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Abstract This article concerns with the mathematical study of stability properties
of steady-states for a two-dimensional network model of ferromagnetic nanowires.
We consider the finite network model of ferromagnetic nanowires of semi-infinite
length. We derive a sufficient condition independent of the size of the network under
which the relevant configurations (steady-states) of magnetization are shown to be
asymptotically stable. To be precise, we establish the result under certain condition
on the length between the two consecutive nanowires. We use perturbation technique
and energy method to derive the result.
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1 Introduction

Experimentally, it has been observed that below a critical temperature, ferromagnetic
materials have a tendency to split up into a small uniformly magnetized regions
called domains separated by a thin transition layer known as domain walls. Over
the period of time, study of formation and motions of domain walls gained a lot of
attention and became one of the most fascinating topic among researchers. It is due
to the fact that the ferromagnetic materials are used on a wide scale in magnetic
storage industry. In particular, ferromagnetic nanowires play a very dominant role
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in nanoelectronic devices in which the information is encoded as magnetic domains
separated by domain walls along the wire. For example, in case of racetrack memory,
we obtain a three-dimensional storage device by using U-shaped nanowires normal
to the plane of silicon wafer (see [1]). For the rigorous treatment of domains and its
characteristics, we refer the reader to [2] and the references therein.

The model used to describe the magnetic behavior of ferromagnetic material is
called micromagnetism and was introduced by Brown [3]. The evolution of mag-
netization inside the ferromagnetic medium is triggered by the Landau–Lifschitz
equation which is parabolic and nonlinear. The relevant configurations of magne-
tization are minimizers of an energy functional, consisting of several components.
We shall see that these relevant configurations of magnetization coincide with the
steady-states of Landau–Lifschitz equation.

The general framework of the ferromagnetism is as follows. We consider a finite
homogeneous ferromagnetic material which occupies a domain Ω ⊂ R

3. The time-
varying magnetic moment u of a ferromagnetic material is a solution of the Landau–
Lifschitz equation (LLE)

∂u

∂t
= −u × He f f − u × (

u × He f f
)
, (1)

with the physical saturation constraint

|u(t, .)| = 1 for (t, .) ∈ R
+ × R

3 a.e., (2)

where the abbreviation a.e. stands for almost everywhere. The total effective field
He f f = −∇E is derived from the micromagnetism energy E given by

E (u) = A

2

∫

Ω

|∇u|2 + 1

2

∫

R3

|Hd(u)|2 −
∫

Ω

Ha · u, (3)

where the term represents the exchange, stray field and external energy contribution
respectively. The constant A > 0 is called the exchange constant. Also,Ha denotes
an applied magnetic field andHd(u) is the stray field which is characterized by the
Maxwell equations:

⎧
⎪⎨

⎪⎩

curl Hd(u) = 0 in R3,

div (Hd(u) + ū) = 0 in R3,

Hd(u) vanishes at infinity.

where ū is the extension of u in R3 by 0 outside of Ω . We obtain that,

He f f = �u + Hd(u) + Ha .
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We take the scalar product of (1) with He f f and integrate in time (assuming time
invariant applied field). UsingHe f f = −∇E , we obtain (see [4, 5])

d

dt
E (u(t)) = −

∫

Ω

|He f f (u) − (
He f f (u)) · u

)
u|2, (4)

this denotes the dissipation of energy which is mainly due to the second term appears
on the right hand side of (1). Furthermore, steady-states of (1) satisfy u ×He f f = 0
in domain Ω , which is exactly the Euler–Lagrange equations of the minimization
problem for (3). Therefore, minimizers of (3), i.e., relevant physical configurations
of the magnetization are nothing but the steady-state solutions of (1) under the
constraint (2).

Existence results of weak solutions for the Landau–Lifschitz equation have been
discussed in [6–8], whereas the strong solutions are considered in [9, 10] and known
to exist locally in time. Numerical aspects of ferromagnetic materials have been
investigated in [11, 12] and the references therein. Stability and controllability results
related with ferromagnetic nanowires are studied in [5, 13, 14]. Higher dimensional
models and network models of such materials can be found in [15, 16].

