Approximation of Solutions
of a Stochastic Differential
Equation
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Abstract The existence, uniqueness, and convergence of approximate solutions of
a stochastic differential equation with deviated argument is studied using analytic
semigroup theory and fixed point method. Then we consider Faedo-Galerkin approx-
imation of solution and prove some convergence results. We also study an example
to illustrate our result.
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1 Introduction

Fractional differential equations appear abundantly in the theory of fractals, visco-
elasticity, seismology, polymers, etc. Stochastic evolution equations are natural gen-
eralizations of ordinary differential equations incorporating the random noise which
causes fluctuations in deterministic models. For details refer [1]. In certain real-world
problems, delay depends not only on the time but also on the unknown quantity as
we can see in [2]. Das et al. [3, 4] can be referred for related work with deviated argu-
ment. Bahuguna et. al. [5] discussed the Faedo-Galerkin approximation of solution.
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So far the Faedo-Galerkin approximation of solution stochastic fractional differential
equation with deviated argument is neglected in the literature. In an attempt to fill this
gap we study the following stochastic fractional differential equation with deviated
argument in a separable Hilbert space (H, (., .)).

d
“Du(t) + Au() = f(u), u(h(u(t))))$, 1€0.7]

u) =uge H (D

where 0 < < 1and0 < T < 0. ”D? denotes the Caputo fractional derivative of
order S and A : D(A) C X — H is a linear operator. A and the functions f, h are
defined in the hypotheses (H1) — (H3) of Sect.2.

2 Preliminaries

Here we deal with two separable Hilbert spaces H and K.

(H1) A isaclosed, densely defined, self-adjoint operator with pure point spectrum
0< XN <M< - <X <--- with), - ocoand m — oo and
corresponding complete orthonormal system of eigenfunctions ¢; such that

Agj=Njgpjand < i, ¢j >=0;

(H2) The function f : [O,T] x Hy X Ho—1 — L(K, H) is continuous and 3
constant L ¢ such that

Il f(u,ur) — f(, v1)||2Q < Lyl+llu —vlla + llur — villa—1]

(H3) Themap i : H, x Ry — Ry satisfies ||h(u,) — h(v,)|| < Lp(lu — vla)

If (H1) is satisfied then — A is the infinitesimal generator of an analytic semigroup
{e'4 .t > 0} in H. We also note that 3 constant C such that || S(r)|| < Ce*’ and
constants C; ’s such that ||d—tl,-S(t)|| <Ci,t>0,i=12 Also |[AS®)|| < Ct!
and |[A®S@®)|| < Cat™.

We define the space H, as D(A“) endowed with the norm ||.| .. Let (£2, §, P)
be a complete probability space endowed with complete family of right continu-
ous increasing sub c—algebras {§;,# € J} such that §; C §. A H—valued ran-
dom variable is a F—measurable process. We also assume that W is a Wiener
process on K with covariance operator Q. Suppose Q is symmetric, positive, lin-
ear and bounded operator with TrQ < oo. Let Ko = Q%(K ). The space L(z) =

L> (Ko, H,) is a separable Hilbert space with norm ||¢||L(2) = ||1/JQ%||L2(K’HQ). Let
L>(£2,5, P; Hy) = L»(82; Hy) be the Banach space of all strongly measur-
able, square integrable, H,—valued random variables equipped with the norm
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||u(.)||%2 = EJu(,; w)||%1a. C% denotes the Banach space of all continuous
maps from J = (0, T] into L,(§2; H,) which satisfy sup,E]EHu(t)HZC(y < 0.
Lg(.Q, H,) = {f € L2($2, H,) : f is Fo — measurable} denotes an important
subspace. For 0 < a < 1 define

C?_l ={ueCqt:|lu(t) —u(s)la—1 < Lit —s],Vt,s € [0, T]}.

Now let us define mild solution of (1):
Definition 1 The mild solution of (1) is a continuous §; adapted stochastic process
ueCynNcC ?_1 which satisfies the following:

1. u(r) € H, has Cadlag pathson ¢t € [0, T].
2. Vt € [0, T], u(¢) is the solution of the integral equation

!

u(t) = Tg(t)uo + / (t— s)ﬁfng(t —8)fu(s), u(h(u(s), s))dw(s), t € [0,T]
0

2

where Sg(1) = [;° (p(0)S(tP0)d0; and Ts(t) = q [;° 0Cs0)S°0)d0; (s is a
probability density function defined on (0, 00), i.e. (3(f) > 0, § € (0, c0) and

Jo% ¢p(0)d = 1. Also | Ts(Dul| < Clull, 1S5l < Frg lull, 14°Ss(0ull <
BCaL2=a) ,—ap
rasaaay’ Il

Lemmal Letr f : J X 2 X 2 — Lg be a strongly measurable mapping with
JTENFOIPdt < 0o. Then
L2

1 t
Bl [ f@duol” <1 [ EIf6)I7ds
0 0 2

vVt € [0, T] and p > 2 where ls is a constant containing p and T.

