A Sequence Space and Uniform
(A, p)—Statistical Convergence

Ekrem Savas

Abstract In this, we introduce and study some properties of the new sequence
space that is defined using the ¢y—function and de la Valée-Poussin mean. We also
study some connections between V) ((A, ¢))—strong summability of sequences and
A—strong convergence with respect to a modulus.
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1 Introduction and Background

Let s denote the set of all real and complex sequences x = (xx). By I and ¢, we
denote the Banach spaces of bounded and convergent sequences x = (xj) normed
by ||x|| = sup, |xx|, respectively. A sequence x € [ is said to be almost convergent
if all of its Banach limits coincide. Let ¢ denote the space of all almost convergent
sequences. Lorentz [6] has shown that

¢ = {x € loo @ lim ¢y, , (x) exists uniformly in n}
m

where
Xn + Xnt1 + Xn42 + -0 + Xpngm

m+ 1

tm,n(x) =

The space [¢] of strongly almost convergent sequences was introduced by Maddox
[7] and also independently by Freedman et al. [3] as follows:
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[c] = {x €l :limty, ,(]x — L]) = 0, uniformly in n, for some L] .
m

Let A = (\;) be anondecreasing sequence of positive numbers tending to oo such
that
Aipl SN+ 1L A =1

The collection of such sequence A will be denoted by A.
The generalized de la Valée-Poussin mean is defined as

=1 >

! kEh

where I; = [i — \; + 1, i]. A sequence x = (x,) is said to be (V, \)—summable to
anumber L, if T;(x) — L asi — oo (see [9]).

Recently, Malkowsky and Savag [9] introduced the space [V, A] of A—strongly
convergent sequences as follows:

1
[V, \] = x=(xk):11m)\—Z|xk—L| = 0, for some L
L i
kéh

Note that in the special case where \; = i, the space [V, A] reduces the space w
of strongly Cesaro summable sequences which is defined as

1
w = [x =(xk):limfz|xk—L|):O, forsomeL].
i lk:l

More results on A- strong convergence can be seen from [12, 20-24].
Ruckle [16] used the idea of a modulus function f to construct a class of FK
spaces

L(f)= [x:(xk):Zf(|xk|) < oo]

k=1

The space L(f) is closely related to the space /1, which is an L(f) space with
f(x) = x forall real x > 0.

Maddox [8] introduced and examined some properties of the sequence spaces
wo(f), w(f), and wso (f) defined using a modulus f, which generalized the well-
known spaces wg, w and wx, of strongly summable sequences.

Recently, Savas [19] generalized the concept of strong almost convergence using
a modulus f and examined some properties of the corresponding new sequence
spaces.
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Waszak [26] defined the lacunary strong (A, ¢o)—convergence with respect to a
modulus function.

Following Ruckle [16], a modulus function f is a function from [0, co) to [0, co)
such that

(i) f(x)=0ifandonlyifx =0,

(i) f(x+y) = f(x)+ f(y) forallx,y >0,
(iii) f increasing,
(iv) f is continuous from the right at zero.

Since | f(x) — f(¥)]| < f (|x — y]), it follows from condition (iv) that f is con-
tinuous on [0, 00).

If x = (xt) is a sequence and A = (a,) is an infinite matrix, then Ax is the
sequence whose nth term is given by A, (x) = Z/fio aniXi. Thus we say that x is
A-summable to L if lim, . A, (x) = L. Let X and Y be two sequence spaces and
A = (aur) an infinite matrix. If for each x € X the series A, (x) = Z/fio Ank Xk
converges for each n and the sequence Ax = A, (x) € Y we say that A maps X into
Y. By (X, Y) we denote the set of all matrices which maps X into Y, and in addition
if the limit is preserved then we denote the class of such matrices by (X, ¥);cq.

A matrix A is called regular , i.e., A € (¢, €)reg. if A € (¢, ¢) and lim, A, (x) =
limyx; forall x € c.

