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Abstract In this paper, we determine the degree of approximation of functions
belonging to L[0,∞) by the Hausdorff means of its Fourier–Laguerre series at
x = 0. Our theorem extends some of the recent results of Nigam and Sharma
[A study on degree of approximation by (E, 1) summability means of the Fourier–
Laguerre expansion, Int. J. Math. Math. Sci. (2010), Art. ID 351016, 7], Krasniqi
[On the degree of approximation of a function by (C, 1)(E, q) means of its
Fourier–Laguerre series, International Journal ofAnalysis andApplications 1 (2013),
33–39] and Sonker [Approximation of Functions by (C, 2)(E, q) means of its
Fourier–Laguerre series, Proceeding of ICMS-2014 ISBN 978-93-5107-261-4:125–
128.] in the sense that the summability methods used by these authors have been
replaced by the Hausdorff matrices.

Keywords Degree of approximation · Hausdorff means · Fourier–Laguerre series

1 Introduction

Let f be a function belonging to L[0,∞) in the sense that f is Labesgue integrable
in the interval [0,∞). The Fourier–Laguerre expansion of f is given by

f (x) ∼
∞∑

n=0

an L(α)
n (x), (1)
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where

Γ (α + 1)

(
n + α

n

)
an =

∫ ∞

0
e−x xα f (x)L(α)

n (x)dx (2)

and L(α)
n (x) denotes the nth Laguerre polynomial of order α > −1, defined by the

generating function

∞∑

n=0

L(α)
n (x)ωn = (1 − ω)−α−1 exp

( −xω

1 − ω

)
. (3)

When x = 0,

L(α)
n (0) =

(
n + α

n

)
[9].

The nth partial sums of (1) are defined by

sn( f ; x) =
n∑

k=0

ak L(α)
k (x). (4)

The Cesàro means of order λ of the Fourier–Laugerre series are defined by

Cλ
n ( f ; x) = 1(

n + λ

n

)
n∑

k=0

(
λ + n − k − 1

n − k

)
sk( f ; x).

The Euler means of the Fourier–Laugerre series are defined by

Eq
n ( f ; x) = 1

(1 + q)n

n∑

k=0

(
n
k

)
qn−ksk( f ; x), q > 0.

The Hausdorff matrix H ≡ (hn,k) is an infinite lower triangular matrix defined by

hn,k =
⎧
⎨

⎩

(
n
k

)
�n−kμk , 0 ≤ k ≤ n,

0 , k > n,

where � is the forward difference operator defined by �μn = μn − μn+1 and
�k+1μn = �k(�μn). If H is regular, then {μn}, known as moment sequence, has
the representation

μn =
∫ 1

0
undγ (u),
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where γ (u), known as mass function, is continuous at u = 0 and belongs to BV[0, 1]
such that γ (0) = 0, γ (1) = 1; and for 0 < u < 1, γ (u) = [γ (u + 0) + γ (u −
0)]/2 [11].

The Hausdorff means of the Fourier–Laugerre series are defined by

Hn( f ; x) :=
n∑

k=0

hn,ksk( f ; x), n = 0, 1, 2, ... (5)

The Fourier–Laugerre series is said to be summable to s by the Hausdorff means, if
Hn( f ; x) → s as n → ∞, [3].

For the examples of Hausdorff matrices, one can see [7, 8, 11] and references
therein.

In this paper, the class of all regular Hausdorff matrices with moment sequence
{μn} associated with mass function γ (u) having constant derivative, is denoted by
H1.
We also write

ϕ(y) = e−y yα( f (y) − f (0))

Γ (α + 1)
,

and

g(u, y) =
n∑

k=0

(
n
k

)
uk(1 − u)n−k L(α+1)

k (y).

