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Abstract In this paper, we introduce the concept of relaxed (ρ-θ )-η-invariant
monotonicity to establish the existence of solutions for variational-like inequality
problems in reflexive Banach spaces. Again we introduce the concept of (ρ-θ )-
monotonicity for bifunctions. The existence of solution for equilibrium problem
with (ρ-θ )-monotonicity is established by using the KKM technique.
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1 Introduction

Let K be a nonempty subset of a real reflexive Banach space X , and X∗ be the dual
space of X . Consider the operator T : K → X∗ and the bifunction η : K × K → X .
Then the variational-like inequality problem (in short, VLIP) is to find x ∈ K , such
that

〈T x, η(y, x)〉 ≥ 0,∀y ∈ K , (1)

where 〈., .〉 denote the pairing between X and X∗.
If we take η(x, y) = x − y, then (1) becomes to find x ∈ K , such that

〈T x, y − x)〉 ≥ 0,∀y ∈ K , (2)
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which are variational inequality problems (VIP) [1, 2]. Variational inequalities have
been studied by many authors [1–5] in both finite- and infinite-dimensional spaces.
When we deal with variational inequalities, the most common assumption for the
operator T is monotonicity. Recently, many authors have established the existence of
solutions for variational inequalities with various types of generalized monotonicity
assumptions (see [3, 5–8] and the references therein). Fang and Huang [5] defined
the concept of relaxed η-α monotonicity and obtained the existence of solutions for
variational-like inequalities. Bai et al. [3] extended the idea of relaxedη-αmonotonic-
ity to relaxed η-α pseudomonotonicity. Yang et al. [9] defined several kinds of invari-
ant monotone maps and generalized invariant monotone maps. Behera et al. [10]
defined various concepts of generalized (ρ-θ )-η-invariant monotonicity to general-
ized concepts of Yang et al. [9]. Very recently, Mahato and Nahak [11] introduced
relaxed (ρ-θ )-η-invariant pseudomonotonicity to study variational-like inequalities
and (ρ-θ )-pseudomonotonicity to study equilibrium problems. But in [11], authors
did not consider the concepts such as relaxed (ρ-θ )-η-invariant monotone mappings,
and (ρ-θ )-monotone bifunctions. Therefore, we organized this article to consider
these monotonicity concepts and study the variational-like inequality problems and
equilibrium problem.

Inspired and motivated by [5, 9–11], in this paper, we introduce the concept of
relaxed (ρ-θ )-η-invariant monotone mappings to establish the existence of solu-
tions for variational-like inequality problems. We also introduce the notion of
(ρ-θ )-monotonicity for bifunctions. By using the KKM technique we have studied
the existence of solutions of equilibrium problem with (ρ-θ )-monotone mappings in
reflexive Banach spaces.

2 Preliminaries

We begin with the definition of relaxed (ρ-θ )-η-invariant monotone mappings. For
this consider the function θ : K × K → R and ρ ∈ R.

Definition 1 The operator T : K → X∗ is said to be relaxed (ρ-θ )-η-invariant
monotone with respect to θ , if for any pair of distinct points x, y ∈ K , we have

〈T x, η(y, x)〉 + 〈T y, η(x, y)〉 + ρ|θ(x, y)|2 ≤ 0, where θ(x, y) = θ(y, x). (3)

Remark 1 (i) If we take ρ = 0 then from (3) it follows that
〈T x, η(y, x)〉 + 〈T y, η(x, y)〉 ≤ 0,∀x, y ∈ K , and T is said to be invariant
monotone, see [9].

(ii) If we take ρ = 0, and η(x, y) = x − y, then (3) reduces to 〈T x − T y, x − y〉 ≥
0,∀x, y ∈ K , and T is said to be monotone map.

From the above definitions, it is clear that invariant monotonicity ⇒ relaxed
(ρ-θ )-η-invariant monotonicity. However, in general a relaxed (ρ-θ )-η-invariant
monotone map may not be an invariant monotone map.
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Example 1 Let K = [1, 5] and T : [1, 5] → R be defined by T x = x2 + 1. Let the
functions η and θ be defined by η(x, y) = x2+ y2, θ(x, y) = (x2+ y2)(x2+ y2+5).
Now, 〈T x, η(y, x)〉 + 〈T y, η(x, y)〉 = (x2 + y2)(x2 + y2 + 2), which is not less
than 0. Therefore, T is not invariant monotone. But, T is relaxed (ρ-θ )-η-invariant
monotone with respect to θ for any ρ < 1.

