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Abstract In this research paper, first we develop the definition of mild solutions
for impulsive fractional differential equations of order α ∈ (1, 2). Second, we study
the uniqueness result of mild solutions for impulsive fractional differential equation
with state-dependent delay by applying fixed point theorem and solution operator. At
last, we present an example to illustrate the uniqueness result using fractional partial
derivatives.
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1 Introduction

In this research paper, we consider the following impulsive fractional differential
equation with state-dependent delay of the form

C Dα
t u(t) = Au(t) + f (t, uρ(t,ut )), t ∈ J = [0, T ], t �= tk, (1)

u(t) = φ(t), t ∈ (−∞, 0], u′(0) = u1 ∈ X, (2)

Δu(tk) = Ik(u(t−k )), Δu′(tk) = Qk(u(t−k )), k = 1, 2, ...m, (3)

where C Dα
t is the Caputo’s fractional derivative of order α ∈ (1, 2), u′ is ordinary

derivative with respect to t and J is operational interval. A : D(A) ⊂ X → X
is the sectorial operator defined on a complex Banach space X . The functions
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f : J × Bh → X, ρ : J × Bh → (−∞, T ] and φ ∈ Bh are given and
satisfies some assumptions, where Bh is introduced in Sect. 2. The history func-
tion ut : (−∞, 0] → X is defined by ut (θ) = u(t + θ), θ ∈ (−∞, 0] belongs
to Bh . Here 0 = t0 < t1 < · · · < tm < tm+1 = T < ∞ and the functions
Ik, Qk ∈ C(X, X), k = 1, 2, ...m, are bounded. We have �u(tk) = u(t+k ) − u(t−k )

where u(t+k ) and u(t−k ) represent the right- and left-hand limits of u(t) at t = tk,
also we take u(t−k ) = u(tk). Furthermore, �u′(tk) = u′(t+k ) − u′(t−k ) where u′(t+k )

and u′(t−k ) represent the right- and left-hand limits of u′(t) at t = tk, also we take
u′(t−k ) = u′(tk), respectively.

Impulsive differential equations with fractional order (see for fractional calcu-
lus [15, 16, 18–20]) are paying attention by many researchers because the model
processes which are subjected to abrupt changes cannot described by ordinary dif-
ferential equations, so such type equations are modeled in term of impulse. The most
important applications of these equations are in the ecology, mechanics, electrical,
and medicine biology. On the other hand, functional differential equations originate
in several branches of engineering, applied mathematics, and science. Recently, frac-
tional functional differential equations with state-dependent delay seems frequently
inmany fields asmodeling of equations, panorama of natural phenomena, and porous
media. See for more details of the relevant development theory in the cited papers
[1, 2, 4–9, 11, 13].

In our survey, we found that Feckan et al. [12] gave the new concept of solu-
tion for impulsive nonlinear fractional differential equation order α ∈ (0, 1). Wang
et al. [22] defined the definition of mild solution using the probability density func-
tion for the impulsive fractional evolution equation of order α ∈ (0, 1).ByMotivated
work [22], Dabas and Chauhan [10] defined the mild solution for neutral impulsive
fractional functional differential equation of order α ∈ (0, 1) using analytic operator
theory. Wang et al. [23] extended the problem, consider in paper [12] for of order
α ∈ (1, 2). Shu et al. [21] introduced the definition of mild solution for fractional
differential equations with nonlocal conditions of order α ∈ (1, 2) without impulse.
We found that there is no literature available onmild solution for impulsive fractional
functional differential equation of order α ∈ (1, 2).

To fill this gap and inspired by the above-mentioned work [10, 12, 21–23], we
develop the definition ofmild solution for the problem (1)–(3) and show the existence
result. For further details, this work has four sections, Sect. 2 provides some basic
definitions, preliminaries, theorems, and lemmas. The Sect. 3 is equipped with main
results for the considered problem (1)–(3) and in Sect. 4 an example is considered.

