Applications of Generalized Monotonicity to Variational-Like Inequalities and Equilibrium Problems

N.K. Mahato and R.N. Mohapatra

Abstract In this paper, we introduce the concept of relaxed $(\rho - \theta)$ - η -invariant monotonicity to establish the existence of solutions for variational-like inequality problems in reflexive Banach spaces. Again we introduce the concept of $(\rho-\theta)$ monotonicity for bifunctions. The existence of solution for equilibrium problem with (ρ - θ)-monotonicity is established by using the KKM technique.

Keywords Variational-like inequality problem · Relaxed $(\rho-\theta)$ -η-invariant monotonicity · Equilibrium problem · $(\rho-\theta)$ -monotonicity · KKM mappping

1 Introduction

Let *K* be a nonempty subset of a real reflexive Banach space *X*, and *X*∗ be the dual space of *X*. Consider the operator $T : K \to X^*$ and the bifunction $\eta : K \times K \to X$. Then the variational-like inequality problem (in short, VLIP) is to find $x \in K$, such that

$$
\langle Tx, \eta(y, x) \rangle \ge 0, \forall y \in K,\tag{1}
$$

where $\langle ., . \rangle$ denote the pairing between *X* and *X*^{*}.

If we take $\eta(x, y) = x - y$, then [\(1\)](#page-0-0) becomes to find $x \in K$, such that

$$
\langle Tx, y - x \rangle \ge 0, \forall y \in K,\tag{2}
$$

N.K. Mahato

© Springer India 2015 P.N. Agrawal et al. (eds.), *Mathematical Analysis and its Applications*, Springer Proceedings in Mathematics & Statistics 143, DOI 10.1007/978-81-322-2485-3_12

159

Indian Institute of Information Technology, Design and Manufacturing Jabalpur, 482 005 Jabalpur, India e-mail: nihar@iiitdmj.ac.in

R.N. Mohapatra (⊠) University of Central Florida, Orlando 32816, FL, USA e-mail: ramm@mail.ucf.edu

which are variational inequality problems (VIP) [\[1,](#page-8-0) [2](#page-8-1)]. Variational inequalities have been studied by many authors [\[1](#page-8-0)[–5\]](#page-8-2) in both finite- and infinite-dimensional spaces. When we deal with variational inequalities, the most common assumption for the operator *T* is monotonicity. Recently, many authors have established the existence of solutions for variational inequalities with various types of generalized monotonicity assumptions (see [\[3,](#page-8-3) [5](#page-8-2)[–8\]](#page-8-4) and the references therein). Fang and Huang [\[5\]](#page-8-2) defined the concept of relaxed η - α monotonicity and obtained the existence of solutions for variational-like inequalities. Bai et al. [\[3\]](#page-8-3) extended the idea of relaxed η - α monotonicity to relaxed η - α pseudomonotonicity. Yang et al. [\[9\]](#page-8-5) defined several kinds of invariant monotone maps and generalized invariant monotone maps. Behera et al. [\[10\]](#page-8-6) defined various concepts of generalized $(\rho-\theta)$ -η-invariant monotonicity to generalized concepts of Yang et al. [\[9](#page-8-5)]. Very recently, Mahato and Nahak [\[11](#page-8-7)] introduced relaxed $(\rho-\theta)$ -η-invariant pseudomonotonicity to study variational-like inequalities and (ρ - θ)-pseudomonotonicity to study equilibrium problems. But in [\[11](#page-8-7)], authors did not consider the concepts such as relaxed $(\rho-\theta)$ -η-invariant monotone mappings, and (ρ - θ)-monotone bifunctions. Therefore, we organized this article to consider these monotonicity concepts and study the variational-like inequality problems and equilibrium problem.

Inspired and motivated by [\[5](#page-8-2), [9](#page-8-5)[–11](#page-8-7)], in this paper, we introduce the concept of relaxed $(\rho-\theta)$ -η-invariant monotone mappings to establish the existence of solutions for variational-like inequality problems. We also introduce the notion of $(\rho-\theta)$ -monotonicity for bifunctions. By using the KKM technique we have studied the existence of solutions of equilibrium problem with (ρ - θ)-monotone mappings in reflexive Banach spaces.