Definition 2 [5] The operator T : K → X∗ is said to be η-hemicontinuous if for
any fixed x, y ∈ K , the mapping f : [0, 1] → R defined by f (t) = 〈T (x + t
(y − x)), η(y, x)〉 is continuous at 0+.

3 Relaxed (ρ-θ)-η-Invariant Monotonicity and (VLIP)

In this section, we establish the existence of the solution for (VLIP), using relaxed
(ρ-θ )-η-invariant monotonicity. Consider the following problems:

find x ∈ K such that 〈T y, η(x, y)〉 + ρ|θ(x, y)|2 ≤ 0,∀y ∈ K . (4)

Theorem 1 Let K be a closed convex subset of a reflexive Banach space X. Assume
that T : K → X∗ is η-hemicontinuous and relaxed (ρ-θ )-η-invariant monotone
with the following conditions:

(i) η(x, y) + η(y, x) = 0,∀x, y ∈ K ;

(ii) lim
t→0

|θ(x, xt )|2
t

= 0, where xt = t y + (1 − t)x,∀x, y ∈ K ;

(iii) for a fixed z, y ∈ K , the mapping x �→ 〈T z, η(x, y)〉 is convex.

Then the Problems (1) and (4) are equivalent.

Proof Let x be a solution of (1). From the definition of relaxed (ρ-θ )-η-invariant
monotonicity of T , we get 〈T y, η(x, y)〉 + ρ|θ(x, y)|2 ≤ −〈T x, η(y, x)〉 ≤ 0.
Conversely, suppose that x ∈ K is a solution of (4), i.e.,

〈T y, η(x, y)〉 + ρ|θ(x, y)|2 ≤ 0,∀y ∈ K . (5)

Choose any point y ∈ K and consider xt = t y + (1 − t)x, t ∈ (0, 1], then xt ∈ K .
Therefore, from (5) we have

〈T xt , η(x, xt )〉 + ρ|θ(x, xt )|2 ≤ 0;
⇒〈T xt , η(xt , x)〉 − ρ|θ(x, xt )|2 ≥ 0;

⇒ 〈T xt , η(xt , x)〉 ≥ ρ|θ(x, xt )|2. (6)

Now, 〈T xt , η(xt , x)〉 ≤ t〈T xt , η(y, x)〉 + (1−t)〈T xt , η(x, x)〉 = t〈T xt , η(y, x)〉.
(7)
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From (6) and (7) we have

〈T xt , η(y, x)〉 ≥ ρ
|θ(x,xt )|2

t .
Since T is η-hemicontinuous and taking t → 0 we get
〈T x, η(y, x)〉 ≥ 0, ∀y ∈ K .

Definition 3 Let f : K → 2X be a set-valued mapping. Then f is said to be KKM

mapping if for any {y1, y2, . . . , yn} of K we have co{y1, y2, . . . , yn} ⊂
n⋃

i=1

f (yi ),

where co{y1, y2, . . . , yn} denotes the convex hull of y1, y2, . . . , yn .

Lemma 1 ([12]) Let M be a nonempty subset of a Hausdorff topological vector
space X and let f : M → 2X be a KKM mapping. If f (y) is closed in X, for all
y ∈ M and compact for some y ∈ M, then

⋂

y∈M

f (y) = ∅.

Theorem 2 Let K be a nonempty bounded closed convex subset of a real reflexive
Banach space X . Assume that T : K → X∗ is η-hemicontinuous and relaxed (ρ-θ )-
η-invariant monotone. Let the following hold:

(i) η(x, y) + η(y, x) = 0,∀x, y ∈ K ;

(ii) lim
t→0

|θ(x, xt )|2
t

= 0, where xt = t y + (1 − t)x, ∀x, y ∈ K ; and θ is lower

semicontinuous in the first argument;

(iii) for a fixed z, y ∈ K , the mapping x �→ 〈T z, η(x, y)〉 is convex and lower
semicontinuous.