Iy is incorporated into the constants in the following sections.

3 Existence and Uniqueness of Approximate Solutions

In this section we consider a sequence of approximate integrals and establish the
existence and uniqueness of solution for each of the approximate integral equa-
tions. For 0 < @ < 1 and u € Cf, the hypotheses (H2) — (H3), imply that
f(s), u(h(u(s), s))) is continuous on [0, Tp]. Therefore, 3 a positive constant

N =2L[TY" +2R(1 + LLy) + LL, 21+ 2No,  No = E|| f (uo, uo)|>

such that || f (s, u(s), u(h(u(s), s)))|| <N, t €[0,T]. Choose Ty, 0 < Top < T
such that
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1—a)—1
( ﬁCQF(Z—a) )2N T()ﬁ( )

R
ra+s0-ay) "Bl-a-1-2

2 f(l—a)—1

r+ 5801 - ) 26(1 —a) — 1

Let
Br={ueCfNCy~" :u0) =uo, |u—uoln.a=<R)

It is easy to see that B is a closed and bounded subset of C%O_l and complete. Let
us define the operator F;, : B :— Bpg by

t
(Fau) (1) = Ta()uo +/O (t—5)71S5(t —5) fu(u(s), u(h(u(s), s))dw(s).  (4)

Theorem 1 [f the hypotheses (H1), (H2) and (H3) are satisfied and ug € Lg(.Q,
Xa), 0 <« < 1, then 3 a unique u, € Bg such that Fou, = u,,Vn=0,1,2,---,
i.e., uy satisfies the approximate integral equation
t
00 = ToOu0 + [ =578 =905, )0, 0y 51, ) ),
1€l0,T] (5)

Proof Stepl : We need to show that F,u € C%’)_l, Yu € C(T’(')_l. It is easy to check
that 7, : Cf — C§.Ifu € Cf7 ', 0 <t <t < Toand 0 < o < 1 then

E||Fau(tz) — Fu(t)2_,
< 3E|[Ts(r2) — Ta(t)luoll>_,

5]
+ 3E| / (t — )71 A1 S5(02 — ) fu ()., u(h(u(s))dw(s) |l
n

n
+ 3E| / ALtz — )7 S5(12 — ) — (11 — )7 S50 — 9]
0

A2 X fu(u(s), u(h(u(s))dw(s)ll o

FPCir2Q—ay [-
r2a+pa1 - a) /i,
x JATPE fuu(s), u(h(u(s),)))|*ds

< 3E|[Ts(t2) — Ta(t)uoll>_; + 3 (12 — 5)2P0=0=2

n
+3 / IAL(12 — )7 718512 — 5) — (11 — )7 718511 — 5)]
0

x JA“2NZE| fu(u(s), uh(u(s)))|ds (6)



Approximation of Solutions of a Stochastic Differential Equation 55

Yu € H, we can write

d oo ]
ES(tHG)udtz / 08t~ AS (P 0)dt.

1

n
[S(t)6) — St 0)Ju = /

141

The first term of (6) can be estimated as follows:

00 2
I[T5(t2) — Ta(D)luoll>_, < ( /O Ca(0)1S(250) — S(rf@)nnAa—luonde)

[e'e) n o4 2
= (/ Cﬂ(ﬁ’)[/ IId—S(I%)IIdt]IIuoIIadH)
0 n t

< CPlluoll?_; (2 — 1)? 7

For the second term of (6) we get the following estimate

I
/ - $)2PA=0=2 gl £, (u(s), u(h(u(s))))|*ds
141

— $)28(0-a)—1
- Nty —11)
=T 28— -1

(®)

For the third term we will use the following estimate

n
/0 IAL(12 — )77 1S5(2 — 5) — (11 — )" 7185011 — )11

X A2 E| fu(u(s), u(h(u(s))))||1*ds

1 00 d 5 d )
< A (/0 Cﬂ(a)”[ES((t - S) 9)|t:t2 — ES((t — s)ﬂ9)|t—t1]”d9)

x E| f (u(s), uth(u(s)))ds
2

I3 o0 %) d2
< / (/ QI / IIA“_Z—zS((t—s)39)||dt]d9) Nds
0 0 1 dt

< CIA“2(t — 11)*NTy 9)

Hence from inequalities (7)-(9) we see that the map F;, : C%)_l — C?O_l is well-
defined. Now we prove that F,, : Bg — Bpg. Sofort € [0, Tp] and u € Bg.