2 Known Results

Gupta [2] obtained the degree of approximation of f ∈ L[0,∞) by Cesàro means
of order k of the Fourier–Laguerre series at the point x = 0, where k > α + 1/2.
Nigam and Sharma [5] have used (E, 1) means of the Fourier–Laguerre series for
−1 < α < 1/2 which is more appropriate range from the application point of view.
The authors have proved the following result:

Theorem A If

E1
n = 1

2n

n∑

k=0

(
n
k

)
sk → ∞ as n → ∞,

then the degree of approximation of Fourier–Laguerre expansion at the point x = 0
by (E, 1) means E1

n is given by

E1
n(0) − f (0) = o(ξ(n)), (6)

provided that
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Φ(t) =
∫ t

0
|ϕ(y)|dy = o

(
tα+1ξ(1/t)

)
, t → 0, (7)

∫ n

δ

ey/2y−((2α+3)/4)|ϕ(y)|dy = o
(

n−((2α+1)/4)ξ(n)
)

, (8)

∫ ∞

n
ey/2y−1/3|ϕ(y)|dy = o(ξ(n)), n → ∞, (9)

where δ is a fixed positive constant and α ∈ (−1,−1/2), and ξ(t) is a positive
monotonic increasing function of t such that ξ(n) → ∞ as n → ∞.

Following, Nigam and Sharma [5], Krasniqi [4] has used the (C, 1)(E, q) means of
the Fourier–Laguerre series to obtain the degree of approximation of f ∈ L[0,∞)

at point x = 0 and has proved the following result:

Theorem B The degree of approximation of the Fourier–Laguerre expansion at the
point x = 0 by the [(C, 1)(E, q)]n means is given by

[(C, 1)(E, q)]n(0) − f (0) = o(ξ(n)), (10)

provided that the conditions (7)–(9) given in Theorem A are satisfied.

Recently, Sonker [10] has also proved the same result using [(C, 2)(E, q)]n means
of the Fourier–Laguerre series for the same range of α as follows:

Theorem C The degree of approximation of the Fourier–Laguerre expansion at the
point x = 0 by the [(C, 2)(E, q)]n means is given by

[(C, 2)(E, q)]n(0) − f (0) = o(ξ(n)), (11)

provided that the conditions (7)–(9) given in Theorem A are satisfied.

Remark 1 We observe that Krasniqi [4, p. 37] has optimized
∑v

k=0

(
v
k

)
qkk(2α+1)/4

by its maximum value (1+ q)vv(2α+1)/4. This is possible only when α > −1/2. But
the author has used −1 < α < 1/2 [4, p. 35, Theorem 2.1]. Similar error can also
be seen in [5, 10].

3 Main Results

In this paper, we extend the above results using the Hausdorff means, which is a
more general summability method, for an appropriate range of α. More precisely,
we prove the following:
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Theorem 1 The degree of approximation of f ∈ L[0,∞) at the point x = 0 by the
Hausdorff means of the Fourier–Laguerre series generated by H ∈ H1 is given by

Hn( f ; 0) − f (0) = o(ξ(n)) (12)

where ξ(t) is a positive increasing function such that ξ(t) → ∞ as t → ∞ and
satisfies the following conditions

Φ(y) =
∫ t

0
|ϕ(y)|dy = o

(
tα+1ξ(1/t)

)
, t → 0, (13)

∫ n

δ

ey/2 y−((2α+3)/4)|ϕ(y)|dy = o
(

n−((2α+1)/4)ξ(n)
)

, (14)

and
∫ ∞

n
ey/2 y−1/3|ϕ(y)|dy = o(ξ(n)), n → ∞, (15)

where δ is a fixed positive constant and α > −1/2.

For the proof of our theorem, we need the following lemmas:

Lemma 1 [9, p. 177]. Let α be an arbitrary real number, c and δ be fixed positive
constants. Then

L(α)
n (x) =

{
O

(
n(α)

)
, if 0 ≤ x ≤ c

n ,

O
(
x−(2α+1)/4n(2α−1)/4

)
, if c

n ≤ x ≤ δ,
(16)

as n → ∞.

