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Monotonicity to Variational-Like
Inequalities and Equilibrium Problems
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Abstract In this paper, we introduce the concept of relaxed (p-0)-n-invariant
monotonicity to establish the existence of solutions for variational-like inequality
problems in reflexive Banach spaces. Again we introduce the concept of (p-6)-
monotonicity for bifunctions. The existence of solution for equilibrium problem
with (p-8)-monotonicity is established by using the KKM technique.

Keywords Variational-like inequality problem -+ Relaxed (p-0)-n-invariant
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1 Introduction

Let K be a nonempty subset of a real reflexive Banach space X, and X* be the dual
space of X. Consider the operator T : K — X™* and the bifunctionn : K x K — X.
Then the variational-like inequality problem (in short, VLIP) is to find x € K, such
that

(Tx,n(y,x)) 2 0,Vy € K, (1)

where (., .) denote the pairing between X and X*.
If we take n(x, y) = x — y, then (1) becomes to find x € K, such that

(Tx,y —x))>0,Vy € K, 2)
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which are variational inequality problems (VIP) [1, 2]. Variational inequalities have
been studied by many authors [1-5] in both finite- and infinite-dimensional spaces.
When we deal with variational inequalities, the most common assumption for the
operator T is monotonicity. Recently, many authors have established the existence of
solutions for variational inequalities with various types of generalized monotonicity
assumptions (see [3, 5-8] and the references therein). Fang and Huang [5] defined
the concept of relaxed n-o monotonicity and obtained the existence of solutions for
variational-like inequalities. Bai et al. [3] extended the idea of relaxed n-oe monotonic-
ity to relaxed n-« pseudomonotonicity. Yang et al. [9] defined several kinds of invari-
ant monotone maps and generalized invariant monotone maps. Behera et al. [10]
defined various concepts of generalized (p-6)-n-invariant monotonicity to general-
ized concepts of Yang et al. [9]. Very recently, Mahato and Nahak [11] introduced
relaxed (p-0)-n-invariant pseudomonotonicity to study variational-like inequalities
and (p-6)-pseudomonotonicity to study equilibrium problems. But in [11], authors
did not consider the concepts such as relaxed (p-6)-n-invariant monotone mappings,
and (p-0)-monotone bifunctions. Therefore, we organized this article to consider
these monotonicity concepts and study the variational-like inequality problems and
equilibrium problem.

Inspired and motivated by [5, 9—11], in this paper, we introduce the concept of
relaxed (p-0)-n-invariant monotone mappings to establish the existence of solu-
tions for variational-like inequality problems. We also introduce the notion of
(p-0)-monotonicity for bifunctions. By using the KKM technique we have studied
the existence of solutions of equilibrium problem with (p-8)-monotone mappings in
reflexive Banach spaces.

2 Preliminaries

We begin with the definition of relaxed (p-6)-n-invariant monotone mappings. For
this consider the function 6 : K x K — Rand p € R.

Definition 1 The operator T : K — X™* is said to be relaxed (p-6)-n-invariant
monotone with respect to 6, if for any pair of distinct points x, y € K, we have

(Tx, n(y, ) + (Ty, n(x, »)) + plOx, »)I> <0, where 6(x, y) =0(y,x). (3)

Remark 1 (i) If we take p = 0 then from (3) it follows that
(Tx,n(y,x)) + (Ty,n(x,y)) <0,Vx,y € K, and T is said to be invariant
monotone, see [9].

(i) If we take p = 0, and n(x, y) = x — y, then (3) reduces to (Tx — Ty, x — y) >
0,Vx,y € K, and T is said to be monotone map.

From the above definitions, it is clear that invariant monotonicity = relaxed
(p-0)-n-invariant monotonicity. However, in general a relaxed (p-6)-n-invariant
monotone map may not be an invariant monotone map.
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Example I Let K =[1,5]and T : [1, 5] — R be defined by Tx = x? + 1. Let the
functions 1 and 6 be defined by (x, y) = x>+y%,0(x, y) = (x> 4+y>) (x2+y>+5).
Now, (Tx, n(y,x)) + (Ty, n(x, y)) = x* + y*)(x? + y? +2), which is not less
than 0. Therefore, T is not invariant monotone. But, T is relaxed (p-0)-n-invariant
monotone with respect to 6 for any p < 1.

