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Abstract Recent developments at the intersection of algebra and optimization
theory—by the name of compressed sensing (CS)—aim at providing linear sys-
tems with sparse descriptions. The deterministic construction of the sensing matri-
ces is now an active directions in CS. The sparse sensing matrix contributes to fast
processing with low computational complexity. The present work attempts to relate
the notion of set systems to CS. In particular, we show that the set system theory
may be adopted to designing a binary CS matrix of high sparsity from the existing
binary CS matrices.
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1 Introduction

In recent years, sparse representations have become a powerful tool for efficiently
processing data in nontraditional ways. Compressed sensing (CS) is an emerging area
potential for sparsity-based representations. Since the problem of sparse recovery
through l0 norm minimization is generally NP-hard, Donoho et al. [1], Candes [2]
and Cohen et al. [3] have made several pioneering contributions and have reposed
the problem as an l1-minimization problem. It is known that restricted isometry
property (RIP) is a sufficient condition to ensure the equivalence between l0 and l1
norm problems. As verifying RIP is computationally hard, there is much interest in
construction of RIP matrices.

Of late, the deterministic construction of binary CS matrices has attracted signif-
icant attention. Devore [4], Li et al. [5], Amini et al. [6], Indyk [7] have constructed
deterministic binary sensing matrices using ideas from algebra, graph theory, and
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coding theory. Devore [4] has been first to construct deterministic binary sensing
matrix of size p2 × pr+1 with p number of ones in each column and coherence
being at most r

p , for every fixed r and prime power p such that r < p. In the present
work, using the results from set systems we construct a binary sensing matrix from
a given binary sensing matrix in such a way that the resulting matrix is more sparser
than the input matrix. Consequently, the newmatrix has potential for resulting in fast
algorithms.

The paper is organized into several sections. In Sect. 2, we present basic CS theory
and the conditions that ensure the equivalence between l0-norm problem and l1-norm
problem. In Sect. 3, we use the ideas from the set system theory and construct binary
sensingmatrices of higher sparsity from the existing ones.We present our concluding
remarks in the last section.

2 Sparse Recovery from Linear Measurements

CS refers to the problem of reconstruction of an unknown vector u ∈ RM from
the linear measurements y = (〈u, φ1〉, . . . , 〈u, φM 〉) ∈ Rm with 〈u, φ j 〉 being the
innerproduct between u and φ j . The basic objective in CS is to design a recovery pro-
cedure based on the sparsity assumption on u when the number of measurements m
is much small compared to M . Sparse representations seem to have merit for various
applications in areas such as image/signal processing and numerical computation.

A vector u ∈ RM is said to be k-sparse, if it has at most k nonzero coordinates.
One can find the sparse vector from its linear measurements by solving the following
l0-norm optimization problem:

min
v

‖v‖0 subject to φv = y. (1)

Here, ‖v‖0 = |{i | vi �= 0}| . The l0-norm problem (1) is an NP-hard problem [2].
Candes et al. [2] have proposed the following l1-normminimization problem instead
of l0-norm problem, making it computationally tractable LPP problem:

min
v

‖v‖1 subject to φv = y. (2)

Here, ‖v‖1 denotes the l1-norm of the vector v ∈ RM .
Donoho et al. [1] and Kashin et al. [8], have provided the conditions under which

the solution to l0-norm problem (1) is the same as that of l1-norm problem (2). For
later use, we denote the solution to l1-norm problem by fφ(y) and solution to l0-norm
problem by u0

φ(y) ∈ RM .
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2.1 Equivalence Between l0-Norm and l1-Norm Problems

Definition 1 The mutual coherence μ(φ) of a given matrix φ is the largest absolute
normalized innerproduct between the pairs of columns of φ, that is,

μ(φ) = max
1≤ i, j≤ M, i �= j

| φT
i φ j |

‖φi‖2‖φ j‖2 , (3)

where φi is the i th column of φ. It is known [1] that for μ-coherent matrices φ,
one has

u0
φ(y) = fφ(y) = u, (4)

provided u is k-sparse with k < 1
2 (1 + 1

μ
).

Candes et al. ([2] and the references therein) have introduced the following isome-
try condition on matrices φ and have established its important role in CS. An m × M
matrix φ is said to satisfy the restricted isometry property (RIP) of order k with
constant δk if for all k-sparse vectors x ∈ RM , we have

(1 − δk) ‖x‖2l2 ≤ ‖φx‖2l2 ≤ (1 + δk) ‖x‖2l2 . (5)

The following proposition [9] relates the RIP constant δk and μ.

Proposition 1 Suppose that φ1, . . . , φM are the unit-normed columns of the matrix
φ with coherence μ. Then φ satisfies the RIP of order k with constant δk = (k −1)μ.