2 Preliminaries

We begin with the definition of relaxed $(\rho-\theta)$ -η-invariant monotone mappings. For this consider the function $\theta : K \times K \to \mathbb{R}$ and $\rho \in \mathbb{R}$.

Definition 1 The operator $T : K \to X^*$ is said to be relaxed (ρ - θ)- η -invariant monotone with respect to θ , if for any pair of distinct points *x*, $y \in K$, we have

$$
\langle Tx, \eta(y, x) \rangle + \langle Ty, \eta(x, y) \rangle + \rho |\theta(x, y)|^2 \le 0, \text{ where } \theta(x, y) = \theta(y, x). \tag{3}
$$

Remark 1 (i) If we take $\rho = 0$ then from [\(3\)](#page-1-0) it follows that

- $\langle Tx, \eta(y, x) \rangle + \langle Ty, \eta(x, y) \rangle \leq 0, \forall x, y \in K$, and *T* is said to be invariant monotone, see [\[9\]](#page-8-5).
- (ii) If we take $\rho = 0$, and $\eta(x, y) = x y$, then [\(3\)](#page-1-0) reduces to $\langle Tx Ty, x y \rangle \ge$ 0, $\forall x, y \in K$, and *T* is said to be monotone map.

From the above definitions, it is clear that **invariant monotonicity** \Rightarrow **relaxed (***ρ***-***θ***)-***η***-invariant monotonicity**. However, in general a relaxed (ρ-θ)-η-invariant monotone map may not be an invariant monotone map.

Example 1 Let $K = [1, 5]$ and $T : [1, 5] \rightarrow \mathbb{R}$ be defined by $Tx = x^2 + 1$. Let the functions *η* and *θ* be defined by $η(x, y) = x^2 + y^2$, $θ(x, y) = (x^2 + y^2)(x^2 + y^2 + 5)$. Now, $\langle Tx, \eta(y, x) \rangle + \langle Ty, \eta(x, y) \rangle = (x^2 + y^2)(x^2 + y^2 + 2)$, which is not less than 0. Therefore, *T* is not invariant monotone. But, *T* is relaxed (ρ - θ)- η -invariant monotone with respect to θ for any $\rho < 1$.

Definition 2 [\[5](#page-8-2)] The operator $T : K \to X^*$ is said to be η -hemicontinuous if for any fixed $x, y \in K$, the mapping $f : [0, 1] \rightarrow \mathbb{R}$ defined by $f(t) = \langle T(x + t) \rangle$ $(y - x)$, $\eta(y, x)$ is continuous at 0^+ .

3 Relaxed (*ρ***-***θ***)-***η***-Invariant Monotonicity and (VLIP)**

In this section, we establish the existence of the solution for (VLIP), using relaxed $(\rho-\theta)$ -η-invariant monotonicity. Consider the following problems:

find
$$
x \in K
$$
 such that $\langle Ty, \eta(x, y) \rangle + \rho |\theta(x, y)|^2 \le 0, \forall y \in K$. (4)

Theorem 1 *Let K be a closed convex subset of a reflexive Banach space X. Assume that* $T : K \to X^*$ *is n-hemicontinuous and relaxed (ρ-θ)-n-invariant monotone with the following conditions:*

- *(i)* $\eta(x, y) + \eta(y, x) = 0, \forall x, y \in K$;
- (*ii*) $\lim_{t \to \infty} \frac{|\theta(x, x_t)|^2}{t}$ $\frac{d}{dt}$ = 0, where $x_t = ty + (1 - t)x$, $\forall x, y \in K$;
- *t*→0 *(iii) for a fixed z, y* \in *K, the mapping x* \mapsto $\langle Tz, \eta(x, y) \rangle$ *is convex.*

Then the Problems [\(1\)](#page-0-0) and [\(4\)](#page-2-0) are equivalent.