In the present article, we consider a two-dimensional finite network model of fer-
romagnetic nanowires of semi-infinite length. We assume the relevant configuration
of the magnetization of the network is of the form u∗ = μe1 where μ = (μi )i∈I

with μi = {−1,+1}. We prove that these relevant configurations are asymptotically
stable in a long time behavior under certain condition on the distance between the
consecutive nanowires. The organization of this article is as follows:

In Sect. 2, we present the schematics of the considered model and introduce the
problem related to the stability of the steady-states in the absence of external mag-
netic field. In Sect. 3, we give the statement of the main result and establish some
preliminary estimates to derive the Theorem.

2 Modeling of a Network Model

In this section, we present a schematics and modeling of a network model under
consideration. We consider a two-dimensional finite network model of ferromag-
netic nanowires of semi-infinite length. In which nanowires are supposed to have
homogeneous geometry and to be placed on the plane (e1, e2), where (e1, e2, e3) is
the canonical basis of R3. We represent the distance between the two consecutive
nanowires by � > 0. Since, we consider the finite framework of a network model
therefore the index i takes it values in the finite set I = {0, 1, 2, . . . , N }. We denote
the coordinates of a point on the i th nanowire by (xi , i�), where 0 ≤ xi < ∞ with
i ∈ I (see Fig. 1). We use the following notations:
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Fig. 1 Schema of network model

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
R
3
)I = {

u = (ui )i∈I , such that ∀ i ∈ I, ui ∈ R
3
}
,

(
S
2
)I = {

u = (ui )i∈I ∈ (R3)I , such that ∀ i ∈ I, |ui | = 1
}
,

‖u‖ = sup
i

|ui |, where i ∈ I and | · | is the euclidean norm in R
3.

where S2 represents the unit sphere in R
3.

We assume that the magnetization on each nanowire is constant in the space
variable, i.e., we deal with the ordinary differential model of micromagnetism. This
can be justified by the assumption that the radius of the nanowires are very small
as compared to �. We denote ui = ui (t) the magnetization at any point on the i th
nanowire. Therefore, the unknown u = (u0, . . . , uN ) is defined as u:R+ → (S2)I ,
i.e., u = u(t) = (ui (t))i∈I . Exchange field vanishes due to the aforementioned
assumption renders the only contribution of demagnetizing (stray) field in total effec-
tive field.

We recall that the stray energy is connected with the magnetic field generated by
the medium itself. We calculate the stray field for the entire network in the follow-
ing fashion. On a fixed nanowire say j0, we represent its stray field as Hd(u)( j0)
which consist of two parts: the stray field generated on j0th nanowire by its own
magnetization, i.e., by u j0 , denoted by H int

d (u)( j0), and the field generated by
the magnetization of other nanowires, denoted by H ext

d (u)( j0). We write the stray
field as:

Hd(u)( j0) = H int
d (u)( j0) + H ext

d (u)( j0).
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The demagnetizing field on j0th nanowire due to its own magnetization is given by
(see [13, 17])

H int
d (u)( j0) = −u2

j0e2 − u3
j0e3. (5)

The stray field generated by the i0th nanowire on the j0th nanowire is given by
(see [18])

Hi0, j0(ui0)(ζ ) = − 1

4π

∫ ∞

0

ui0

|ζ − η|3 dy + 3

4π

∫ ∞

0

(ζ − η)

|ζ − η|5 ui0 · (ζ − η)dy.

with ζ = (x, j0�) and η = (y, i0�), where x and y belongs to [0,∞).
On calculating the values of these integrals, we obtain:

Hi0, j0(ui0)(ζ ) = (H 1
i0, j0 ,H

2
i0, j0 ,H

3
i0, j0),

where,

H 1
i0, j0 = 1

4π�2|i0 − j0|2
[
− x�2|i0 − j0|2

(x2 + �2|i0 − j0|2)3/2 u1
i0 + �3|i0 − j0|3

(x2 + �2|i0 − j0|2)3/2 u2
i0

]
.

H 2
i0, j0 = 1

4π�2|i0 − j0|2
[

�3|i0 − j0|3
(x2 + �2|i0 − j0|2)3/2 u1

i0

+
{
1 + x

(x2 + �2|i0 − j0|2)3/2 (x2 + 2�2|i0 − j0|2)
}

u2
i0

]
.

H 3
i0, j0 = − 1

4π�2|i0 − j0|2
[
1 + x

(x2 + �2|i0 − j0|2)1/2
]

u3
i0 .