Candes [2] has shown that whenever φ satisfies RIP of order 3k with δ3k < 1, the
CS reconstruction error satisfies the following estimate

∥
∥u − fφ(φu)

∥
∥

l M
2

≤ Ck
−1
2 σk(u)l M

1
, (6)

where σk(u)l M
1
denotes the l1 error of the best k—term approximation, and the con-

stant C depends only on δ3k . This implies that the bigger the value of k for which
we can verify the RIP then better the guarantee we have on the performance of φ.

One of the important problems in CS theory deals with constructing CS matrices
that satisfy the RIP for the largest possible range of k. It is known that the widest
range possible is k ≤ C m

log( M
m )

[4, 10–12]. However, the only known matrices that

satisfy the RIP for this range are based on random constructions [10]. To the best
of our knowledge, designing the good deterministic constructions of RIP matrices is
still an open problem.

Since the sparsity of the sensing matrix is key to minimizing the computational
complexity associated with the matrix vector multiplication, it is desirable that the
CS matrix has smaller density. The sparse sensing matrix may contribute to fast
processing with low computational complexity in compressed sensing [13].
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Definition 2 [14] The density of a matrix is the ratio of the number of its nonzero
entries to the total number of its entries.

It may be noted that the density of the sensing matrix constructed by Devore [4] is
1
p . The sensing matrix constructed by Li et al. [5] have 1

q as density. This matrix,

a generalization of [4], is of size |P|q × qL (G), where q is any prime power and
P is the set of all rational points on algebraic curve X over finite field Fq . Amini
et al. [6] have constructed binary sensing matrices using OOC codes. The density of
this matrix is λ

m , where m is row size and λ is the number of ones in each column.
Many datamining tasks can be concernedwith identifying a small number of inter-

esting items froma tremendously large groupwithout exceeding certain resource con-
straints. Specific examples [15] include the sketching andmonitoring of heavy hitters
in high-volume data streams, source localization in sensor networks, multiplier-less
data compression and tomography. Note that, all these applications naturally cor-
respond to binary matrices. Furthermore, binary matrices with small density are
generally better. Thus, we focus on designing sparse binary matrices herein.

The present work attempts to address the deterministic construction of new binary
sensing matrix of smaller density from a given binary sensing matrix. Suppose φ is
a binary CS matrix of size m × M with m(m+1)

2 < M . In the next section, using the
results from set systems, we construct a binary sensing matrix ψ from φ in such a
way that the resulting matrix ψ is more sparse compared to the given matrix φ.

3 Construction of Binary CS Matrix of Smaller Density
from Existing Binary Matrix

Before presenting the main result, we discuss the definitions and results [16] relevant
to our construction methodology. Let V = {v1, v2, . . . , vm} be a set of m elements
(treated as “universe”). A set systemS on V is simply some subset chosen from all
of the subsets of V , that is, S ⊂ 2V , the power set. A hypergraph is a collection of
several subsets of V , where some subsets may be present with a multiplicity greater
than 1.A set system may, however, contain each subset of V at most once.

Definition 3 Let H = {H1, H2, . . . , HM } be a hypergraph of M sets over the
universe V , and let φ = {φi j } be the m × M binary sensing incidence matrix of
hypergraphH , that is, the columnsofφ correspond to the sets ofH.The characteristic
vector on each Hj gives the j t h column in φ, that is, φi j = 1 if xi ∈ Hj otherwise
φi j = 0.

Definition 4 Let A = {ai j } and B = {bi j } be the two m × M matrices over a ring
R. Their dream product is an m × M matrix C = {ci j }, denoted by A 	 B, and is
defined as ci j = ai j bi j for 1 ≤ i ≤ m, 1 ≤ j ≤ M .

Definition 5 Let f (x1, x2, . . . , xm) = ∑

I⊆{1,2,...,m} aI xI be a multilinear poly-
nomial, where xI = ∏

i∈I xi . Let w( f ) = |{aI : aI �= 0}| and let L1( f ) =
∑

I⊆{1,2,...,m} |aI |.
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Definition 6 LetH be a set system on the universe X with m × M incidence matrix
φ. Let f (x1, x2, . . . , xm) = ∑

I⊆{1,2,...,m} aI xI be a multilinear polynomial with
nonnegative integer coefficients or coefficients fromZr . Then f (Hφ) is a hypergraph
on the L1( f )-element vertex set, and its incidencematrix is the L1( f )×M matrixψ .
The rows ofψ correspond to xI ’s of f ; there are aI identical rows ofψ corresponding
to the same xI . The row, corresponding to xI is defined as the dream product of those
rows of φ that correspond to vi , i ∈ I .

Lemma 1 [16] Suppose in the Definition 6, the coefficients of x1, x2, . . . , xm are
nonzeros in f . Then the resulting Hypergraph f (Hφ) is a set system [16].