E|(Fuu)(t) — uol?
< 2E||(T3(t) — Duoll%

t
+ 2E| /0 (t =)' St — ) f(u(s), uh(u(s)))dw(s)|5
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BC. T2 —a) \* [ o
52E||(Tg<t)—l>uo||i+2(“— /0 (12 — 5)200=0=2)2

ra+p1—-ow)
X E| fulu(s), ulh(u(s)))|*ds

B 2 Bl-a)-1
§§+2( BC.T(2 — ) ) v 1o

<5+§—R
r'(+p8(1-a) Bl—a)y—17-"2 2

Now we show that F,, is a contraction map by using (3) in last but one inequality.
Yu,v € B

t
E|[(Fu)(t) — (Fav)(D]2 = E|| /O (t — )" TAS5(t — 5)
< [f (), ulh () = f(s,v(s), v(h(v(s), HNNdw ()]G

BCI2—a) \* [ o
= (F<1+/3(1 —a))) /0 (12 =

x E|fu(s), u(h(u(s))) — f@(s), v(h(v(s))))[*ds
<( pC I 2 =) 2 T80 —a) -1
“\ra+sa1-ay 280 —a)—1

2
=< llu = vl

2
) 2L (14 2LLA)|Ju — v

This implies that 3 a unique fixed point u,, of F;,. Thus there a unique mild approx-
imate solution of (1)

Lemma 2 Let (H1) — (H3) hold. Ifug € Lg(.Q, D(A")),V0 < a < n < 1, then
uy(t) € D(AY) forallt € [0, To] with0 < v < n < 1. Also if ug € D(A), then
u,(t) € D(A") Vt € [0, Ty], where 0 < v <n < 1.

Proof By Theorem (1) we get the existence of a unique u,, € Bpg, satisfying (5).
Theorem 2.6.13 of [6] implies fort > 0, 0 <~ < 1, S(t) : H — D(A") and for
0<~v<n<1, D(AT) C D(A"). Itis easy to see that Holder continuity of u, can
be proved using the similar arguments from (6) to (9). Also from Theorem 1.2.4 in
[6], we have S(t)u € D(A) if u € D(A). The result follows from these facts and
that D(A) C D(A7) for0 <~ < 1.

Lemma 3 Let (H1) — (H3) hold and ug € Lg(.Q, X ). Then for any ty € (0, Tp]
3 a constant Uy, independent of n such that Elun(D)? < Uy, YVt €lty, Tol, n =
1,2,--- . Also ifug € Lg(.Q, D(A)) then 3 constant Uy independent of n such that
Elupn®|2 <Uy VYt € [to, Tol, n=1,2,---, Y0O<~y<1.

Proof Letug € Lg(.Q, H,). Applying A" on both sides of (4)
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Ellua (]2
t
< 2E|T5(uol? +2| / (t = )75t — $) fo(uls), u(h((s))dw(s)|
0

2,=298y 2 BCI2=7) \* N(Tp)*Pi-n-!
=2k Tl (F(1 +680 =)/ 280 -7 —1

= UtO'
Also if up € L9(£2, D(A)), then we have that ug € LI(£2, D(A")) for 0 < v < 1.
Hence,
Ellun, )12
t
< 2E|Tst)uoll? + 2 /0 (t = )77 Sp(t — 5) fu(u(s), u(h(u(s))dw(s)[5

BCT (2 —7) )2 N(Tp)2P-n~1
ra+pa—-)) 280-7y-1

< 2C2|IM0||2+( = Up.

Hence proved.

4 Convergence of Solutions

In this section the convergence of the solution u, € H, of the approximate integral
equation (5) to a unique solution u of (2), is discussed.