Proof Let *x* be a solution of [\(1\)](#page-0-0). From the definition of relaxed (ρ - θ)- η -invariant monotonicity of *T*, we get $\langle Ty, \eta(x, y) \rangle + \rho |\theta(x, y)|^2 \leq -\langle Tx, \eta(y, x) \rangle \leq 0$. Conversely, suppose that $x \in K$ is a solution of [\(4\)](#page-2-0), i.e.,

$$
\langle Ty, \eta(x, y) \rangle + \rho |\theta(x, y)|^2 \le 0, \forall y \in K.
$$
 (5)

Choose any point $y \in K$ and consider $x_t = ty + (1 - t)x$, $t \in (0, 1]$, then $x_t \in K$. Therefore, from (5) we have

$$
\langle Tx_t, \eta(x, x_t) \rangle + \rho |\theta(x, x_t)|^2 \le 0; \n\Rightarrow \langle Tx_t, \eta(x_t, x) \rangle - \rho |\theta(x, x_t)|^2 \ge 0; \n\Rightarrow \langle Tx_t, \eta(x_t, x) \rangle \ge \rho |\theta(x, x_t)|^2.
$$
\n(6)

Now, $\langle Tx_t, \eta(x_t, x) \rangle \le t \langle Tx_t, \eta(y, x) \rangle + (1-t) \langle Tx_t, \eta(x, x) \rangle = t \langle Tx_t, \eta(y, x) \rangle.$ (7) From [\(6\)](#page-2-2) and [\(7\)](#page-2-3) we have $\langle Tx_t, \eta(y, x) \rangle \geq \rho \frac{|\theta(x, x_t)|^2}{t}.$ Since *T* is η -hemicontinuous and taking $t \to 0$ we get $\langle Tx, \eta(y, x) \rangle \geq 0, \forall y \in K.$

Definition 3 Let $f: K \to 2^X$ be a set-valued mapping. Then f is said to be KKM mapping if for any $\{y_1, y_2, \ldots, y_n\}$ of *K* we have $co\{y_1, y_2, \ldots, y_n\} \subset \bigcup$ *n i*=1 *f* (*yi*),

where $co\{y_1, y_2, \ldots, y_n\}$ denotes the convex hull of y_1, y_2, \ldots, y_n .

Lemma 1 ([\[12](#page-9-0)]) *Let M be a nonempty subset of a Hausdorff topological vector space X and let f* : $M \rightarrow 2^X$ *be a KKM mapping. If f(y) is closed in X, for all* $y \in M$ and compact for some $y \in M$, then \bigcap *y*∈*M* $f(y) \neq \emptyset$.

Theorem 2 Let *K* be a nonempty bounded closed convex subset of a real reflexive Banach space *X*. Assume that $T : K \to X^*$ is η -hemicontinuous and relaxed (ρ - θ)- η -invariant monotone. Let the following hold:

- (i) $\eta(x, y) + \eta(y, x) = 0, \forall x, y \in K;$
- (ii) $\lim_{t \to 0} \frac{|\theta(x, x_t)|^2}{t}$ $\frac{d}{dt}$ = 0, where $x_t = ty + (1 - t)x$, $\forall x, y \in K$; and θ is lower semicontinuous in the first argument;
- (iii) for a fixed *z*, $y \in K$, the mapping $x \mapsto \langle Tz, \eta(x, y) \rangle$ is convex and lower semicontinuous.

Then the Problem [\(1\)](#page-0-0) has a solution.

Proof Consider the set-valued mapping $F: K \to 2^X$ such that

 $F(y) = \{x \in K : \langle Tx, \eta(y, x) \rangle > 0\}, \forall y \in K.$

It is easy to see that \bar{x} ∈ *K* solves the (VLIP) if and only if \bar{x} ∈ ∩_{*y*∈*K*} *F*(*y*). We claim that *F* is a KKM mapping. If possible, let *F* not be a KKM mapping. Then there exists $\{x_1, x_2, \ldots, x_m\} \subset K$ such that $co\{x_1, x_2, \ldots, x_m\}$ not contained in

 $∪_{i=1}^{m} F(x_i)$, that means there exists a *x*₀ ∈ *co*{*x*₁, *x*₂, ..., *x_m*}, *x*₀ = \sum ^{*m*} *i*=1 $t_i x_i$ where

$$
t_i \geq 0, i = 1, 2, ..., m, \sum_{i=1}^{m} t_i = 1
$$
, but $x_0 \notin \bigcup_{i=1}^{m} F(x_i)$.

Hence, $\langle Tx_0, \eta(x_i, x_0) \rangle$ < 0; for $i = 1, 2, ..., m$. From (i) and (iii) it follows that

$$
0 = \langle Tx_0, \eta(x_0, x_0) \rangle \le \sum_{i=1}^m t_i \langle Tx_0, \eta(x_i, x_0) \rangle < 0,
$$

which is a contradiction. Hence *F* is a KKM mapping.

