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Abstract This paper is concerned with the controllability of fractional neutral
stochastic dynamical systems with Poisson jumps in the finite dimensional space.
Sufficient conditions for controllability results are obtained by using Krasnoselskii’s
fixed point theorem. The controllability Grammian matrix is defined by Mittag-
Leffler matrix function.
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1 Introduction

Fractional differential equations have recently been proved to be valuable tools in the
modeling of many phenomena in various fields of science and engineering. It draws a
great application in nonlinear oscillations of earthquakes, many physical phenomena
such that seepage flow in porous media and in fluid dynamic traffic model. There
has been a significant development in fractional differential equations in recent years
(see [6, 9, 11, 12]).

It is well known that the concept of controllability plays an important role in
engineering and control theory. The controllability results for linear and nonlinear
integral order dynamical systems in finite-dimensional space have discussed exten-
sively (see [4]). Local null controllability of nonlinear functional differential systems
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in Banach space has been studied in [1]. Approximate controllability of fractional
order semilinear systems with bounded delay has been studied (see [8]).

In recent years, the controllability problems for stochastic differential equations
have become a field of increasing interest (see [2, 7, 10] and references therein).
Stochastic differential equations have many applications in ecology, finance, and
economics. The extensions of deterministic controllability concepts to stochastic
system have been discussed only in a limited number of publications.

The Poisson jumps have become very popular in recent years, because it is exten-
sively used to model many of the phenomena arising in areas such as economics,
finance, physics, biology, medicine, and other science. For example, if a system
jumps from a “normal state” to a “bad state,” the strength of systems is random. It
is natural and necessary to include a jump term in any dynamical system to make
more realistic sysrems. Complete controllability of stochastic evolution equations
with jumps has been studied in [13].

However, to the best of authors’ knowledge, there are no relevant reports on
the controllability of fractional neutral stochastic dynamical systems with Poisson
jumps in the finite-dimensional space. Motivated by the above, in this article the
controllability of fractional neutral stochastic dynamical systems is studied with
Poisson jumps in finite-dimensional spaces. Sufficient conditions for controllability
results are obtained by using Krasnoselskii’s fixed point theorem with a Grammian
matrix defined by Mittag-Leffler matrix function.

The paper is organized as follows: In Sect. 2, some well-known fractional opera-
tors and the solution representation of linear fractional stochastic differential equation
with Poisson jumps are discussed. In Sect. 3, the linear and nonlinear fractional neu-
tral stochastic differential equation with Poisson jumps are considered and the con-
trollability conditions are established by using the controllability Grammian matrix
which is defined by means of the Mittag-Leffler matrix function. Finally, concluding
remarks are given in Sect. 4.

2 Preliminaries

Let p and q are some positive constants satisfying n − 1 < q < n, n − 1 < p < n
and n ∈ N. Let Rm be the m-dimensional Euclidean space. The following notations
and definitions are well known, for a suitable function f ∈ L1(R+),R+ = [0,∞)

for more details, (see [6]).

(a) Riemann–Liouville fractional operator:

(I q
0+ f )(x) = 1

Γ (q)

∫ x

0
(x − t)q−1 f (t)dt

(b) Mittag-Leffler Function:
Themost interesting properties of theMittag-Leffler function are associatedwith
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their Laplace integral

∫ ∞

0
e−st t p−1Eq,p(±atq)dt = sq−p

(sq ∓ a)
,

That is,

L {t p−1Eq,p(±atq)}(s) = sq−p

(sq ∓ a)
,

(see [12]) for more details.
(c) Solution representation:

Consider the linear fractional stochastic differential equationwith Poisson jumps
represented in the following form:

d
[

J 1−q
t (x(t) − x0)

]
=

[
Ax(t) + Bu(t) +

∫ t

0
σ(s)dw(s)

]
dt +

∫ +∞

−∞
h(t, η)λ(dt, dη),

s, t ∈ J := [0, T ],
x(0) = x0, (1)

where 0 < q < 1, J 1−q
t is the (1−q)− order Riemann–Liouville fractional integral

operator x ∈ R
n, u ∈ R

m, A, B arematrices of dimensions n×n, n×m respectively
and σ : J −→ R

n×n, h : J × J −→ R
n are given functions.