In 1993, Nuray and Savas [14] defined the following sequence spaces:

Definition 1 Let f be a modulus and A a nonnegative regular summability method.
We let

o0
w(A, )= [x : limy, Zankf(|xk+m — L|) = 0, for some L, uniformly in m]
k=1

and

o
w(A, f)o = [x : limy, Zankf(|xk+m|) = 0, uniformly inm} )
k=1

If we take A = (a,) as
Lif n>k,

an = {1 .
nk =1 0, otherwise.

Then the above definitions are reduced to [¢(f)] and [¢( f)]o which were defined
and studied by Pehlivan [15].
If we take A = (ayx) is a de la Valée poussin mean, i.e.,

. if kel =[n— M+ 1,n],
apk = { "M .
0, otherwise.



484 E. Savag

Then these definitions are reduced to the following sequence spaces which were
defined and studied by Malkowsky and Savas [9].

N 1
w(V, A\ f)=1x: limjr E f(xk4m — L]) = 0, for some L, uniformly in m
J kE]j

and

. 1
w(V, A\ o= {x Hlimj— Zf(|xk+m|) = 0, uniformly in m
J kE[_/

When \; = j the above sequence spaces become [¢(f)]o and [¢(f)].

By a ¢-function we understand a continuous nondecreasing function ¢ (u) defined
for u > 0 and such that ©(0) = 0, o(u) > 0, foru > 0 and p(u) — oo as u — oo,
(see, [26]).

A p-function ¢ is called non-weaker than a (-function v if there are constants
¢, b, k,l > 0 such that cty(lu) < bp(ku), (for all large u) and we write ¢ < .

A -function ¢ and v are called equivalent and we write ¢ ~ 1 if there are positive
constants by, by, c, k1, k2, [ such that byp(kju) < cyp(lu) < brp(kou), (for all large
u ), (see, [26]).

A @-function ¢ is said to satisfy (Aj)-condition, (for all large u) if there exists
constant K > 1 such that p(2u) < Kp(u).

In this paper, we introduce and study some properties of the following sequence
space that is defined using the ¢- function and de la Valée-Poussin mean and some
known results are also obtained as special cases.

2 Main Results

Let A = ();) be the same as above, ¢ be given y-function, and f be given mod-
ulus function, respectively. Moreover, let A = (a,(i)) be the generalized three-
parametric real matrix. Then we define

o
> ank (Dl l)

1
a0, )= [x = ) < lim = 37 (
k=1

J nel;

) = 0, uniformly in il .

If \j = j, we have

o0
> an ()

k=1

1 d
UCRONGE lx = (w0 s1im = 7 7

n=1

) = 0, uniformly in i ] .
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Ifx e Vf ((A, @), f),the sequence x is said to be A—strong (A, p)—convergent
to zero with respect to a modulus f. When ¢(x) = x for all x, we obtain

> an (i) (Ixcl)

k=1

1
V(4. f) = |x=(xk)3h;n)\_2f(

J nelj

) = 0, uniformly in i ] .

If f(x) = x, we write

> an)p(lxel)

k=1

1
V)(\)(A, ©)={1x = (xx): hzn ™ Z ( ) = 0, uniformly in i

J VIGIJ'

If we take A = I and ¢(x) = x respectively, then we have
1
VUL ) = {x = @ tim— > f(1ul ) =0
J J kEIj
If wetake A = I, ¢(x) = x and f(x) = x respectively, then we have
1
V) = Jx = (a) s lim = Dl =0,
J J kEIj

which was defined and studied by Savag and Savag [18].
If we define the matrix A = (a,x(i)) as follows: for all i

1 .
. P ]f nz= k’
—[n _
ank (i) : {0, otherwise.

then we have,

)=0

1 1 «
VIC, 0, f) = {x = (x) : lim = > f( ’n )
k=1

J nG]j
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If we define

1 . . .
Ny fi<k<i+n-—1,
an (i) = { 6’ otherwise.

then we have,

1 1 i+n
Vi@ o, )= qx=(u) tlim = f( ‘ > ellx)
Y =i

l’lE[j

) = 0, uniformly in i

We now have:

Theorem 1 Let A = (a,i(i)) be the generalized three parametric real matrix and
let the p—function p(u) satisfy the condition (A3). Then the following conditions
are true:

(@) If x = (xx) € w(A, ), f) and « is an arbitrary number, then ax €

w((A, p), ).
() If x,y € w((A, @), f) where x = (xx), y = () and o, 8 are given numbers,
then ax + By € w((A, ), f).