Assume *G* : $K \to 2^X$ such that $G(y) = \{x \in K : \langle Ty, \eta(x, y) \rangle + \rho |\theta(x, y)|^2 \le$ 0 , $\forall y \in K$.

From the relaxed (ρ - θ)- η -invariant monotonicity of *T* it follows that $F(y) \subset$ $G(y)$, $\forall y \in K$. Therefore, *G* is also a KKM mapping.

Since *K* is closed bounded and convex, it is weakly compact. From the assumptions, we know that $G(y)$ is weakly closed for all $y \in K$. In fact, because $x \mapsto \langle Tz, \eta(x, y) \rangle$ and $x \mapsto \rho |\theta(x, y)|^2$ are lower semicontinuous. Therefore, $G(y)$ is weakly compact in *K*, for each $y \in K$.

Therefore, from Lemma [1](#page-2-4) and Theorem 1 it follows that \bigcap *y*∈*K* $F(y) = \bigcap$ *y*∈*K* $G(y) \neq \emptyset$.

So there exists $\overline{x} \in K$ such that $\langle T\overline{x}, \eta(y,\overline{x}) \rangle \ge 0$, $\forall y \in K$, i.e., the Problem [\(1\)](#page-0-0) has a solution.

Theorem 3 Let *K* be a nonempty unbounded closed convex subset of a real reflexive Banach space *X*. Suppose that $T : K \to X^*$ is η -hemicontinuous and relaxed $(\rho-\theta)$ -η-invariant monotone. Let the following hold:

- (i) $\eta(x, y) + \eta(y, x) = 0, \forall x, y \in K;$
- (ii) $\lim_{t \to 0} \frac{|\theta(x, x_t)|^2}{t}$ $\frac{d}{dt}$ = 0, where $x_t = ty + (1 - t)x$, $\forall x, y \in K$; and θ is lower semicontinuous in the first argument;
- (iii) for a fixed *z*, $y \in K$, the mapping $x \mapsto \langle Tz, \eta(x, y) \rangle$ is convex and lower semicontinuous;
- (iv) *T* is weakly *η*-coercive, i.e., there exits $x_0 \in K$ such that $\langle Tx, \eta(x, x_0) \rangle > 0$, whenever $\|x\| \to \infty$ and $x \in K$.

Then the Problem [\(1\)](#page-0-0) has solution.

Proof Since the proof of this theorem is very similar to Theorem [3](#page-4-0) in [\[11\]](#page-8-7), hence it is omitted.

4 (*ρ***-***θ***)-Monotonicity and Equilibrium Problem**

The equilibrium problem (in short, EP) for the bifunction $f : K \times K \to \mathbb{R}$ is to find $\overline{x} \in K$, such that

$$
f(\overline{x}, y) \ge 0, \forall y \in K. \tag{8}
$$

Problems like [\(8\)](#page-4-1) were initially studied by Fan [\[13](#page-9-1)]. Later on Blum and Oettli [\[4\]](#page-8-8) discussed that equilibrium problem contains many problems as particular cases for example, mathematical programming problems, complementary problems, variational inequality problems, fixed-point problems, and minimax inequality problems. Inspired and motivated by [\[11](#page-8-7), [14](#page-9-2)], we introduced the concept of $(\rho-\theta)$ -monotonicity to establish the existence of solution of equilibrium problem over bounded as well as unbounded domain.

Let *K* be a nonempty subset of a real reflexive Banach space *X*. Consider the function $f: K \times K \to \mathbb{R}$ and $\theta: K \times K \to \mathbb{R}$ and $\rho \in \mathbb{R}$.

Definition 4 The function $f: K \times K \to \mathbb{R}$ is said to be (ρ - θ)-monotone with respect to θ : $K \times K \to \mathbb{R}$ if, for all $x, y \in K$, we have

$$
f(x, y) + f(y, x) \le \rho |\theta(x, y)|^2.
$$

Remark 2 In the above definition,

(i) for $\rho > 0$ and $\theta(x, y) = ||x - y||$, *f* is weakly monotone;

(ii) for $\rho = 0$, *f* is monotone;

(iii) for $\rho < 0$ and $\theta(x, y) = ||x - y||$, *f* is strongly monotone.

