Applications of Generalized Monotonicity to Variational-Like Inequalities and Equilibrium Problems

N.K. Mahato and R.N. Mohapatra

Abstract In this paper, we introduce the concept of relaxed $(\rho - \theta) - \eta$ -invariant monotonicity to establish the existence of solutions for variational-like inequality problems in reflexive Banach spaces. Again we introduce the concept of $(\rho - \theta)$ -monotonicity for bifunctions. The existence of solution for equilibrium problem with $(\rho - \theta)$ -monotonicity is established by using the KKM technique.

Keywords Variational-like inequality problem \cdot Relaxed $(\rho - \theta) - \eta$ -invariant monotonicity \cdot Equilibrium problem $\cdot (\rho - \theta)$ -monotonicity \cdot KKM mapping

1 Introduction

Let *K* be a nonempty subset of a real reflexive Banach space *X*, and *X*^{*} be the dual space of *X*. Consider the operator $T : K \to X^*$ and the bifunction $\eta : K \times K \to X$. Then the variational-like inequality problem (in short, VLIP) is to find $x \in K$, such that

$$\langle Tx, \eta(y, x) \rangle \ge 0, \forall y \in K,$$
 (1)

where $\langle ., . \rangle$ denote the pairing between X and X^* .

If we take $\eta(x, y) = x - y$, then (1) becomes to find $x \in K$, such that

$$\langle Tx, y - x \rangle \ge 0, \forall y \in K,$$
 (2)

N.K. Mahato

© Springer India 2015 P.N. Agrawal et al. (eds.), *Mathematical Analysis and its Applications*, Springer Proceedings in Mathematics & Statistics 143, DOI 10.1007/978-81-322-2485-3_12

Indian Institute of Information Technology, Design and Manufacturing Jabalpur, 482 005 Jabalpur, India e-mail: nihar@iiitdmj.ac.in

R.N. Mohapatra (⊠) University of Central Florida, Orlando 32816, FL, USA e-mail: ramm@mail.ucf.edu

which are variational inequality problems (VIP) [1, 2]. Variational inequalities have been studied by many authors [1-5] in both finite- and infinite-dimensional spaces. When we deal with variational inequalities, the most common assumption for the operator T is monotonicity. Recently, many authors have established the existence of solutions for variational inequalities with various types of generalized monotonicity assumptions (see [3, 5-8] and the references therein). Fang and Huang [5] defined the concept of relaxed η - α monotonicity and obtained the existence of solutions for variational-like inequalities. Bai et al. [3] extended the idea of relaxed η - α monotonicity to relaxed η - α pseudomonotonicity. Yang et al. [9] defined several kinds of invariant monotone maps and generalized invariant monotone maps. Behera et al. [10] defined various concepts of generalized $(\rho - \theta) - \eta$ -invariant monotonicity to generalized concepts of Yang et al. [9]. Very recently, Mahato and Nahak [11] introduced relaxed $(\rho - \theta) - \eta$ -invariant pseudomonotonicity to study variational-like inequalities and $(\rho - \theta)$ -pseudomonotonicity to study equilibrium problems. But in [11], authors did not consider the concepts such as relaxed $(\rho - \theta) - \eta$ -invariant monotone mappings, and $(\rho - \theta)$ -monotone bifunctions. Therefore, we organized this article to consider these monotonicity concepts and study the variational-like inequality problems and equilibrium problem.

Inspired and motivated by [5, 9–11], in this paper, we introduce the concept of relaxed $(\rho - \theta) - \eta$ -invariant monotone mappings to establish the existence of solutions for variational-like inequality problems. We also introduce the notion of $(\rho - \theta)$ -monotonicity for bifunctions. By using the KKM technique we have studied the existence of solutions of equilibrium problem with $(\rho - \theta)$ -monotone mappings in reflexive Banach spaces.

2 Preliminaries

We begin with the definition of relaxed $(\rho - \theta) - \eta$ -invariant monotone mappings. For this consider the function $\theta : K \times K \to \mathbb{R}$ and $\rho \in \mathbb{R}$.