Then the Problem (1) has a solution.

Proof Consider the set-valued mapping F : K → 2X such that
F(y) = {x ∈ K : 〈T x, η(y, x)〉 ≥ 0}, ∀y ∈ K .

It is easy to see that x ∈ K solves the (VLIP) if and only if x ∈ ∩y∈K F(y). We
claim that F is a KKM mapping. If possible, let F not be a KKM mapping. Then
there exists {x1, x2, . . . , xm} ⊂ K such that co{x1, x2, . . . , xm} not contained in

∪m
i=1F(xi ), that means there exists a x0 ∈ co{x1, x2, . . . , xm}, x0 =

m∑

i=1

ti xi where

ti ≥ 0, i = 1, 2, . . . , m,
m∑

i=1

ti = 1, but x0 /∈ ∪m
i=1F(xi ).

Hence, 〈T x0, η(xi , x0)〉 < 0; for i = 1, 2, . . . , m. From (i) and (iii) it follows
that

0 = 〈T x0, η(x0, x0)〉 ≤
m∑

i=1

ti 〈T x0, η(xi , x0)〉 < 0,

which is a contradiction. Hence F is a KKM mapping.
Assume G : K → 2X such that G(y) = {x ∈ K : 〈T y, η(x, y)〉 + ρ|θ(x, y)|2 ≤

0}, ∀y ∈ K .
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From the relaxed (ρ-θ )-η-invariant monotonicity of T it follows that F(y) ⊂
G(y), ∀y ∈ K . Therefore, G is also a KKM mapping.

Since K is closed bounded and convex, it is weakly compact. From the assump-
tions, we know that G(y) is weakly closed for all y ∈ K . In fact, because
x �→ 〈T z, η(x, y)〉 and x �→ ρ|θ(x, y)|2 are lower semicontinuous. Therefore,
G(y) is weakly compact in K , for each y ∈ K.

Therefore, from Lemma 1 and Theorem 1 it follows that
⋂

y∈K

F(y) =
⋂

y∈K

G(y) = ∅.

So there exists x ∈ K such that 〈T x, η(y, x)〉 ≥ 0,∀y ∈ K , i.e., the Problem (1)
has a solution.

Theorem 3 Let K be a nonempty unbounded closed convex subset of a real reflexive
Banach space X . Suppose that T : K → X∗ is η-hemicontinuous and relaxed
(ρ-θ )-η-invariant monotone. Let the following hold:

(i) η(x, y) + η(y, x) = 0,∀x, y ∈ K ;

(ii) lim
t→0

|θ(x, xt )|2
t

= 0, where xt = t y + (1 − t)x, ∀x, y ∈ K ; and θ is lower

semicontinuous in the first argument;

(iii) for a fixed z, y ∈ K , the mapping x �→ 〈T z, η(x, y)〉 is convex and lower
semicontinuous;

(iv) T is weakly η-coercive, i.e., there exits x0 ∈ K such that 〈T x, η(x, x0)〉 > 0,
whenever ‖x‖ → ∞ and x ∈ K .

Then the Problem (1) has solution.

Proof Since the proof of this theorem is very similar to Theorem 3 in [11], hence it
is omitted.

4 (ρ-θ)-Monotonicity and Equilibrium Problem

The equilibrium problem (in short, EP) for the bifunction f : K × K → R is to find
x ∈ K , such that

f (x, y) ≥ 0,∀y ∈ K . (8)

Problems like (8) were initially studied by Fan [13]. Later on Blum and Oettli [4]
discussed that equilibrium problem contains many problems as particular cases for
example, mathematical programming problems, complementary problems, varia-
tional inequality problems, fixed-point problems, and minimax inequality problems.
Inspired andmotivated by [11, 14], we introduced the concept of (ρ-θ )-monotonicity
to establish the existence of solution of equilibrium problem over bounded as well
as unbounded domain.
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Let K be a nonempty subset of a real reflexive Banach space X . Consider the
function f : K × K → R and θ : K × K → R and ρ ∈ R.