Therefore, the total network exterior field at the j0th nanowire is given by:

H ext
d (u)( j0) =

∑

i0 �= j0

Hi0, j0(u(i0)) =
⎛

⎝
Ψ 1(u1)( j0) + Ψ 2(u2)( j0)
Ψ 2(u1)( j0) + Ψ 3(u2)( j0)

Ψ 4(u3)( j0)

⎞

⎠ , (6)

where (u1, u2, u3) are the coordinates ofu and for k = {1, . . . , 4}, the linear operators
Ψ k : (R3)I → (R3)I is defined as, for all u = (ui )i∈I in (R3)I ,
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Ψ 1(u)( j0)(ζ ) = − 1

4π�2

∑

j �= j0

1

| j − j0|2
[

x�2| j − j0|2
(x2 + �2| j − j0|2)3/2

]
u( j),

Ψ 2(u)( j0)(ζ ) = 1

4π�2

∑

j �= j0

1

| j − j0|2
[

�3| j − j0|3
(x2 + �2| j − j0|2)3/2

]
u( j),

Ψ 3(u)( j0)(ζ ) = 1

4π�2

∑

j �= j0

1

| j − j0|2
[
1 + x

(x2 + �2| j − j0|2)3/2 (x2 + 2�2| j − j0|2)
]

u( j),

Ψ 4(u)( j0)(ζ ) = − 1

4π�2

∑

j �= j0

1

| j − j0|2
[
1 + x

(x2 + �2| j − j0|2)1/2
]

u( j).

Hence, we study the following system:

dui

dt
= −ui × (He f f (u))(i) − ui × (ui × (He f f (u))(i)) (7)

He f f (u))(i) = H int
d (u)(i) + H ext

d (u)(i)

for i ∈ I and t ∈ R
+ with ui : R+ → S

2.
We assume the relevant steady-states configurations of the magnetization distri-

bution as:
u∗

i = μi e1 with μi = {−1,+1} , ∀ i ∈ I. (8)

Experimentally, we relate these relevant configurations to thememory state in amag-
netic storage device, where μi = 1 corresponds to a bit 1 and μi = −1 corresponds
to a bit 0. Next, we introduce the problem related to stability of the relevant config-
urations under consideration.
Asymptotic stability of any relevant configuration.

In the absence of an external applied field, for any initial conditions in a vicinity
of a given relevant configuration, the solution of the Landau–Lifschitz equation (7)
converges to the relevant configuration.

We give the mathematical statement of the result in the following section:

3 Main Result

In order to state the result, we need to introduce the following notations. We observe
that for ρ ∈ S

2, if 0 < ρ1 < 1 (resp. −1 < ρ1 < 0), the quantity ρ2
2 + ρ2

3 exhibits
the distance between ρ and +e1 (resp. −e1). We have:

1

2
|ρ − e1|2 ≤ ρ2

2 + ρ2
3 ≤ |ρ − e1|2.
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For α > 0 sufficiently small, we define D+1(α) and D−1(α) by

D+1(α) =
{
ρ ∈ S

2, ρ1 > 0 and ρ2
2 + ρ2

3 < α2
}

,

D−1(α) =
{
ρ ∈ S

2, ρ1 < 0 and ρ2
2 + ρ2

3 < α2
}

.

For μ = (μi )i∈I with μi ∈ {−1,+1}, we denote, for α > 0,

Dμ(α) =
{

u ∈ (S2)I , ∀ i ∈ I, ui ∈ Dμi (α)
}

. (9)

Our main result about the asymptotic stability of any relevant position is the
following:

Theorem 1 Suppose u is the solution of the Landau–Lifschitz equation (7) with
initial condition u(0) = uinit , where uinit satisfies the saturation condition (2).
There exists β, a positive constant independent of the size of the network such that if

1

�2
≤ β, (10)

then there exist α0 > 0 and κ > 0, such that for all relevant configurations u∗
(i.e., u∗

i = μi e1 for all i ∈ I ), for all uinit ∈ Dμ(α0), u satisfies:

‖u(t) − u∗‖ → 0 as t → ∞.

