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Abstract The objective of this paper is to present some sufficient conditions for
approximate controllability of semilinear stochastic system with state delay. Suf-
ficient conditions are obtained by separating the given semilinear system into two
systems namely a semilinear deterministic system and a linear stochastic system.
To prove our results, the Schauder fixed-point theorem is applied. At the end, an
example is given to show the effectiveness of the result.
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1 Introduction

Controllability concepts play a vital role in deterministic control theory. It is well
known that controllability of deterministic equation is widely used in many fields
of science and technology. But in many practical problems such as fluctuating stock
prices or physical system subject to thermal fluctuations, population dynamics, etc.,
some randomness appear, so the system should be modelled stochastic form.

In setting of deterministic systems: Kalman [1] introduced the concept of control-
lability for finite-dimensional deterministic linear control systems. Then Barnett [2]
and Curtain [3] introduced the concepts of deterministic control theory in finite and
infinite-dimensional spaces. Naito [4] established sufficient conditions for approx-
imate controllability of deterministic semilinear control system dominated by the
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linear part using Schauder’s fixed-point theorem. In [5, 6],Wang extended the results
of [4] and established sufficient conditions for delayed deterministic semilinear sys-
tems using same Schauder’s fixed-point theorem. In [7] author provided more appli-
cations of Schauder’s fixed-point theorem in nonlinear controllability problems.

In setting of stochastic systems: In [8, 9] Mahmudov established some results
for controllability of linear stochastic systems in finite-dimensional and infinite-
dimensional spaces, respectively. Sukavanam et al. in [10] obtained some sufficient
conditions for s-controllability of an abstract first-order semilinear control system
using Schauder’s fixed-point theorem. Recently, Anurag et al. [11] obtained some
sufficient conditions for approximate controllability of retarded semilinear stochastic
system with nonlocal conditions using Banach fixed-point theorem.

The present paper is generalized form of the system taken in [10]. In this paper
system is taken with finite delay in state which is not discussed up to now in the
literature in best of my knowledge. The technique is adopted similar to discussed in
[10, 12] with suitable modifications.

Let X and U be the Hilbert spaces and Z = L2[0, b; X ], Zh = L2[−h, b; X ],
0 < h < b, and Y = L2[0, b; U ] be function spaces. Rk denotes k-dimensional real
Euclidean space. Let (Ω, ζ, P) be the probability spacewith a probabilitymeasure P
onΩ and afiltration {ζt |t ∈ [0, b]}generatedbyaWienerProcess {ω(s) : 0 ≤ s ≤ t}.

We consider the semilinear stochastic control system of the form:

dx(t) = [Ax(t) + Bu(t) + f (t, xt )]dt + dω(t), t > 0

x(t) = ξ(t), t ∈ [−h, 0] (1)

where the state function x ∈ Z; A : D(A) ⊆ X → X is a closed linear operator
which generates a strongly continuous semigroup S(t); B : Y → Z is a bounded
linear operator; function f : [0, b] × X → X is a nonlinear operator such that, f
is measurable with respect to t , for all x ∈ Z and continuous with respect to x for
almost all t ∈ [0, b]; xt ∈ L2([−h, 0], X) = C (let)-valued stochastic processes
and defined as xt (s) = {x(t + s)| − h ≤ s ≤ 0|}; Control u(t) takes values in U for
each t ∈ [0, b].

By splitting the system (1), we get the following pair of coupled systems

dy(t)

dt
= [Ay(t) + Bv(t) + f (t, (y + z)t ]; 0 ≤ t ≤ b

y(t) = ψ(t), t ∈ [−h, 0] (2)

and

dz(t) = [Az(t) + Bw(t)]dt + dω(t); 0 ≤ t ≤ b

z(t) = ξ(t) − ψ(t), t ∈ [−h, 0] (3)

The system represented by (3) is linear stochastic system and for each realization z(t)
of system (3), the systemgiven by (2) is a deterministic system. Thus the solution y(t)
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of the semilinear system (2) depends on the solution z(t) of linear stochastic system
(3). The functions v and w are Y -valued control function, such that u = v + w.

It can be easily seen that, the solution x(t) of the semilinear stochastic system (1)
is given by y(t) + z(t) where y(t) and z(t) are the solutions of the systems (2) and
(3), respectively.

2 Preliminaries

In this section, some definitions are discussed which will be used in proof of main
results.