Lemma 2 [9, p. 240]. Let α be an arbitrary real number, δ > 0 and 0 < η < 4.
Then

max e−x/2x (α/2+1/4)|L(α)
n (x)| =

{
O

(
n(α/2−1/4)

)
, if δ ≤ x ≤ (4 − η)n,

O
(
n(α/2−1/12)

)
, if x ≥ δ,

(17)
as n → ∞.

Lemma 3 For 0 < u < 1 and 0 ≤ y ≤ δ,

∣∣∣∣
∫ 1

0
g(u, y)dγ (u)

∣∣∣∣ =
{

O
(
n(α+1)

)
, if 0 ≤ y ≤ 1

n ,

O
(
y−(2α+3)/4n(2α+1)/4

)
, if 1

n ≤ y ≤ δ,
(18)

as n → ∞.



212 S. Saini and U. Singh

Proof The g(u, y) can be written as

g(u, y) = (1 − u)n
n∑

k=0

(
n
k

) (
u

1 − u

)k

L(α+1)
k (y).

Then

∣∣∣∣
∫ 1

0
g(u, y)dγ (u)

∣∣∣∣ =
∣∣∣∣∣

∫ 1

0
(1 − u)n

n∑

k=0

(
n
k

) (
u

1 − u

)k

L(α+1)
k (y)dγ (u)

∣∣∣∣∣

=
∣∣∣∣∣M

∫ 1

0
(1 − u)n

n∑

k=0

(
n
k

)(
u

1 − u

)k

L(α+1)
k (y)du

∣∣∣∣∣

Now, using Lemma 1 for 0 ≤ y ≤ 1
n (taking α + 1 for α and c = 1), we have

∣∣∣∣
∫ 1

0
g(u, y)dγ (u)

∣∣∣∣ =
∫ 1

0
(1 − u)n

n∑

k=0

(
n
k

)(
u

1 − u

)k

O(kα+1)du

= O

(
nα+1

∫ 1

0
(1 − u)n

n∑

k=0

(
n
k

) (
u

1 − u

)k

du

)

= O

(
nα+1

∫ 1

0
(1 − u)ndu

)

= O
(

nα+1
)

. (19)

Again, using Lemma 1 for 1
n ≤ y ≤ δ, we have

∣∣∣∣∣

∫ 1

0
g(u, y)dγ (u)

∣∣∣∣∣ =
∫ 1

0
(1 − u)n

n∑

k=0

(
n
k

)(
u

1 − u

)k
O

(
y−(2α+3)/4k(2α+1)/4

)
du

= O

⎛

⎝y−(2α+3)/4n(2α+1)/4
∫ 1

0
(1 − u)n

n∑

k=0

(
n
k

) (
u

1 − u

)k
du

⎞

⎠

= O
(

y−(2α+3)/4n(2α+1)/4
)

. (20)

Collecting (19) and (20), the proof of Lemma 3 is completed.

Lemma 4 For 0 < u < 1,

∣∣∣∣
∫ 1

0
g(u, y)dγ (u)

∣∣∣∣ =
{

O
(
ey/2y−(2α+3)/4n(2α+1)/4

)
, if δ ≤ y ≤ n,

O
(
ey/2y−(3α+5)/6n(α+1)/2

)
, if y ≥ δ,

(21)

as n → ∞.
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Proof Following the Lemma 3, we have

∣∣∣∣
∫ 1

0
g(u, y)dγ (u)

∣∣∣∣ =
∣∣∣∣∣

∫ 1

0
(1 − u)n

n∑

k=0

(
n
k

) (
u

1 − u

)k

L(α+1)
k (y)du

∣∣∣∣∣

Now, using Lemma 2 for δ ≤ y ≤ n (taking α + 1 for α and η = 3), we have

∣∣∣∣
∫ 1

0
g(u, y)dγ (u)

