Degree of Approximation by Certain
Genuine Hybrid Operators

Meenu Goyal and P.N. Agrawal

Abstract This paper is in continuation of our work on certain genuine hybrid
operators in (Positivity (Under review)) [3]. First, we discuss some direct results
in simultaneous approximation by these operators, e.g. pointwise convergence the-
orem, Voronovskaja-type theorem and an error estimate in terms of the modulus of
continuity. Next, we estimate the rate of convergence for functions having a derivative
that coincides a.e. with a function of bounded variation.

Keywords Rate of convergence + Modulus of continuity + Simultaneous approxi-
mation + Bounded variation
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1 Introduction

Recently, Gupta and Rassias [5] introduced the Lupas-Durrmeyer operators based on
Polya distribution and discussed some local and global direct results. Also, Gupta [2]
studied some other hybrid operators of Durrmeyer type. Péltanea [11] (see also [10])
considered a Durrmeyer-type modification of the genuine Szdsz-Mirakjan operators
based on two parameters «, p > 0. Inspired by his work, in [3] Gupta et al. introduced
certain genuine hybrid operators as follows:

Forc € {0, 1}and f € C} [0, 00) := {f € C[0,00) : | f(1)| < My e”", for some
y >0, My > 0}, we define
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B0 = pute, c)/%’k(t)f(t)dt + PaoOfO, (D)
k=1
_ / K2(x, 0 f (1, @)
0
where
Pak(x, €) = %qﬁ“‘)( ), 6l (1) = (pp)e*“f’%apr)"”*‘
and KJ(x,1) = Zpak(x by (1) + pa,o(x, )8(1); x € (0, 00).

k=1

It is observed that the operators B (f, x) are well-defined for ap > y. We assume
that

—oX

e () e , for ¢ =0,
X) =
*e 1+ x)®, forc=1.

As shown in paper [3], the operators (1) include several linear positive operators as
special cases. Further, we note that the operators (1) preserve the linear functions.
In [3], we studied some direct results, e.g. Voronovskaja-type theorems in ordinary
and simultaneous approximation for first-order derivatives as well as results in local
and weighted approximation. In this paper, we continue this work by discussing
simultaneous approximation for f)(x), € N and the rate of convergence of the
operators (1) for the functions with derivatives of bounded variation on each finite
subinterval of (0, co). The paper is organized as follows:

In Sect.2, we discuss some auxiliary results and then in Sect.3, we obtain the
main results of this paper.

2 Auxiliary Results

For f : [0, 00) — R, we define

Sau(fix) = pr(x c)f( ) 3)

k=0

such that (3) makes sense for all x > 0.
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For m € N’ = N U {0}, the mth order central moment of the operators Sy is
given by

o0 k m
V() = St =05 0) = D puix, ")(a - x) .
k=0

Lemma 1 For the function vy m(x), we have
Vo, 0(x) = 1, vg,1(x) =0
and
x(1 4 ex)[vg,, (x) + mUgm—1(x)] = @Vgm+1(x).

Thus,

(i) Va,m(x) is a polynomial in x of degree [m /2];
(ii) foreachx € [0, 00), Ug,m(x) = O (a1 + D21y "ywhere [ B] denotes the integral
part of B.

Proof For the cases ¢ = 0 and 1, the proof of this lemma can be found in [8, 12]
respectively.

Lemma 2 For the mth order (m € N°) moment of the operators (1) defined as
Ug,m(X) 1= BE (™ x), we have

x (1
Ug,0(X) =1, Ug1(x) = x, Uuga(x) = x> + E(; A Cx))
and

x(1 + cx)u;,m(x) = aua,m+l(x) - (% + ax)ua,m(x), m € N.

Consequently, for each x € (0, 00) and m € N, ug ,(x) = x™ + O(_l(pm (x,c) +
o(1)),

where py(x, ¢) is a rational function of x depending on the parameters m and c.