Definition 1 The operator $T : K \to X^*$ is said to be relaxed $(\rho - \theta) - \eta$ -invariant monotone with respect to θ , if for any pair of distinct points $x, y \in K$, we have

$$\langle Tx, \eta(y, x) \rangle + \langle Ty, \eta(x, y) \rangle + \rho |\theta(x, y)|^2 \le 0, \text{ where } \theta(x, y) = \theta(y, x).$$
(3)

Remark 1 (i) If we take $\rho = 0$ then from (3) it follows that

- $\langle Tx, \eta(y, x) \rangle + \langle Ty, \eta(x, y) \rangle \le 0, \forall x, y \in K$, and T is said to be invariant monotone, see [9].
- (ii) If we take $\rho = 0$, and $\eta(x, y) = x y$, then (3) reduces to $\langle Tx Ty, x y \rangle \ge 0$, $\forall x, y \in K$, and *T* is said to be monotone map.

From the above definitions, it is clear that **invariant monotonicity** \Rightarrow **relaxed** $(\rho \cdot \theta) \cdot \eta$ -invariant monotonicity. However, in general a relaxed $(\rho \cdot \theta) \cdot \eta$ -invariant monotone map may not be an invariant monotone map.

Example 1 Let K = [1, 5] and $T : [1, 5] \to \mathbb{R}$ be defined by $Tx = x^2 + 1$. Let the functions η and θ be defined by $\eta(x, y) = x^2 + y^2$, $\theta(x, y) = (x^2 + y^2)(x^2 + y^2 + 5)$. Now, $\langle Tx, \eta(y, x) \rangle + \langle Ty, \eta(x, y) \rangle = (x^2 + y^2)(x^2 + y^2 + 2)$, which is not less than 0. Therefore, *T* is not invariant monotone. But, *T* is relaxed $(\rho - \theta) - \eta$ -invariant monotone with respect to θ for any $\rho < 1$.

Definition 2 [5] The operator $T : K \to X^*$ is said to be η -hemicontinuous if for any fixed $x, y \in K$, the mapping $f : [0, 1] \to \mathbb{R}$ defined by $f(t) = \langle T(x + t (y - x)), \eta(y, x) \rangle$ is continuous at 0^+ .

3 Relaxed $(\rho - \theta) - \eta$ -Invariant Monotonicity and (VLIP)

In this section, we establish the existence of the solution for (VLIP), using relaxed $(\rho - \theta) - \eta$ -invariant monotonicity. Consider the following problems:

find
$$x \in K$$
 such that $\langle Ty, \eta(x, y) \rangle + \rho |\theta(x, y)|^2 \le 0, \forall y \in K.$ (4)

Theorem 1 Let K be a closed convex subset of a reflexive Banach space X. Assume that $T : K \to X^*$ is η -hemicontinuous and relaxed $(\rho \cdot \theta) \cdot \eta$ -invariant monotone with the following conditions:

- (i) $\eta(x, y) + \eta(y, x) = 0, \forall x, y \in K;$
- (*ii*) $\lim_{t \to 0} \frac{|\theta(x, x_t)|^2}{t} = 0$, where $x_t = ty + (1 t)x$, $\forall x, y \in K$;
- (iii) for a fixed $z, y \in K$, the mapping $x \mapsto \langle Tz, \eta(x, y) \rangle$ is convex.

Then the Problems (1) and (4) are equivalent.

