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Abstract In 1957 Baskakov introduced a general method for the construction of
positive linear operators depending on a real parameter c. The so-called genuine
Baskakov–Durrmeyer-type operators form a class of operators reproducing the lin-
ear functions, interpolating at (finite) endpoints of the interval, and having other
nice properties. In this paper we consider a nontrivial link between Baskakov-type
operators and genuine Baskakov–Durrmeyer-type operators. We establish explicit
representations for the images of monomials and for the moments; they are useful,
e.g., in studying asymptotic formulas.
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1 Introduction and Definition of the Operators

In 1957 Baskakov [1] introduced a general method for the construction of positive
linear operators depending on a real parameter c including the classical Bernstein,
Szász-Mirakjan, and Baskakov operators as special cases. All these Baskakov-type
operators preserve linear functions and interpolate at (finite) endpoints of the cor-
responding interval. The so-called Bernstein–Durrmeyer operators were introduced
by Durrmeyer in [2] and independently developed by Lupaş [9]. Afterwards, this
construction was carried over to many other classical operators; for instance see
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[10, 16] and in the general setting for so-called Baskakov–Durrmeyer-type opera-
tors [6]. These operators have a lot of nice properties; they commute, they commute
with certain differential operators, they are self-adjoint but they only reproduce con-
stants.

The consideration of so-called genuine Baskakov–Durrmeyer-type operators
leads to a class of operators again reproducing the linear functions and interpo-
lating at (finite) endpoints of the corresponding interval. These operators are related
to the Baskakov–Durrmeyer-type operators in the same way as the Baskakov-type
operators to their corresponding Kantorovich variants.

In [11, 12] Păltănea introduces operators depending on a parameterρ ∈ R
+, which

constitute a nontrivial link between the Bernstein and Szász-Mirakjan operators,
respectively, and their genuine Durrmeyer modifications. Further results can also be
found in [3, 4, 13].

In this paper we consider a nontrivial link between Baskakov-type operators
and genuine Baskakov–Durrmeyer-type operators. Moreover, we investigate the kth
order Kantorovich modification of them; for k = 1 this means a link between the
Kantorovich modification of Baskakov-type and Baskakov–Durrmeyer-type opera-
tors.

In what follows for c ∈ R we use the notations

ac, j :=
j−1∏

l=0

(a + cl), ac, j :=
j−1∏

l=0

(a − cl), j ∈ N; ac,0 = ac,0 := 1

which can be considered as a generalization of rising and falling factorials. Note that
a−c, j = ac, j and ac, j = a−c, j . This notation enables us to state the results for the
different operators in a unified form.

In a recent paper [8] we already considered the linking operators between the
kth order Kantorovich modification of the Bernstein and the genuine Bernstein–
Durrmeyer operators. Comparison of the results in [8] with the outcomes of the
present paper shows that all the representations for the moments and the images of
monomials are also valid for the Bernstein case by setting c = −1 in the subsequent
theorems.

In the following definitions of the operators we omit the parameter c in the nota-
tions in order to reduce the necessary sub- and superscripts.

Let c ∈ R, c ≥ 0, n ∈ R, n > c, ρ ∈ R
+, j ∈ N0, x ∈ [0,∞). Then the basis

functions are given by

pn, j (x) =
{

n j

j ! x j e−nx , c = 0,
nc, j

j ! x j (1 + cx)−( n
c + j) , c > 0.

In the following definition we assume that f : [0,∞) −→ R is given in such a way
that the corresponding integrals and series are convergent.
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Definition 1 The operators of Baskakov type are defined by

Bn( f, x) =
∞∑

j=0

pn, j (x) f

(
j

n

)
, (1)

the genuine Baskakov–Durrmeyer-type operators are denoted by

Bn,1( f, x) = f (0)pn,0(x) +
∞∑

j=1

pn, j (x)

∫ ∞

0
pn+2c, j−1(t) f (t)dt, (2)

and for ρ ∈ R
+ the linking operators are given by

Bn,ρ( f, x) =
∞∑

j=0

Fρ
n, j ( f )pn, j (x) (3)

= f (0)pn,0(x) +
∞∑

j=1

pn, j (x)(n + c)
∫ ∞

0
μ

ρ
n, j (t) f (t)dt, (4)

where

μ
ρ
n, j (t) =

⎧
⎨

⎩

(nρ) jρ

Γ ( jρ)
t jρ−1e−nρt , c = 0,

c jρ

B( jρ, n
c ρ+1)

t jρ−1(1 + ct)−( n
c + j)ρ−1 , c > 0.