Let {λ(dt, dη), t, η ∈ J } is a centered Poisson random measure with parameter
π(dη)dt . Let

∫ +∞
−∞ π(dη) < ∞ and λ(dt, dη) = λ(dt, dη) − π(dη)dt is compen-

sated Poisson random measure which is independent of w(s).
Now applying the Riemann–Liouville fractional integral operator on both sides, we
get

x(t) = x0 + 1

Γ (q)

∫ t

0
(t − s)q−1Ax(s)ds + 1

Γ (q)

∫ t

0
(t − s)q−1Bu(s)ds

+ 1

Γ (q)

∫ t

0
(t − s)q−1

∫ s

0
σ(θ)dw(θ)ds

+ 1

Γ (q)

∫ t

0
(t − s)q−1

∫ +∞

−∞
h(s, η)λ(ds, dη).

Taking the Laplace Transformation on both sides, we obtain

x̂(s) = 1

s
x0 + 1

sq
Ax̂(s) + 1

sq
Bû(s) + 1

sq
σ̂ (s) + 1

sq
ĥ(s).
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Taking inverse Laplace Transformation on both sides, we get

x(t) = Eq,1(Atq)x0 +
∫ t

0
(t − s)q−1Eq,q(A(t − s)q)

(
Bu(s) +

∫ s

0
σ(θ)dw(θ)

)
ds

+
∫ t

0
(t − s)q−1Eq,q(A(t − s)q)

∫ +∞

−∞
h(s, η)λ(ds, dη). (2)

Let (Ω,F , P) be the complete probability space with a probability measure P on
Ω and w(t) = (w1(t), w2(t), . . . , wn(t))T be an n−dimensional Wiener process
defined on the probability space. Let {Ft |t ∈ J } be the filtration generated by
{w(s) : 0 ≤ s ≤ t} defined on the probability space (Ω,F , P). Let L2(Ω,FT ,Rn)

denotes the Hilbert space of all FT measurable square integrable random variables
with values in R

n . Let LF
2 (J,Rn) be the Hilbert space of all square integrable and

Ft -measurable processes with values inRn . LetB is the Banach space of all square
integrable and Ft -adapted process x(t) with norm

‖x‖2 = sup
t∈J

{E‖x(t)‖2},

where E(·) denotes the mathematical expectation operator of stochastic process with
respect to the given probability measure P . Let L (Rn,Rm) be the space of all
linear transformation from R

n to R
m . Further, we assume that the set of admissible

controlsUad := LF
2 (J,Rm). Now let us introduce the following operators and sets.

The linear bounded operator

L ∈ L (LF
2 (J,Rm), L2(Ω,Ft ,R

n))

is defined by

Lu =
∫ T

0
(T − s)q−1Eq,q(A(T − s)q)Bu(s)ds

and its adjoint linear bounded operator

L
∗ : L2(Ω,FT ,Rn) −→ LF

2 (J,Rm)

is defined by
(L∗z)(t) = B∗Eq,q(A∗(T − t)q)E{z|Ft },

and the set of all states attainable from x0 in time t > 0 using admissible controls is
defined by

Rt (Uad) = {x(t; x0, u) ∈ L2(Ω,FT ,Rn) : u(·) ∈ Uad}.
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The linear controllability operator W T
0 ∈ L (L2(Ω,FT ,Rn), L2(Ω,FT ,Rn))

which is associated with the operator L is defined by

W T
0 = LL

∗{·} =
∫ T

0
(T − τ)q−1[Eq,q (A(T − τ)q )B][Eq,q (A(T − τ)q )B]∗E{(·)|Ft }dτ,

and the deterministic matrix Γ T
s ∈ L (Rn,Rn) is

Γ T
s =

∫ T

s
(T − τ)q−1[Eq,q(A(T − τ)q)B][Eq,q(A(T − τ)q)B]∗dτ, s ∈ J.

Definition 1 The system (1) is said to be controllable on J if for every x0, x1 ∈ R
n

there exists a stochastic control u(t) ∈ Uad such that the solution of x(t) of system
(1) satisfies the conditions x(0) = x0 and x(T ) = x1.

Definition 2 The system (1) is completely controllable on J if

RT (x0) = L2(Ω,FT ,Rn),

that is, all points in L2(Ω,FT ,Rn) can be exactly reached from an arbitrary initial
condition x0 ∈ L2(Ω,FT ,Rn) at time T .

3 Controllability Results

In this section,we discuss the controllability criteria of linear and nonlinear stochastic
system with Poisson jumps.