Proof Let *x* be a solution of (1). From the definition of relaxed $(\rho - \theta) - \eta$ -invariant monotonicity of *T*, we get $\langle Ty, \eta(x, y) \rangle + \rho |\theta(x, y)|^2 \le -\langle Tx, \eta(y, x) \rangle \le 0$. Conversely, suppose that $x \in K$ is a solution of (4), i.e.,

$$\langle Ty, \eta(x, y) \rangle + \rho |\theta(x, y)|^2 \le 0, \forall y \in K.$$
(5)

Choose any point $y \in K$ and consider $x_t = ty + (1 - t)x$, $t \in (0, 1]$, then $x_t \in K$. Therefore, from (5) we have

$$\langle Tx_t, \eta(x, x_t) \rangle + \rho |\theta(x, x_t)|^2 \le 0; \Rightarrow \langle Tx_t, \eta(x_t, x) \rangle - \rho |\theta(x, x_t)|^2 \ge 0; \Rightarrow \langle Tx_t, \eta(x_t, x) \rangle \ge \rho |\theta(x, x_t)|^2.$$
 (6)

Now, $\langle Tx_t, \eta(x_t, x) \rangle \le t \langle Tx_t, \eta(y, x) \rangle + (1-t) \langle Tx_t, \eta(x, x) \rangle = t \langle Tx_t, \eta(y, x) \rangle.$ (7)

From (6) and (7) we have $\langle Tx_t, \eta(y, x) \rangle \ge \rho \frac{|\theta(x, x_t)|^2}{t}$. Since *T* is η -hemicontinuous and taking $t \to 0$ we get $\langle Tx, \eta(y, x) \rangle > 0, \forall y \in K.$

Definition 3 Let $f: K \to 2^X$ be a set-valued mapping. Then f is said to be KKM mapping if for any $\{y_1, y_2, \dots, y_n\}$ of K we have $co\{y_1, y_2, \dots, y_n\} \subset \bigcup_{i=1}^n f(y_i)$,

where $co\{y_1, y_2, \ldots, y_n\}$ denotes the convex hull of y_1, y_2, \ldots, y_n .

Lemma 1 ([12]) Let M be a nonempty subset of a Hausdorff topological vector space X and let $f: M \to 2^X$ be a KKM mapping. If f(y) is closed in X, for all $y \in M$ and compact for some $y \in M$, then $\bigcap_{y \in M} f(y) \neq \emptyset$.

Theorem 2 Let K be a nonempty bounded closed convex subset of a real reflexive Banach space X. Assume that $T: K \to X^*$ is η -hemicontinuous and relaxed $(\rho - \theta)$ - η -invariant monotone. Let the following hold:

- (i) $\eta(x, y) + \eta(y, x) = 0, \forall x, y \in K;$
- (ii) $\lim_{t \to 0} \frac{|\theta(x, x_t)|^2}{t} = 0$, where $x_t = ty + (1 t)x$, $\forall x, y \in K$; and θ is lower semicontinuous in the first argument;
- (iii) for a fixed z, $y \in K$, the mapping $x \mapsto \langle Tz, \eta(x, y) \rangle$ is convex and lower semicontinuous.

Then the Problem (1) has a solution.

Proof Consider the set-valued mapping $F: K \to 2^X$ such that $F(\mathbf{y}) = \{ x \in K : \langle Tx, \eta(\mathbf{y}, x) \rangle > 0 \}, \forall \mathbf{y} \in K.$

It is easy to see that $\overline{x} \in K$ solves the (VLIP) if and only if $\overline{x} \in \bigcap_{y \in K} F(y)$. We claim that F is a KKM mapping. If possible, let F not be a KKM mapping. Then there exists $\{x_1, x_2, \ldots, x_m\} \subset K$ such that $co\{x_1, x_2, \ldots, x_m\}$ not contained in

 $\bigcup_{i=1}^{m} F(x_i)$, that means there exists a $x_0 \in co\{x_1, x_2, \dots, x_m\}$, $x_0 = \sum_{i=1}^{m} t_i x_i$ where

$$t_i \ge 0, i = 1, 2, \dots, m, \sum_{i=1}^m t_i = 1, \text{ but } x_0 \notin \bigcup_{i=1}^m F(x_i).$$

Hence, $\langle Tx_0, \eta(x_i, x_0) \rangle < 0$; for i = 1, 2, ..., m. From (i) and (iii) it follows that

$$0 = \langle Tx_0, \eta(x_0, x_0) \rangle \le \sum_{i=1}^{m} t_i \langle Tx_0, \eta(x_i, x_0) \rangle < 0,$$

which is a contradiction. Hence F is a KKM mapping.