∣∣∣∣ =
∣∣∣∣∣

∫ 1

0
e(y/2) y−(2α+3)/4(1 − u)n

n∑

k=0

(
n
k

)(
u

1 − u

)k

e−(y/2) y(2α+3)/4L(α+1)
k (y)du

∣∣∣∣∣

=
∫ 1

0
ey/2y−(2α+3)/4(1 − u)n

n∑

k=0

(
n
k

) (
u

1 − u

)k

O
(

k(2α+1)/4
)

du

= O
(

ey/2 y−(2α+3)/4n(2α+1)/4
)

. (22)

Again, using Lemma 2 for y ≥ n, we have

∣∣∣∣
∫ 1

0
g(u, y)dγ (u)

∣∣∣∣ =
∣∣∣∣∣

∫ 1

0
e(y/2) y−(3α+5)/6(1 − u)n

n∑

k=0

(
n
k

)(
u

1 − u

)k

e−(y/2) y(3α+5)/6L(α+1)
k (y)du

∣∣∣∣∣

=
∫ 1

0
ey/2y−(3α+5)/6(1 − u)n

n∑

k=0

(
n
k

) (
u

1 − u

)k

O
(

k(α+1)/2
)

du

= O
(

ey/2y−(3α+5)/6n(α+1)/2
)

. (23)

Collecting (22) and (23), the proof of Lemma 4 is completed.

Proof of Theorem 1 We have

sn(0) =
n∑

k=0

ak L(α)
k (0)

=
n∑

k=0

1

Γ (α + 1)

(
n + α

n

)
(∫ ∞

0
e−y yα f (y)L(α)

k (y)dy

)
L(α)

k (0)

= 1

Γ (α + 1)

∫ ∞

0
e−y yα f (y)

n∑

k=0

L(α)
k (y)dy

= 1

Γ (α + 1)

∫ ∞

0
e−y yα f (y)L(α+1)

n (y)dy,

so that

Hn( f ; 0) =
n∑

k=0

hn,ksk(0)

=
n∑

k=0

(
n
k

)
Δn−kμk

1

Γ (α + 1)

∫ ∞

0
e−y yα f (y)L(α+1)

k (y)dy.
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Thus

Hn( f ; 0) − f (0) =
n∑

k=0

(
n
k

)
Δn−kμk

(
1

Γ (α + 1)

∫ ∞

0
e−y yα f (y)L(α+1)

k (y)dy − f (0)

)

=
n∑

k=0

(
n
k

)
Δn−kμk

1

Γ (α + 1)

∫ ∞

0
e−y yα( f (y) − f (0))L(α+1)

k (y)dy

=
n∑

k=0

(
n
k

)
Δn−kμk

∫ ∞

0
ϕ(y)L(α+1)

k (y)dy

=
∫ ∞

0
ϕ(y)

(
n∑

k=0

(
n
k

)
Δn−kμk L(α+1)

k (y)

)
dy

=
∫ ∞

0
ϕ(y)

(
n∑

k=0

(
n
k

) ∫ 1

0
uk(1 − u)n−kdγ (u)L(α+1)

k (y)

)
dy

=
∫ ∞

0
ϕ(y)

(∫ 1

0

n∑

k=0

(
n
k

)
uk(1 − u)n−k L(α+1)

k (y)dγ (u)

)
dy

=
∫ ∞

0
ϕ(y)

(∫ 1

0
g(u, y)dγ (u)

)
dy

and

|Hn( f ; 0) − f (0)| =
∣∣∣∣∣

∫ ∞
0

ϕ(y)

(∫ 1

0
g(u, y)dγ (u)

)
dy

∣∣∣∣∣

≤
∫ ∞
0

|ϕ(y)|
∣∣∣∣∣

∫ 1

0
g(u, y)dγ (u)

∣∣∣∣∣ dy

=
(∫ 1/n

0
+

∫ δ

1/n
+

∫ n

δ
+

∫ ∞
n

) (
|ϕ(y)|

∣∣∣∣∣

∫ 1

0
g(u, y)dγ (u)

∣∣∣∣∣ dy

)

= I1 + I2 + I3 + I4. (24)