Lemma 1 ([10]) If the linear system (1) is completely controllable, then for some
γ > 0,

E〈W T
0 z, z〉 ≥ γE‖z‖2,

for all z ∈ L2(Ω,Ft ,R
n)

and, consequently,

E‖(W T
0 )−1‖2 ≤ 1

γ
= l2.

Lemma 2 ([10]) Assume that the operator W T
0 is invertible. Then, for arbitrary

x1 ∈ L2(Ω,FT ,Rn), the control

u(t) = B∗ Eq,q (A∗(T − t)q )E
{
(W T

0 )−1
(

x1 − Eq,1(AT q )x0 −
∫ T

0
(T − s)q−1Eq,q (A(T − s)q )

×
[∫ s

0
σ(θ)dw(θ)

]
ds −

∫ T

0
(T − s)q−1Eq,q (A(T − s)q )

∫ +∞

−∞
h(s, η)λ(ds, dη)

)∣∣∣Ft

}

transfers the system (1) form x0 ∈ R
n to x1 ∈ R

n at time T .
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Proof Substituting the control u(t) into the solution x(t) in (2) and substituting
t = T, one can easily verify that the control u(t) steers the linear system x(t) from
x0 to x1.

Let us consider the nonlinear fractional neutral stochastic dynamical systems with
Poisson jumps represented in the following form

d
[

J 1−q
t (x(t) − g(t, x(t)) − x0 − g(0, x0))

]
=

[
A
(

x(t) − g(t, x(t))
)

+ Bu(t)

+ J 1−q
t f (t, x(t)) +

∫ t

0
σ(s, x(s))dw(s)

]
dt

+
∫ +∞

−∞
h(t, x(t), η)λ(dt, dη), s, t ∈ J,

x(0) = x0, (3)

where 0 < q < 1, J 1−q
t is the (1− q)–order Riemann–Liouville fractional integral

operator, A, B are the matrices of dimensions n × n, n × m respectively and f :
J × R

n −→ R
n, σ : J × R

n −→ R
n×n and h : J × R

n × R −→ R
n, are given

functions. Then the solution (3) is given by (see [3, 5])

x(t) = Eq,1(Atq)[x0 + g(0, x0)] + g(t, x(t)) +
∫ t

0
Eq,1(A(t − s)q) f (s, x(s))ds

+
∫ t

0
(t − s)q−1Eq,q(A(t − s)q)

(
Bu(s) +

∫ s

0
σ(θ, x(θ))dw(θ)

)
ds

+
∫ t

0
(t − s)q−1Eq,q(A(t − s)q)

∫ +∞

−∞
h(s, x(s), η)λ(ds, dη).

Lemma 3 (Krasnoselskii’s fixed point theorem) Let E be a Banach space, let B
be a bounded closed and convex subset of E and let Φ1, Φ2 be maps of B into E
such that Φ1x, Φ2y ∈ B for every pair x, y ∈ B. If Φ1 is a contraction and Φ2 is
completely continuous, then the equation Φ1x + Φ2x = x has a solution of B.

In order to prove the main results we assume the following conditions hold:

(H1) The functions g, f, σ and h satisfy the following Lipschitz conditions and
there exist some positive constants K , L , M and N such that

(i) ‖g(t, x) − g(t, y)‖2 ≤ K‖x − y‖2
(ii) ‖ f (t, x) − f (t, y)‖2 ≤ L‖x − y‖2
(iii) ‖σ(t, x) − σ(t, y)‖2 ≤ M‖x − y‖2
(iv)

∫ +∞
−∞ ‖h(t, x, η) − h(t, y, η)‖2λ(dη) ≤ N‖x − y‖2

(H2) The functions g, f, σ and h are continuous and satisfy the following linear
growth conditions. That is, there exist some positive constants K , L, M and
N such that
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(i) ‖g(t, x)‖2 ≤ K (1 + ‖x‖2)
(ii) ‖ f (t, x)‖2 ≤ L(1 + ‖x‖2)
(iii) ‖σ(t, x)‖2 ≤ M(1 + ‖x‖2)
(iv)

∫ +∞
−∞ ‖h(t, x, η)‖2λ(dη) ≤ N (1 + ‖x‖2)

(H3) The linear system (1) is completely controllable on J.

