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Abstract In this paper we investigate two efficient numerical methods for solving
the Black–Scholes equation for pricing European options. We use spectral methods
to discretize the associated partial differential equation with respect to space (asset
direction) and generate a system of ordinary differential equations in time. This
system is then solved by applying the numerical inversion of the Laplace transform
which is based on the Talbot’s method [A. Talbot, The accurate numerical inversion
of Laplace transforms, IMA J. Appl. Math. 23(1), 97–120 (1979)]. This involves an
application of trapezoidal rule to approximate a Bromwich integral. Using Cauchy’s
integral theorem, we deform the Bromwich line into a contour which starts and
ends in the left half plane. Comparative numerical results obtained by this and other
three methods (Exponential Time Differencing Runge–Kutta Methods of order 4,
MATLAB solver ode15s and Crank-Nicholson’s method) are presented.

Keywords Option Pricing · Contour Integrals · Spectral Methods · Exponential
Time Differencing Runge-Kutta Methods

1 Introduction

Since its development in the 1970s by F. Black and M. Scholes, the Black–Scholes
equation has become a fundamental model for pricing financial derivatives [1]. A
derivative security is a financial instrument whose value depends on the values of
some other underlying variables, e.g. stocks, foreign currency. Among the most
popular derivatives, options are actively traded on different financial markets over
the world. An option gives its holder the right without any obligation to buy (call
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option) or to sell (put option) the underlying asset by a certain date (maturity date) for
a certain price (strike price). The European options can only be exercised at maturity.

The Black–Scholes partial differential equation can be used to model different
types of options. However, a closed form solution cannot always be found and we
must therefore resort to numerical methods to solve such a PDE. Some of the most
popular methods used in the past to tackle these type of problems are those based on
Monte Carlo simulations [2], binomial trees [3] and finite difference methods [7].

Finite difference methods are classical methods for solving PDEs and have been
used extensively to price options since the advent of the financial mathematics. The
authors in [9] used a grid stretching in combination with backward differencemethod
of fourth order in time to solve the European options. In [11], Tangman et al. used
a method based on the grid stretching to generate a high-order compact scheme to
improve on the well-known second-order Crank–Nicolson method for solving these
problems. In spite of the popularity of these time marching methods, one of their
critical drawback is that they usually require as many time steps as spatial meshes to
maintain their stability.

In this paper, we consider the application of Laplace transformwhich has recently
been investigated by some researchers and is considered to be a valuable alternative
method to finite differences methods for solving parabolic PDEs [4, 10, 15]. This
has led to great applications in the financial world.

The rest of the paper is organized as follows. In Sect. 2 we give a full description
of the Black–Scholes equation which is used to model the European put and call
options. In Sect. 3, we introduce the spectral discretization method. Application of
the Laplace integration method is discussed in Sect. 4. Finally, in Sect. 2, we present
comparative numerical results.

2 Problem Description

We consider the following Black–Scholes (BS) equation to price European options

∂V

∂t
+ 1

2
σ2S2 ∂2V

∂S2 + r S
∂V

∂S
− r V = 0, S ∈ (0,∞), t ∈ (0, T ). (1)

Final and boundary conditions are given by

V (S, T ) =
⎧
⎨

⎩

max(S − K , 0) for call

max(K − S, 0) for put
(2)

and
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V (0, t) = 0, V (S, t) → S − K e−r(T −t) as S → ∞ for call,

V (0, t) = K e−r t , V (S, t) → 0 as S → ∞ for put.

⎫
⎬

⎭
(3)

In the above, V (S, t) is the price of a call/put option for the underlying asset whose
price is S at time t up to the expiry date T , r is the interest rate, σ is the volatility of
the underlying asset, and K is the strike price.

We set τ = T − t to transform the backward formulation (1)–(3) to the following
forward equation:

∂V

∂τ
− 1

2
σ2S2 ∂2V

∂S2 − r S
∂V

∂S
+ r V = 0, (4)

The initial condition is given by the terminal payoff

V (S, 0) =
⎧
⎨

⎩

max(S − K , 0) for call

max(K − S, 0) for put
(5)

and the boundary conditions are given by

V (0, τ ) = 0, V (S, τ ) → S − K e−rτ as S → ∞ for call,

V (0, τ ) = K e−rτ , V (S, τ ) → 0 as S → ∞ for put.