We now give an example to show that $(\rho-\theta)$ -monotonicity is a generalization of monotonicity.

Example 2 Let $K = [1, 10]$. Let the functions f and θ be defined by

$$
f(x, y) = x2 + y2
$$
 and $\theta(x, y) = 2(x2 + y2) + 4$.

$$
f(x, y) + f(y, x) = 2(x2 + y2)
$$

\n
$$
\le \rho(2x2 + 2y2 + 4)2, \text{ for any } \rho \ge 1.
$$

Therefore, *f* is (ρ - θ)-monotone with respect to θ . But *f* is not monotone.

Theorem 4 *Let K be a nonempty convex subset of a real reflexive Banach space X. Suppose f* : $K \times K \to \mathbb{R}$ *is (ρ-θ)-monotone with respect to* θ *and is hemicontinuous in the first argument with the following conditions: (i)* $f(x, x) = 0, ∀x ∈ K;$ *(ii) for fixed* $z \in K$ *, the mapping* $x \mapsto f(z, x)$ *is convex*; *(iii)* lim $t\rightarrow 0$ $\frac{|\theta(x, x_t)|^2}{\sqrt{2}}$ $\frac{d^{(n)}(x,y)}{dt} = 0$, where $x_t = ty + (1-t)x$, $\forall x, y \in K$. *Then* $x \in K$ *is a solution of* [\(8\)](#page-4-1) *if and only if*

$$
f(y, x) \le \rho |\theta(x, y)|^2, \forall y \in K.
$$
 (9)

Proof Let *x* is a solution of [\(8\)](#page-4-1), i.e., $f(x, y) \ge 0$, $\forall y \in K$. Therefore, from the definition of (ρ - θ)-monotonicity of f it follows that

$$
f(y, x) \le \rho |\theta(x, y)|^2 - f(x, y) \le \rho |\theta(x, y)|^2, \forall y \in K.
$$
 (10)

Conversely, suppose $x \in K$ satisfying [\(9\)](#page-5-0), i.e.,

$$
f(y, x) \le \rho |\theta(x, y)|^2, \forall y \in K.
$$
 (11)

Choose any point $y \in K$ and $x_t = ty + (1 - t)x$, $t \in (0, 1]$, then $x_t \in K$. Therefore, from (11) we have

$$
f(x_t, x) \le \rho |\theta(x, x_t)|^2, \forall y \in K.
$$
 (12)

Now conditions (i) and (ii) imply that,

$$
0 = f(x_t, x_t) \le tf(x_t, y) + (1 - t)f(x_t, x)
$$

\n
$$
\Rightarrow t[f(x_t, x) - f(x_t, y)] \le f(x_t, x). \tag{13}
$$

From (12) and (13) we have

 $f(x_t, x) - f(x_t, y) \le \rho \frac{|\theta(x, x_t)|^2}{t}, \forall y \in K.$

Since *f* is hemicontinuous in the first argument and taking $t \to 0$, it implies that $f(x, y) > 0$, $\forall y \in K$. Hence *x* is a solution of [\(8\)](#page-4-1).

Theorem 5 Let *K* be a nonempty bounded convex subset of a real reflexive Banach space *X*. Suppose $f: K \times K \to \mathbb{R}$ is $(\rho \cdot \theta)$ -monotone with respect to θ and is hemicontinuous in the first argument with the following conditions:

(i) $f(x, x) = 0, \forall x \in K$;

(ii) for fixed $z \in K$, the mapping $x \mapsto f(z, x)$ is convex and lower semicontunuous; (iii) $\lim_{t \to 0} \frac{|\theta(x, x_t)|^2}{t}$ $\frac{d}{dt}$ = 0, where $x_t = ty + (1 - t)x$, $\forall x, y \in K$, and θ is upper semicontinuous in the first argument.

Then the Problem [\(8\)](#page-4-1) has a solution.

Proof Consider the two set-valued mappings $F: K \to 2^X$ and $G: K \to 2^X$ such that

$$
F(y) = \{x \in K : f(x, y) \ge 0\}, \forall y \in K,
$$

and

G(*y*) = {*x* ∈ *K* : *f*(*y*, *x*) ≤ ρ |θ(*x*, *y*)|²}, ∀*y* ∈ *K*.