Theorem 2 Let the hypotheses (H1) — (H3) hold and if ug € Lg(.Q, H,) then
Vip € (0, T1,

lim sup lun(®) =t ()l = 0.
M=>00 (n>M, 1<t <Tp}

Proof Let0 < a <y < n.Forty € (0, Tp]

E| fu(ttn (0), e (A (1)) = fon(t, (), thm (h (i ()]
< 2E|| fuun (@), g (B (1)) = fou(t, (), th (1t (D))
< 2E|| fu m (8), e (Bt (1)) = fin (2, st (1), 1t Gt (0))) |1
<2QLy(1 +2LLYIE up — um | + EI(P" = PMun 2] (10)

Now,

, 1
E[[(P" = P"un )| < E[A*(P" = P™")ATup (0)|* < Wl‘illfﬂum(t)ll2
m
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Then we have
Ell fu(t, un(t), ttn (Rt (1)) = fn (8, thn (), o (e (i () |1

1
< 2(2Lf(1 +2LLy) [Euun — il + Sz BV O D

For0 <1y <1

1) t
Ellun(t) — um (0|3 52(/°+/ )||(r—s)f’—1Aasg<t—s>||2
0 ),‘6

X E| fu(un (1), e (R (1)) = fon (it (0), i (et 0)))[Pds (1)
The estimate of first integral of the above inequality is
Ellun (1) — um®)I5

“
5/0 1= )71 A5 — 52

X E”fn(un(t)’ un(h(un(t)))) — fm(um([)’ um(h(um(t))))Hst
- ( BCT (2 —7) )2 IN (19 — §y2) 200 -2

T+ 50 =) Ba—mp—1 o 0=d<1 (12

The estimate of second integral is

t
Ellun(t) — um(®|? < / I —5)7 =1 A%S5(r — 5)II?
)
X E|l fu(ttn (1), ttn(h(n (1)) = fn W (0), e (B (D)) |2 ds

<( BC,T(2—7) ) /( _ g)2Bla=D=2
ra+pa-my)

E A um(s)|?
Ny — ) ]

BCLT (2 —7) 28(a—1)—2
S“L"(IHLL’”(F(1+5(1—w)>) [/ =9

2 1— 1
Ut() 0 B(l—a)—
00 251 —a) -1

X 4L (1 +2LLy) [Enun — Ul +

X Elluy — unllZds + ] (13)

Substituting inequalities (12), (13) into (11) we get
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Ellun(t) — um(@®|2
<( BC, T2 ~7) )24N(t0—61t(’))23(17)2t/
ra+psa—m7) 26(1 —) —1 0

+ 8Ls(1+2LLy) (Fﬁ(lC:LFﬂ((ZI VV)))) [/ (t — 5)2Ba=D-2

268(1—a)—1

Uy Tg
A0 23(1 —a) -1

X Elluy — up|>ds + ]

By using Gronwall’s inequality, 3 a constant D such that

- 2 — 511)280=n-2
E””n(f>—um<t>||25[( FC,I2 =) ) ANGo — by 072,

ra+pga—-my) 2B(1 =) —1
BC, (2 —7) )2 v, 100! } b
A2

+8Lf(1+2LLh)(F(1+ﬁ(1 “)) 200281 —a) -1

Let m — oo. Taking supremum over [#y, Tp] we get the following inequality:

C,r@- 24N (19 — §11))?P0-1=2
Bl )~ i1 = [ () e i x D
ra+pa—-m) 260 =y —1
Since t,) is arbitrary, the right-hand side can be made infinitesimally small by choosing
t; sufficiently small. Thus the lemma is proved.

Corollary 1 Ifug € D(A), then lim sup Ellu,(t) — upy (t)||i =

M=>00 (n>m, 0<t<Tp}

Proof By using Lemmas (2) and (3) we can take 7y = 0 in the proof of Theorem (2)
and hence the corollary follows.

Theorem 3 Let us assume that (H1) — (H3) are satisfied and suppose ug €
Lg(.@, Xa). Then fort € [0, Tyl, 3 a unique function u, € Br where

un (1) = Tug + [y (t — )71 S50t — ) fu Un(5), tn (hy (un () dw(s),

and u(t) € Bg, where

u(t) = Tguo + f(;(t — s)’B*ISﬁ(t —8) f(u(s), uth(u(s))))dw(s),t € [0, Ty], such
that u,, — u as n — oo in Br and u satisfies (2) on [0, Tp].

Proof By using the above Corollary, Theorems 1 and 2 it is to see that 3 u(¢) € B
such that
limy,—s 00 E ||t (t) — u()[|2 = 0 on [0, Tp]. Now
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t
Ellun(t) — Tguo + / (t — $)771S5(t = 8) o un(5), tn (i (un ())))dw ()|
fo
fo
<E| /0 (t — $)771S5(t = 5) fu (), ttn (i (1 (5))))dw(s) ||

ac 2 Tozﬂ—z
= (F(1+ﬁ)) AT 4

Let n — oo then
Ellun (1) = Tguo + [y (t = )71 S50t = 5) fuun (5), wn (hn(tt () dw(s) |2

2 28-2
BC T; . . . .
< (—F(I +ﬂ)) N —2%_2 to and since ty is arbitrary we conclude u(t) satisfies (2).