⎫
⎬

⎭
(6)

3 Spectral Discretization

To semi-discretize the PDE (1), we consider a spectral method. The basic idea behind
the spectral methods is as follows. For a given set of points, we interpolate the
unknown solution and differentiate the interpolating polynomial at these grid points.
This discretization process leads to a system of equations which can then be solved
using any state-of-the-art solvers.

The discretization using spectral method (in this paper) is based on the Chebyshev
polynomial interpolation [13]. Methods such as finite elements or finite differences
divide the domain into subdomains and use local polynomials of low degree. By
contrast, spectral methods use global representations of high degree over the entire
domain.

The implementation of spectral methods can be divided into three categories,
namely, the Galerkin, tau, and the collocation (or pseudospectral) methods. The first
two of these methods use the expansion coefficients of the global approximation
and the latter can be viewed as a method of finding numerical approximations to
derivatives at collocation points. In a manner similar to finite difference or finite
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element methods, the equation to be solved is satisfied in space at the collocation
points. In this paper, we use the third one, i.e., the spectral collocation method.

The spectral process involves seeking the solution to a differential equation by
polynomial interpolation. In order to review the concept of polynomial interpolation,
we consider interpolating an arbitrary function f (x) at N + 1 distinct nodes {xk}N

k=0
in [−1, 1].

Given a set of grid points
{

x j
}N

j=0, an interpolating approximation to a function
f (x) is a polynomial fN (x) of degree N , determined by the requirement that the
interpolant agrees with f (x) at the set of interpolation points

{
x j

}N
j=0, i.e.,

fN (xi ) = f (xi ), i = 0, 1, ..., N . (7)

We define by Lk(x), the Lagrange polynomial of degree N ,

Lk(x) =
N∏

j=0
j �=k

x − x j

xk − x j
, k = 0, 1, ..., N .

Note that Lk(x) satisfies L j (xk) = δ jk , where δ jk is the Kronecker delta function.
The interpolation polynomial fN (x) is then given by

fN (x) =
N∑

k=0

f (xk)Lk(x). (8)

In this paper, we use the Chebyshev points as the grid points. These are given by

Chebyshev zeros: x j = cos
(

2 j+1
2(N+1)

π
)
, j = 0, ..., N ,

and
Chebyshev extrema: x j = cos

(
jπ
N

)
, j = 0, ..., N .

The Chebyshev points are often defined as the projection onto the interval [−1, 1]
of the roots of unity along the unit circle |z| = 1 in the complex plane [13]. For Euro-
pean options, since the payoff is nonsmooth, a direct application of the Chebyshev
points for discretization leads to low-order approximation. To regain a high-order
accuracy an alternative approach was proposed by Tangman [12]. The basic idea is
to modify the Chebyshev points as

x = [xk, x�]T , (9)

where
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xk = Smin +
(

K − Smin

2

) (

1 − cos

(
2πk

N

))

, k = 0, 1, ...,
N

2
, (10)

x� = K +
(

Smax − K

2

)(

1 − cos

(
2πl

N

))

, � = 1, 2, ...,
N

2
. (11)

for N even. This discretization clusters grid nodes at the boundaries located at Smin
and Smax as well as at the strike price K where the discontinuity of the payoff occurs.
As we show in Sect. 5, it follows that local grid refinement improve accuracy of the
spectral method at the payoff. Another advantage of this strategy is that it applies
directly to the Eq. (4) without the need for transforming into the interval [−1, 1].
Differentiation Matrices

The concept of collocation derivatives is associatedwith the interpolation polynomial
fN (x) as described above. These are the derivatives of fN (x) at the collocation points
{xk}N

k=0. Using (8), we can see that the mth order collocation derivative of fN (x) is
given by

dm fN (x)

dxm
=

N∑

k=0

f (xk)
dm Lk(x)

dxm
. (12)

Nodal representation yields

dm fN (x j )

dxm
=

N∑

k=0

f (xk)
dm Lk(x j )

dxm
, j = 0, ..., N , (13)

which can be expressed by the matrix formula

f (m)
N = D(m)

N fN , (14)

where

fN =
⎡

⎢
⎣

fN (x0)
...

fN (xN )

⎤

⎥
⎦ , f (m)

N =
⎡

⎢
⎣

f (m)
N (x0)

...

f (m)
N (xN )

⎤

⎥
⎦ ,

and D(m)
N is the (N + 1) × (N + 1) differentiation matrix of order m with entries