Assume $G: K \to 2^X$ such that $G(y) = \{x \in K : \langle Ty, \eta(x, y) \rangle + \rho |\theta(x, y)|^2 \le |\theta(x, y)|^2 \le |\theta(x, y)|^2$ 0, $\forall y \in K$.

From the relaxed $(\rho - \theta) - \eta$ -invariant monotonicity of T it follows that $F(y) \subset$ $G(y), \forall y \in K$. Therefore, G is also a KKM mapping.

Since K is closed bounded and convex, it is weakly compact. From the assumptions, we know that G(y) is weakly closed for all $y \in K$. In fact, because $x \mapsto \langle T_z, \eta(x, y) \rangle$ and $x \mapsto \rho |\theta(x, y)|^2$ are lower semicontinuous. Therefore, G(y) is weakly compact in K, for each $y \in K$.

Therefore, from Lemma 1 and Theorem 1 it follows that $\bigcap_{y \in K} F(y) = \bigcap_{y \in K} G(y) \neq \emptyset.$ So there exists $\overline{x} \in K$ such that $\langle T\overline{x}, \eta(y, \overline{x}) \rangle \ge 0, \forall y \in K$, i.e., the Problem (1)

has a solution.

Theorem 3 Let K be a nonempty unbounded closed convex subset of a real reflexive Banach space X. Suppose that $T : K \to X^*$ is η -hemicontinuous and relaxed $(\rho - \theta) - \eta$ -invariant monotone. Let the following hold:

- (i) $\eta(x, y) + \eta(y, x) = 0, \forall x, y \in K$
- (ii) $\lim_{t \to 0} \frac{|\theta(x, x_t)|^2}{t} = 0$, where $x_t = ty + (1 t)x$, $\forall x, y \in K$; and θ is lower semicontinuous in the first argument;
- (iii) for a fixed z, $y \in K$, the mapping $x \mapsto \langle Tz, \eta(x, y) \rangle$ is convex and lower semicontinuous;
- (iv) *T* is weakly η -coercive, i.e., there exits $x_0 \in K$ such that $\langle Tx, \eta(x, x_0) \rangle > 0$, whenever $||x|| \to \infty$ and $x \in K$.

Then the Problem (1) has solution.

Proof Since the proof of this theorem is very similar to Theorem 3 in [11], hence it is omitted.

4 $(\rho - \theta)$ -Monotonicity and Equilibrium Problem

The equilibrium problem (in short, EP) for the bifunction $f: K \times K \to \mathbb{R}$ is to find $\overline{x} \in K$, such that

$$f(\overline{x}, y) \ge 0, \forall y \in K.$$
(8)

Problems like (8) were initially studied by Fan [13]. Later on Blum and Oettli [4] discussed that equilibrium problem contains many problems as particular cases for example, mathematical programming problems, complementary problems, variational inequality problems, fixed-point problems, and minimax inequality problems. Inspired and motivated by [11, 14], we introduced the concept of $(\rho - \theta)$ -monotonicity to establish the existence of solution of equilibrium problem over bounded as well as unbounded domain.

Let *K* be a nonempty subset of a real reflexive Banach space *X*. Consider the function $f: K \times K \to \mathbb{R}$ and $\theta: K \times K \to \mathbb{R}$ and $\rho \in \mathbb{R}$.

Definition 4 The function $f : K \times K \to \mathbb{R}$ is said to be $(\rho - \theta)$ -monotone with respect to $\theta : K \times K \to \mathbb{R}$ if, for all $x, y \in K$, we have

$$f(x, y) + f(y, x) \le \rho |\theta(x, y)|^2.$$

Remark 2 In the above definition,

(i) for $\rho > 0$ and $\theta(x, y) = ||x - y||$, *f* is weakly monotone;

(ii) for $\rho = 0$, f is monotone;

(iii) for $\rho < 0$ and $\theta(x, y) = ||x - y||$, *f* is strongly monotone.