Now, define the nonlinear operator Φ from B toB as follows

(Φx)(t) = Eq,1(Atq )[x0 + g(0, x0)] + g(t, x(t)) +
∫ t

0
Eq,1(A(t − s)q ) f (s, x(s))ds

+
∫ t

0
(t − s)q−1Eq,q (A(t − s)q )

(
Bu(s) +

∫ s

0
σ(θ, x(θ))dw(θ)

)
ds

+
∫ t

0
(t − s)q−1Eq,q (A(t − s)q )

∫ +∞

−∞
h(s, x(s), η)λ(ds, dη)

E‖(Φx)(t)‖2 ≤ Δ := 36l1l2‖x1‖2 + 6(1 + 6l1l2)
(
2S1(‖x0‖2 + ‖g(0, x0)‖2)

+
[

K + T 2S2L + T 2q+1

q2 S3Mσ M + T 2q

q2 S3N
]
(1 + E‖x‖2)

)

where

ux (t) = B∗Eq,q (A∗(T − t)q )E
{
(W T

0 )−1 [
x1 − Eq,1(AT q )[x0 + g(0, x0)

] − g(T, x(T ))

−
∫ T

0
Eq,1(A(T − s)q ) f (s, x(s))ds −

∫ T

0
(T − s)q−1Eq,q (A(T − s)q )

×
( ∫ s

0
σ(θ, x(θ))dw(θ)

)
ds −

∫ T

0
(T − s)q−1Eq,q (A(T − s)q )

×
∫ +∞
−∞

h(s, x(s), η)λ(ds, dη)
]∣∣∣Ft

}
.

Applying Lemma 3 we need to construct two mapping Φ1 and Φ2 such that

(Φx)(t) = (Φ1x)(t) + (Φ2x)(t)

where

(Φ1x)(t) =
∫ t

0
Eq,1(A(t − s)q ) f (s, x(s))ds +

∫ t

0
(t − s)q−1Eq,q (A(t − s)q )

(
Bu(s)

+
∫ s

0
σ(θ, x(θ))dw(θ)

)
ds +

∫ t

0
(t − s)q−1Eq,q (A(t − s)q )

×
∫ +∞
−∞

h(s, x(s), η)λ(ds, dη),

and
(Φ2x)(t) = Eq,1(Atq)[x0 + g(0, x0)] + g(t, x(t)).
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For convenience, let us introduce the following notations:

l1 = max{‖Γ T
s ‖2}, S1 = ‖Eq,1(Atq )‖2, S2 = ‖Eq,1(A(T − s)q )‖2, S3 = ‖Eq,q (A(T − s)q )‖2.

Theorem 1 Assume that the conditions (H1)–(H3) are hold and if Δ < 1 are
satisfied, then the nonlinear system (3) is completely controllable on J.

Proof In order to make more clear presentations, we divide the proof into the fol-
lowing three several steps.

Step I: For t ∈ J and any x, y ∈ B, we have

E‖(Φ1x)(t)‖2 ≤ 4E

∥∥∥∥
∫ t

0
Eq,1(A(t − s)q ) f (s, x(s))ds

∥∥∥∥
2

+ 4E
∥∥∥

∫ t

0
(t − s)q−1Eq,q (A(t − s)q )

× Bux (s)ds
∥∥∥2 + 4E

∥∥∥∥
∫ t

0
(t − s)q−1Eq,q (A(t − s)q )

∫ s

0
σ(θ, x(θ))dw(θ)ds

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t

0
(t − s)q−1Eq,q (A(t − s)q )

∫ +∞

−∞
h(s, x(s), η)λ(ds, dη)

∥∥∥∥
2

.

Now, we have the following estimate

E

∥∥∥∥
∫ t

0
(t − s)q−1Eq,q (A(t − s)q )Bux (s)ds

∥∥∥∥
2

≤ 6l1l2
[
‖x1‖2 + 2S1(‖x0‖2 + ‖g(0, x0)‖2)

+
(

K + T 2S2L + T 2q+1

q2 S3Mσ M + T 2q

q2 S3N
)

× (1 + E‖x‖2)
]
.