(
D(m)

N

)

j,k
= L(m)

k (x j ), j, k = 0, ..., N . (15)

The computation of these differentiationmatrices for an arbitrary orderm has been
considered in [6, 13]. Following the approach in [16], Weideman and Reddy [14]
developed aMATLABalgorithm (DMSUITEpackage) that computes theChebyshev
grid points as well as the differentiation matrices of an arbitrary order. The suite
contains a function chebdif that computes the extreme points of the Chebyshev
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polynomial TN (x) and the differentiation matrix D(m)
N . The code takes as input the

size of the differentiation matrix N and the highest derivative order m and produces
matrices D(�)

N of order � = 1, 2, ..., m.

Formulas for the computation of the entries of D(1)
N , N ≥ 1, let i, j = 0, 1, ...N ,

are (as given in [13]):

(
D(1)

N

)

00
= 2N 2 + 1

6
,

(
D(1)

N

)

N N
= 2N 2 + 1

6
, (16)

(
D(1)

N

)

j j
= −x j

2(1 − x2j )
, j = 1, ..., N − 1, (17)

(
D(1)

N

)

i j
= ci

c j

(−1)i+ j

(xi − x j )
, i �= j, i, j = 0, ..., N , (18)

where

ci =
⎧
⎨

⎩

2, i = 0 or N

1, otherwise.

Higher order derivatives are evaluated by recursions at a cost ofO(N 2) operations
[14, 16]. This turns out to be cost-effective as compared toO(N 3) if higher derivatives
are obtained by taking powers of the first derivative [14].

Using the differentiation matrices as described above, we can rewrite (4) in matrix
form as

∂V
∂τ

− 1

2
σ2P D(2)V − r Q D(1)V + rV = 0, (19)

where P and Q are the diagonal matrices with entries on the main diagonals as
(xk + 1)2 and (xk + 1), respectively, for k = 0, ..., N .

We will solve Eq. (19) using several time integration methods as indicated in the
next two sections.

4 Application of the Laplace Transform to Price
the European Call and Put Options

Applying the Laplace transform to Eq. (4), we obtain

zV̄ − 1

2
σ2S2 ∂2V̄

∂S2 − r S
∂V̄

∂S
+ r V̄ = V0. (20)

The boundary conditions are given by
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V̄ (0, z) = 0, V̄ (S, z) = Smax
z − K

(z+r)
for call,

V̄ (0, z) = K
(z + r)

, V̄ (S, z) = 0 for put.

⎫
⎪⎬

⎪⎭
(21)

The Eq. (19), therefore, becomes

zV̄ − 1

2
σ2P D(2)

N V̄ + r Q D(1)
N V̄ − rV̄ = V0,

(

zkI − 1

2
σ2P D(2)

N + r Q D(1)
N − rI

)

V̄k = V0 k = 0, ..., N − 1. (22)

A straight forward application of the Laplace inversion formula [8] yields

V(t) = h

2πi

∫ ∞

−∞
ez(�)t V̄z′(�)d�. (23)

Using the symmetry, the trapezoidal approximation yields

VM (t) = h

π

M−1∑

k=0

ezk t V̄kz′
k, (24)

where
V̄k = (zkI − A)−1 V0, k = 0, 1, ..., N − 1, (25)

and

A = 1

2
σ2P D(2)

N − rQD(1)
N + rI. (26)

Now since the differentiation matrices D(1)
N and D(2)

N are not sparse, the Eq. (25)
indicates the bulk of the computation in the trapezoidal rules (24). To speed up this
computation, an Hessenberg decomposition can be computed once at the beginning
as follows:

A = MHMT , (27)

where H = (hi j ) is an upper Hessenberg matrix, i.e., hi j = 0, i > j + 1, and M an
orthogonal matrix. Then for each zk , k = 0, 1, ..., M − 1, the Eq. (25) becomes

(zk I − MHMT )Vk = V0. k = 0, 1, ..., N − 1. (28)

From this we have

(zk I − H)Uk = MT V0 k = 0, 1, ..., N − 1, (29)
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Table 1 Parameters used in the contour over an interval [t0,Λt0]
Λ α A(α) μ̃Λt0/M B(α)

1 1.1721 1.0818 4.4921 2.3157

5 1.0791 2.4578 1.5013 1.2570

10 1.0236 3.3744 0.8871 1.0888

50 0.9381 5.5582 0.3452 0.7152

The right column B(α) shows the convergence rate over the contour for each set parameters

where Uk = MT Vk , so that

Vk = MUk, k = 0, 1..., N − 1. (30)

The solution Vk for each zk , is obtained by the computation of an almost triangular
system (29) and combining the result in (30) at only O(N 2) operations [5]. During
this process, the Hessenberg reduction (27) is only computed once beforehand.