Lemma 3 [3] Form € N°, if the mth order central moment (Lo m (x) for the oper-
ators BY is defined as

00 o0
Ham(x) = BE((t —=x)" . x) = > pg (x.0) / 0L (O —x)"d1 + pgo(x, O)(=x)",
k=1 0

then we have the following recurrence relation:

1 m
apgm+1(0) = x(1 + ex) iy (X) + mx [; + 1+ CX)} Ham—1(x) + ;ua,mm.
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Consequently,

1 1
(i) paox) =1, pe1(x) =0, pg2(x)= {1+ p(ap+ cx)}x;

(ii) Ma.m(x) is a polynomial in x of degree atmost m;

(iii) for every x € (0, 00), tam(x) = O (a—“m + W);

(iv) the coefficients of a™™ in pig.2m(x) and o 2m—1(x) are 2m — 1)!![x(— +
0

1+ cx))]m

o @m = 1)3!!(m —D

2(1
2cx)) + —(— + 1 + cx))} respectively.
PP

1 m=2 1
(— + (1 + cx)) {(1 + cx)(— + (1 +
o o

Corollary 1 For x € [0, 00) and o > 0, it is observed that

Ax(1 1
Ha2(x) < M where A =1 + — > 1.
a o

Corollary 2 [3] Let y and § be any two positive real numbers and [a, b] C (0, 00)
be any bounded interval. Then, for any m > 0 there exists a constant M’ independent
of a such that

<Maoa™,

oo
> Pak(x,c) / 0 (e’ dt
k=1

[t—x|>8

where ||.|| is the sup-norm over [a, b].

Lemma 4 For every x € (0, 00) and r € N°, there exist polynomials qi,jr(x)inx
independent of o and k such that

d" i '(C]ijr(xvc))
’ _ , k — J —_—
T Pak(¥, ©) = Pak(x, ©) 21_; A e,
j<r
i,j=0

where p(x,c) = x(1 + cx).

Proof For the cases ¢ = 0, 1, the proof of this lemma can be seen in [8, 12] respec-
tively.
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3 Main Results

3.1 Simultaneous Approximation

Throughout this section, we assume that 0 < a < b < oco.

In the following theorem, we show that the derivative B © (f; .)isalsoan approx-
imation process for £,

Theorem 1 (Basic convergence theorem) Let f € C,, [0, 00). If f ") exists at a point
x € (0, 00), then we have

lim ( ddr Béf(f;w)) = ). (4)

o— 00 o’ w=x

Further, if ) is continuous on (a —n,b + n),n > 0, then the limit in (4) holds
uniformly in [a, b].

Proof By our hypothesis, we have

r

)
fo=> ! (x)(t —0)" + Yt 0 —x)", t €[0,00),

v!
v=0

where the function ¥ (¢, x) — 0 as t — x. From the above equation, we may write

d’ r f(v)(x) d’ )
(dw’ Ba (f®); a))) - Z ! (da)’ Ba(t =) ;w))

w=x v=0

wW=Xx

+ ( d BE(W(t, x)(t —x)"; (U))

do”

=:11 + D, say.

W=X

First, we estimate ;.

_ Y4y V=) o
I = g - [dw’(go(f) (—x)" I BL(t ’w))w=x]
f(”)(x) Yy vif d" .
=> - ':o(j) (—x) /(WBg(ﬂ,w))
FO0) < (v i 4" 3
:Z - (]) (—x) f(dergj(z/,w))

wW=Xx

w=Xx
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f(’)(x) iy i d .
T jgo(f)(_x) (G meso)

= I3 + 14, say.

First, we estimate /4.

FOO SN i (4 fOw (A,
= Z(j)ex) J(WBé’(ﬂ,w)) +— (dwr a(z,m)w:x

j=0 wW=x

=I5 + Ig, say.

Using Lemma 2, we get

1 1 1
Ie= fOx) + 0(—),13 = 0(—) and I5 = 0(—), as o — 00.
o o o

Combining the above estimates, for each x € (0, c0) we obtain I — f)(x) as

a — oo.
Next, we estimate /5. By making use of Lemma 4, we have

o) o0
L) < Z”""(x 9 ¥ al’|k—ax|f|q,~,j,r<x,c>|/eg,kawa,x)n(t—x>’|dt
k=1 0

(.o, =
i,j>0

d’ ’

+‘(d —— Pa,0(w, c)) [¥ (0, x)(—x)"|

= I7 + Ig, say.