The most remarkable property of f (Hφ) is given by the following theorem:

Theorem 1 [16] Let H = {H1, H2, . . . , HM } be a set system and φ its
m × M incidence matrix. Let f be a multilinear polynomial with nonnegative
integer coefficients or coefficients from Zr . Let f (Hφ) = {Ĥ1, Ĥ2, . . . , ĤM }.
Then for any 1 ≤ k ≤ M and for any 1 ≤ i1 < i2 < · · · < ik ≤ M :
f (Hi1 ∩ Hi2 ∩ . . . ∩ Hik ) = |Ĥi1 ∩ Ĥi2 ∩ . . . Ĥik |.
Following theorem discusses the construction of a new set system from a given set
system using the Definition 6, Lemma 1 and Theorem 1.

Theorem 2 [16] Let f be an m—variable symmetric polynomial with nonnegative
integer coefficients, and H a set system of size M on the m element universe with
m × M incidence matrix φ. Suppose that

L(H ) = {|Hi ∩ Hj |, Hi �= Hj , Hi , Hj ∈ H } = {l1, l2, . . . , ls}.

Then one may construct in O(L1( f )m M) time a hypergraph f (Hφ) of size M on
the L1( f )—vertex universe such that the sizes of the pairwise intersections of the
sets of f (Hφ) are

f (l1), f (l2), . . . , f (ls).

3.1 Set Systems for Designing CS Matrices

Using the afore-stated results [16] from set system theory, we construct a new binary
sensing matrix from a given binary sensing matrix. The newmatrix has small density
as compared to the given one.

Theorem 3 Suppose f (x1, x2, . . . , xm) = x1 + x2 + · · · + xm + ∑

i< j xi x j is a
symmetric polynomial. Let φ be a binary sensing matrix of size m × M such that
m(m+1)

2 < M with the coherence being at most r
k . Here k represents the number

of nonzero elements that each column of φ has. Then there exists a binary sensing

matrix ψ of size m(m+1)
2 × M whose coherence is at most

r+(r
2)

k+(k
2)

.
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Proof DefineH = {Hi : 1 ≤ i ≤ M, Hi = supp(φi ), where φi is i th column of φ}.
Since all columns ofφ are distinct,H is a set system. Let L(H ) = {|Hi ∩Hj |, Hi �=
Hj , Hi , Hj ∈ H } = {l1, l2, . . . , ls}. Since the coherence of the matrix φ is at most
r
k , the cardinality of overlap between the supports of any two columns is at most r .
Consequently, li ≤ r for all i . Let X = {1, 2, . . . , m}.

Since f (x1, x2, . . . , xm) = x1 + x2 + · · · + xm + ∑

i< j xi x j is a symmetric
polynomial and H is a set system, we have L1( f ) = m + (m

2

)

and f (Hφ) is a set
system of size M on L1( f )-element universe, from Theorem 2 and Lemma 1.

Define (vi j )m×1 to be the characteristic vector on Hi ∩ Hj in the universe X . Since
each ls = |Hi ∩ Hj | for some i �= j , f (ls) = f ((vi j )) ≤ f (r) = r + (r

2

)

. It follows
that f (li ) ≤ r + (r

2

)

for all i. Therefore, the sizes of the pairwise intersections of the
sets of f (Hφ) is at most r + (r

2

)

. The incidence matrix ψ of the set system f (Hφ)

is of size L1( f ) × M , that is, (m + (m
2

)

) × M . From the hypothesis of the theorem
(

m + (m
2

))

< M , so it is an underdetermined system and its first m rows are same
as φ and remaining

(m
2

)

rows are the dream products of first m rows. Each column

in ψ contains k + (k
2

)

number of ones. The cardinality of overlap between any two
columns is at most r + (r

2

)

. It follows that coherence of the matrix ψ is μ(ψ), which

is at most equal to
r+(r

2)
k+(k

2)
.

The following theorem concludes that the matrix ψ0 = 1
√

k+(k
2)

ψ defined is RIP

compliant.

Theorem 4 The matrix ψ0 = 1
√

k+(k
2)

ψ has the RIP with δ = (k − 1)

(

r+(r
2)

k+(k
2)

)

whenever k − 1 <
k+(k

2)
r+(r

2)
.

Proof Proof follows from the Proposition 1 and Theorem 3 �

Remark 1 The density of the new matrix ψ is
k+(k

2)
m+(m

2)
, which is smaller than k

m , the

density of φ.

4 Concluding Remarks

As the sensing matrices of higher sparsity (or lower density) have potential for fast
processing, the construction of such matrices is of relevance. In the present work,
we have used the ideas from the set system theory and have showed that a CS matrix
of higher sparsity can be generated from a given binary CS matrix.
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