Setting c = 0 in (2) leads to the Phillips operators [14], c > 0 was investigated in
[18]. To the best of our knowledge the case c = 0 in (3) was first considered in [12].

As in [8] for the Bernstein case we also consider the kth order Kantorovich
modification of the operators Bn,ρ, i.e.,

B(k)
n,ρ := Dk ◦ Bn,ρ ◦ Ik (5)

where Dk denotes the kth order ordinary differential operator and

Ik f = f, if k = 0, and Ik( f, x) =
∫ x

0

(x − t)k−1

(k − 1)! f (t)dt, if k ∈ N.

For k = 0 we omit the superscript (k) as indicated by the definition above.
This general definition contains many known operators as special cases. For

c = 0 we get the linking operators considered in [13]. For ρ = 1 we get the
genuine Baskakov–Durrmeyer-type operators Bn,1, for ρ = 1, k ∈ N the Baskakov–
Durrmeyer-type operators B(1)

n,1 (see [6, (1.3)], named Mn+c there) and the auxiliary
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operators B(k)
n,1 considered in [7, (3.5)], (named Mn+c,k−1 there) with the explicit

representation

(B(k)
n,1 f )(x) = nc,k

nc,k−1

∞∑

j=0

pn+ck, j (x)

∫ ∞

0
pn−c(k−2), j+k−1(t) f (t)dt.

For an arbritrary sequence of linear operators, the images of monomials and
the moments are important, e.g., in studying the asymptotic behavior. In this paper
we establish explicit representations for the images of the monomials and for the
moments of the investigated operators. Corresponding recursion formulas and further
results will be given in a forthcoming paper.

Below we will use the following basic formulas.

∫ ∞

0
μ

ρ
n, j (t)dt = B

(
jρ,

n

c
ρ + 1

)
, (6)

∞∑

j=0

pn, j (x) = 1, (7)

j

n
pn, j (x) = xpn+c, j−1(x), (8)

x(1 + cx)p′
n, j (x) = ( j − nx)pn, j (x), (9)

with the convention pn,l(x) = 0, if l < 0. As usual, empty products are defined to
be one.

2 Explicit Formulas for the Images of Monomials

In this section we prove general explicit formulas for the images of the monomials of
the operators B(k)

n,ρ. In what follows we denote by eν(t) = tν , ν ∈ N0, the monomials
and by

�l
h f (x) =

l∑

κ=0

(−1)l−κ

(
l

κ

)
f (x + κh) (10)

the lth order forward difference of a function f with step h and define

pρ
ν(ξ) :=

ν−1∏

l=1

(
ξ + l

ρ

)
, ν ∈ N.
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This can be rewritten as

pρ
ν(ξ) =

ν−1∑

i=0

�i
1 pρ

ν(1)

i !
i∏

l=1

(ξ − l), (11)

which can be derived by using the Newton representation of the interpolation poly-
nomial of pρ

ν for the equidistant knots 1, 2, . . . , ν.
We first consider the images of the monomials for the case k = 0, i.e., for the

operators Bn,ρ.

Theorem 1 Let n ∈ R, nρ > c(ν − 1), ρ ∈ R+, ν ∈ N0, ν ≤ n. Then

(Bn,ρe0)(x) = 1, (12)

(Bn,ρeν)(x) = ρν

(nρ)c,ν

ν∑

i=1

nc,i

(i − 1)!
(
�i−1

1 pρ
ν(1)

)
xi , ν ∈ N. (13)

Proof (12) follows immediately from (6) and (7).
In order to prove (13) we take into account that for c = 0

(nρ) jρ

Γ ( jρ)

∫ ∞

0
tν t jρ−1e−nρt dt = 1

(nρ)ν
· Γ ( jρ + ν)

Γ ( jρ)
= 1

nν

ν−1∏

l=0

(
j + l

ρ

)

and for c > 0

c jρ

B
(

jρ, n
c ρ + 1

)
∫ ∞

0
tν t jρ−1(1 + ct)−( n

c + j)ρ−1dt

= c−ν Γ ( jρ + ν)Γ
( n

c ρ + 1 − ν
)

Γ ( jρ)Γ
( n

c ρ + 1
) = ρν

(nρ)c,ν

ν−1∏

l=0

(
j + l

ρ

)
.