Since ¥ (t, x) — 0 asr — x, for a given ¢ > 0 there exists a § > 0 such that
[ (t, x)| < & whenever |t — x| < 8. For |t —x| > &, |(t —x) ¥ (t,x)] < Me", for
some constant M > 0.

Again, using Lemma 4, we have

H1=3 S allk— axp e 20 a,k<x,c)(s [ stuton —xva

-
k=12i+ j<r ( ( )) [t—x|<é
i,j>0
+M / 6£’k(t)eytdt) =1y + Iyp, say.
lt—x|=8
|Qi,j,r(X, C)| . . .
Let K = sup —=————. Byapplyingthe Schwarz inequality, Lemmas 1 and 3,
2i+j<r (P(x,0)
i,j=0

we get
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00 o0 1
. . 2
ol <eK > > a'|k—ax|fpa,k(x,c)(/9§,k(t)(t —x)zrdt)
k=12i+ j<r 0
EY
Sk 2j 3
<eK Z a””(Z(;—x) pa,k(x,C))
20+ j<r k=1
i,j>0

%) 0 1
(Zpa,k(x, C)/Qlf’k(t)(t —x)zrdl)z
k=1 0

1
2
. .
<ek > a’“(ua,z,i(x) —x f¢a,c(x))
2i+j<r
i,j>0
1

(B{;((t — )% x) — x2’¢a,c(x)) ’

=e > MO ) + 0@ )2
2i+ j<r
i,j=0

x{0@™") + 0@ **)}!/2, for any 51,50 > 0.

Choosing s, s such that s; > j and 52 > r, we have |ly| = ¢

Z oW I 0@ =.0(1).

2i+ j<r
i,j>0

Since ¢ > 0 is arbitrary, 9 — 0 as @ — oo.
Now, we estimate /1. By applying Cauchy—Schwarz inequality, Lemma 1 and Corol-
lary 2, we obtain

o0
Lol < MK D" > a'lk — ax| pa(x. c) / 0 (e dt
k=12i + j<r P
i,j=0
- 2j 1/2

=M Y a'*/(z(f—x) pa,k(x,a)

2i+j<r =1 \¢

i,j=0

00 1/2

X(Zpa,k(X,C) / Goﬁk(t)ezyrdt) , where M| = MK
k=1 [t—x|>5
12

< M Z aiJrj(Utx,Zj(x)_x2j¢a,c(x))

2i+ j<r
i,j=0
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0 1/2
x(zpa,k(x,c) / eo’jk(z)eZV’dz)
k=1

[t—x]=6

> 0@ ) + 0@ )
2+ j<r
i,j=0

x {0 @™)}/2 for any my, my > 0.
Choosing m; > j, we get

[110]

Z Oli +J O(Q—j/Z)O(a—mz/Z) — O(a(r—mz)/Z)’
2i+j<r

i,j=0
which implies that /190 = o(1), as « — 00, on choosing m, > r. Next, we estimate
I3. We may write

dr
|g| = ’(d—,Pa,o(w,C)) [¥(0, x)|x"
w w=Xx
= [p{ 2] [¥(0, x)|x".
—1
Now, we observe that ¢>g())(x) = ¢ (—)" and ¢g)1 (x) = (;_ﬁ%, which

implies that I3 = O(a~?) for any p > 0, in view of the fact that |/ (0, x)x" | < Ny,
for some Ny > 0.

By combining the estimates /7 — I1g, we obtain I, — 0 as o — o0.

To prove the uniformity assertion, it is sufficient to remark that § (¢) in the above
proof can be chosen to be independent of x € [a, b] and also that the other estimates
hold uniformity in x € [a, b]. This completes the proof of the theorem.

Next, we establish an asymptotic formula.

