r∑

i=1

βdi (−n − t) =
∑

n∈Z
zn

r∑

i=1

βdi (n − t) = ϒz(t).

(ii)

ϒz(t + n) =
∑

k∈Z
zk

r∑

i=1

βdi (k − t − n) = zn
∑

k∈Z
zk

r∑

i=1

βdi (k − t) = znϒz(t).

(iii)

d

dt
(ϒz,di +1(t)) =

∑

n∈Z
zn d

dt
(βdi +1(n − t))

=
∑

n∈Z
zn

[
βdi

(
n −

(
t + 1

2

))
− βdi

(
n −

(
t − 1

2

))]
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= ϒz,di

(
t + 1

2

)
−

∑

n∈Z
zn−1βdi

(
n − 1 − t + 1

2

)

= ϒz,di

(
t + 1

2

)
− 1

z

∑

n∈Z
znβdi

(
n −

(
t + 1

2

))

= ϒz,di

(
t + 1

2

)
− 1

z
ϒz,di

(
t + 1

2

)

=
(
1 − 1

z

)
ϒz,di

(
t + 1

2

)

(iv)

ϒ−1,di

(
1

2

)
=

∑

n∈Z
(−1)nβdi

(
n − 1

2

)
= 0.

We shall show that ϒ−1,di (t) > 0 for t ∈ (− 1
2 ,

1
2

)
, by using induction on di . For

di = 1 by simple manipulation we get ϒ−1,1(t) > 0 for t ∈ (− 1
2 ,

1
2 ). Assume that

it is true for di and using (iii) we get

d

dt
(ϒ−1,di +1(t)) = 2ϒ−1,di

(
t + 1

2

)
> 0, t ∈

(
−1

2
, 0

)
.

Using ϒ−1,di +1
(− 1

2

) = 0 and ϒ−1,di +1 and being an even function, we obtain that
ϒ−1,di (t) > 0 for t ∈ (− 1

2 ,
1
2

)
. �

2.1 Uniqueness Theorem

Theorem 2 Let � = { f ∈ SN : f � h(n) = 0, n ∈ Z} and z1, z2, . . . , zl be the
roots of G(z). If the roots of G(z) are simple, then the set of functions ϒz−1

j
, where

j = 1, 2, . . . , l form a basis of �.

Proof By Lemma 1, � is a l = N1 dimensional subspace of SN .
Using Lemma 2, we get

h � ϒz−1
j

(n) =
∫ 1

2

− 1
2

h(t)ϒz−1
j

(n − t)dt

= zn
j

∫ 1
2

− 1
2

h(t)ϒz−1
j

(−t)dt

= zn
j

∫ 1
2

− 1
2

h(t)ϒz j (t)dt

= zn
j G(z j )

Therefore, ϒz−1
j

∈ � for j = 1, 2, . . . , l.
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Next, we have to prove that the elements of � are linearly independent.

l∑

j=1

c jϒz−1
j

(t) = 0 ⇔
l∑

j=l

c j

[
∑

n∈Z
z−n

j

r∑

i=1

βdi (n − t)

]

= 0

⇔
∑

n∈Z

⎡

⎣
l∑

j=1

c j z
−n
j

⎤

⎦

{
r∑

i=1

βdi (n − t)

}

= 0.

As
{∑r

i=1 βdi (n − t)
}
are linearly independent, we obtain

l∑

j=1

c j z
−n
j = 0.

This is a linear system of equation in the variable c1, c2, . . . , cl with coefficient
matrix, the Vandermonde’s determinant. Therefore c j = 0.
Hence, the functions ϒz−1

j
(t), j = 1, 2, . . . , l form a basis of �. �

Theorem 3 Let di ∈ N and h(t) be an integrable function satisfying condition (1).
If the roots of G(z) are simple and no roots on the unit circle |z| = 1, then for a given
sequence of numbers {yn}n∈Z ∈ Dγ , there exists a unique f ∈ SN ,γ , such that

f � h(n) = yn, n ∈ Z. (3)

Moreover, the solution can be written as

f (t) =
∑

n∈Z
yn L(t − n),

where the reconstruction function L is given by L(t) := ∑r
i=1 Li (t) := ∑r

i=1∑
n∈Z cnβdi (t − n) and cn are the coefficients of the Laurent series expansion of

G(z)−1. Further the reconstruction function L is of exponential decay.

Proof Let C(z) = G−1(z) = ∑
n∈Z cnzn . Then there exist μ ∈ (0, 1) such that

cn = O
(
μ|n|). As βdi has compact support, we obtain that O(L) = O(μ|t |). Now

for |t | > 2, we have

∑
n∈Z |n|γ μ|t−n|

(|t | + 1)γ
≤

∑
n∈Z |n|γ μ|[t]−n|−1

(|[t]|)γ

=
∑

n∈Z(|[t] − n|)γ μ|n|−1

(|[t]|)γ
≤

∑

n∈Z
(1 + |n|)γ μ|n|−1

< ∞.
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As a consequence of the above inequality we obtain that

f (t) =
∑

n∈Z
yn L(t − n) = O(|t |γ ),

as t → ±∞. Since yn L(t − n) = O(|n|γ μ|t−n|), it is easy to see that the series

∑

n∈Z
yn L(t − n)

converges uniformly and absolutely in every finite interval. Also,

f (t) =
∑

n∈Z
yn L(t − n)

=
∑

n∈Z
yn

r∑

i=1

∑

k∈Z
ckβdi (t − n − k)

=
∑

k∈Z

(
∑

n∈Z
ynck−n

)
r∑

i=1

βdi (t − k).

Therefore f ∈ SN ,γ .