Thus we get for ν ≥ 1 with (8) and (11)

(Bn,ρeν)(x) = ρν

(nρ)c,ν

∞∑

j=1

pn, j (x)

ν−1∏

l=0

(
j + l

ρ

)
(14)

= ρν

(nρ)c,ν
nx

∞∑

j=1

pn+c, j−1(x)pρ
ν( j)

= ρν

(nρ)c,ν
nx

∞∑

j=1

pn+c, j−1(x)

ν−1∑

i=0

�i
1 pρ

ν(1)

i !
i∏

l=1

( j − l)

= ρν

(nρ)c,ν
nx

ν−1∑

i=0

�i
1 pρ

ν(1)

i !
∞∑

j=i+1

pn+c, j−1(x)

i∏

l=1

( j − l).
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Applying (8) for j ≥ i + 1 we have

pn+c, j−1(x)

i∏

l=1

( j − l) = pn+c(i+1), j−i−1(x)xi
i∏

l=1

(n + cl).

Hence with (7)

(Bn,ρeν)(x) = ρν

(nρ)c,ν

ν∑

i=1

nc,i

(i − 1)!
(
�i−1

1 pρ
ν(1)

)
xi . �

Remark 1 Using (10), the representation (13) can be rewritten as

(Bn,ρeν)(x) = ρν

(nρ)c,ν

ν∑

i=1

nc,i x i
i−1∑

κ=0

(−1)i−1−κ 1

κ!(i − 1 − κ)! pρ
ν(1 + κ).

Now we consider the special cases ρ = 1 and ρ → ∞.
ρ = 1: Then with [5, (3.48)] (see [8, p. 323])

�i−1
1 p1ν(1) = (ν − 1)!

(
ν

i

)
.

Thus

(Bn,1eν)(x) = 1

nc,ν

ν∑

i=1

nc,i (ν − 1)!
(i − 1)!

(
ν

i

)
xi ,

which coincides with the formula given in [18, Lemma 1.11] and [7, (4.3)] with
s = −1 and taking n + c instead of n there.

ρ → ∞: Then
ρν

(nρ)c,ν
→ 1

nν
, and (see [8, p. 323])

�i−1
1 p∞

ν (1) = (i − 1)!σi
ν,

where σ
j
ν denote the Stirling numbers of second kind. Thus

(Bn,∞eν)(x) = 1

nν

ν∑

i=1

nc,iσi
νxi ,

which coincides with the corresponding result for the classical Baskakov-type oper-
ators which can be calculated directly from the definition of the operators by
using (8).

Next, we consider the images of the monomials for the case k ∈ N.
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Theorem 2 Let n ∈ R, k ∈ N, ρ ∈ R+, ν ∈ N0, nρ > c(ν + k − 1). Then

(B(k)
n,ρeν)(x)

= ν!
(ν + k)!

ρν+k

(nρ)c,ν+k

ν∑

i=0

nc,i+k

i ! (i + k)
(
�i+k−1

1 pρ
ν+k(1)

)
xi . (15)

Proof By using B(k)
n,ρeν = ν!

(ν+k)! Dk Bn,ρeν+k we get from (13) for k ∈ N

(B(k)
n,ρeν)(x)

= ν!
(ν + k)!

ρν+k

(nρ)c,ν+k

ν+k∑

i=k

nc,i

(i − 1)!
(
�i−1

1 pρ
ν+k(1)

) i !
(i − k)! xi−k

= ν!
(ν + k)!

ρν+k

(nρ)c,ν+k

ν∑

i=0

nc,i+k

i ! (i + k)
(
�i+k−1

1 pρ
ν+k(1)

)
xi . �

Remark 2 Using again (10), the representation (15) can be rewritten as

(B(k)
n,ρeν)(x) = ν!

(ν + k)!
ρν+k

(nρ)c,ν+k

ν∑

i=0

nc,i+k (i + k)!
i ! xi

×
i+k−1∑

κ=0

(−1)i+k−1−κ 1

κ!(i + k − 1 − κ)! pρ
ν+k(1 + κ).