The mild solution of the systems (1) can be written as

x(t) =

⎧
⎪⎨

⎪⎩

S(t)ξ(0) +
∫ t

0
S(t − s){Bu(s) + f (s, xs)}ds +

∫ t

0
S(t − s)dω(s), t > 0

ξ(t) − h ≤ t ≤ 0
(4)

the mild solution of the semilinear system (2) can be written as

y(t) =

⎧
⎪⎨

⎪⎩

S(t)ψ(0) +
∫ t

0
S(t − s){Bv(s) + f (s, (y + z)s}ds, t > 0

ψ(t) − h ≤ t ≤ 0

(5)

and the mild solution of the linear stochastic system (3) can be written as

z(t) =

⎧
⎪⎨

⎪⎩

S(t)(ξ(0) − ψ(0)) +
∫ t

0
S(t − s)Bw(s)ds +

∫ t

0
S(t − s)dω(s), t > 0

ξ(t) − ψ(t) − h ≤ t ≤ 0
(6)

Consider the linear system corresponding to the system (2) given by

dp(t)

dt
= Ap(t) + Br(t), t > 0

p(t) = ψ(t) t ∈ [−h, 0] (7)

The mild solution of the above linear system is expressed as

p(t) =

⎧
⎪⎨

⎪⎩

S(t)ψ(0) +
∫ t

0
S(t − s)Br(s)ds t > 0

ψ(t) − h ≤ t ≤ 0

(8)

Definition 1 The set given by KT ( f ) = {x(T ) ∈ X : x ∈ Zh} where x is a mild
solution of (1) corresponding to control u ∈ Y is called Reachable set of the
system (1).
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Definition 2 The system (1) is said to be approximately controllable if KT ( f ) is
dense in X , means KT ( f ) = X .

3 Basic Assumptions

In this section, some basic conditions and lemmas are assumed and discussed for
obtaining the main results. Throughout this paper D(A), R(A), and N0(A) denote
the domain, range, and null space of operator A, respectively.
The following conditions are assumed:
(H1) For every p ∈ Z there exists a q ∈ R(B) such that Lp = Lq where the operator
L : Z → X is defined as

Lx =
∫ b

0
S(b − s)x(s)ds

(H2) The semigroup {S(t), t ≥ 0} generated by A is compact on X and there is a
constant M ≥ 0 such that ||S(t)|| ≤ M .
(H3) f (t, x) satisfies Lipschitz continuity on Z . i.e

|| f (t, x1) − f (t, x2)|| ≤ l p||x1 − x2||, l p > 0

(H4) f (t, x) satisfies linear growth condition, that is,

|| f (t, x)|| ≤ a1 + b1||x ||,

where a1 and b1 are constants.
(H5) Mbb1(1 + c) < 1
where the constants b and b1 appear in the above conditions. The constant c is defined
in Lemma 1.
Let G : N⊥

0 (L) → R(B) be an operator defined as follows:

Ga = a0

where a ∈ N⊥
0 (L) and a0 is the unique minimum norm element in the set

{a + N0(L)} ⋂
R(B)} satisfying the following condition

||Ga|| = ||a0|| = min

[

||e|| : e ∈ {a + N0(L)}
⋂

R(B)}
]

(9)

The operator G is well defined, linear, and continuous (see [4], Lemma 1). From
continuity of G, it follows that ||Ga|| ≤ c||a||Z , for some constant c ≥ 0.

Since Z = N0(L) + R(B) as is evident from condition (H1), any element z ∈ Z
can be expressed as
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z = n + q : n ∈ N0(L), q ∈ R(B)

Lemma 1 In [12], for z ∈ Z and n ∈ N0(L), the following inequality holds

||n||Z ≤ (1 + c)||z||Z (10)

where c is such that ||G|| ≤ c.

Let us introduce some operators in the following way:
K : Z → Z defined by

(K z)(t) =
∫ t

0
S(t − s)z(s)ds

Now, let M0 be the subspace of Zh (see [11]) such that

M0 =
{

m ∈ Zh : m(t) = (K n)(t), n ∈ N0(L) 0 ≤ t ≤ b

m(t) = 0, −h ≤ t ≤ 0

It can be noted that m(b) = 0, for all m ∈ M0.
For each solution p(t) of the system (7) with control r and for each realization

z(t) of the system (3), define the random operator f p : M0 → M0 as

f p =
{

K n, 0 < t < b
0, −h ≤ t ≤ 0

(11)

where n is given by the unique decomposition

F(p + z + m) = n + q: n ∈ N0(L), q ∈ R(B), (12)

where F : L2([0, b], C) → X given by

(Fx)(t) = f (t, xt (.)); 0 ≤ t ≤ b

It is easy to see that F satisfies Lipschitz continuity (H3) and linear growth conditions
(H4).