Definition 2 [5] The operator 7 : K — X* is said to be n-hemicontinuous if for
any fixed x, y € K, the mapping f : [0, 1] — R defined by f(t) = (T(x + ¢
(y — x)), n(y, x)) is continuous at 0T,

3 Relaxed (p-0)-n-Invariant Monotonicity and (VLIP)

In this section, we establish the existence of the solution for (VLIP), using relaxed
(p-0)-n-invariant monotonicity. Consider the following problems:

find x € K such that (Ty, n(x, y)) + pl6(x, y)|> <0,Vy € K. 4)

Theorem 1 Let K be a closed convex subset of a reflexive Banach space X. Assume
that T : K — X* is n-hemicontinuous and relaxed (-0 )-n-invariant monotone
with the following conditions:

(i) n(x,y)+n(y,x)=0,Vx,y € K;

o 10 X))
(ii) lim — = 0, where x;, =ty + (1 —t)x,Vx,y € K;

t—0
(iii) for afixed z, y € K, the mapping x — (T z, n(x, y)) is convex.
Then the Problems (1) and (4) are equivalent.

Proof Let x be a solution of (1). From the definition of relaxed (p-0)-n-invariant
monotonicity of T, we get (T'y, n(x, y)) + pl0(x, y)|*> < —(Tx, n(y, x)) <O0.
Conversely, suppose that x € K is a solution of (4), i.e.,

(Ty, n(x,y)) + pl6(x, > <0,¥y € K. &)

Choose any point y € K and consider x; =ty + (1 — #)x, ¢ € (0, 1], then x; € K.
Therefore, from (5) we have

(Tx;, n(x, x;)) + plO(x, x)|* < 0;
=(Txt, n(xs, x)) — plO(x, xt)|2 > 0;
= (Tx;, n(xr, %)) = plO(x, x,)[%. (6)

NOW! <T-xlv n(-xls x)) S t<Txt7 ’7()’7 x)) + (l_t)(TXt, n(-xv -x)) = t<Txl’ 77()’: x))
(N
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From (6) and (7) we have

2
(Tx;, n(y, x)) = pllexl,

Since T is n-hemicontinuous and taking r — 0 we get
(Tx,n(y,x)) =0,Vy € K.

Definition 3 Let f : K — 2% be a set-valued mapping. Then f is said to be KKM
n

mapping if for any {y{, y2, ..., yu} of K we have co{yi, y2,..., yn} C U fi),
i=1
where co{y1, y2, ..., yn} denotes the convex hull of yi, y2, ..., y,.

Lemma 1 ([12]) Let M be a nonempty subset of a Hausdorff topological vector
space X and let f : M — 2% be a KKM mapping. If f(y) is closed in X, for all
y € M and compact for some y € M, then n f(y) #0.

yeM

Theorem 2 Let K be a nonempty bounded closed convex subset of a real reflexive
Banach space X. Assume that 7 : K — X™ is n-hemicontinuous and relaxed (p-6)-
n-invariant monotone. Let the following hold:

) nCx,y)+n(y,x) =0,Vx,y € K3
0(x, x)|? .
(>i1) lirr(l)M = 0, where x; =ty + (1 — t)x, Vx,y € K; and 6 is lower
t—
semicontinuous in the first argument;

(iii) for a fixed z, y € K, the mapping x +— (Tz, n(x, y)) is convex and lower
semicontinuous.

Then the Problem (1) has a solution.

Proof Consider the set-valued mapping F : K — 2% such that

F(y)={xe K :(Tx,n(y,x)) >0},Vy € K.
It is easy to see that X € K solves the (VLIP) if and only if X € Nycx F'(y). We
claim that F is a KKM mapping. If possible, let F' not be a KKM mapping. Then
there exists {xi, x2, ..., x;;} C K such that co{x, x3, ..., x;;} not contained in

m
UYL | F(x;), that means there exists a xo € co{x1, X2, ..., Xpn}, X0 = Z t;x; where

i=1

m
t>0,i=12...m > t;=1butxg ¢ UL F(x;).
i=1
Hence, (T xq, n(x;, x9)) < 0; fori = 1,2, ..., m. From (i) and (iii) it follows
that

m
0 = (Txo, n(x0. X0)) < > ti(Tx0, 1(xi, X)) <0,
i=1
which is a contradiction. Hence F is a KKM mapping.
Assume G : K — 2X such that G(y) = {x € K : (Ty, n(x, y)) + pl0(x, )|*> <
0},Vy e K.
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From the relaxed (p-6)-n-invariant monotonicity of 7 it follows that F(y) C
G(y), Yy € K. Therefore, G is also a KKM mapping.

Since K is closed bounded and convex, it is weakly compact. From the assump-
tions, we know that G(y) is weakly closed for all y € K. In fact, because
x — (Tz,n(x,y)) and x — p|O(x, y)|> are lower semicontinuous. Therefore,
G (y) is weakly compact in K, for eachy € K.