2 Preliminaries and Background Martials

Let (X, ‖ · ‖X ) be a complex Banach space of functions with the norm ‖u‖X =
supt∈J {|u(t)| : u ∈ X} and L(X) denotes the Banach space of bounded linear
operators from X into X equipped with norm is denoted by ‖ · ‖L(X).
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For the analysis of the infinite delay, we shall use abstract phase space Bh as
defined in [14] details are as follow:

Let h : (−∞, 0] → (0,∞) be a continuous function with l = ∫ 0
−∞ h(s)ds

< ∞, s ∈ (−∞, 0]. For any a > 0, we define space

B = {ψ : [−a, 0] → X such that ψ(t) is bounded and measurable} ,

equipped with the norm ‖ψ‖[−a,0] = sups∈[−a,0] ‖ψ(s)‖X ,∀ ψ ∈ B. Let us define
abstract space as

Bh =
{

ψ : (−∞, 0] → X, s.t. for any a ≥ c > 0, ψ |[−c,0]∈ B

∫ 0

−∞
h(s)‖ψ‖[s,0]ds < ∞

}

.

If Bh is endowed with the norm ‖ψ‖Bh = ∫ 0
−∞ h(s)‖ψ‖[s,0]ds, ∀ ψ ∈ Bh, then

it is clear that (Bh, ‖ · ‖Bh ) is a complete Banach space. Let

C1
t ([0, T ], X) = C1([0, t]; X), 0 < t ≤ T < ∞,

be a Banach space of all functions u : [0, T ] → X such that u is continuously
differentiable on [0, T ] endowed with the norm

‖u‖C1
t

= sup
t∈[0,T ]

⎧
⎨

⎩

1∑

j=0

‖u j (t)‖X , u ∈ C1
t

⎫
⎬

⎭
.

To use the impulsive condition with infinite delay, we consider a Banach space

B′
h := PC1((−∞, T ]; X), T < ∞,

formed by all functions u : (−∞, T ] → X such that u is continuously differentiable
on [0, T ] except for a finite number of points ti ∈ (0, T ), i = 1, 2, . . . ,N, at which
u′(t+i ) and u′(t−i ) = u′(ti ) exist and endowed with the seminorm ‖ · ‖B

′
h
inB

′
h

‖u‖B′
h

= sup{‖u‖C1
t

: 0 ≤ t ≤ T } + ‖φ‖Bh , u ∈ B
′
h .

For a function u ∈ B′
h and i ∈ {0, 1, . . . , N }, we introduce the function

ūi ∈ C1((ti , ti+1]; X) given by

ūi (t) =
{

u′(t), for t ∈ (ti , ti+1],
u′(t+i ), for t = ti .

Let u : (−∞, T ] → X be the function such that u0 = φ, u |Jk ∈ C1(Jk, X) then for
all t ∈ Jk, the following conditions hold:
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(C1) ut ∈ Bh .

(C2) ‖u(t)‖X ≤ H‖ut‖Bh .

(C3) ‖ut‖Bh ≤ K (t) sup {‖u(s)‖ : 0 ≤ s ≤ t} + M(t)‖φ‖Bh , where H > 0 is
constant; K , M : [0,∞) → [0,∞), K (·) is continuous, M(·) is locally
bounded and K , M are independent of u(t).

(C4φ ) The function t → φt is well-defined and continuous from the set

(ρ−) = {ρ(s, ψ) : (s, ψ) ∈ [0, T ] × Bh}

intoBh and there exist a continuous and bounded function Jφ : (ρ−) →
(0,∞) such that ‖φt‖Bh ≤ Jφ(t)‖φ‖Bh for every t ∈ (ρ−).

Lemma 1 ([5]) Let u : (−∞, T ] → X be function such that u0 = φ, u |Jk ∈
C1(Jk, X) and if (C4φ ) hold, then

‖us‖Bh
≤ (Mb + Jφ)‖φ‖Bh

+ Kb sup

{

‖u(θ)‖; θ ∈ [0,max{0, s}]
}

, s ∈ (ρ−) ∪ Jk ,

where Jφ = supt∈(ρ−) Jφ(t), Mb = sups∈[0,T ] M(s) and Kb = sups∈[0,T ] K (s).