It is easy to see that $\bar{x} \in K$ solves the equilibrium Problem [\(8\)](#page-4-1) if and only if $\overline{x} \in \bigcap F(y)$. First to show that *F* is a KKM mapping. If possible, let *F* not be a *y*∈*K*

KKM mapping. Then there exists $\{x_1, x_2, \ldots, x_m\} \subset K$ such that $co\{x_1, x_2, \ldots, x_m\}$ is not contained in $\bigcup F(x_i)$, that means there exists a $x_0 \in co\{x_1, x_2, \ldots, x_m\}$, *m*

$$
x_0 = \sum_{i=1}^m t_i x_i \text{ where } t_i \ge 0, i = 1, 2, ..., m, \sum_{i=1}^m t_i = 1, \text{ but } x_0 \notin \bigcup_{i=1}^m F(x_i).
$$

Hence, $f(x_0, x_i) < 0$; for $i = 1, 2, ..., m$. From (i) and (ii) it follows that

$$
0 = f(x_0, x_0) \le \sum_{i=1}^m t_i f(x_0, x_i) < 0,
$$

which is a contradiction. Hence \overrightarrow{F} is a KKM mapping.

From the (ρ - θ)-monotonicity of *f* we will show that $F(y) \subset G(y)$, $\forall y \in K$. For any given $y \in K$, let $x \in F(y)$, then

$$
f(x, y) \geq 0.
$$

From the $(\rho-\theta)$ -monotonicity of f, it follows that

$$
f(y, x) \le \rho |\theta(x, y)|^2 - f(x, y) \le \rho |\theta(x, y)|^2.
$$

Therefore $x \in G(y)$, i.e., $F(y) \subset G(y)$, $\forall y \in K$. This implies that *G* is also a KKM mapping.

Since *K* is closed bounded and convex, it is weakly compact. From the assumptions, we know that $G(y)$ is weakly closed for all $y \in K$. In fact, because $x \mapsto f(z, x)$ is lower semicontinuous and $x \mapsto \rho |(\theta(x, z)|^2)$ is upper semicontinuous. Therefore, $G(y)$ is weakly compact in *K*, for each $y \in K$.

Therefore from Lemma [1](#page-3-0) and Theorem [4](#page-5-2) it follows that \bigcap *y*∈*K* $F(y) = \bigcap$ *y*∈*K* $G(y) \neq$

 \emptyset .

So there exists $\overline{x} \in K$ such that $f(\overline{x}, y) \ge 0$, $\forall y \in K$, i.e., [\(8\)](#page-4-1) has a solution.

Theorem 6 Let *K* be a nonempty unbounded closed convex subset of a real reflexive Banach space *X*. Suppose $f: K \times K \to \mathbb{R}$ is $(\rho-\theta)$ -monotone with respect to θ and is hemicontinuous in the first argument and satisfy the following assumptions:

- (i) $f(x, x) = 0, \forall x \in K;$
- (ii) for fixed $z \in K$, the mapping $x \mapsto f(z, x)$ is convex and lower semicontinuous;
- (iii) $\lim_{t \to 0} \frac{|\theta(x, x_t)|^2}{t}$ $\frac{d}{dt}$ = 0, where $x_t = ty + (1 - t)x$, $\forall x, y \in K$, and is upper semicontinuous in the first argument;
- (iv) *f* is weakly coercive, that is there exists $x_0 \in K$ such that $f(x, x_0) < 0$, whenever $||x|| \rightarrow +\infty$ and $x \in K$.

Then [\(8\)](#page-4-1) has a solution.

Proof Since the proof of this theorem is very similar to Theorem 4.9. in [\[11\]](#page-8-7), hence it is omitted.

5 Application to Fixed-Point Problems

Let $X = X^*$ be a Hilbert space. Let $T : K \to K$ be a given mapping. Then the fixed-point problem states that find $\overline{x} \in K$ such that

$$
T\overline{x} = \overline{x}.
$$

Now, by the setting $f(x, y) = \langle x - Tx, y - x \rangle$ we can show that if \overline{x} solves the equilibrium problem [\(8\)](#page-4-1) then \bar{x} is also a solution of the above fixed-point problem.