Thus

E‖(Φ1x)(t)‖2 ≤ 4
[
T 2S2E‖ f (t, x(t))‖2 + 6l1l2

(
‖x1‖2 + 2S1(‖x0‖2 + ‖g(0, x0)‖2)

+
(

K + T 2S2L + T 2q+1

q2
S3Mσ M + T 2q

q2
S3N

)
(1 + E‖x‖2)

)

+ T 2q+1

q2
S3MσE‖σ(t, x(t))‖2 + T 2q

q2
S3

∫ +∞
−∞

E‖h(t, x(t), η)‖2λ(dη)
]

≤ 4
[
6l1l2[‖x1‖2 + 2S1(‖x0‖2 + ‖g(0, x0)‖2)] +

(
6l1l2K + (1 + 6l1l2)

×
(

T 2S2L + T 2q+1

q2
S3Mσ M + T 2q

q2
S3N

))
(1 + E‖x‖2)

]

and

E‖(Φ2y)(t)‖2 ≤ 2‖Eq,1(Atq)[x0 + g(0, x0)]‖2 + 2E‖g(t, y(t))‖2
≤ 4S1[‖x0‖2 + ‖g(0, x0)‖2] + 2K (1 + E‖y‖2).
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By the condition Δ < 1, we can find a r > 0 such that

x, y ∈ Br = {x ∈ B : E‖x‖2 ≤ r}, E‖Φ1x + Φ2y‖2 ≤ r

that is Φ1x + Φ2y ∈ Br .
Step II: Φ1 is a contraction mapping onBr . For any x, y ∈ Br and t ∈ J, we have

E‖(Φ1x)(t) − (Φ1y)(t)‖2 ≤ 4E

∥∥∥∥
∫ t

0
Eq,1(A(t − s)q )[ f (s, x(s)) − f (s, y(s))]ds

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t

0
(t − s)q−1Eq,q (A(t − s)q )B[ux (s) − uy(s)]ds

∥∥∥∥
2

+ 4E
∥∥∥

∫ t

0
(t − s)q−1Eq,q (A(t − s)q )

×
(∫ s

0
[σ(θ, x(θ)) − σ(θ, y(θ))]dw(θ)

)
ds

∥∥∥2

+4E
∥∥∥

∫ t

0
(t − s)q−1Eq,q (A(t − s)q )

×
(∫ +∞

−∞
[h(s, x(s), η) − h(s, y(s), η)]λ(ds, dη)

)∥∥∥2

≤ 4

[
4l1l2K + (1 + 4l1l2)

(
T 2S2L + T 2q+1

q2
S3Mσ M + T 2q

q2
S3N

)]

×E‖x(t) − y(t)‖2 =: ΥE‖x(t) − y(t)‖2.

From the condition Δ < 1, we obtain Υ < 1, which implies that Φ1 is a contraction
mapping.
Step III: Φ2 is a completely continuous operator.

Due to continuity of A and continuity of g, the operator is Φ2 is continuous.
Next, we will show that {Φ2x, x ∈ Br } is relatively compact. It suffices to show
that the family of function {Φ2x, x ∈ Br } is uniformly bounded and equicontinuous
for any t ∈ J and {(Φ2x)(t), x ∈ Br } is relatively compact. For any x ∈ Br , we
have E‖Φ2x‖2 ≤ r which implies that {Φ2x, x ∈ Br } is uniformly bounded. In the
following, we will show that {Φ2x, x ∈ Br } is a family of equicontinuous functions.
For any x ∈ Br and 0 ≤ t1 < t2 ≤ T, we have

E‖(Φ2x)(t2) − (Φ2x)(t1)‖2 ≤ 4‖Eq,1(Atq
2 ) − Eq,1(Atq

1 )‖2(‖x0‖2 + ‖g(0, x0)‖2)
+ 2E‖g(t2, x(t2)) − g(t1, x(t1))‖2.

The right side of the above equation is independently of x ∈ Br as (t2 − t1) −→ 0
which means that {Φ2x, x ∈ Br } is equicontinuous. Therefore {Φ2x, x ∈ Br } is
relatively compact by Arzela–Ascoli theorem. The continuity of Φ2 and relative
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compactness of {Φ2x, x ∈ Br } imply that Φ2 is a completely continuous operator.
By using Krasnoseskii’s fixed point theoremwe obtain thatΦ1+Φ2 has a fixed point
onBr . Therefore the system (3) has atleast one fixed point on J.

4 Conclusion

This paper deal with the controllability of fractional neutral stochastic dynamical
systems with Poisson jumps in the finite-dimensional space. Sufficient conditions
for controllability results have been obtained by using Krasnoseskii’s fixed point
theorem . The controllability Grammian matrix is defined by Mittag-Leffler matrix
function.
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