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Abstract This paper is concerned with the existence and uniqueness of the solution
for an impulsive fractional stochastic integro-differential equation. The existence and
uniqueness results are shown using the fixed point technique on a Hilbert space.
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1 Introduction

It is well known that the fractional calculus is a classical mathematical notion and is
a generalization of ordinary differentiation and integration to arbitrary order. Nowa-
days, studying fractional calculus has become an active area of research field as
it has gained considerable importance due to its numerous applications in various
fields, such as physics, chemistry, viscoelasticity, engineering sciences, etc. For more
details, one can see the cited papers [1–8, 14] and reference therein.

The deterministic models often fluctuate due to environmental noise. A natural
extension of a deterministicmodel is stochasticmodel, where relevant parameters are
modeled as suitable stochastic processes. Due to this fact that,most of the problems in
a practical life situation aremodeled by stochastic equations rather than deterministic.
Therefore, it is of great significance to introduce stochastic effects in the investigation
of differential equations [13]. For more details on stochastic differential equations
see [10–12] and references therein.

However, it is known that the impulsive effects exist widely in different areas of
real world such as mechanics, electronics, telecommunications, finance, economics,
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etc., formore detail see [9]. Due to this fact, the states ofmany evolutionary processes
are often subject to instantaneous perturbations and experience abrupt changes at
certain moments of time. The duration of these changes is very short and negligible
in comparison with the duration of the process considered, and can be thought of
as impulses. Therefore, it is important to consider the effect of impulses in the
investigation of stochastic differential equations.

Wanget al. [16] considered the following impulsive fractional differential equation
for order q ∈ (1, 2)

cDq
t u(t) = f (t, u(t)), t ∈ J ′ = [0, T ], q ∈ (1, 2),

Δu(tk) = Ik(u(t−k )),Δu′(tk) = Jk(u(t−k )), k = 1, 2, . . . , m,

u(0) = u0, u′(0) = u0,

and discussed the existence and uniqueness of solutions with the help of Banach
fixed point theorem and Krasnoselskii fixed point theorem.

Sakthivel et al. [15] considered the following impulsive fractional stochastic dif-
ferential equations with infinite delay in the form

⎧
⎨

⎩

Dα
t x(t) = Ax(t) + f (t, xt, B1x(t)) + σ(t, xt, B2x(t)) dw(t)

dt , t ∈ [0, T ], t �= tk,
Δx(tk) = Ik(x(tk)), k = 1, 2, . . . , m,

x(t) = φ(t), φ(t) ∈ Bh,

and discussed the existence of mild solutions using Banach contraction principle,
Krasnoselskii’s fixed point theorem.

Motivated by the mentioned work [15, 16], in this article, we are concerned with
the existence and uniqueness of solution for impulsive fractional functional integro-
differential equation of the form:

cDα
t x(t) = f

(

t, x(t), xt,

∫ t

0
K(t, s)x(s)ds

)

+ g

(

t, x(t), xt,

∫ t

0
K(t, s)x(s)ds

)
dw(t)

dt
, t ∈ J = [0, T ], t �= tk, (1)

Δx(tk) = Ik(x(t
−
k )),Δx′(tk) = Qk(x(t

−
k )), k = 1, 2, . . . , m, (2)

x(t) = φ(t), x′(0) = x1, t ∈ [−d, 0], (3)

where J is an operational interval and cDα
t denotes the Caputo’s fractional derivative

of order α ∈ (1, 2) and x(·) takes the value in the real separable Hilbert space H ;
f : J × H × PC0

L × H → H and g : J × H × PC0
L × H → L (K ,H )

and Ik, Qk : H → H are appropriate functions; φ(t) isF0-measurableH -valued
random variables independent of w. Here let 0 = t0 < t1 < · · · < tm < tm+1 = T ,
Δx(tk) = x(t+k ) − x(t−k ), Δx′(tk) = x′(t+k ) − x′(t−k ), x(t+k ) and x(t−k ) denote the
right and left limits of x at tk . Similarly, x′(t+k ) and x′(t−k ) denote the right and left
limits of x′ at tk , respectively.
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For further details, this work has three sections. Second section provides some
basic definitions, preliminaries, theorems, and lemmas. Third section is equipped
with main results for the considered problem (1)–(3).