The proof is a routine verification by using standard techniques and hence is
omitted.

Theorem 2 Let f be a modulus function.
VYA, ) € VY((A, @), /).

Proof Letx € V)(\)(A, v).Foragivene > Owechoose 0 < § < 1suchthat f(x) < ¢
for every x € [0, §]. We can write for all i

w2

nEI]-

)=51+8.

> an(i)p(lxil)
k=1

where S| = )\1—] Znel, f( >, ank(i)gp(|xk|)|) and this sum is taken over

D aw(e(xl) <6

k=1
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and

Sz=>\ijz.f )

VlEl./’

(1> ankrexad
k=1

and this sum is taken over

> an(ip(lxl) > 6.

k=1

By definition of the modulus f we have S} = /\i znelj f(é) = f(0) < e and
moreover !

11 -
$=f055 > > an@e(xe).

nel; k=1

Thus we have x € V/{)((A, ©»), ).
This completes the proof.

3 Uniform (A, ¢p)—Statistical Convergence

The idea of convergence of a real sequence was extended to statistical convergence
by Fast [2] (see also Schoenberg [25]) as follows: If N denotes the set of natural
numbers and K C N then K (m, n) denotes the cardinality of the set K N [m, n], the
upper and lower natural densities of the subset K are defined as

d(K) = lim sup and d(K) = lim inf .

n— 00 n n— 00 n

If d(K) = d(K) then we say that the natural density of K exists and it is denoted

: . K(,n)
simply by d(K). Clearly d(K) = lim .

n—oo n
A sequence (xi) of real numbers is said to be statistically convergent to L if for

arbitrary € > 0, the set K (¢) = {k € N : |x; — L| > €} has natural density zero.
Statistical convergence turned out to be one of the most active areas of research in
summability theory after the work of Fridy [4] and Salat [17].

In another direction, a new type of convergence called A-statistical convergence
was introduced in [13] as follows.

A sequence (xi) of real numbers is said to be \- statistically convergent to L
(or, S)-convergent to L) if for any € > 0,

1
lim —{kel;: |y —L|>e|=0
. Aj

J—>00
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where | A| denotes the cardinality of A C N. In [13] the relation between A-statistical
convergence and statistical convergence was established among other things.
Recently, Savas [20] defined almost A-statistical convergence using the notion of
(V, A)-summability to generalize the concept of statistical convergence.
Assume that A is a nonnegative regular summability matrix. Then the sequence
x = (x,) is called statistically convergent to L provided that, for every ¢ > 0, (see,

(5D

lim Z aj, =0.

n:x,—L|>¢

Let A = (auk(i)) be the generalized three parametric real matrix and the sequence
x = (xx), the ¢-function ¢(u) and a positive number € > 0 be given. We write, for
all i

K{((A @), 2) = {n € I; 1 > am(D)p(|xl) = e},
k=1

The sequence x is said to be uniform (A, ¢)—statistically convergent to a number
zero if for every € > 0

1 .
lim Y,u(K/J\((A, ©), €)) = 0, uniformly in i
J

where p1 (K i ((A, p), €)) denotes the number of elements belonging to K /]\ (A, p), e).
We denote by Sf\)((A, ©)), the set of sequences x = (xj) which are uniform (A, p)—
statistical convergent to zero.

If we take A = I and ¢ (x) = x respectively, then Sg((A, )) reduce to Sg
which was defined as follows, (see, Mursaleen [13]).

