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Abstract Highly oscillating integrals occur in many engineering applications. This
paper discusses the quasi-Monte Carlo methods for calculation of the highly oscillat-
ing integrals using a low discrepancy sequence. We evaluated the highly oscillating
integrals using a low discrepancy sequence known as Vander Corput sequence. The
theoretical error bounds are calculated and are compared with analytical results.
The reliability of the quasi-Monte Carlo methods is compared with He’s homotopy
perturbation method.
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1 Introduction

Highly oscillatory functions arise in wide range of applications in science and engi-
neering. The integration of high oscillatory functions is a challenging task from
several years. Most of the techniques or analysis for integration of highly oscillatory
functions are problem-oriented or technique-oriented. For example, integration of
these functions occurs in solving the problems modeling of wave phenomena like
diffraction of light, scattering of acoustic waves [8], scattering of electromagnetic
waves [11], etc. The boundary element method also requires the evaluation of highly
oscillatory integrals [3]. Explicit solution exists only for a few cases. So one needs
to go for numerical methods.

The main goal of the present paper is on the analysis and computation of the
integrals of the form
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Fig. 1 Error in Gaussian quadrature with f (x) = cos(x), g(x) = x2 for the quadrature points 5,
10, and 16

I [ f,Ω] =
∫

Ω

f (x)eiωg(x)dV, (1)

where Ω ⊂ R
n is bounded and open domain with piecewise smooth boundary. The

functions f, g ∈ C∞ are smooth. For large values of |ω|, the integral (1) oscillates
rapidly as a function of ω.

A classical technique to compute (1) is Gaussian quadrature [6] method. If the
integrand oscillates rapidly (for large values of ω), the Gaussian quadrature methods
are not appropriate. For example, let us consider the following integral

∫ 1

0
cos(x)eiωx2dx . (2)

The integral is evaluated using Gauss–Legendre quadrature rule at different
quadrature points. One may observe that the Gauss–Legendre quadrature rule gives
good results for small values of ω. As ω becomes large in comparison with quadra-
ture points, high oscillations set in and the error becomes O(1). The absolute error
with respect to ω is plotted in the Fig. 1.

There exists few techniques to calculate the highly oscillating integrals. Among
all Asymptotic expansion methods, Filon-type methods, and Levin-type methods are
most popular. The Asymptotic method in a straightforward manner is nothing but
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repeatedly applying the integration by parts. But the accuracy of the asymptotic
expansion is limited due to the divergence of the series.

An even better approach is Filon [2]-type method. In this method instead of
approximating whole integral, we approximate f (x) of Eq. (1) at a set of quadrature
nodes c1, . . . , cν , by a polynomial f̃ . Evaluation of the moments makes Filon-type
methods difficult to certain type of applications.

In Levin [9]-type method we collocate the integrand at specific points. The Levin-
type method is advantageous over Filon-type method and it is due to the fact that
Levin-type method works easily on all types of domains and nonlinear oscillators.
Most of the methods used in the current research are either Filon- or Levin-type
methods or a modified form of these methods [1, 14]. He’s homotopy Perturbation
Method (HPM) is used in [10] for the numerical solution of the highly oscillating
integrals.

In spite of all these methods, new applications continuously give rise to situations
where straightforward application of these formulas are either inefficient or simply
not possible. For example, if the function to be integrated contains critical point, then
both Filon-type method and Levin collocation method are not accurate. So there is a
need to device new methods for the integration of highly oscillatory functions.

The Monte Carlo method can be used to approximate the definite integral. This

method gives the accuracy O
(

1√
n

)
, which is not at all competitive with good algo-

rithms, such as the Romberg method [6]. The present paper proposes the applica-
tion of quasi-Monte Carlo methods for the numerical integration of highly oscilla-
tory functions. In these methods selection of abscissas are based on Vander Corput
sequence [7], which is a low discrepancy sequence.