Uniqueness follows easily from Theorems 1, 2 and Gronwall’s inequality.

4.1 Faedo-Galerkin Approximations

We know from the previous sections that for any 0 < Ty < T, we have a unique
uecC ‘Tlo satisfying the integral equation
u(t) = Touo + [§(t — )71 S50t — ) £ (u(s), u(h((s))dw(s), t € [0, Ty] Also,
3 a unique solution u, € C %0 of the approximate integral equation
un (1) = Tguo + Jo(t — )75t = 5) fun (5), wn (h(un (5))))dw(s), 1 € [0, Tp).
Faedo-Galerkin approximation i, = P"u, is given by
Pluy(t) = un(t) = Tpt) P"uo

+ Jot = 9)P71S5(t — )P f (1 (), un (h(un(5)))dw(s), t € [0, Tol. If

the solution u(#) to (2) exists on [0, Tp] then it has the representation

u(t) = Zai(t)qb,-, where «; (t) = (u(t), ¢;) fori =0,1,2,3,--- and
i=0

n

(1) = D ol (i, where of (1) = (@, (1), ¢) fori = 0,1,2,3, .

i=0
As a consequence of Theorems 1 and 2, we have the following result.
Theorem 4 Let us assume that (H1) — (H3) are satisfied and suppose uy €
Lg(.Q, Xq). Then fort € [0, Tol, 3 a unique function u, € Br where
un(t) = TgP"ug + [o(t — $)P71S5(t — $)P" f (1 (), tn (h(un (5))))dw (s),
and u(t) € Bg, where
u(t) = Tguo + [y (t — )P 1S5t — ) f(u(s), u(h(u(s))))dw(s), t € [0, Tol, such
that u,, — u as n — oo in Br and u satisfies (2) on [0, Tp].

Now the convergence of o (1) — «;(¢) is shown. It is easily seen that
o

A% [u() — i (D] = A°[ D {ei() — of OYdi] + A% D i (1)

i=0 i=n+1
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= > Mai(t) — o ()i + D Alai(t)¢;. Thus we have
=0 i=n+1
E|A“u(r) — i ()|* > Do M Eloi (1) — o (1)]%.

Theorem 5 Let us assume (H1) — (H3) hold.
n

(i) Ifuo € LY(2, X,) then lim  sup Zx\i(t)zaEIIai(t) — oz?(t)||2j| =0

"> el Tol | ;2o
n
(i) Ifuo € LY(82, D(A)) then lim sup | D Xi(t)**Ella;(t) — o (1)[* | =0
"% 1el0,T0] | i
Theorem 5 follows from the facts mentioned above the theorem.

Corollary 2 Let us assume (H1) — (H3) hold.
@) Ifug € Lg(.Q, X,) then lim sup E|| A%, (1) — L'tm(t)]||2 =0

>0 telty, Tol,n=m

(ii) If uo € LY(2, D(A)) then Jdim - sup  E[| A% (1) — i (O]IIP =0

te[0,Ty],n>m

Proof

E|Aitn (1) — i (O = E| P un(t) — P up (0%
< 2E||P"[un(t) — um (12 4 2E[(P" — P™)yu ()12

< 2E||[tn (1) — um (D12 +2 EllA up (1)

Y=«
Am

Then the result (i) follows from Theorem 2 and result (ii) follows from Corollary 1.

5 Example

Suppose fort >0, x € (0,1),0 < g <1

dw(t)
dt ’
v(t,x) =vg, t =0, x €(0,1) and v(t,0) =v(,1)=0,t>0 (15

“DPuy(t, %) = vex (t, %) + F((t, ), v(h(t, v(x))))

Let F be an appropriate Holder continuous function satisfying (H2) in
Lg(K, (0, 1)). w is a standard L;(0, 1) valued Weiner process. Let us define A =

—ﬁ, f = F, v(x) = u(t) and let D(A) = H}(0,1) N H*(0, 1), D(A!/?) =
H(} (0, 1). Then (15) can be reformulated into (1). Now from Theorems (1), (2) we
can similarly prove the existence, uniqueness, and approximation of the mild solution

of (15).
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