Therefore, from Lemma 1 and Theorem 1 it follows that ﬂ F(y) = ﬂ G(y) #0.
yeK yek

So there exists X € K such that (Tx, n(y,x)) > 0,Vy € K, i.e., the Problem (1)

has a solution.

Theorem 3 Let K be anonempty unbounded closed convex subset of a real reflexive
Banach space X. Suppose that T : K — X* is n-hemicontinuous and relaxed
(p-0)-n-invariant monotone. Let the following hold:

@) nx,y)+n(y,x)=0,Yx,y € K;
O(x, x 2
(i) fim 19 XOF
t—0
semicontinuous in the first argument;

= 0, where x; =ty + (1 — t)x, Vx,y € K; and 6 is lower

(iii) for a fixed z, y € K, the mapping x +— (T'z, n(x, y)) is convex and lower
semicontinuous;

(iv) T is weakly n-coercive, i.e., there exits xo € K such that (T'x, n(x, x9)) > 0,
whenever ||x|| - coand x € K.

Then the Problem (1) has solution.

Proof Since the proof of this theorem is very similar to Theorem 3 in [11], hence it
is omitted.

4 (p-0)-Monotonicity and Equilibrium Problem

The equilibrium problem (in short, EP) for the bifunction f : K x K — Ris to find
X € K, such that

f(x,y)=0,Vy € K. ®)

Problems like (8) were initially studied by Fan [13]. Later on Blum and Oettli [4]
discussed that equilibrium problem contains many problems as particular cases for
example, mathematical programming problems, complementary problems, varia-
tional inequality problems, fixed-point problems, and minimax inequality problems.
Inspired and motivated by [11, 14], we introduced the concept of (p-8)-monotonicity
to establish the existence of solution of equilibrium problem over bounded as well
as unbounded domain.
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Let K be a nonempty subset of a real reflexive Banach space X. Consider the
function f : K x K - Rand6 : K x K — Rand p € R.

Definition 4 The function f : K x K — R is said to be (p-6)-monotone with
respectto 6 : K x K — Rif, forall x, y € K, we have

Fo,y) + £, x) < plo(x, y)I2

Remark 2 1In the above definition,

@) for p > 0and O (x, y) = ||x — y||, f is weakly monotone;
(i1) for p = 0, f is monotone;

(iii) for p < O and O (x, y) = ||lx — y||, f is strongly monotone.

We now give an example to show that (p-6)-monotonicity is a generalization of
monotonicity.

Example 2 Let K = [1, 10]. Let the functions f and 6 be defined by

flx,y)= 2+ y2 and 0(x,y) = 2()c2 + y2) + 4.

N+ f0) =2+
< ,0(2)c2 +2y2 +4)2, for any p > 1.

Therefore, f is (p-6)-monotone with respect to 6. But f is not monotone.

Theorem 4 Let K be a nonempty convex subset of a real reflexive Banach space X.
Suppose f : K x K — Ris (p-0)-monotone with respect to 6 and is hemicontinuous
in the first argument with the following conditions:

(i) f(x,x) =0, Vx € K;

(ii) for fixed 7 € K, the mapping x — f(z, x) is convex;

o 100 X))
(iii) llII(l) — = 0, where x;, =ty + (1 —t)x, Vx,y € K.
t—

Then x € K is a solution of (8) if and only if

FO,x) < pl0(x, y)I*, ¥y € K. 9)

Proof Let x is a solution of (8), i.e., f(x,y) > 0, Vy € K. Therefore, from the
definition of (p-8)-monotonicity of f it follows that

FO,x) < pl0@, M — fx,y) < pl0(x, y)I*, ¥y € K. (10)

Conversely, suppose x € K satisfying (9), i.e.,

FO,x) < plO(x, y)I*, ¥y € K. (11)
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Choose any pointy € K and x; =ty + (1 —t)x, ¢t € (0, 1], then x; € K. Therefore,
from (11) we have
fx.x) < plf(x. x)*, ¥y € K. (12)

Now conditions (i) and (ii) imply that,
0= f(xp,x) <tf(xe, y) + (1 —1)f(xr, x)

= 1[f (xr, x) =[O Y] < f (s x). 13)

From (12) and (13) we have
Fx) = fx,y) < plleil vy e k.
Since f is hemicontinuous in the first argument and taking + — 0, it implies that
f(x,y) >0,Vy € K. Hence x is a solution of (8).