In Sect. 2, an introduction to quasi-Monte Carlo methods, low discrepancy
sequences, and Vander Corput sequence are presented. Section 3 gives the error
bounds for quasi-Monte Carlo integration of the highly oscillating integrals. In
Sect. 4, the quasi-Monte Carlo method with a Vander Corput sequence is applied
to various problems. The efficiency of the QMC method is compared with other
methods. Conclusions are drawn and are discussed in Sect. 5.

2 Quasi-Monte Carlo Methods

The only difference between the Monte Carlo and quasi-Monte Carlo methods is the
selection of abscissa set {xi } (grid points). In Monte Carlo methods the abscissa are
generated as a set of random number, whereas in quasi-Monte Carlo methods the
quadrature nodes are calculated from deterministic algorithms.
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2.1 Low Discrepancy Sequences

Now we introduce a quantity (the so-called discrepancy of the sequence) that mea-
sures the deviation of the sequence from an ideal distribution. This measure enables
us to distinguish between good and bad sequences.

Definition 1 [7] For a nonempty set M of measurable subsets of C+
N , the

discrepancy DM
n of the finite sequence x1, x2, . . . , xn ∈ C+

N with respect to M
is defined by

DM
n (x1, x2, . . . , xn) := sup

E∈M

∣∣∣∣∣
A(E; n)

n
−

∫
C+

N

CE (x)dx

∣∣∣∣∣ .

where A(E; n) := ∑n
i=1 CE (xi ) counts the number of points xi ∈ E and E ⊆ C+

N .

2.2 Vander Corput Sequence

In this subsection, we are going to describe a low discrepancy sequence known
as Vander Corput sequence [7]. In fact, this is the only infinite sequence having a
uniformly smaller discrepancy than any other sequence exists upto now. Therefore,
we have chosen this sequence for our numerical integration.

We define the so-called Vander Corput sequence {xn} as follows: For n ≥ 1,
let n − 1 = ∑s

j=0 a j2 j be the dyadic expansion of n − 1. Then we set xn =∑s
j=0 a j2− j−1. The sequence {xn} is then clearly contained in the unit interval. The

following theorem gives the bounds for discrepancy of the Vander Corput sequence.

Theorem 1 The discrepancy DN (ζ ) of the Vander Corput sequence ζ = {xN }
satisfies

DN (ζ ) ≤ ln(N + 1)

N ln 2

for N grid points.

Proof See [7].

3 Error Bounds for Quasi-Monte Carlo Methods

The selection of a numerical scheme is generally based on its accuracy (error bound),
convergence, and computational cost. In this section, we are going to analyze these
characters for quasi-Monte Carlo methods.
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3.1 Variation of a Function

The variation of a univariate real function f : [a, b] → R characterizes the regularity
of f on the interval [a, b]. For a partitionP of the interval [a, b] into n subintervals,

P : {xi : a = x0 < x1 < · · · < xN−1 < xN = b},

the sum

V ( f ;P) :=
n∑

i=1

| f (xi ) − f (xi−1) |

measures the discrete variation of f with respect to the specific partition P . The
continuous variation of f can be characterized by the supremum of all such discrete
variations V ( f ;P).

Definition 2 [12] Variation of a univariate function. The variation of a univariate
function f : [a, b] → R is defined as

V ( f ) := sup {V ( f ;P)} = sup
P

{
n∑

i=1

| f (xi ) − f (xi−1) |
}

.

If V ( f ) is finite, f is said to be of bounded variation on [a, b]. If f is continuously
differentiable then the relationship holds.