Again we consider the special cases ρ = 1 and ρ → ∞.
ρ = 1: Then again with [5, (3.48)]

�i+k−1
1 p1ν+k(1) = (ν + k − 1)!

(
ν + k

i + k

)
.

Thus

(B(k)
n,1eν)(x) = 1

nc,ν+k

ν∑

i=0

nc,i+k (ν + k − 1)!
(i + k − 1)!

(
ν

i

)
xi .

This coincideswith the corresponding result in [7, Satz 4.2] for the auxiliary operators
with the notation B(k)

n,ρ = Mn+c,k−1 there.

ρ → ∞: Then
ρν+k

(nρ)c,ν+k
→ 1

nν+k
and

�i+k−1
1 p∞

ν+k(1) = (i + k − 1)!σi+k
ν+k .
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Thus

(B(k)
n,∞eν)(x) = ν!

(ν + k)!
1

nν+k

ν∑

i=0

nc,i+k

i ! (i + k)!σi+k
ν+k xi .

From the explicit representations of the images of the monomials we can deduce the
following result concerning the limit of the operators B(k)

n,ρ when ρ → ∞.

Corollary 1 For each polynomial p we have

lim
ρ→∞ B(k)

n,ρ p(x) = B(k)
n p(x)

uniformly on every compact subinterval of [0,∞).

For the evaluation of B(k)
n,ρeν , k ∈ N, for special values of ν, we use the represen-

tation

pρ
ν+k(ξ) =

ν+k−1∑

l=0

ρ−lσl(1, 2, . . . , ν + k − 1)ξν+k−1−l ,

with the notation σ j (x0, x1, . . . , xn), j ∈ N, for the symmetric function which
is the sum of all products of j distinct values from the set {x0, x1, . . . xn} and
σ0(x0, x1, . . . , xn) := 1.

For the monomial em , it is known (see, e.g., [15, Theorem 1.2.1]) that

�
j+k−1
1 em(1)=

{
0, m < j + k − 1,
( j + k − 1)!τm−( j+k−1)(1, 2, . . . , j + k), 0 ≤ j + k − 1 ≤ m,

with the complete symmetric function τ j (x0, x1, . . . , xn) which is the sum of all
products of x0, x1, . . . , xn of total degree j , j ∈ N, and τ0(x0, x1, . . . , xn) := 1.

Thus we can rewrite (B(k)
n,ρeν) as

(B(k)
n,ρeν)(x) = ν!

(ν + k)!
ρν+k

(nρ)c,ν+k

ν∑

i=0

nc,i+k(i + k)!
i ! xi (16)

×
ν−i∑

l=0

ρ−lσl(1, 2, . . . , ν + k − 1)τν−l− j (1, 2, . . . , i + k).

As a corollary we present the results for ν = 0, 1, 2.
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Corollary 2 For k ∈ N0 the images for the first monomials are given by

(B(k)
n,ρe0)(x) = ρk

(nρ)c,k
· nc,k,

(B(k)
n,ρe1)(x) = ρk+1

(nρ)c,k+1 · nc,k
[
1

2
k

(
1 + 1

ρ

)
+ (n + ck)x

]
,

(B(k)
n,ρe2)(x) = ρk+2

(nρ)c,k+2 · nc,k
[
1

2
k

(
3k + 1

6
+ k + 1

ρ
+ 3k + 5

6ρ2

)

+(n + ck)

(
(k + 1)

(
1 + 1

ρ

)
x + (n + c(k + 1))x2

)]
.

Proof For k = 0 the identities follow from Theorem 1. For k ∈ N we derive the
proposition by using the representation (16) and the fact that for m ∈ N

σ0(1, . . . , m) = τ0(1, . . . , m) = 1,

σ1(1, . . . , m) = τ1(1, . . . , m) = 1

2
m(m + 1),

σ2(1, . . . , m) = 1

24
(m − 1)m(m + 1)(3m + 2),

τ2(1, . . . , m) = 1

24
m(m + 1)(m + 2)(3m + 1). �

In the following theoremwe state a representation of B(k)
n,ρeν in terms of the images

of monomials of the operators B(k)
n . This underlines the close relationship beween

the linking operators B(k)
n,ρ and the kth order Kantorovichmodification of the classical

operators Bn .

Theorem 3 The images of the monomials under B(k)
n,ρ can be expressed as

(B(k)
n,ρeν)(x) = ν!