Theorem 2 (Voronovskaja type result) Let f € Cy, [0, 00). If f admits a derivative
of order (r + 2) at a fixed point x € (0, 00), then we have

r r+2
alggoa((dir By (f; w))w:x - f(’)(X)) = ; Q. r.c.a.x)f"(x).  (5)

where Q(v, 1, ¢, a, x) are certain rational functions of x independent of «.
Further; if 2 is continuous on (a —n, b + n), n > 0, then the limit in (5) holds
uniformly in [a, b].
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Proof From the Taylor’s theorem, for ¢ € [0, c0) we may write

r+2

fo =73

v=0

v)
f ( D -2+ Yt x)(t —x) T2 (6)

where the function (¢, x) — Oast — x.
Now, from Eq. (6), we have

)
(dd er(f(t) w)) — Z f v.(X)(

w=x v=0

x)¥ ;w))

+( a BE (Y (1, x)(t — x)" T2 w))

d " w=Xx
r+2 ()
= Zf (X)Z( )( —0)"” f(d BO(: w))
° j—O w=X

+ (dd Bt )t — )’“;w)
=J1 + Ja2, say. o

Proceeding in a manner similar to the estimate of /> in Theorem 1, foreachx € (0, co)
we getaJ, —> 0asa — oo.
Next, we estimate J;.

—r) v o dr .
n=3"1 v,(x) 2 (j) (=)’ ( B w))

v=0 j=0 w=x
) d d .
+ f '(x) (") (_x)rj( . Bé’(f’; a)))
rti3 J dw e
r+D ) "] d’ _
A (r * 1)( A J(—rBS(tJ;w))
(r+ Db = do w=x
r+2

[P ) r+2 rv2-i (4 poi.
T . 0( j )( . (WB"‘O ’w))w_x'

Jj=

Making use of Lemma 2, we have

r+2
=" + al(Z QW,r,¢,a,x)f"(x) + o(l)).

v=1

Thus, from the estimates of J; and J>, the required result follows.
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The uniformity assertion follows as in the proof of Theorem 1. This completes the
proof.

The next result provides an estimate of the degree of approximation in BY ® (f;x)
— fOx),r eN.

Theorem 3 (Degree of approximation) Letr < g < r + 2, f € C,[0, 00) and
£ exist and be continuous on (a — n,b + 1) where n > 0 is sufficiently small.
Then, for sufficiently large o

dr
Pt
H (da)’ Ba(f: a)))

— )

w=Xx

< max{Cia~ " w (@2 (a=n.b + 7). Ca a7},
Cla,b]

where C1 = C1(r, ¢) and Cy = Ca(r, f, ¢).

Proof By our hypothesis we have,

I r® . @ ey _ £@
F0 =3 L0 oy g SO S0

i=0

t=0)7x@® + ¢, )1 = x (1)),
(7

where & lies between ¢ and x and yx (¢) is the characteristic function of (a —n, b + n).
The function ¢ (¢, x) for ¢ € [a, b] is bounded by Me?" for some constant M > 0.
r

d
We operate d—ng (.; w) on the equality (7) and break the right-hand side into
w

three parts E1, E; and E3, say, corresponding to the three terms on the right-hand
side of Eq. (7).

Now, treating E1 in a manner similar to the treatment of J; of Theorem 2, we get
Ey = %) + O(a™"), uniformly in x € [a, b].
Making use of the inequality

It —

|f(q)(§) _ f(q)(x)l < (1 + xl)a)f(q)((S), 6 >0,

and Lemma 4, we get

@1 (8) [ — ol |k —ax|’|gi i (x, 0)|
Wﬂ5—7—{2121 @@@9 Pak(x, )

7 0 [t — x|
x [ O Ol + 5 [t — x|?x(t)dt
0
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+ (xq + )qs(’) (x)]

= FE4 + Es.

Finally, let

Cie(x,
Sy = sup |CI1,J,r( )

xela,b)2i+ j<r (P(x,0))
i,j>0

then by applying Schwarz inequality, Lemmas 1 and 3, we obtain

W @) (8)S) i~k 2J 12
E4§fT > 06””(2(;—96) pa,k(x,C))

2+ j<r k=1
i,j>0

00 & 12
X[(Zpa,k(xm)/@f,k(t)(t —x)zth)
k=1
172
(Zpakoc c)/ 20— x)2q+2dt) ]

o ) 1/2
<w@®S Y a’“(va,zj(x)—x21¢a,c<x>)
2i +j<r
i,j>0

1/2
x | (Bg;((r —x)%; x) — x”«pa‘c(x))

| 1/2
+= (Bg;((t —x)¥F x) — X% +2¢>a,c<x>) ]

)
=wr@) Y «THO@ ) + 0@ )
2i+j<r
i,j>0

x{(O(a@™®) + 0(05_32)}1/2 + é{(O(Ol_(qul))

+ 0@~ H)72, for any sy, s2,s3 > 0.