V ( f ) =
∫ b

a
| f ′(x) | dx

The variation of nonlinear oscillator is obtained as follows:

Proposition 1 Suppose f (x), g(x) are two continuously differentiable real valued
functions with a finite bounded variation on [a, b] and let

I =
∫ b

a
f (x)eiωg(x)dx,

then the bounded variation of the integrand is calculated as

BV
[

f (x)eiωg(x)
]

≤
∫ b

a

∣∣iωg′(x) f (x) + f ′(x)
∣∣ dx

Proof Let the integrand be denoted as

φ(x) = f (x)eiωg(x)

Since φ(x) is piecewise smooth then the bounded variation is calculated as
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BV (φ) =
∫ b

a
|φ′(x)|dx

=
∫ b

a

∣∣∣iωg′(x) f (x)eiωg(x) + f ′(x)eiωg(x)
∣∣∣ dx

∴ BV (φ) ≤
∫ b

a

∣∣iωg′(x) f (x) + f ′(x)
∣∣ ∣∣∣eiωg(x)

∣∣∣ dx

≤
∫ b

a

∣∣iωg′(x) f (x) + f ′(x)
∣∣ dx

Corollary 1 Suppose g(x) = Constant, then

BV
[

f (x)eiωg(x)
]

≤
∫ b

a

∣∣ f ′(x)
∣∣ dx

which corresponds to normal integration.

Corollary 2 Suppose g(x) = x, i.e., linear oscillator, then

BV
[

f (x)eiωg(x)
]

≤
∫ b

a

∣∣iω f (x) + f ′(x)
∣∣ dx

But it is not always possible to calculate the variation of the functions.

3.2 Error Bounds

Now we discuss the error bounds for quasi-Monte Carlo approximation for more
general integration domains. All these bounds depend on the variation of the inte-
grand which involves the oscillatory parameter ω. A classical result is the following
inequality of Koksma [7].

Theorem 2 If f has bounded variation V ( f ) on [0, 1], then, for any sequence
x1, x2, . . . , xN ∈ [0, 1], we have

∣∣∣∣∣
1

N

N∑
n=1

f (xn) −
∫ 1

0
f (u)du

∣∣∣∣∣ ≤ V ( f )DN (x1, x2, . . . , xN ). (3)

Proof We can assume that x1 ≤ x2 ≤ · · · ≤ xN . Put x0 = 0 and xN+1 = 1. Using
summation by parts and integration by parts, we obtain
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1

N

N∑
n=1

f (xn) −
∫ 1

0
f (u)du = −

N∑
n=0

n

N
( f (xn+1) − f (xn)) +

∫ 1

0
ud f (u)

=
N∑

n=0

∫ xn+1

xn

(
u − n

N

)
d f (u).

For fixed n with 0 ≤ n ≤ N , we have

∣∣∣u − n

N

∣∣∣ ≤ DN (x1, x2, . . . , xN ) for xn ≤ u ≤ xn+1

∴
∣∣∣∣∣
1

N

N∑
n=1

f (xn) −
∫ 1

0
f (u)du

∣∣∣∣∣ ≤ DN (x1, x2, . . . , xN )

N∑
n=0

∫ xn+1

xn

|d f (u)|

≤ DN (x1, x2, . . . , xN )

N∑
n=1

| f (xn+1) − f (xn)|

≤ DN (x1, x2, . . . , xN )V ( f ).

Hence we get the desired inequality.

The Koksma’s inequality is applicable for C∞ functions also.

4 Numerical Experiments

In this section, we consider two different example problems. We evaluated the inte-
grals using quasi-Monte Carlo methods with Vander Corput sequence and error
bounds are calculated using Koksma’s inequality.

Example 1 In this example, we consider the highly oscillating integrals of the form

I =
∫ b

a
eiωg(x)dx

where g′(0) = g′′(0) = · · · = g(r−1)(0) = 0 and g(r)(x) �= 0, for all x ∈ [0, 1].
This oscillator is known as irregular oscillator, where g is real.

In particular let us consider the integral

∫ 1

0
eiωx2dx = erf(

√−iω)
√

π

2
√−iω
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It can be observed that the above integral has a unique critical point 0 of g(x) in
[0, 1]. Therefore, quasi-Monte Carlo method can be applied to evaluate the integral
by using Vander Corput sequence.