2 Preliminaries

Let H ,K be two real separable Hilbert spaces and L (K ,H ) be the space of
bounded linear operators from K into H . For convenience, we will use the same
notation ‖ · ‖ to denote the norms inH ,K andL (K ,H ), and use (·, ·) to denote
the inner product ofH andK without any confusion. Let (Ω,F , {Ft}t≥0,P) be
a complete filtered probability space satisfying that F0 contains all P-null sets of
F . An H -valued random variable is an F -measurable function x(t) : Ω → H
and a collection of random variables S = {x(t, ω) : Ω → H \ t ∈ J} is called
stochastic process. Usually we write x(t) instead of x(t, ω) and x(t) : J → H in the
space of S. W = (Wt)t≥0 be a Q-Wiener process defined on (Ω,F , {Ft}t≥0,P)

with the covariance operator Q such that TrQ < ∞. We assume that there exists a
complete orthonormal system {ek}k≥1 inK , a bounded sequence of nonnegative real
numbers λk such that Qek = λkek, k = 1, 2, . . . , and a sequence of independent
Brownian motions {βk}k≥1 such that

(w(t), e)K =
∞∑

k=1

√
λk(ek, e)K βk(t), e ∈ K , t ≥ 0.

Let L 2
0 = L 2(Q

1
2K ,H ) be the space of all Hilbert Schmidt operators from

Q
1
2K toH with the inner product < ϕ,ψ >L 2

0
= Tr[ϕQψ∗].

The collection of all strongly measurable, square integrable, H -valued random
variables, denoted by L 2(Ω,F , {Ft}t≥0,P;H ) = L 2(Ω;H ), is a Banach
space equipped with norm ‖x(·)‖2

L 2 = E‖x(·, w)‖2H , where E denotes expectation

defined by E(h) = ∫

Ω
h(w)dP . An important subspace is given by L 2

0 (Ω;H ) =
{f ∈ L 2(Ω,H ) : f is F0- is measurable}.

Let PC0
L = C([−d, 0],L 2(Ω;H )) be a Banach space of all continuous map

from [−d, 0] into L 2(Ω;H ) satisfying the condition supE‖φ(t)‖2 < ∞ with
norm

‖φ‖PC0
L

= sup
t∈[−d,0]

{
E‖φ(t)‖H , φ ∈ PC0

L

}
.

ConsiderC2(J,L 2(Ω;H )) be a Banach space of all continuously differentiable
map from J into L 2(Ω;H ) satisfying the condition supE‖x(t)‖2 < ∞ with norm
defined
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‖x‖2C2 = sup
t∈J

1∑

j=0

{
E‖xj(t)‖2H , x ∈ C2(J,L 2(Ω;H ))

}
.

To study the impulsive conditions, we consider

PC2
L = PC2([−d, T ],L 2(Ω;H ))

a Banach space of all such continuous functions x : [−d, T ] → L 2(Ω;H ), which
are continuously differentiable on [0, T ] except for a finite number of points ti ∈
(0, T), i = 1, 2, . . . ,N , at which x′(t+i ) and x′(t−i ) = x′(ti) exist and are endowed
with the norm

‖x‖2
PC2

L
= sup

t∈J

1∑

j=0

{
E‖xj(t)‖2H , x ∈ PC2

L

}
.

Definition 1 The Reimann–Liouville fractional integral operator for order α > 0,
of a function f : R+ → R and f ∈ L1(R+, X) is defined by

J0t f (t) = f (t), Jα
t f (t) = 1

Γ (α)

∫ t

0
(t − s)α−1f (s)ds, α > 0, t > 0,

where Γ (·) is the Gamma function.