Definition 4 The function f : K × K → R is said to be (ρ-θ )-monotone with
respect to θ : K × K → R if, for all x, y ∈ K , we have

f (x, y) + f (y, x) ≤ ρ|θ(x, y)|2.

Remark 2 In the above definition,
(i) for ρ > 0 and θ(x, y) = ‖x − y‖, f is weakly monotone;
(ii) for ρ = 0, f is monotone;
(iii) for ρ < 0 and θ(x, y) = ‖x − y‖, f is strongly monotone.

We now give an example to show that (ρ-θ )-monotonicity is a generalization of
monotonicity.

Example 2 Let K = [1, 10]. Let the functions f and θ be defined by

f (x, y) = x2 + y2 and θ(x, y) = 2(x2 + y2) + 4.

f (x, y) + f (y, x) = 2(x2 + y2)

≤ ρ(2x2 + 2y2 + 4)2, for any ρ ≥ 1.

Therefore, f is (ρ-θ )-monotone with respect to θ . But f is not monotone.

Theorem 4 Let K be a nonempty convex subset of a real reflexive Banach space X.
Suppose f : K × K → R is (ρ-θ )-monotone with respect to θ and is hemicontinuous
in the first argument with the following conditions:
(i) f (x, x) = 0, ∀x ∈ K ;
(ii) for fixed z ∈ K , the mapping x �→ f (z, x) is convex;

(iii) lim
t→0

|θ(x, xt )|2
t

= 0, where xt = t y + (1 − t)x, ∀x, y ∈ K .

Then x ∈ K is a solution of (8) if and only if

f (y, x) ≤ ρ|θ(x, y)|2,∀y ∈ K . (9)

Proof Let x is a solution of (8), i.e., f (x, y) ≥ 0, ∀y ∈ K . Therefore, from the
definition of (ρ-θ )-monotonicity of f it follows that

f (y, x) ≤ ρ|θ(x, y)|2 − f (x, y) ≤ ρ|θ(x, y)|2,∀y ∈ K . (10)

Conversely, suppose x ∈ K satisfying (9), i.e.,

f (y, x) ≤ ρ|θ(x, y)|2,∀y ∈ K . (11)
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Choose any point y ∈ K and xt = t y + (1− t)x, t ∈ (0, 1], then xt ∈ K . Therefore,
from (11) we have

f (xt , x) ≤ ρ|θ(x, xt )|2,∀y ∈ K . (12)

Now conditions (i) and (ii) imply that,
0 = f (xt , xt ) ≤ t f (xt , y) + (1 − t) f (xt , x)

⇒ t[ f (xt , x) − f (xt , y)] ≤ f (xt , x). (13)

From (12) and (13) we have

f (xt , x) − f (xt , y) ≤ ρ
|θ(x,xt )|2

t ,∀y ∈ K .
Since f is hemicontinuous in the first argument and taking t → 0, it implies that

f (x, y) ≥ 0,∀y ∈ K . Hence x is a solution of (8).

Theorem 5 Let K be a nonempty bounded convex subset of a real reflexive Banach
space X . Suppose f : K × K → R is (ρ-θ )-monotone with respect to θ and is
hemicontinuous in the first argument with the following conditions:
(i) f (x, x) = 0, ∀x ∈ K ;
(ii) for fixed z ∈ K , the mapping x �→ f (z, x) is convex and lower semicontunuous;

(iii) lim
t→0

|θ(x, xt )|2
t

= 0, where xt = t y + (1 − t)x, ∀x, y ∈ K , and θ is upper

semicontinuous in the first argument.
Then the Problem (8) has a solution.

Proof Consider the two set-valued mappings F : K → 2X and G : K → 2X such
that

F(y) = {x ∈ K : f (x, y) ≥ 0}, ∀y ∈ K ,

and
G(y) = {x ∈ K : f (y, x) ≤ ρ|θ(x, y)|2}, ∀y ∈ K .