Now we calculate the error bound for the given integral as follows: As we know
f (x) = 1, and g(x) = x2 and is continuous and differentiable. Therefore, the
variation of φ(x) can be calculated as

V (φ) =
∫ 1

0
|φ′(x)|dx =

∫ 1

0

∣∣∣2iωxeiωx2
∣∣∣ dx

∴ V (φ) = 2ω
∫ 1

0

∣∣∣xeiωx2
∣∣∣ dx

≤ 2ω

By Koksma inequality (3), we get

∣∣∣∣∣
1

N

N∑
n=1

f (xn) −
∫ 1

0
f (u)du

∣∣∣∣∣ ≤ ωDN (x1, x2, . . . , xN ).

From Theorem 1, we know that

DN (x1, x2, . . . , xN ) ≤ ln(N + 1)

N ln 2

Therefore, the error bound for this integral is obtained as

Error Bound ≤ ω
ln(N + 1)

N ln 2
(4)

From this Eq. (4), we can observe that the error bound is dependent on both oscillating
parameter ω and number of quadrature points N . The absolute error of the numerical
scheme is plotted in Fig. 2 for N = ω. We can observe that the error is of order
ln(N ).

Example 2 Consider the highly oscillatory integral [13]:

I ( f ) =
∫ 1

0
f (x)eiω sin x dx (5)

where f (x) = cos(sin x) cos(x) and g(x) = sin x . The bounded variation of the
above integral is obtained as follows:
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BV ( f ) ≤
∫ 1

0

∣∣iωg′(x) f (x) + f ′(x)
∣∣ dx

≤
∫ 1

0
|iω cos(x) cos(sin x) cos(x) − cos(x) sin(sin(x)) cos(x)

− cos(sin(x)) sin(x)| dx ≤ ω

The exact solution of the above integral (5) is obtained as

I (Q) = eiω sin 1

1 + ω2 [iω cos(sin 1) + sin(sin 1)] − 1

1 + ω2 iω.

The approximate solution of the above integral (5) is calculated using homotopy
perturbation method (HPM) in [10]. It is given as

Fig. 2 Absolute error for N = ω and 0 ≤ ω ≤ 100

Fig. 3 The Absolute error of the integral (5) using HPM and QMC methods
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I10(Q) = 1

ω10

[
iω(457 + 37ω2 + 5ω4 + ω6 + ω8)

] + e0.8414709848iω (968.8821733

+169.63521533iω + 37.55809703ω2 + 17.513719298iω3

−2.7632852366ω4 + 2.3069869759iω5 − 1.4293570493ω6

+0.4328909146iω7 − 0.4028624431ω8 − 0.6663667454iω9)

and the absolute error between exact and HPM is plotted in Fig. 3.The numerical
solution of the above integral (5) is calculated using quasi-Monte Carlo method and
the corresponding absolute error with respect to the exact integral is plotted in Fig. 3.

We can observe that the numerical solution is same as the exact solution with very
small difference as ω increases. The relative absolute error for the two methods are
calculated. Corresponding to HPM method we have relative error 0.002522606 and
corresponding quasi-Monte Carlo method gives the relative error 0.068065001. The
relative error corresponding to HPM is less compared to quasi-Monte Carlo method
due to the fact that HPM is a semiquantitive method and is applicable to few specific
problems. This shows that the quasi-Monte Carlo methods are reliable and can be
applied to a wide range of problems.

5 Conclusions

In this paper we are able to find the numerical solutions of highly nonlinear oscil-
latory integrals using quasi-Monte Carlo Methods. It is observed that the numerical
solution satisfies the analytical error bounds. This shows the good agreement of
results between analytical and numerical calculations. The work is under progress
for the application of quasi-Monte Carlo methods to higher dimensional problems.
This is due to the fact that as dimension of the problem increases the computational
cost of traditional Gaussian-type methods increases. Therefore, Monte Carlo and
quasi-Monte Carlo methods are the best choices.
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