Definition 1 Caputo’s derivative of order α > 0 with lower limit a, for a function
f : [a,∞) → R such that f ∈ Cn([a,∞),R) is defined as

C
a Dα

t f (t) = 1

Γ (n − α)

∫ t

a
(t − s)n−α−1 f (n)(s)ds =a J n−α

t f (n)(t),

where a ≥ 0, n − 1 < α < n, n ∈ N.

Definition 2 The Riemann–Liouville fractional integral operator of order α > 0
with lower limit a, for a continuous function f : [a,∞) → R such that f ∈
L1

loc([a,∞),R) is defined by

a J 0
t f (t) = f (t), a Jα

t f (t) = 1

Γ (α)

∫ t

a
(t − s)α−1 f (s)ds, t > 0,

where a ≥ 0 and Γ (·) is the Euler gamma function.

Definition 3 ([21]) Let A : D(A) ⊆ X → X be a densely defined, closed, and
linear operator in X . A is said to be sectorial of the type (M, θ, α, μ) if there exist
μ ∈ R, θ ∈ (π

2 , π), M > 0, such that such that the α-resolvent of A exists outside
the sector and following two conditions are satisfied

(1) μ + Sθ = {μ + λα : λ ∈ C , |Arg(−λα)| < θ},
(2) ‖(λα I − A)−1‖L(X) ≤ M

|λα−μ| , λ /∈ μ + Sθ ,

where X is the complex Banach space with norm denoted ‖ · ‖X .



Mild Solutions for Impulsive Functional Differential … 291

Definition 4 ([19]) A two parameter function of the Mittag-Leffler type is defined
by the series expansion and integral form

Eα,β(y) =
∞∑

k=0

yk

Γ (αk + β)
= 1

2πι

∫

c

μα−βeμ

μα − y
dμ, α, β > 0, y ∈ C,

where c is a contour which starts and ends at −∞ and encircles the disk |μ| ≤ |y| 1α
counter clockwise.

The Laplace integral of this function given by

∫ ∞

0
e−λt tβ−1Eα,β(ωtα)dt = λα−β

λα − ω
, Reλ > ω

1
α , ω > 0.

From paper [17], putting β = 1, ω = A and using the sign÷ for the juxtaposition
of a function depending on t with its Laplace transform depending on λ, we get the
following Laplace transform pairs

Sα(t) = Eα(Atα) ÷ λα−1

λα I − A
, Reλ > A

1
α .

More general Laplace transform pairs with integral

0 J j
t Sα(t) ÷ λα− j−1

λα I − A
, j = 0, 1.

Definition 5 ([2]) Let A be a closed and linear operator with the domain D(A)

defined in a Banach space X and α > 0. We say that A is the generator of a solution
operator if there exist ω ≥ 0 and a strongly continuous function Sα : R+ → L(X),
such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−1

λα I − A
x =

∫ ∞

0
eλt Sα(t)xdt, Reλ > ω, x ∈ X.

In this case, Sα(t) is called the solution operator generated by A.

Definition 6 ([3]) Let A be a closed and linear operator with domain D(A) defined
on a Banach space X. Let ρ(A) be the resolvent set of A, we call A is the generator
of an α-resolvent family if there exists ω ≥ 0 and a strongly continuous function
Tα : R+ → L(X) such that {λα : Reλ > ω} ⊂ ρ(A) and

(λα I − A)−1x =
∫ ∞

0
e−λt Tα(t)xdt, Reλ > ω, x ∈ X.