We now give an example to show that $(\rho - \theta)$ -monotonicity is a generalization of monotonicity.

Example 2 Let K = [1, 10]. Let the functions f and θ be defined by

$$f(x, y) = x^2 + y^2$$
 and $\theta(x, y) = 2(x^2 + y^2) + 4$.

$$f(x, y) + f(y, x) = 2(x^2 + y^2)$$

\$\le \rho(2x^2 + 2y^2 + 4)^2\$, for any \$\rho \ge 1\$.

Therefore, f is $(\rho \cdot \theta)$ -monotone with respect to θ . But f is not monotone.

Theorem 4 Let K be a nonempty convex subset of a real reflexive Banach space X. Suppose $f : K \times K \to \mathbb{R}$ is $(\rho \cdot \theta)$ -monotone with respect to θ and is hemicontinuous in the first argument with the following conditions: (i) $f(x, x) = 0, \forall x \in K$; (ii) for fixed $z \in K$, the mapping $x \mapsto f(z, x)$ is convex; (iii) $\lim_{t\to 0} \frac{|\theta(x, x_t)|^2}{t} = 0$, where $x_t = ty + (1 - t)x, \forall x, y \in K$. Then $x \in K$ is a solution of (8) if and only if

$$f(y, x) \le \rho |\theta(x, y)|^2, \forall y \in K.$$
(9)

Proof Let *x* is a solution of (8), i.e., $f(x, y) \ge 0$, $\forall y \in K$. Therefore, from the definition of $(\rho \cdot \theta)$ -monotonicity of *f* it follows that

$$f(y,x) \le \rho |\theta(x,y)|^2 - f(x,y) \le \rho |\theta(x,y)|^2, \forall y \in K.$$
(10)

Conversely, suppose $x \in K$ satisfying (9), i.e.,

$$f(y, x) \le \rho |\theta(x, y)|^2, \forall y \in K.$$
(11)

Choose any point $y \in K$ and $x_t = ty + (1 - t)x$, $t \in (0, 1]$, then $x_t \in K$. Therefore, from (11) we have

$$f(x_t, x) \le \rho |\theta(x, x_t)|^2, \forall y \in K.$$
(12)

Now conditions (i) and (ii) imply that,

$$0 = f(x_t, x_t) \le t f(x_t, y) + (1 - t) f(x_t, x)$$

$$\Rightarrow t[f(x_t, x) - f(x_t, y)] \le f(x_t, x).$$
(13)

From (12) and (13) we have

 $f(x_t, x) - f(x_t, y) \le \rho \frac{|\theta(x, x_t)|^2}{t}, \forall y \in K.$

Since f is hemicontinuous in the first argument and taking $t \to 0$, it implies that $f(x, y) \ge 0, \forall y \in K$. Hence x is a solution of (8).

Theorem 5 Let *K* be a nonempty bounded convex subset of a real reflexive Banach space *X*. Suppose $f : K \times K \to \mathbb{R}$ is $(\rho \cdot \theta)$ -monotone with respect to θ and is hemicontinuous in the first argument with the following conditions:

(i) $f(x, x) = 0, \forall x \in K;$

(ii) for fixed $z \in K$, the mapping $x \mapsto f(z, x)$ is convex and lower semicontunuous; (iii) $\lim_{t\to 0} \frac{|\theta(x, x_t)|^2}{t} = 0$, where $x_t = ty + (1 - t)x$, $\forall x, y \in K$, and θ is upper semicontribution of the first ensurement.

semicontinuous in the first argument.

Then the Problem (8) has a solution.