Now, using Lemma 3 for 0 ≤ y ≤ 1
n , we have

I1 =
∫ 1/n

0
|ϕ(y)|

∣∣∣∣
∫ 1

0
g(u, y)dγ (u)

∣∣∣∣ dy

= O
(

nα+1
) ∫ 1/n

0
|ϕ(y)|dy

= O(n(α+1))o

((
1

n

)α+1

ξ(n)

)

= o(ξ(n)), (25)

in view of condition (13).
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Further, using Lemma 3 for 1
n ≤ y ≤ δ, we have,

I2 =
∫ δ

1/n
|ϕ(y)|O

(
y−(2α+3)/4n(2α+1)/4

)
dy

= O
(

n(2α+1)/4
) (∫ δ

1/n
y−(2α+3)/4|ϕ(y)|dy

)
.

Following [5, p. 6], we have
I2 = o(ξ(n)), (26)

in view of condition (13).
Now, using Lemma 4 for δ ≤ y ≤ n, we have

I3 =
∫ n

δ

|ϕ(y)|
∣∣∣∣
∫ 1

0
g(u, y)dγ (u)

∣∣∣∣ dy

=
∫ n

δ

O
(

ey/2y−((2α+3)/4)n(2α+1)/4
)

|ϕ(y)|dy

= O
(

n(2α+1)/4
) (∫ n

δ

ey/2y−((2α+3)/4)|ϕ(y)|dy

)

= O
(

n(2α+1)/4
)

o
(
(n−(2α+1)/4)ξ(n)

)

= o(ξ(n)), (27)

in view of condition (14).
Further, using Lemma 4, we have

I4 =
∫ ∞

n
|ϕ(y)|

∣∣∣∣
∫ 1

0
g(u, y)dγ (u)

∣∣∣∣ dy

=
∫ ∞

n
|ϕ(y)|O

(
ey/2y−(3α+5)/6n(α+1)/2

)
dy

= O
(

n(α+1)/2
) (∫ ∞

n

ey/2y−1/3|ϕ(y)|
y(α+1)/2

dy

)

= o
(
(ξ(n))n(α+1)/2

(
n−(α+1)/2

))

= o(ξ(n)), (28)

in view of condition (15).
Collecting (24)–(28), we have

Hn( f ; 0) − f (0) = o(ξ(n)).

Hence the proof of Theorem 1 is completed.
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4 Corollaries

The following corollaries can be derived from our Theorem 1.

Corollary 1 As discussed in [7, p. 306, Lemma 1] and [11, p. 38], if we take the
mass function γ (u) given by

γ (u) =
{
0, 0 ≤ u ≤ a,

1, a ≤ u ≤ 1,

where a = 1
(1+q)

, q > 0, the Hausdorff matrix H reduces to Euler matrix (E, q), q >

0 and defines the corresponding (E, q) means given by

En
q ( f ; x) = 1

(1 + q)n

n∑

k=0

(
n
k

)
qn−ksk( f ; x), q > 0.

Hence the Theorem 1 reduces to Theorem A (result proved by Nigam and Sharma
[5, p. 3, Theorem 2.1]).

Corollary 2 As discussed in [1, p. 400] and [6, p. 2747], the Cesàro matrix of order
λ, is also a Hausdorff matrix obtained by mass function γ (u) = 1 − (1 − u)λ and
the corresponding Cesàro means are given by

Cλ
n ( f ; x) = 1(

n + λ

n

)
n∑

k=0

(
λ + n − k − 1

n − k

)
sk( f ; x).

Further, Rhoades [7, p. 308] and Rhoades et al. [8, p. 6869] has mentioned that the
product of two Hausdorff matrices is again a Hausdorff matrix. Hence the Theorem
B and Theorem C (results proved by Krasniqi [4, p. 35, Theorem 2.1] and Sonker
[10, p. 126, Theorem 1]) are also particular cases of our Theorem 1.

Remark 2 This is an open problem to associate the above discussed results with the
L p-spaces.
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