4 Main Results

In this section, approximate controllability of systems (2), (3) is proved. System (1)
is splitted in systems (2), (3), so if systems (2), (3) are approximately controllable
then system (1) is also approximately controllable.
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The linear system (7) corresponding to system (2) is approximately controllable
under the condition (H1) (see [5]).
For approximate controllability of (3)

dz(t) = [Az(t) + Bw(t)]dt + dω(t); 0 ≤ t ≤ b

z(t) = ξ(t) − ψ(t), t ∈ [−h, 0] (13)

The mild solution of above system is

z(t) =
⎧
⎨

⎩

S(t)(ξ(0) − ψ(0)) +
∫ t

0
S(t − s)Bw(s)ds +

∫ t

0
S(t − s)dω(s), t > 0

ξ(t) − ψ(t) − h ≤ t ≤ 0
(14)

Define the operator Lb
0 : L2[0, b; U ] → L2[Ω, ζt , X ], the controllability operator

Πb
s : L2[Ω, ζt , X ] → L2[Ω, ζt , X ] associated with (14), and the controllability

operator Γ b
s : X → X associated with the corresponding deterministic system of

(14) as

Lb
0 =

∫ b

0
S(b − s)Bw(s)ds (15)

Πb
s {.} =

∫ b

s
S(b − t)B B∗S∗(b − t)E{.|ζt }dt (16)

Γ b
s =

∫ b

s
S(b − t)B B∗S∗(b − t)dt (17)

It is easy to see that the operators Lb
0,Π

b
s , Γ b

s are linear-bounded operators, and the
adjoint (Lb

0)
∗ : L2[Ω, ζt , X ] → L2[0, b; U ] of Lb

0 is defined by

(Lb
0)

∗ = B∗S∗(b − t)E{z|ζt }Πb
0 = Lb

0(Lb
0)

∗.

Before studying the approximate controllability of system (3), let us first investigate
the relation between Πb

s and Γ b
s ; s ≤ r < b and resolvent operator R(λ,Πb

s ) =
(λI + Πb

s )−1 and R(λ, Γ b
r ) = (λI + Γ b

r )−1, s ≤ r < b for λ > 0, respectively.

Lemma 2 For every z ∈ L2[Ω, ζt , X ] there exists ϕ(.) ∈ Lζ
2(0, b; L(Rk, X)) such

that

1. E{z|ζt } = E{z} + ∫ t
0 ϕ(s)dω(s),

2. Πb
s z = Γ b

s Ez + ∫ b
s Γ b

r ϕ(r)dω(r),

3. R(λ,Πb
s )z = R(λ, Γ b

s )E{z|ζt } + ∫ b
s Γ b

r ϕ(r)dω(r).

Proof The proof is straightforward adaption of the proof of [10, Lemma 2.3]. 	

Theorem 1 The control system (3) is approximately controllable on [0, b] if and
only if one of the following conditions holds.
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1. Πb
0 > 0.

2. λR(λ,Πb
0 ) converges to the zero operator as λ → 0+ in the strong operator

topology.
3. λR(λ,Πb

0 ) converges to the zero operator as λ → 0+ in the weak operator
topology.

Proof The proof is straightforward adaption of the proof of [9, Theorem 2]. 	

Lemma 3 Under the conditions (H2), (H4), and (H5), the operator f p has a fixed
point m0 ∈ M0 for each realization z(t) of the system (3).

Proof From the compactness of S(t) the integral operator K is compact and hence
f p is compact for each p, (see [1]). Now let ||m|| ≤ r̃ . Then from the condition (H4)

and from the inequality (10) and (12), we have

|| f p(m)||2 ≤
∣
∣
∣
∣

∣
∣
∣
∣

∫ t

0
S(t − s)n(s)ds

∣
∣
∣
∣

∣
∣
∣
∣

2

≤
∫ b

0

∣
∣
∣
∣

∣
∣
∣
∣

∫ t

0
S(t − s)n(s)ds

∣
∣
∣
∣

∣
∣
∣
∣

2

dt

≤ M2b2(1 + c)2||F(p + z + m||2Z
≤ M2b2(1 + c)2{a1 + b1||p + z + m||Z }2
≤ M2b2(1 + c)2{a1 + b1||p + z|| + b1r̃}2 (18)

Using Schauder’s fixed-point theorem, it is clear from the compactness of f p and
(18) that f p has a fixed point in M0 in a ball of radius r̃ > 0, if

r̃ >
Mb(1 + c)(a1 + b1||p + z||)

1 − Mb(1 + c)b1

Thus f p(m0) = m0

The approximate controllability of the semilinear system (2) is proved in following
manner using the above lemma.

Lemma 4 For each realization z(t) of the system (3), the semilinear control system
(2) is approximately controllable under the conditions (H1)–(H4).