Choosing s1, 57, 53 such that s; > j,s2 > ¢,s3 > g + 1, we have

1 1
+
Esl =00 D o JO( 1/2)[0( q/Z) + SO(W

2i4 j<r
i,j=0

141
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172

Now, on choosing § = o™ /-, we get

|E4] < Cra™ "o (@2, (@ = n.b + ).

Next, proceeding in a manner similar to the estimate of Ig in Theorem 1, we have
Es = O(a™P?), forany p > 0.Choosing p > 1, wehave E5 = O™, asa — oo.
Finally, proceeding along the lines of the estimate of ;o of Theorem 2, we obtain
Ez =o(@ ) asa — oo.

On combining the estimates of E£; — E5, we get the required result.

3.2 Rate of Convergence

In this section, we shall estimate the rate of convergence for the generalized hybrid
operators Bl for functions with derivatives of bounded variation. In recent years,
several researchers have obtained results in this direction for different sequences of
linear positive operators. We refer the reader to some of the related papers (cf. [1, 4,
6, 7, 9], etc.).

Let f € DBV,[0,00), y > 0 be the class of all functions defined on [0, c0),
having a derivative that coincides, a.e. with a function of bounded variation on every
finite subinterval of [0, c0) and | f(¢)] < MtY,V t > 0.

It turns out that for f € DBV, [0, 00), we may write

X

J(x) =/g(t)dt + £(0),

0
where g(¢) is a function of bounded variation on each finite subinterval of [0, c0).

Lemma$5 Forall x € (0,00), A > 1 and « sufficiently large, we have

t
1 ax
(i) AE(x.1) =/K5(x,u)du < At en) ooy
(x —1)2 o

0
0

(i) 1—25(x,2) =/K§(x,u)du <

z

1 Ax(1 4+ cx)
(z — x)2 o

, X <z <O00.

Proof First we prove (i).
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t t
x—u\’
)\g(x,t)z/Ké’(x,u)duf/ P KP(x,u)du
X —
0 0

= P BE((u—x)% x)

- 1 Ax(1 4+ cx)
T (x—1)? o ’

The proof of (ii) is similar.

Theorem 4 Let f € DBV,[0,00),y > 0. Then for every x € (0,00), r(e N) >
2y and sufficiently large a, we have

BO(f 0 — fo < | L) =) [Ax(l + cx)]l/2

2 o

\/[74-
+ o= \/ (f>+“l+”)2 \ ()

m=1 x—X
xm

12
+ |f’<x+)|[—“(1: Cx)]
Al
F1F@0 — ) - xf ) 2
A(r x) k(l + cx)

+M—5= 4+ [f )]
where
fl)— fl(x+), x <t <o
fi®) =10 r=x ,
fl@)— fl(x=), 0<r<x

\/Z(f/(x)) is the total variation of f} on [a, b], A(r, x) is a constant depending on
r and x and M’ is a constant depending on f and y.

Proof By the hypothesis, we may write
1
(= E(f’(x +) + f’(x—)) + fe(0
1
+5 (f’(x +) - f’(x—))sgn(t —x)

1
+8x(t)(f/(t) - z(f/(x +) + f/(x—))), ®)
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where
1 t=x
S5, (1) =
x(1) [0 t#X.

From Egs. (2) and (8), we have
o0 o0
BY(fix)— f(x) = /Ké’(x, Dfdt — f(x) = /(f(t) — f))KE (x, 1)dt
0 0

X o0
= / (f() = F)KE (x, n)dt + / (f(t) = f()KE (x,1)dt
0 X

X X 00 ;
= —/ (/f/(u)du)K{f,)(x,t)dt + / (/f/(u)du)Kg(x,t)dt
0 t % e
=11 (x) + Ih(x), say.
Using Eq. (8), we get

X .Xl 1
L(x) = /{/i(f/(x—H + f’(x—)) + fe@u) + E(f’(x +)—f’(x—))Sgn(u —x)
0

t

+8x(u)(f/(u) - %(f'(x—l—) + f(x—)))du]](o‘f(x,t)dt.