Proof Consider the two set-valued mappings $F: K \to 2^X$ and $G: K \to 2^X$ such that

$$F(y) = \{x \in K : f(x, y) \ge 0\}, \forall y \in K,$$

and

 $G(y) = \{x \in K : f(y, x) \le \rho | \theta(x, y)|^2\}, \forall y \in K.$

It is easy to see that $\overline{x} \in K$ solves the equilibrium Problem (8) if and only if $\overline{x} \in \bigcap_{y \in K} F(y)$. First to show that *F* is a KKM mapping. If possible, let *F* not be a

KKM mapping. Then there exists $\{x_1, x_2, ..., x_m\} \subset K$ such that $co\{x_1, x_2, ..., x_m\}$ is not contained in $\bigcup_{m}^{m} F(x_i)$, that means there exists a $x_0 \in co\{x_1, x_2, ..., x_m\}$,

$$x_0 = \sum_{i=1}^{m} t_i x_i \text{ where } t_i \ge 0, i = 1, 2, \dots, m, \sum_{i=1}^{m} t_i = 1, \text{ but } x_0 \notin \bigcup_{i=1}^{m} F(x_i).$$

Hence, $f(x_0, x_i) < 0$; for $i = 1, 2, \dots, m$. From (i) and (ii) it follows that

$$0 = f(x_0, x_0) \le \sum_{i=1}^{i=1} t_i f(x_0, x_i) < 0,$$

which is a contradiction. Hence F is a KKM mapping.

From the $(\rho - \theta)$ -monotonicity of f we will show that $F(y) \subset G(y), \forall y \in K$. For any given $y \in K$, let $x \in F(y)$, then

$$f(x, y) \ge 0.$$

From the $(\rho - \theta)$ -monotonicity of f, it follows that

$$f(y,x) \le \rho |\theta(x,y)|^2 - f(x,y) \le \rho |\theta(x,y)|^2.$$

Therefore $x \in G(y)$, i.e., $F(y) \subset G(y)$, $\forall y \in K$. This implies that G is also a KKM mapping.

Since K is closed bounded and convex, it is weakly compact. From the assumptions, we know that G(y) is weakly closed for all $y \in K$. In fact, because $x \mapsto f(z, x)$ is lower semicontinuous and $x \mapsto \rho |(\theta(x, z))|^2$ is upper semicontinuous. Therefore, G(y) is weakly compact in K, for each $y \in K$.

Therefore from Lemma 1 and Theorem 4 it follows that $\bigcap_{y \in K} F(y) = \bigcap_{y \in K} G(y) \neq 0$

Ø.

So there exists $\overline{x} \in K$ such that $f(\overline{x}, y) \ge 0, \forall y \in K$, i.e., (8) has a solution.

Theorem 6 Let K be a nonempty unbounded closed convex subset of a real reflexive Banach space X. Suppose $f: K \times K \to \mathbb{R}$ is $(\rho \cdot \theta)$ -monotone with respect to θ and is hemicontinuous in the first argument and satisfy the following assumptions:

- (i) $f(x, x) = 0, \forall x \in K;$
- (ii) for fixed $z \in K$, the mapping $x \mapsto f(z, x)$ is convex and lower semicontinuous;
- (iii) $\lim_{t\to 0} \frac{|\theta(x, x_t)|^2}{t} = 0$, where $x_t = ty + (1-t)x$, $\forall x, y \in K$, and is upper semicontinuous in the first argument;
- (iv) f is weakly coercive, that is there exists $x_0 \in K$ such that $f(x, x_0) < 0$, whenever $||x|| \to +\infty$ and $x \in K$.

Then (8) has a solution.

Proof Since the proof of this theorem is very similar to Theorem 4.9. in [11], hence it is omitted.

5 Application to Fixed-Point Problems

Let $X = X^*$ be a Hilbert space. Let $T : K \to K$ be a given mapping. Then the fixed-point problem states that find $\overline{x} \in K$ such that

$$T\overline{x} = \overline{x}.$$

Now, by the setting $f(x, y) = \langle x - Tx, y - x \rangle$ we can show that if \overline{x} solves the equilibrium problem (8) then \overline{x} is also a solution of the above fixed-point problem.