It is easy to see that x ∈ K solves the equilibrium Problem (8) if and only if
x ∈

⋂

y∈K

F(y). First to show that F is a KKM mapping. If possible, let F not be a

KKMmapping. Then there exists {x1, x2, . . . , xm} ⊂ K such that co{x1, x2, . . . , xm}
is not contained in

m⋃

i=1

F(xi ), that means there exists a x0 ∈ co{x1, x2, . . . , xm},

x0 =
m∑

i=1

ti xi where ti ≥ 0, i = 1, 2, . . . , m,
m∑

i=1

ti = 1, but x0 /∈
m⋃

i=1

F(xi ).

Hence, f (x0, xi ) < 0; for i = 1, 2, . . . , m. From (i) and (ii) it follows that

0 = f (x0, x0) ≤
m∑

i=1

ti f (x0, xi ) < 0,

which is a contradiction. Hence F is a KKM mapping.
From the (ρ-θ )-monotonicity of f we will show that F(y) ⊂ G(y), ∀y ∈ K .

For any given y ∈ K , let x ∈ F(y), then
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f (x, y) ≥ 0.

From the (ρ-θ )-monotonicity of f , it follows that

f (y, x) ≤ ρ|θ(x, y)|2 − f (x, y) ≤ ρ|θ(x, y)|2.

Therefore x ∈ G(y), i.e., F(y) ⊂ G(y),∀y ∈ K . This implies that G is also a KKM
mapping.

Since K is closed bounded and convex, it is weakly compact. From the assump-
tions,weknow thatG(y) isweakly closed for all y ∈ K . In fact, because x �→ f (z, x)

is lower semicontinuous and x �→ ρ|(θ(x, z)|2 is upper semicontinuous. Therefore,
G(y) is weakly compact in K , for each y ∈ K.

Therefore from Lemma 1 and Theorem 4 it follows that
⋂

y∈K

F(y) =
⋂

y∈K

G(y) =
∅.

So there exists x ∈ K such that f (x, y) ≥ 0,∀y ∈ K , i.e., (8) has a solution.

Theorem 6 Let K be a nonempty unbounded closed convex subset of a real reflexive
Banach space X . Suppose f : K × K → R is (ρ-θ )-monotone with respect to θ and
is hemicontinuous in the first argument and satisfy the following assumptions:

(i) f (x, x) = 0, ∀x ∈ K ;
(ii) for fixed z ∈ K , themapping x �→ f (z, x) is convex and lower semicontinuous;

(iii) lim
t→0

|θ(x, xt )|2
t

= 0, where xt = t y + (1 − t)x, ∀x, y ∈ K , and is upper

semicontinuous in the first argument;
(iv) f is weakly coercive, that is there exists x0 ∈ K such that f (x, x0) < 0,

whenever ‖x‖ → +∞ and x ∈ K .

Then (8) has a solution.

Proof Since the proof of this theorem is very similar to Theorem 4.9. in [11], hence
it is omitted.

5 Application to Fixed-Point Problems

Let X = X∗ be a Hilbert space. Let T : K → K be a given mapping. Then the
fixed-point problem states that find x ∈ K such that

T x = x .

Now, by the setting f (x, y) = 〈x − T x, y − x〉 we can show that if x solves the
equilibrium problem (8) then x is also a solution of the above fixed-point problem.
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Indeed, let x is a solution of the equilibrium problem, i.e., f (x, y) ≥ 0, ∀y ∈ K .

Let us choose y = T x , then

f (x, y) = f (x, T x) = −‖T x − x‖ ≥ 0 ⇒ T x = x,

which shows that x is a fixed point of T .
In this case, notice that f (x, y) is (ρ-θ )-monotone if and only if T is (ρ-θ )-

monotone. Since by Theorems 5 and 6, the equilibrium problem has solution, hence
by the above result the fixed-point problem also has solution.

6 Conclusions

In this study the existence of solutions for variational-like inequality problems under
a new concept relaxed (ρ-θ )-η-invariant monotone maps in reflexive Banach spaces
have been established.We have also obtained the existence of solutions of variational
inequality and equilibrium problems with (ρ-θ )-monotone mappings. This leads
to the natural question of making sensitivity analysis and obtaining results using
ε-efficiency conditions as in [15, 16]. We plan to pursue these as our subsequent
research works.
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