For numerical implementation, we considered the following contour parameters
defined over an interval [t0,Λt0] (as defined in [15])

z = μ̃(1 + sin (iw − α)), (31)

where

A(α) = cosh−1
(

(π − 2α) Λ − π + 4α

(4α − π) sinα

)

and

h = A(α)

M
, μ̃ = 4απ − π2

A(α)

(
M

Λt0

)

,

with Λ ∈ N and M̃ is the number of points in the trapezoidal rule. The convergence
rate of the Laplace method on these contour is given by O

(
e−B(α)M

)
where

B(α) = π2 − 2πα

cosh−1
(

(π − 2α)Λ + 4α −π
(4α −π) sin(α)

) .

Values of the above parameters are given in Table1.

5 Numerical Results and Discussion

We compare the results obtained by using our Laplace transform method with
those obtained by simulations that we perform using ETDRK-4 (Exponential Time
Differencing Runge–Kutta Method of order 4) as well as the more conventional
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Table 2 Comparison of the errors defined by (32), for the Crank–Nicolson’s method, ETDRK4
and the Laplace inversion approach applied for a European call option

ode15s Crank–Nicolson ETDRK4 Laplace inversion method

N Time (s) Error Time (s) Error Time (s) Error Time (s) Error

20 12.5E-2 8.2E-2 6.0E-2 7.1E-3 5.2E-2 7.4E-3 1.1E-2 7.4E-3

30 14.8E-2 6.97E-4 4.47E-2 1.3E-3 5.4E-2 1.00E-3 5.1E-3 1.0E-3

40 19.3E-2 6.59E-5 10.9E-2 1.93E-4 7.5E-2 1.22E-4 7.0E-3 1.18E-4

50 22.3E-2 7.86E-6 13.3E-2 9.67E-5 9.5E-2 4.85E-5 9.1E-3 1.07E-5

60 24.2E-2 4.63E-6 1.63E-2 9.73E-5 12.6E-2 4.86E-5 1.2E-4 3.52E-6

80 31.0E-2 1.86E-5 26.1E-2 9.80E-5 21.8E-2 4.89E-5 2.0E-4 5.80E-7
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Γ

Fig. 1 Top figures Europeans call option (left), put (right). Bottom figures Δ (left) and Γ (right)
for European put option. K = 10, r = 0.05, σ = 0.2, Smax = 3K , T = 0.25 N = 80

time-marching methods such as Crank-Nicholson’s method (with stepsize 2.5e − 3)
and the well-knownMATLAB solver ode15s. These results are presented in Table2.
For the numerical simulations, we fix spatial variable S at Smax = 3K to reduce the
domain truncation error. Other parameters are chosen as follows K = 15, σ = 0.2,
r = 0.05, T = 0.25. Maximum absolute errors are calculated using the formula

error = max
t∈[0,T ]

|V(t) − VM (t)|, (32)

where V(t) is the analytical solution obtained by using the Black–Scholes formula
andVM (t) is the numerical solution obtained by any of the threemethods as indicated
in Table2.
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In Fig. 1, we plot values for Europeans call (and put) options as well as the Greeks
Δ and Γ . We notice that both Greeks are free of oscillations.

It isworthmentioninghere that even though in practice, the use of spectralmethods
for boundary value problems may be troublesome because the presence of bound-
aries often introduces stability conditions that are both highly restrictive and often
difficult to analyze, one should note that for smooth solutions the results using spec-
tral methods are of a degree of accuracy that local approximation methods cannot
produce. For such solutions spectral methods can often achieve an exponential con-
vergence rate as compared to the algebraic convergence rate of finite difference or
finite element methods.

One may also think that the matrices in spectral methods are neither sparse nor
symmetric, in contrast to the situation in finite differences or finite elementswhere the
sparsity structure of the matrices simplifies the computation. However, the number
of discretization points required to achieve the expected accuracy using the spectral
method ismuch less than those required in finite difference or finite elementmethods,
and therefore the spectral method is still very efficient as compared to these other
two methods.
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