In this case, Tα(t) is called α-resolvent family generated by A.
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Lemma 2 Let f be a continuous function and A be a sectorial operator of the type
(M, θ, α, μ). Consider following differential equation of order α ∈ (1, 2)

C Dα
t u(t) = Au(t) + f (t), t ∈ J = [0, T ], t �= tk, (4)

u(0) = u0 ∈ X, u′(0) = u1 ∈ X, (5)

Δu(tk) = Ik(u(t−k )),Δu′(tk) = Qk(u(t−k )), t �= tk, k = 1, 2, ...m. (6)

Then a function u(t) ∈ PC1([0, T ], X) is a solution of the system (4)–(6) if it satisfies
following integral equation

u(t) =

⎧
⎪⎨

⎪⎩

Sα(t)u0 + u1
∫ t
0 Sα(s)ds + ∫ t

0 Tα(t − s) f (s)ds, t ∈ (0, t1]
Sα(t)u0 + Kα(t)u1 + ∑k

i=1 Sα(t − ti )Ii (u(t−i ))

+∑k
i=1 Qi

(
u(t−i )

) ∫ t
ti

Sα(s − ti )ds + ∫ t
0 Tα(t − s) f (s)ds, t ∈ (tk, tk+1],

where Sα(t) and Tα(t) are operators generated by A and defined as

Sα(t) = 1

2π i

∫

Γ

eλtλα−1(λα I − A)−1dλ; Tα(t) = 1

2π i

∫

Γ

eλt (λα I − A)−1dλ,

and Γ is a suitable path such that λα /∈ μ + Sθ for λ ∈ Γ.

Proof If t ∈ (0, t1], we have following problem

C Dα
t u(t) = Au(t) + f (t), (7)

u(0) = u0, u′(0) = u1. (8)

By Lemma 3.1 in [23], the solution of Eqs. (7)–(8), we get

u(t) = u0 + u1t +
∫ t

0

(t − s)α−1

Γ (α)
Au(s)ds +

∫ t

0

(t − s)α−1

Γ (α)
f (s)ds. (9)

If t ∈ (tk, tk+1], k = 1, 2, ...m, we have the following problem

C Dα
t u(t) = Au(t) + f (t), (10)

u(t+k ) = u(t−k ) + Ik(u(t−k )), (11)

u′(t+k ) = u′(t−k ) + Qk(u(t−k )). (12)

By Lemma 3.1 in [23] the solution of Eqs. (10)–(12), we get

u(t) = u0 + u1t +
k∑

i=1

Ii (u(t−i )) +
k∑

i=1

Qi (u(t−i ))(t − ti )

+
∫ t

0

(t − s)α−1

Γ α
Au(s)ds +

∫ t

0

(t − s)α−1

Γ (α)
f (s)ds. (13)
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Summarizing Eqs. (9) and (13) to t ∈ (0, T ], we get

u(t) = u0 + u1t +
m∑

i=1

χti (t)Ii (u(t−i )) +
m∑

i=1

χti (t)Qi (u(t−i ))(t − ti )

+
∫ t

0

(t − s)α−1

Γ α
Au(s)ds +

∫ t

0

(t − s)α−1

Γ (α)
f (s)ds, (14)

where

χti (t) =
{
0 t ≤ ti
1 t > ti .

By taking the Laplace transformation on Eq. (14), we have

L{u(t)} = u0

λ
+ u1

λ2
+

m∑

i=1

e−λti

λ
Ii (u(t−i )) +

m∑

i=1

e−λti

λ2
Qi (u(t−i ))

+ A

λα
L{u(t)} + 1

λα
L{ f (t)}. (15)

On simplifying Eq. (15), we get

L{u(t)} = λα−1(u0)

(λα I − A)
+ λα−2(u1)

(λα I − A)
+

m∑

i=1

λα−1

(λα I − A)
e−λti Ii (u(t−i ))

+
m∑

i=1

λα−2

(λα I − A)
e−λti Qi (u(t−i )) + 1

(λα I − A)
L{ f (t)}. (16)

Now, taking the inverse Laplace transformation of Eq. (16), we have

u(t) = Sα(t)u0 + u1

∫ t

0
Sα(s)ds +

m∑

i=1

χti (t)Ii (u(t−i ))Sα(t − ti )

+
m∑

i=1

χti (t)Qi (u(t−i ))

∫ t

ti
Sα(s − ti )ds +

∫ t

0
Tα(t − s) f (s)ds, t ∈ J.

This complete the proof of the lemma.

Now, we state the definition of mild solutions of problem (1)–(3) by Lemma2.