Proof We derive the stability result of a relevant configuration for the Landau–
Lifschitz equation without an external magnetic source. For this we analyze the
following system with unknown u defined as u:R+ → (S2)I ,

du

dt
= −u × He f f (u) − u × (u × He f f (u)) (11)

He f f (u) = H int
d (u) + H ext

d (u)

The existence and uniqueness of a solution of (11) for any initial condition fol-
lows from the Cauchy–Lipschitz theorem. We assume that u∗ be a fixed relevant
configuration satisfies the saturation constraint (2), i.e, u∗ ∈ (S2)I such that

u∗
i = μi e1, with μi ∈ {−1,+1} , ∀ i ∈ I.

Because of the physical saturation constraint (2), we only deal with perturbations u
of u∗ satisfying:

|ui (t)| = 1, ∀ i ∈ I and ∀ t ≥ 0.
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We consider u as a small perturbation of u∗ and describe it as:

ui = μi e1 + γ (ωi )μi e1 + ω2
i e2 + ω3

i e3, ∀ i ∈ I (12)

with ωi = (
ω2

i , ω
3
i

)
and γ : (R2)I → (R)I is a smooth map defined as γ (ωi ) =√

1 − |ωi |2 − 1.
To obtain the transformed system of (11) in new variable ω ∈ C1

(
R

+; (R2)I
)
,

we use the perturbation (12) of u∗. We substitute (12) in (11) and take the projection
of the obtained expression along the direction of e2 and e3.

After a lengthy algebraic computations, it yields that u given by (12) satisfies (11)
if and only if ω = (ω2, ω3) verifies the following system:

dω

dt
=

(−1 −μ

μ −1

)
ω + A (μ) + B(ω) + C (ω), (13)

where

A (μ) =
(

Ψ 2(μ)

−μΨ 2(μ)

)
,

The linear termB(ω) is given by:

B(ω) =

⎛

⎜
⎜⎜⎜
⎝

−(ω3 + μω2)Ψ 1(μ) + Ψ 2(μγ )

+Ψ 3(ω2) + μΨ 4(ω3)

(ω2 − μω3)Ψ 1(μ) − μΨ 2(μγ )

−μγΨ 2(μ) − μΨ 3(ω2) + Ψ 4(ω3)

⎞

⎟
⎟⎟⎟
⎠

,

The nonlinear term C (ω) is given by:

C (ω) =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

−μγω3 − (ω3 + μω2 + μγω2)Ψ 1(μγ )

−μγω2Ψ 1(μ) − (ω3 + μω2 + μγω2)Ψ 2(ω2)

−(Ψ 2(μ) + Ψ 2(μγ ))(ω2)2 − (ω2)2Ψ 3(ω2)

+(μγ − ω2ω3)Ψ 4(ω3) + ((ω2)2 + (ω3)2)ω2

μγω2 + (ω2 − μω3 − μγω3)Ψ 1(μγ )

−μγω3Ψ 1(μ) + (ω2 − μω3 − μγω3)Ψ 2(ω2)

−(Ψ 2(μ) + Ψ 2(μγ ))ω2ω3 − μγΨ 2(μγ )

−(μγ + ω2ω3)Ψ 3(ω2) − (ω3)2Ψ 4(ω3)

+((ω2)2 + (ω3)2)ω3

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

.

Our objective is to analyze the stability behavior of a relevant configuration u∗ for
LLE (11). Evidently, both the forms of Landau–Lifschitz equation, (11) and (13) are
equivalent and the stability of zero solution for (13) renders the stability of u∗ for
(11). We state this in the following Proposition.
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Proposition 1 Let u ∈ C1
(
R

+; (S2)I
)

with |u| = 1 and verifies (11). Let ω ∈
C1

(
R

+; (R2)I
)

defined by:

u = μe1 + γ (ω)μe1 + ω2e2 + ω3e3

Then u is a solution to Landau–Lifschitz equation (11) if and only if ω is a solution to
(13). Moreover, u∗ is asymptotically stable for (11) if and only if 0 is asymptotically
stable for (13).

Proof We follow the similar technique used in partial differential equation frame-
work in [13–15]. It is apparent that by taking the projection on both e2 and e3 axis, if
u satisfies (11) then ω verifies (13). For the converse part, we write (11) on the form

du

dt
= F (u).

Furthermore u · F (u) = 0. Since ω satisfies (13), we have

(
du

dt
− F (u)

)
· ek = 0, ∀ k ∈ {2, 3} .

Using the constraint |u| = 1, which renders u · du

dt
= 0. we obtain

μ (1 + γ )

(
du

dt
− F (u)

)
· e1 = 0,

with μ �= 0 and γ �= −1, implies that u satisfies (11). This completes the proof of
Proposition 1.