t
Since [ 8y (u)du = 0, we have
X

X

X t
L(x) = %(f/()ﬂ—) + f/(x—)) /(x—r)K,é’(x,z)dz + / (/f;(u)du)ng(x,z)dr
0 0 x

*%(f/(er) ff’(xf))/lx — 1|KE (x, nds. 9)
0

Proceeding similarly, we find that

oo

o0 t
() = %(f’(x+) + f’(x—)) / (t — KL (et + / ( f;<u)du)1<£(x,t>dr

X X

o0
-I—%(f/(x—i—) —f/(x—))/|z—x|1<£(x,z)dz. (10)
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By combining (9) and (10), we get

o
BL(f;x) = f(x) = %(f/(x+) + f/(x—)) /(f — x)K§ (x, dt
0

o0
+%(f’(x+)—f’(x—))/It—leé’(x,t)dt
0

X X o0 t
—/(/f;(u)du)l(g(x,z)dr +/(/f;(u)du>1(£(x,t)dt.
0 t X X

Hence

f'a+) + f(x-)
2

+‘/(/fﬁé(u)du)l(§(x,t)dz
0 t

fla+) = flea-)
2

+ ‘/(/fx’(u)du)K(f(x,t)dt

IBE(fix) = f(0) <

BY (It — x: x)

‘IBé’(I —xix)| +

(1)

On application of Lemma 5 and integration by parts, we obtain

/(/f;(u)du)l{g’(x,t)dzz/(/f;(u)du)%xg(x,z)dz:/f;(t)xg(x,t)dt.
0 t 0 t 0

Thus,

X X
‘/(/f;(u)du)l(éj(x,r)dt
0

X
< /|f;(z)|xg(x,r)dz
0

x—x

Ja X
< / LM G, i + / LA G 1.
0 x—%

Since f/(x) = 0and A (x, ) < 1, we get



146 M. Goyal and P.N. Agrawal

/ | fe IR (x, Ddt = / |fe(®) = fiOIAg(x, de < / \/(f )dt

X_ﬁ x— % x——a
X X X
<\ U / dt=% \/ (D
x—% x—% x—%

Similarly, using Lemma 5 and putting t = x — =, we get

E \’

Ax(l

X

/ | fe@IME (x, 1)dt <

)

X

7
Ax(1 + cx) , dt
s / \/(fx)m
0

t

Vol x

A 4 ex) k 1
x—’— m= lx—f

Consequently,
x Vol x
Al
‘/(/f (u)du)Kf’(x nar| < =\ () + 2LEEO SN (g

ok =gy

Also, we have

o0 t
‘/(/f;(u)du)l(gj(x,t)dt <

2x t 9
( / f)ﬁ(u)du)—(l — My (x, 1)dt
ot
o0 t
+‘/(/f;(u)du)K£(x,t)dt
2x X

< / (F(0) — F)KE(x, Dydr

+1f (x +)|’/(r — x)KE(x, t)dt
2x
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2x
+’ / FL)du

+ / | fr@I(1 = AL (x, 1))dr.

11— 25 (x, 2x)]

Applying Lemma 5, we get

o0 t
‘/(/f;(u)du)Kg(x,z)dt

o0 o0
< M/tVK(f(x,t)dz + If(x)l/Ko’f(x,t)dz
2x

+1f (x+)
A(l + cx)

{Axa + cx)}l/z
o

|f2x) = f(x) = xf"(x )]

m

\/ (g + Xt ”’“) z \/ .

13)

We note that we can choose r € N such that 2r > y.
Since t < 2(t — x) and x <t — x when ¢ > 2x, using Holder’s inequality and
Lemma 3, we obtain

M/t”K[f(x,t)dt + |f(x)|/K£(x,t)dt

2x 2x

< QVM/(t — )Y KP(x, 1)dt + 'f(;m /(t—x)ng(x,z)dr
X
2x 2x

o0 y/2r
szyM(/(r—xWKg(x,r)dt) e )|M

< M/A(y/z) F 1IN where =27, (1

Using Lemma 3 and combining (11), (12), (13) and (14), we get the required result.
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