Definition 7 A function u : (−∞, T ] → X such that u ∈ B′
h, u(0) = φ(0),

u′(0) = u1, is called a mild solution of problem (1)–(3) if it satisfies the following
integral equation
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u(t) =

⎧
⎪⎨

⎪⎩

Sα(t)φ(0) + u1
∫ t
0 Sα(s)ds + ∫ t

0 Tα(t − s) f (s, uρ(s,us ))ds, t ∈ (0, t1]
Sα(t)φ(0) + u1

∫ t
0 Sα(s)ds + ∑k

i=1 Ii (u(t−i ))Sα(t − ti )
+∑k

i=1 Qi (u(t−i ))
∫ t

ti
Sα(s − ti )ds + ∫ t

0 Tα(t − s) f (s, uρ(s,us ))ds, t ∈ (tk , tk+1].

3 Uniqueness Result of Mild Solution

In this section, we prove the existence of mild solutions for the problem (1)–(3) with
a non-convex valued right-hand side . If A sectorial operator of the type (M, θ, α, μ)

then the strongly continuous functions ‖Sα(t)‖ ≤ M, ‖Tα(t)‖ ≤ M. To prove our
results, we shall assume the function ρ is continuous. Our result is based on contrac-
tion fixed point theorem, for this we have following assumptions

(H1) The function f is continuous and there exists l f ∈ L1(J,R+) such that

‖( f (t, ψ) − f (t, ξ))‖X ≤ l f (t)‖ψ − ξ‖Bh for every ψ, ξ ∈ Bh .

(H2) The functions Ik, Qk are continuous and there exist li , l j ∈ L1(J,R+) such
that

‖Ik(x) − Ik(y)‖X ≤ li (t)‖x − y‖X ; ‖Qk(x) − Qk(y)‖X ≤ l j (t)‖x − y‖X ,

for all x, y ∈ X and k = 1, . . . , m.

Theorem 1 Let the assumption (H1) and (H2) hold and the constant

Δ = M

[

m‖li‖L1(J,R+) + mT ‖l j‖L1(J,R+) + Kb

∫ T

0
l f (s)ds

]

< 1.

Then problem (1)–(3) has a unique mild solutions u on J.

Proof Weconvert the problem (1)–(3) in to fixed point problem. Let φ̄ : (−∞, T ) →
X be the extension of φ to (−∞, T ] such that ¯φ(t) = φ(0) on J. Consider the
space Banach B′′

h = {
u ∈ B′

h : u(0) = φ(0), u′(0) = u1
}
and define the operator

P : B′′
h → B′′

h as

Pu(t) =

⎧
⎪⎨

⎪⎩

Sα(t)φ(0) + u1
∫ t
0 Sα(s)ds + ∫ t

0 Tα(t − s) f (s, ūρ(s,ūs ))ds, t ∈ (0, t1]
Sα(t)φ(0) + u1

∫ t
0 Sα(s)ds + ∑k

i=1 Ii (ū(t−i ))Sα(t − ti )
+∑k

i=1 Qi (ū(t−i ))
∫ t

ti
Sα(s − ti )ds + ∫ t

0 Tα(t − s) f (s, ūρ(s,ūs ))ds, t ∈ (tk , tk+1],

where ū : (−∞, T ] → X is such that ¯u(0) = φ and ū = u on J. It is clear that u
is unique mild solution of the problem (1)–(3) if and only if u is a solution of the
operator equation Pu = u. Let u, u∗ ∈ B′′

h , for t ∈ (0, t1] we have
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‖Pu − Pu∗‖X ≤
∫ t

0
‖Tα(t − s)‖L(X)‖ f

(
s, ūρ(s,ūs )

) − f
(

s, ū∗
ρ(s,ū∗

s )

)
‖X ds

‖Pu − Pu∗‖B′′
h

≤ M Kb

[∫ T

0
l f (s)ds

]

‖u − u∗‖B′′
h
.