Definition 2 Caputo’s derivative of order α > 0 for a function f : [0,∞) → R is
defined as

Dα
t f (t) = 1

Γ (n − α)

∫ t

0
(t − s)n−α−1f (n)(s)ds = Jn−αf (n)(t),

for n − 1 < α < n, n ∈ N . If 0 < α < 1, then

Dα
t f (t) = 1

Γ (1 − α)

∫ t

0
(t − s)−αf (1)(s)ds.

Obviously, Caputo’s derivative of a constant is equal to zero.

Lemma 1 A measurable Ft -adapted stochastic process x : [−d, T ] → H such
that x ∈ PC2

L is called a mild solution of the system (1)–(3) if x(0) = φ(0)
and x′(0) = x1 on [−d, 0],Δx|t=tk = Ik(x(t

−
k )) and Δx′|t=tk = Qk(x(t

−
k )),

k = 1, 2, · · · , m the restriction of x(·) to the interval [0, T)\t1, · · · , tm is continuous
and x(t) satisfies the following fractional integral equation
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x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(0) + x1t + 1
Γ (α)

∫ t
0 (t − s)α−1f

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
ds

+ 1
Γ (α)

∫ t
0 (t − s)α−1g

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
dw(s), t ∈ (0, t1],

φ(0) + x1t + I1(x(t
−
1 )) + Q1(x(t

−
1 ))(t − t1)

+ 1
Γ (α)

∫ t
0 (t − s)α−1f

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
ds

+ 1
Γ (α)

∫ t
0 (t − s)α−1g

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
dw(s), t ∈ (t1, t2],

· · ·
φ(0) + x1t + ∑k

i=1

[
Ii(x(t

−
i )) + Qi(x(t

−
i ))(t − ti)

]

+ 1
Γ (α)

∫ t
0 (t − s)α−1f

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
ds

+ 1
Γ (α)

∫ t
0 (t − s)α−1g

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
dw(s), t ∈ (tk, tk+1].

Further, we introduce the following assumptions to establish our results:

(H1) The nonlinear maps f and g are continuous and there exit constants μ1, μ2,
μ3, v1, v2, v3 > 0 such that

E‖f (t, x, ϕ, u) − f (t, y, ψ, v)‖2H ≤ μ1‖x − y‖2H + μ2‖ϕ − ψ‖PC0
L

+ μ3‖u − v‖2H ,

E‖g(t, x, ϕ, u) − g(t, y, ψ, v)‖2H ≤ v1‖x − y‖2H + v2‖ϕ − ψ‖PC0
L

+ v3‖u − v‖2H
for all x, y, u, v ∈ H , t ∈ J and ϕ,ψ ∈ PC0

L .

(H2) The functions Ik, Qk are continuous and there exists LI , LQ > 0, such that

E‖Ik(x) − Ik(y)‖2H ≤ LI E‖x − y‖2H ,

E‖Qk(x) − Qk(y)‖2H ≤ LQE‖x − y‖2H
for all x, y ∈ H and k = 1, 2, · · · , m.

3 Existence and Uniqueness Results

This result is based on Banach contraction fixed point theory.

Theorem 1 Suppose that the assumptions (H1) and (H2) hold and

Θ =
{

4(mLI + mT2LQ) + 4T2α

Γ (α)

[
1

α2 (μ1 + μ2 + μ3K∗) + 1

T(2α − 1)
(v1 + v2 + v3K∗)

]}

< 1,

where K∗ = supt∈[0,t]
∫ t
0 K(t, s)ds < ∞. Then the system (1)–(3) has a unique

solution.
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Proof We convert the problem (1)–(3) into fixed point problem. We consider an
operator N : PC2

L → PC2
L defined by

(Nx)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(0) + x1t + 1
Γ (α)