Theorem S Let K be a nonempty bounded convex subset of a real reflexive Banach
space X. Suppose f : K x K — R is (p-6)-monotone with respect to 6 and is
hemicontinuous in the first argument with the following conditions:

() f(x,x) =0, Vx € K;

(ii) for fixed z € K, the mapping x — f(z, x) is convex and lower semicontunuous;

e 10, X)) .
(iii) hn(l) — = 0, where x; =ty + (1 —t)x, Vx,y € K, and 6 is upper
r—

semicontinuous in the first argument.
Then the Problem (8) has a solution.

Proof Consider the two set-valued mappings F : K — 2%X and G : K — 2% such
that
F(y)={xeK: f(x,y) =0},Vy e K,
and
Gy ={xeK: f(y.x) =< plox, )P}, Vy € K.
It is easy to see that X € K solves the equilibrium Problem (8) if and only if
X € ﬂ F (y). First to show that F is a KKM mapping. If possible, let F not be a

yekK
KKM mapping. Then there exists {x1, x2, ..., X} C K suchthatco{xy, x2, ..., xp}
m
is not contained in U F (x;), that means there exists a xo € co{x1, x2, ..., Xm},

i=1
m
x0=2tixiwhereti20,i=1,2 ,m, Ztl_l butx0¢UF(xl
i=1
Hence, f(xp,x;) <O0;fori =1,2,...,m. From (1) and (ii) it follows that
m

0= f(x0, x0) < Ztif(xo, xi) <0,
i=1
which is a contradiction. Hence F is a KKM mapping.
From the (p-0)-monotonicity of f we will show that F(y) C G(y), Vy € K.
For any given y € K, let x € F(y), then
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Sx,y)=0.

From the (p-0)-monotonicity of f, it follows that

FO,x) < pl0x, VI — fx,y) < plOx, y)I*.

Therefore x € G(y),i.e., F(y) C G(y),Vy € K. This implies that G is also a KKM
mapping.

Since K is closed bounded and convex, it is weakly compact. From the assump-
tions, we know that G (y) is weakly closed forall y € K. Infact,because x — f(z, x)
is lower semicontinuous and x — p|(6(x, z)|2 is upper semicontinuous. Therefore,
G (y) is weakly compact in K, for eachy € K.

Therefore from Lemma 1 and Theorem 4 it follows that ﬂ F(y) = ﬂ G(y) #

yeK yekK
7
So there exists X € K such that f(x,y) > 0,Vy € K, i.e., (8) has a solution.

Theorem 6 Let K be anonempty unbounded closed convex subset of a real reflexive
Banach space X. Suppose f : K x K — Ris (p-6)-monotone with respect to 6 and
is hemicontinuous in the first argument and satisfy the following assumptions:

i) f(x,x)=0, Vx € K;
(i) forfixedz € K,the mapping x — f(z, x) is convex and lower semicontinuous;
O(x, x 2
(i) lirr(l)M = 0, where x;, = ty + (1 — t)x, Vx,y € K, and is upper
—
semicontinuous in the first argument;

(iv) f is weakly coercive, that is there exists xo € K such that f(x,x9) < O,
whenever ||x|| - +ooand x € K.

Then (8) has a solution.

Proof Since the proof of this theorem is very similar to Theorem 4.9. in [11], hence
it is omitted.

5 Application to Fixed-Point Problems

Let X = X* be a Hilbert space. Let T : K — K be a given mapping. Then the
fixed-point problem states that find X € K such that

Tx =X.

Now, by the setting f(x,y) = (x — Tx,y — x) we can show that if X solves the
equilibrium problem (8) then X is also a solution of the above fixed-point problem.
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Indeed, let X is a solution of the equilibrium problem, i.e., f(x,y) > 0, Vy € K.
Let us choose y = T'x, then

fEy) =fE@TH=—|Tx-%| >0 = Tx=rx,

which shows that X is a fixed point of T'.

In this case, notice that f(x,y) is (p-6)-monotone if and only if T is (p-0)-
monotone. Since by Theorems 5 and 6, the equilibrium problem has solution, hence
by the above result the fixed-point problem also has solution.

6 Conclusions

In this study the existence of solutions for variational-like inequality problems under
a new concept relaxed (p-6)-n-invariant monotone maps in reflexive Banach spaces
have been established. We have also obtained the existence of solutions of variational
inequality and equilibrium problems with (p-6)-monotone mappings. This leads
to the natural question of making sensitivity analysis and obtaining results using
e-efficiency conditions as in [15, 16]. We plan to pursue these as our subsequent
research works.
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