Now, without lose of generality we consider the subinterval (tk, tk+1] to prove our
result. Let u, u∗ ∈ B′′

h for (tk, tk+1], we have

‖Pu − Pu∗‖X ≤
k∑

i=1

‖Sα(t − ti )‖L(X)‖Ii
(
ū

(
t−i

)) − Ii
(
ū∗ (

t−i
)) ‖X

+
k∑

i=1

∫ t

ti
‖Sα(s − ti )‖L(X)ds‖Qi

(
ū

(
t−i

)) − Qi
(
ū∗ (

t−i
)) ‖X

+
∫ t

0
‖Tα(t − s)‖L(X)‖ f

(
s, ūρ(s,ūs )

) − f
(

s, ū∗
ρ(s,ū∗

s )

)
‖X ds

‖Pu − Pu∗‖B′′
h

≤ M

[

m‖li‖L1(J,R+) + mT ‖l j ‖L1(J,R+) + Kb

∫ T

0
l f (s)ds

]

‖u − u∗‖B′′
h

≤ Δ‖u − u∗‖B′′
h
.

Since Δ < 1, which implies that P is contraction map. Hence P has a unique fixed
point, which is the mild solutions of problem (1)–(3) on J. This completes the proof
of the theorem.

4 Application

Consider the following impulsive fractional partial differential equation of the form

∂α

∂tα
u(t, x) = ∂2

∂y2
u(t, x) +

∫ t

−∞
e2(s−t) u(s − ρ1(s)ρ2(‖u‖), x)

81
ds, t �= 1

2
, (17)

u(t, 0) = u(t, π) = 0; u′(t, 0) = u′(t, π) = 0 t ≥ 0, (18)

u(t, x) = φ(t, x), u′(t, x) = 0, t ∈ (−∞, 0], x ∈ [0, π ], (19)

Δu|t= 1
2

=
‖u

(
1−
2

)
‖

36 + ‖u
(
1−
2

)
‖
, Δu′|t= 1

2
=

‖u
(
1−
2

)
‖

49 + ‖u
(
1−
2

)
‖
, (20)

where ∂α

∂tα is Caputo’s fractional derivative of order α ∈ (1, 2), 0 < t1 < t2 < · · · <

tn < T are prefixed numbers and φ ∈ Bh . Let X = L2[0, π ] and define the operator
A : D(A) ⊂ X → X by Aw = w′′ with the domain D(A) := {w ∈ X : w, w′ are
absolutely continuous, w′′ ∈ X, w(0) = 0 = w(π)}. Then
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Aw =
∞∑

n=1

n2(w, wn)wn, w ∈ D(A),

where wn(x) =
√

2
π
sin(nx), n ∈ N is the orthogonal set of eigenvectors of A. It is

well known that A is the infinitesimal generator of an analytic semigroup {T (t)}t≥0
in X given by

T (t)ω =
∞∑

n=1

e−n2t (ω, ωn)ωn, for all ω ∈ X, and every t > 0.

By subordination principle of solution operator, we have ‖Sα(t)‖L(X) ≤ M for t ∈ J.

Let h(s) = e2s, s < 0 then l = ∫ 0
−∞ h(s)ds = 1

2 < ∞, for t ∈ (−∞, 0] and define

‖φ‖Bh =
∫ 0

−∞
h(s) sup

θ∈[s,0]
‖φ(θ)‖L2ds.

Hence for (t, φ) ∈ [0, 1] × Bh, where φ(θ)(x) = φ(θ, x), (θ, x) ∈ (−∞, 0] ×
[0, π ]. We assume that ρi : [0,∞) → [0,∞), i = 1, 2, are continuous functions.

Set u(t)(x) = u(t, x), and ρ(t, φ) = ρ1(t)ρ2(‖φ(0)‖), we have

f (t, φ)(x) = φ

81
, Ik(u) = ‖u‖

36 + ‖u‖ , Jk(u) = ‖u‖
49 + ‖u‖ ,

then with these settings the problem (17)–(20) can be written in the abstract form of
Eqs. (1)–(3). It is obvious that the maps f, Ik, Jk following the assumption H1, H2.

This implies that there exists a unique mild solutions of problem (17)–(20) on J.
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