∫ t
0 (t − s)α−1f

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
ds

+ 1
Γ (α)

∫ t
0 (t − s)α−1g

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
dw(s), t ∈ (0, t1],

φ(0) + x1t + I1(x(t
−
1 )) + Q1(x(t

−
1 ))(t − t1)

+ 1
Γ (α)

∫ t
0 (t − s)α−1f

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
ds

+ 1
Γ (α)

∫ t
0 (t − s)α−1g

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
dw(s), t ∈ (t1, t2],

· · ·
φ(0) + x1t + ∑k

i=1

[
Ii(x(t

−
i )) + Qi(x(t

−
i ))(t − ti)

]

+ 1
Γ (α)

∫ t
0 (t − s)α−1f

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
ds

+ 1
Γ (α)

∫ t
0 (t − s)α−1g

(
s, x(s), xs,

∫ t
0 K(s, t)x(s)ds

)
dw(s), t ∈ (tk, tk+1].

Now we show that N is a contraction map. For this we take two points x, x∗ such
that for t ∈ (0, t1]

E‖(Nx)(t) − (Nx∗)(t)‖2H ≤ 2E‖ 1

Γ (α)

∫ t

0
(t − s)α−1[f

(

s, x(s), xs,

∫ t

0
K(s, t)x(s)ds

)

−f

(

s, x∗(s), x∗
s ,

∫ t

0
K(s, t)x∗(s)ds

)

ds‖2H

+ 2E‖ 1

Γ (α)

∫ t

0
(t − s)α−1[g(s, x(s), xs,

∫ t

0
K(s, t)x(s)ds)

− g

(

s, x∗(s), x∗
s ,

∫ t

0
K(s, t)x∗(s)ds

)

dw(s)‖2H

≤ 2T2α

Γ (α)

[
1

α2 (μ1 + μ2 + μ3K∗
)

+ 1

T(2α − 1)
(v1 + v2 + v3K∗)‖x − x∗‖2

PC2
L

.

When t ∈ (t1, t2],
E‖(Nx)(t) − (Nx∗)(t)‖2H ≤ 4E‖I1(x(t

−
1 )) − I1(x

∗(t−1 ))‖2H
+ 4E‖ Q1(x(t

−
1 ))(t − t1) − Q1(x

∗(t−1 ))(t − t1)‖2H
+ 4E‖ 1

Γ (α)

∫ t

0
(t − s)α−1[f

(

s, x(s), xs,

∫ t

0
K(s, t)x(s)ds

)

− f

(

s, x∗(s), x∗
s ,

∫ t

0
K(s, t)x∗(s)ds

)

]ds‖2H

+ 4E‖ 1

Γ (α)

∫ t

0
(t − s)α−1[g(s, x(s), xs,

∫ t

0
K(s, t)x(s)ds)

− g

(

s, x∗(s), x∗
s ,

∫ t

0
K(s, t)x∗(s)ds

)

]dw(s)‖2H
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≤
{

4(LI + T2LQ) + 4T2α

Γ (α)

[
1

α2 (μ1 + μ2 + μ3K∗)

+ 1

T(2α − 1)
(v1 + v2 + v3K∗)

]}

‖x − x∗‖2
PC2

L
.

Similarly for t ∈ (tk, tk+1], k = 2, 3, . . . , m,

E‖(Nx)(t) − (Nx∗)(t)‖2H ≤
{

4(mLI + mT2LQ) + 4T2α

Γ (α)

[
1

α2 (μ1 + μ2 + μ3K∗)

1

T(2α − 1)
(v1 + v2 + v3K∗)

]}

‖x − x∗‖2
PC2

L

= Θ‖x − x∗‖2
PC2

L
.

Since Θ < 1, by the condition given in Theorem 1, N is a contraction map and
therefore it has a unique fixed point x ∈ PC2

L which is a solution of our equation
(1)–(3) on J . This completes the proof of the theorem.
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