Now we study the stability of zero solution for the transformed Landau–Lifschitz
equation (13). First, we establish some preliminary estimates. We estimate the
linear operators Ψ k : (R3)I → (R3)I in the following fashion, we obtain for all
k = {1, . . . , 4}

‖Ψ k(u)‖ ≤ K1

π�2

⎛

⎝
∑

j �=0

1

| j |2

⎞

⎠ ‖u‖, ∀ u = (ui )i∈I ∈ (R3)I . (14)

Using (14), the operators A ,B and C appear on the right hand side of (13) are
estimated with straightforward arguments in the following lemmas.

Lemma 1 There exists a constant K2 such that, for all ω ∈ (R3)I with ‖ω‖ < 1,
we have

‖B(ω)‖ ≤ K2

�2
‖ω‖.
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Lemma 2 We assume that
1

�2
≤ 1. There exist constants K3 and K4 such that, for

all ω ∈ (R3)I with ‖ω‖ < 1, we have

‖A (μ)‖ ≤ K3 and ‖C (ω)‖ ≤ K4‖ω‖2.

It is worth to mention that the constants K2, K3 and K4 neither depend on � nor
on the size of the network. We notice that ‖γ (ω)‖ ≤ ‖ω‖ whenever ‖ω‖ < 1.
We have ω ∈ C1

(
R

+; (R2)I
)
with,

|ωi (t)| =
(
(ω2

i (t))
2 + (ω3

i (t))
2
) 1

2

We notice that u ∈ Dμ(α) if and only if |ω| < α (see (9)).
Taking the inner product of (13) with

(
ω2

i , ω
3
i

)
, we obtain, for all i ∈ I ,

(
ω2

i
d

dt
ω2

i + ω3
i

d

dt
ω3

i

)
+

(
(ω2

i )
2 + (ω3

i )
2
)

= ((A (μ))i + (B(ω))i

+ (C (ω))i ) ·
(
ω2

i , ω
3
i

)
,

Using Lemmas 1 and 2, we have,

1

2

d

dt

(
|ωi |2

)
+ |ωi |2 ≤ K3‖ω‖ + K2

�2
‖ω‖2 + K4‖ω‖3. (15)

We define β by,

β = 1

K2
(16)

Our goal is to show that zero solution is asymptotically stable for (13). We set the

distance between the nanowires in such a way so that
1

�2
remains less than β.

Multiplying (15) by e2t and integrate from 0 to t . We get, for all i ∈ I ,

(
|ωi (t)|2

)
e2t ≤ ‖ω(0)‖2 + 2K3

∫ t

0
‖ω(v)‖e2vdv

+ 2
K2

�2

∫ t

0
‖ω(v)‖2e2vdv + 2K4

∫ t

0
‖ω(v)‖3e2vdv
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We take the supremum on i ∈ I and obtain that

‖ω(t)‖2e2t ≤ ‖ω(0)‖2+2K3

∫ t

0
‖ω(v)‖e2vdv

+ 2
K2

�2

∫ t

0
‖ω(v)‖2e2vdv + 2K4

∫ t

0
‖ω(v)‖3e2vdv

We denote κ = 1 − K2

�2
. Equation (16) together with condition

1

�2
< β implies

κ > 0. Now while ‖ω(v)‖ ≤ κ

2K4
e−2v ≤ κ

2K4
, we have

‖ω(t)‖2e2t ≤ ‖ω(0)‖2 + K3

K4
κt + (2 − κ)

∫ t

0
‖ω(v)‖2e2vdv, ∀ t ≥ 0.

Using Gronwall lemma, while ‖ω(v)‖ ≤ κ

2K4
, we obtain

‖ω(t)‖2 ≤
[
‖ω(0)‖2 + K3

K4
κt

]
e−κt

It is evident that the term te−κt → 0 as t → ∞. Therefore, whenever ‖ω(0)‖ ≤
κ

2K4
, we obtain

‖ω(t) − 0‖ → 0 as t → ∞.

We set α0 = κ

2K4
, and it shows that zero solution is asymptotically stable for

the perturbed LLE (13) which in turn reflect the asymptotic behavior of relevant
configurations for LLE (11). This completes the proof of Theorem 1.
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