(ν + k)!
1

(nρ)c,ν+k

ν∑

i=0

si+k
ν+k(ρn)i+k (i + k)!

i ! (B(k)
n ei )(x), k ∈ N0,

where si+k
ν+k denote the Stirling numbers of first kind.

Proof For ν ∈ N and k = 0 we derive from (14)

(Bn,ρeν)(x) = 1

(nρ)c,ν

∞∑

j=1

pn, j (x)

ν−1∏

l=0

( jρ + l)

= 1

(nρ)c,ν

ν∑

i=0

si
ν(ρn)i

∞∑

j=1

pn, j (x)

(
j

n

)i

= 1

(nρ)c,ν

ν∑

i=0

si
ν(ρn)i (Bnei )(x).
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For k ∈ N the conclusion follows by using (B(k)
n,ρeν) = ν!

(ν+k)! Dk(Bn,ρeν+k) and

Dk(Bnei ) = i !
(i−k)! (B(k)

n ei−k), respectively. �

For the case k = 0 a corrresponding result for the Bernstein operators can be
found in [17, Theorem 3.2.1].

3 Explicit Formulas for the Moments

Next, we consider the moments of Bn,ρ and B(k)
n,ρ. For abbreviation, we use the

notation
M (k)

n,ρ,m(x) =
[

B(k)
n,ρ(e1 − xe0)

m
]
(x), m ∈ N0, x ∈ [0,∞) (17)

where we again omit the superscript (k) in case k = 0. We use the fact that

M (k)
n,ρ,m(x) =

m∑

ν=0

(
m

ν

)
(−x)m−ν(B(k)

n,ρeν)(x).

Again, we first treat the case k = 0.

Theorem 4 Let n ∈ R, ρ ∈ R+, m ∈ N0, nρ > c(m − 1). Then

Mn,ρ,0(x) = 1, (18)

Mn,ρ,1(x) = 0, (19)

Mn,ρ,m(x) = (−x)m +
m∑

i=1

(−x)i
i∑

ν=1

ρν+m−i

(nρ)c,ν+m−i
(−1)ν

(
m

i − ν

)
(20)

× nc,ν

(ν − 1)!�
ν−1
1 pρ

ν+m−i (1), m ≥ 2.

Proof Equations (18) and (19) follow immediately from Corollary 2.
In order to prove (20)we apply Theorem1.With the index transform i → i − m +

ν, changing the order of summation and applying the index transform ν → ν+m−i ,
we derive

Mn,ρ,m(x)

= (−x)m +
m∑

ν=1

(
m

ν

)
(−x)m−ν ρν

(nρ)c,ν

ν∑

i=1

nc,i

(i − 1)!
(
�i−1

1 pρ
ν(1)

)
xi

= (−x)m +
m∑

ν=1

(
m

ν

)
(−1)m−ν ρν

(nρ)c,ν

×
m∑

i=m−ν+1

nc,i−m+ν

(i − m + ν − 1)!
(
�i−m+ν−1

1 pρ
ν(1)

)
xi
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= (−x)m +
m∑

i=1

xi
m∑

ν=m+1−i

(
m

ν

)
(−1)m−ν ρν

(nρ)c,ν

× nc,i−m+ν

(i − m + ν − 1)!
(
�i−m+ν−1

1 pρ
ν(1)

)

= (−x)m +
m∑

i=1

(−x)i
i∑

ν=1

(
m

i − ν

)
(−1)ν

ρν+m−i

(nρ)c,ν+m−i

× nc,ν

(ν − 1)!
(
�ν−1

1 pρ
ν+m−i (1)

)
. �

Remark 3 Analogously as for the images of monomials, (20) can be rewritten as

Mn,ρ,m(x) = (−x)m +
m∑

i=1

(−x)i
i∑

ν=1

ρν+m−i

(nρ)v,ν+m−i
nc,ν

(
m

i − ν

)

×
ν−1∑

κ=0

(−1)κ+1 1

κ!(ν − 1 − κ)! pρ
ν+m−i (1 + κ).

Next, we consider the special cases ρ = 1 and ρ → ∞.
ρ = 1: With [5, (3.48)]

�ν−1
1 p1ν+m−i (1) = (ν + m − i − 1)!