Indeed, let \overline{x} is a solution of the equilibrium problem, i.e., $f(\overline{x}, y) \ge 0$, $\forall y \in K$. Let us choose $y = T\overline{x}$, then

$$f(\overline{x}, y) = f(\overline{x}, T\overline{x}) = -\|T\overline{x} - \overline{x}\| \ge 0 \implies T\overline{x} = \overline{x},$$

which shows that \overline{x} is a fixed point of T.

In this case, notice that f(x, y) is $(\rho - \theta)$ -monotone if and only if T is $(\rho - \theta)$ -monotone. Since by Theorems 5 and 6, the equilibrium problem has solution, hence by the above result the fixed-point problem also has solution.

6 Conclusions

In this study the existence of solutions for variational-like inequality problems under a new concept relaxed $(\rho - \theta) - \eta$ -invariant monotone maps in reflexive Banach spaces have been established. We have also obtained the existence of solutions of variational inequality and equilibrium problems with $(\rho - \theta)$ -monotone mappings. This leads to the natural question of making sensitivity analysis and obtaining results using ε -efficiency conditions as in [15, 16]. We plan to pursue these as our subsequent research works.

References

- Browder, F.E.: Nonlinear monotone operators and convex sets in banach spaces. Bull. Amer. Math. Soc 71(5), 780–785 (1965)
- Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20(3), 493– 519 (1967)
- Bai, M.R., Zhou, S.Z., Ni, G.Y.: Variational-like inequalities with relaxed η-α pseudomonotone mappings in Banach spaces. Appl. Math. Lett. 19(6), 547–554 (2006)
- Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student-India 63(1), 123–145 (1994)
- Fang, Y.P., Huang, N.J.: Variational-like inequalities with generalized monotone mappings in Banach spaces. J. Optim. Theory Appl. 118(2), 327–338 (2003)
- Lee, B.S., Lee, G.M.: Variational inequalities for (η, θ)-pseumonotone operators in nonreflexive banach spaces. Appl. Math. Lett. 12(5), 13–17 (1999)
- 7. Luc, D.T.: Existence results for densely pseudomonotone variational inequalities. J. Math. Anal. Appl. **254**(1), 291–308 (2001)
- Hadjisavvas, N., Schaible, S.: Quasimonotone variational inequalities in Banach spaces. J. Optim. Theory Appl. 90(1), 95–111 (1996)
- Yang, X.M., Yang, X.Q., Teo, K.L.: Generalized invexity and generalized invariant monotonicity. J. Optim. Theory Appl. 117(3), 607–625 (2003)
- Behera, N., Nahak, C., Nanda, S.: Generalized (ρ, θ)-η-invexity and generalized (ρ, θ)-η-invariant-monotonicity. Nonlinear Anal. Theory Meth. Appl. 68(8), 2495–2506 (2008)
- Mahato, N.K., Nahak, C.: Variational-like inequalities and equilibrium eroblems with generalized monotonicity in Banach spaces. Adv. Oper. Res. 2012, 15pp. (2012)

- 12. Fan, K.: Some properties of convex sets related to fixed point theorems. Mathematische Annalen **266**(4), 519–537 (1984)
- 13. Fan, K.: A minimax inequality and applications. Inequalities **3**, 103–113 (1972)
- Mahato, N.K., Nahak, C.: Mixed equilibrium problems with relaxed α-monotone mapping in banach spaces. Rendiconti del Circolo Matematico di Palermo (2013). doi: 10.1007/s12,215-013-0103-0
- Mohapatra, R.N., Verma, R.U.: Sensitivity analysis for cocoercively monotone variational inclusions and (a, η)-maximal monotonicity. J. Appl. Math. Comput. 26(1–2), 281–293 (2008)
- Verma, R.U., Mohapatra, R.N.: The ε-efficiency conditions for multiobjective fractional programming problems. Dyn. Contin. Discrete Impuls. Syst. Ser. A-Math. Anal. 19(1), 641–660 (2012)