Using C(z)G(z) = 1, we obtain that

(h � L)(n) =
r∑

i=1

∑

k∈Z
ckh � βdi (n − k) = δ0(n).

Hence f (t) = ∑
n∈Z yn L(t − n) satisfies

(h � f )(n) = yn, n ∈ Z. (4)

Now we shall show the uniqueness. Assume that f, g ∈ SN ,γ satisfy (4). Then
f − g ∈ �. Using Theorem 2, there exist a constant c j such that

f (t) − g(t) =
l∑

j=1

c j

(
ϒz−1

j

)
.

As f, g ∈ SN ,γ , we get f (t) − g(t) = O(|t |γ ).

Using Lemma 2 and the behavior of
(
ϒz−1

j

)
(t) at ±∞, we get c j = 0 and hence

f = g.

�
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For di = 1, 2, 3, 4 we shall show that the roots of G(z) are simple and not on the
unit circle |z| = 1.

Proof (Main Theorem) As a consequence of Theorem 1 it is sufficient to prove
that, all the roots of G(z) are simple and not on the unit circle |z| = 1 for distinct
di = 1, 2, 3, 4.

We have G(z) = ∑r
i=1 Gi (z). We can write

G(z) =
r∑

i=1

z
−li
2 Pi (z)

where li :=
{

di + 1 if di is odd
di if di is even

and Pi (z) is a polynomial of degree li . Therefore,

G(z) = z
−m
2

r∑

i=1

z
m−li
2 Pi (z) = z

−m
2 P(z),

where P(z) is a polynomial of degree m = max(l1, l2, . . . , lr ).
As di ’s are distinct, we can take d1 = 1, d2 = 2, d3 = 3, and d4 = 4. Therefore

m = 4 and we obtain

P(z) = z2G(z)

= z4
{
h � βd4 (2) + h � βd3 (2)

} + z3
{
h � βd4 (1) + h � βd3 (1) + h � βd2 (1)

+ h � βd1 (1)
} + z2

{
h � βd4 (0) + h � βd3 (0) + h � βd2 (0) + h � βd1 (0)

}

+ z
{
h � βd4 (−1) + h � βd3 (−1) + h � βd2 (−1) + h � βd1 (−1)

} + {
h � βd4 (−2)

+ h � βd3 (−2)
}
.

Hence P(0) > 0 and P(1) > 0.
We can write

P(z) = z2
4∑

i=1

∫ 1
2

− 1
2

h(t)ϒz,di (t)dt. (5)

Using Lemma 2 and Eq. (5) we get

P(−1) =
4∑

i=1

∫ 1
2

− 1
2

h(t)ϒ−1,di (t)dt > 0.

Since limz−→∞ P(z) = ∞, It is suffices to find z0 ∈ (−1, 0) such that

4∑

i=1

ϒz0,di (t) < 0, for all t ∈
(

−1

2
,
1

2

)
, (6)
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since for such a z0, we have

P(z0) = z20

4∑

i=1

∫ 1
2

− 1
2

h(t)ϒz0,di (t)dt < 0, z0 ∈ (−1, 0)

and P

(
1

z0

)
= 1

z20

4∑

i=1

∫ 1
2

− 1
2

h(t)ϒz−1
0 ,di

(t)dt = 1

z20

4∑

i=1

∫ 1
2

− 1
2

h(t)ϒz0,di (−t)dt < 0

and z−1
0 ∈ (−∞,−1). By solving

∑4
i=1 ϒz0,di

( 1
2

) = 0, we get a unique z0 ∈
(−1, 0).

Now
4∑

i=1

ϒz0,di

(
1

2

)
= 0 ⇔ ϒz0,1

(
1

2

)
+ ϒz0,2

(
1

2

)
+ ϒz0,3

(
1

2

)
+ ϒz0,4

(
1

2

)
= 0

⇔ z30

{
β4

(
3

2

)
+ β3

(
3

2

)}
+ z20

{
β4

(
1

2

)
+ β3

(
1

2

)
+ β2

(
1

2

)
+ β1

(
1

2

)}

+ z0

{
β4

(
−1

2

)
+ β3

(
−1

2

)
+ β2

(
−1

2

)
+ β1

(
−1

2

)}

+
{
β4

(
−3

2

)
+ β3

(
−3

2

)}
= 0

⇔ z30
3

48
+ z20

93

48
+ z0

93

48
+ 3

48
= 0.

Thepossible solutions of z0 are−1,−15− 4
√
14,−15+ 4

√
14.Theunique solution

z0 ∈ (−1, 0) is −15 + 4
√
14. For this z0 value

4∑

i=1

ϒz0,di (t) < 0, for all t ∈
(

−1

2
,
1

2

)
.

Thus we can conclude that all the roots of G(z) are simple and not on the unit circle
|z| = 1 for di = 1, 2, 3, 4. �

Remark 1 The condition that the zeros of the Laurent polynomial G(z) are simple
and do not lie on the unit circle |z| = 1 is a sufficient condition for uniqueness of
solution for the local average sampling problem.

3 Conclusion

We proved local average sampling theorem over certain subspaces of the multiply
generated spline spaces of polynomial growth. Let h(t) be an integrable function
satisfying condition (1). We have shown that if the roots of G(z) are simple and no
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roots on the unit circle |z| = 1, then for a given sequence of numbers {yn}n∈Z ∈ Dγ ,

there exists a unique f ∈ SN ,γ such that f � h(n) = yn, n ∈ Z, for the distinct
di ≤ 4. Also, we have shown that the roots of G(z) are simple and not on the unit
circle |z| = 1, for di ≤ 4. We could not find a proof for di ≥ 5.
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