Proof From the Eq. (12), we have

F(p + z + m) = n + q

Operating K on both the sides at m = m0 (fixed point of f p) and using (11), we get

KF(p + z + m0) = Kn + Kq

= m0 + Kq
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Adding p on both sides, we get

p + KF(p + z + m0) = p + m0 + Kq

Let p + m0 = y∗, then the above equation is equivalent to

p + K F(y∗ + z) = y∗ + K q

Since, from the Eq. (8)
p = S(t)ψ(0) + KBr

we have

S(t)ψ(0) + K Br + K F(y∗ + z) = y∗ + K q

S(t)ψ(0) + K (Br − q) + K F(y∗ + z) = y∗

Thus, it follows that y∗(t) is a solution of the semilinear system

dy∗(t)
dt

= Ay∗(t) + f (t, (y∗ + z)t ) + Br(t) − q(t),

y∗(0) = ψ(0) (19)

with control (Br − q).
Moreover, since y∗(t) = p(t) + m0(t), it follows that

y∗(b) = p(b) + m0(b),

as m0(b) = 0 it follows that
y∗(b) = p(b) (20)

From the Eqs. (19) and (20), it is clear that the reachable set of (19) is a superset of
the reachable set of the system (7), which is dense in X .

Further q ∈ R(B) implies that for any given ε1 > 0, there exists v1 ∈ Y such that
||q − Bv1|| ≤ ε1.

Now consider the equation

dy(t)

dt
= Ay(t) + f (t, (y + z)t ) + B(r(t) − v1(t)),

y(0) = ψ(0) (21)

Let y(t) be the solution of the system (21), corresponding to control v = r −v1. Then
||y∗(b)− y(b)|| can be made arbitrary small by choosing a suitable v1, which implies
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that the reachable set of the system (21) is dense in the reachable set of the system
(19), which in turn is dense in X . This proves that the system (2) is approximately
controllable. 	


5 Example

Consider the stochastic control system with delay governed by the semilinear heat
equation

∂y(t, x) =
[
∂2y(t, x)

∂x2
+ Bu(t, x) + f (t, y(t + v, x))

]

∂t + ∂ω(t)

for 0 < t < τ ; v ∈ [−h, 0]; 0 < x < π

with conditions y(t, 0) = y(t, π) = 0, 0 ≤ t ≤ τ

y(t, x) = ξ(t, x), −h ≤ t ≤ 0, 0 ≤ x ≤ π (22)

The system (22) can be written in the abstract form (1), by setting X = L2(0, π)

and A = d2

dx2
, with domain consisting of all y ∈ X with

(
d2 y
dx2

)
∈ X and y(0) = 0 =

y(π). Takeφ(x) = (2/π)1/2sin(nx), 0 ≤ x ≤ π, n = 1, 2, 3, ..., then {φn(x)} is an
orthonormal basis for X and φn ia an eigenfunction corresponding to the eigenvalue
λn = −n2 of the operator A, n = 1, 2, 3, .... Then the C0-semigroup T (t) generated
by A has eλn t as the eigenvalues and φn as their corresponding eigenfunctions.

Define an infinite-dimensional space U by

U =
{

u : u =
∞∑

n=2

unφn with
∞∑

n=2

u2
n < ∞

}

The norm defined by

||u||U =
( ∞∑

n=2

u2
n

)1/2

ξ(t, x) is known function.
Let B be a continuous linear operator from U to X defined as

Bu = 2u2φ1 +
∞∑

n=2

unφn, u =
∞∑

n=2

unφn ∈ U

The nonlinear operator f is assumed to satisfy conditions (H3) and (H4).
The approximate controllability of the corresponding semilinear deterministic

heat equation of (22) was considered by Naito [4] and proved under the conditions
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(H1)–(H4). Here approximate controllability of the stochastic semilinear heat control
system (22) is considered.

The system (22) can be associated with two control systems under the initial and
boundary conditions, as given below

∂y(t, x)

∂t
= ∂2y(t, x)

∂x2
+ y(t − h, x)

+Bv(t, x) + f (t, y(t − h, x) + z(t − h, x)) t ∈ [0, b] x ∈ [0, π ] (23)

y(t, x) = ξ(t, x), −h ≤ t ≤ 0, 0 ≤ x ≤ π

∂z(t, x) =
[
∂2z(t, x)

∂x2
+ z(t − h, x) + Bw(t)

]

∂t + ∂ω(t) (24)

The system (24) is a linear stochastic system and for each realization z(t) of the
system (24), the system (23) is a deterministic system.

From Lemma 4 and using the conditions (H1)–(H4), it is clear that for each real-
ization z(t) of the system (24), the system (23) is approximately controllable. The
linear stochastic system (24) is approximately controllable from Lemma 3 corre-
sponding to (23) and linear system corresponding to system (23) is approximately
controllable from [4].
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