Indeed, let \overline{x} is a solution of the equilibrium problem, i.e., $f(\overline{x}, y) \ge 0$, $\forall y \in K$. Let us choose $y = T\overline{x}$, then

$$
f(\overline{x}, y) = f(\overline{x}, T\overline{x}) = -\|T\overline{x} - \overline{x}\| \ge 0 \Rightarrow T\overline{x} = \overline{x},
$$

which shows that \bar{x} is a fixed point of T .

In this case, notice that $f(x, y)$ is (ρ - θ)-monotone if and only if *T* is (ρ - θ)-monotone. Since by Theorems [5](#page-6-2) and [6,](#page-7-0) the equilibrium problem has solution, hence by the above result the fixed-point problem also has solution.

6 Conclusions

In this study the existence of solutions for variational-like inequality problems under a new concept relaxed ($\rho-\theta$)- η -invariant monotone maps in reflexive Banach spaces have been established. We have also obtained the existence of solutions of variational inequality and equilibrium problems with $(\rho-\theta)$ -monotone mappings. This leads to the natural question of making sensitivity analysis and obtaining results using ε -efficiency conditions as in [\[15,](#page-9-3) [16\]](#page-9-4). We plan to pursue these as our subsequent research works.

References

- 1. Browder, F.E.: Nonlinear monotone operators and convex sets in banach spaces. Bull. Amer. Math. Soc **71**(5), 780–785 (1965)
- 2. Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. **20**(3), 493– 519 (1967)
- 3. Bai, M.R., Zhou, S.Z., Ni, G.Y.: Variational-like inequalities with relaxed η - α pseudomonotone mappings in Banach spaces. Appl. Math. Lett. **19**(6), 547–554 (2006)
- 4. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student-India **63**(1), 123–145 (1994)
- 5. Fang, Y.P., Huang, N.J.: Variational-like inequalities with generalized monotone mappings in Banach spaces. J. Optim. Theory Appl. **118**(2), 327–338 (2003)
- 6. Lee, B.S., Lee, G.M.: Variational inequalities for (η, θ) -pseumonotone operators in nonreflexive banach spaces. Appl. Math. Lett. **12**(5), 13–17 (1999)
- 7. Luc, D.T.: Existence results for densely pseudomonotone variational inequalities. J. Math. Anal. Appl. **254**(1), 291–308 (2001)
- 8. Hadjisavvas, N., Schaible, S.: Quasimonotone variational inequalities in Banach spaces. J. Optim. Theory Appl. **90**(1), 95–111 (1996)
- 9. Yang, X.M., Yang, X.Q., Teo, K.L.: Generalized invexity and generalized invariant monotonicity. J. Optim. Theory Appl. **117**(3), 607–625 (2003)
- 10. Behera, N., Nahak, C., Nanda, S.: Generalized (ρ, θ)-η-invexity and generalized (ρ, θ)-ηinvariant-monotonicity. Nonlinear Anal. Theory Meth. Appl. **68**(8), 2495–2506 (2008)
- 11. Mahato, N.K., Nahak, C.: Variational-like inequalities and equilibrium eroblems with generalized monotonicity in Banach spaces. Adv. Oper. Res. **2012**, 15pp. (2012)
- 12. Fan, K.: Some properties of convex sets related to fixed point theorems. Mathematische Annalen **266**(4), 519–537 (1984)
- 13. Fan, K.: A minimax inequality and applications. Inequalities **3**, 103–113 (1972)
- 14. Mahato, N.K., Nahak, C.: Mixed equilibrium problems with relaxed α-monotone mapping in banach spaces. Rendiconti del Circolo Matematico di Palermo (2013). doi: 10.1007/s12,215- 013-0103-0
- 15. Mohapatra, R.N., Verma, R.U.: Sensitivity analysis for cocoercively monotone variational inclusions and (a, η) -maximal monotonicity. J. Appl. Math. Comput. $26(1-2)$, $281-293(2008)$
- 16. Verma, R.U., Mohapatra, R.N.: The ε -efficiency conditions for multiobjective fractional programming problems. Dyn. Contin. Discrete Impuls. Syst. Ser. A-Math. Anal. **19**(1), 641–660 (2012)