(
ν + m − i

ν

)
.

we get

Mn,ρ,m(x) = (−x)m +
m∑

i=1

(−x)i m!
i !

i∑

ν=1

(−1)ν
nc,ν

nc,ν+m−i

×
(

i

ν

)(
ν + m − i − 1

ν − 1

)
,

which coincides with the result in [18, Korollar 1.12] and with [7, Korollar 4.4] with
s = −1 and n + c instead of n there.

ρ → ∞: Then
ρν+m−i

(nρ)c,ν+m−i
→ 1

nν+m−i
and

�ν−1
1 p∞

ν+m−i (1) = (ν − 1)!σν
ν+m−i .
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Thus

Mn,∞,m(x) = (−x)m +
m∑

i=1

(−x)i
i∑

ν=1

nc,ν

nν+m−i

(
m

i − ν

)
(−1)νσν

ν+m−i .

In our next theorem, we evaluate the moments for the case k ∈ N.

Theorem 5 Let n ∈ R, ρ ∈ R+, k ∈ N, m ∈ N0, nρ > c(m + k − 1). Then

M (k)
n,ρ,m(x) =

m∑

i=0

(−x)i
i∑

ν=0

ρν+m−i+k

(nρ)c,ν+m−i+k
(−1)ν

(
m

i − ν

)
(21)

× (ν + m − i)!
(ν + m − i + k)!

(ν + k)

ν! nc,k+ν�ν+k−1
1 pρ

ν+m−i+k(1).

Proof The result can be proved by using Theorem 2 and carrying out the same steps
as in the proof of Theorem 4. �

Remark 4 With (10), we can rewrite the representation (21) as

M(k)
n,ρ,m(x)

=
m∑

i=0

(−x)i
i∑

ν=0

ρν+m−i+k

(nρ)c,ν+m−i+k

(
m

i − ν

)
(ν + m − i)!

(ν + m − i + k)!

× nc,ν+k (ν + k)!
ν!

ν+k−1∑

κ=0

(−1)k+1+κ 1

κ!(ν + k − 1 − κ)! pρ
ν+m−i+k(1 + κ).

From Theorem 5 we derive the following identity for the special cases ρ = 1 and
ρ → ∞.
ρ = 1: With [5, (3.48)] we have

�ν+k−1
1 p1ν+m−i+k(1) = (ν + m − i + k − 1)!

(
ν + m − i + k

ν + k

)
.

Thus

M (k)
n,1,m(x) =

m∑

i=0

(−x)i m!
i !

i∑

ν=0

(−1)ν
nc,ν+k

nc,ν+m−i+k

(
i

ν

)(
ν + m − i + k − 1

ν + k − 1

)
.

This coincides with the result [7, Korollar 4.4] for the moments of the auxiliary
operators named Mn+c,k−1 there.

ρ → ∞: Then
ρν+m−i+k

(nρ)c,ν+m−i+k
→ 1

nν+m−i+k
and
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�ν+k−1
1 p∞

ν+m−i+k(1) = (ν + k − 1)!σν+k
ν+m−i+k .

Thus

M(k)
n,∞,m(x)

=
m∑

i=0

(−x)i
i∑

ν=0

nc,ν+k

nν+m−i+k

(
m

i − ν

)
(−1)ν

(ν + m − i)!(ν + k)!
(ν + m − i + k)!ν! σν+k

ν+m−i+k .

With the same notations and arguments used for Corollary 2, the moments (20)
and (21) can be computed by using

�ν+k−1
1 pρ

ν+m− j+k(1)

= (ν + k − 1)!
m− j∑

l=0

ρ−lσl(1, 2, . . . , ν + m − j + k − 1)τm− j−l(1, 2, . . . , ν + k).

Corollary 3 For k ∈ N0 the first moments are given by

M (k)
n,ρ,0(x) = ρk

(nρ)c,k
nc,k, M (k)

n,ρ,1(x) = ρk+1

(nρ)c,k+1 nc,k 1

2
k

(
1 + 1

ρ

)
(1 + 2cx),

M (k)
n,ρ,2(x) = ρk+2

(nρ)c,k+2 nc,k
(
1 + 1

ρ

) {[
n + c

(
1 + 1

ρ

)
k(k + 1)

]
x(1 + cx)

+ k

12

[
(3k + 1)

(
1 + 1

ρ

)
+ 3k + 5

ρ

]}
.
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