1
§Y=1x= (xk):limj)\—|{k el |x| > el =o].
j

Remark 1 (i) If for all i,
o {%, if n>k,
k=10, otherwise.

then S)((A, )) reduce to SQ((C , ), 1.e., uniform (C, ¢)— statistical convergence.
(>ii) If for all i, (see, [1]),

DLt n>k,

0, otherwise.
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then S)((A, ¢)) reduce to Sg((N, P), p)),i.e.,uniform ((N, p), ¢)— statistical con-
vergence, where p = py is a sequence of nonnegative numbers such that py > 0
and

n
P; =Zpk—> oo(n — 00).
k=0

We are now ready to state the following theorem.
Theorem 3 If1) < ¢ then SY((A, 1)) C SY(A, ¥)).
Proof By our assumptions we have ¥ (|x¢|) < bp(c|xk|) and we have for all i,
o o0 (0.¢]
> an@Oxl) < b am@e(clxil) < K an(i)p(lxl)
k=1 k=1 k=1

for b, ¢ > 0, where the constant K is connected with properties of ¢. Thus, the
condition > 72 ank (i)Y (lxk|) > e implies the condition > po | ank (D)p(xk]) > €
and in consequence we get

(K] (A, 9), ) C (K] (A, 1), €))
and

1 ~ 1 ;
tims=1(K{ (A, ). ) < lim ;<= (K] (4. ). ).
J J

This completes the proof.
Theorem 4 (a) If the matrix A, functions f, and o are given, then
VY((A, @), ) C S(A, ).

(b) If the ©- function ¢(u) and the matrix A are given, and if the modulus function
f is bounded, then

SUA, ) C V(AL @), ).

(c) If the - function p(u) and the matrix A are given, and if the modulus function
f is bounded, then

SNA, @) = VY(A, ¢), f).

Proof (a) Let f be a modulus function and let € be a positive number. We write the
following inequalities:
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—Zf )

( Zanku)wuxw

neI
= YA Zankwuxkn )
neI1
> —f(e) D1
nEI]

v

1
rf(s)u(Ki(A, ©), €),
J

where

Ij = [n €l Y anli)p(lx) = 5] :

k=1

Finally, if x € VY((A, ¢), f) then x € S{(A, ¢).
(b) Let us suppose that x € Sg(A, ). If the modulus function f is a bounded
function, then there exists an integer M such that f(x) < M for x > 0. Let us take

I/Z = [n S I] . Zank(i)gpqul) < 5] .

k=1

Thus we have

_Zf

nEI

( Zanko)mxw

)

> ani)(lxl)

k=1

)
)

+—Zf(

nel2

1

)\—MM(K’((A, ®).e) + f(e).

Zank(zwuxkn

Taking the limit as ¢ — 0, we obtain that x € VAO(A, w, ).
The proof of (c) follows from (a) and (b).
This completes the proof.
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In the next theorem we prove the following relation.

Theorem 5 If a sequence x = (xi) is S(A, p)—convergent to L and
. Aj
liminf; (—) >0
J
then it is S)\(A, @) convergent to L, where
o1
S(A, ) ={x = (x¢) : llmjy,u(K(A, p,e€)) =0}.

Proof For a given € > 0, we have, for all i

el > au)e(x —L) =} Sin<j: > au@e(x — L) = &)
k=0 k=0

Hence we have,
K)\x(A,p,e) CK(A, p,¢).

Finally the proof follows from the following inequality:
1 1 Ajl
J

This completes the proof.

Theorem 6 If \ € A be such that limj/\—/ = 1 and the sequence x = (xi) is
S\(A, ¢)—convergent to L then it is S(A, @) convergent to L,

Proof Let 6 > 0 be given. Since limj¥ = 1, we can choose m € N such that
Aj

15

—1] < %, for all j > m. Now observe that, fore > 0

1 o0
- In <j: D am@ex — L) > 5]
J k=0
1 o0
=- [k <Jj—=A: Zank(i)sﬁ(lxk - L) > 6}
J k=0
1 o0
+ = [n elj: Zank(i)w(lfwc —LJ)> e]
J k=0
<14y [n €l Y am()p(lx — L)) > e]
J J =
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s 1 i .
<l=(-D+- neli: > au@e(x —L|) > e

k=0
5 1 - ,
=375 neli: ) au@ela — L) > et
k=0

This completes the proof.
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