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Abstract In this, we introduce and study some properties of the new sequence
space that is defined using the ϕ—function and de la Valée-Poussin mean. We also
study some connections between Vλ((A,ϕ))—strong summability of sequences and
λ—strong convergence with respect to a modulus.
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1 Introduction and Background

Let s denote the set of all real and complex sequences x = (xk). By l∞ and c, we
denote the Banach spaces of bounded and convergent sequences x = (xk) normed
by ||x || = supn|xn|, respectively. A sequence x ∈ l∞ is said to be almost convergent
if all of its Banach limits coincide. Let ĉ denote the space of all almost convergent
sequences. Lorentz [6] has shown that

ĉ =
{

x ∈ l∞ : lim
m

tm,n(x) exists uniformly in n
}

where
tm,n(x) = xn + xn+1 + xn+2 + · · · + xn+m

m + 1
.

The space [ĉ] of strongly almost convergent sequenceswas introduced byMaddox
[7] and also independently by Freedman et al. [3] as follows:
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[ĉ] =
{

x ∈ l∞ : lim
m

tm,n(|x − L|) = 0, uniformly in n, for some L
}

.

Let λ = (λi ) be a nondecreasing sequence of positive numbers tending to∞ such
that

λi+1 ≤ λi + 1,λ1 = 1.

The collection of such sequence λ will be denoted by Δ.

The generalized de la Valée-Poussin mean is defined as

Ti (x) = 1

λi

∑
k∈Ii

xk

where Ii = [i − λi + 1, i]. A sequence x = (xn) is said to be (V,λ)—summable to
a number L , if Ti (x) → L as i → ∞ (see [9]).

Recently, Malkowsky and Savaş [9] introduced the space [V,λ] of λ—strongly
convergent sequences as follows:

[V,λ] =
⎧⎨
⎩x = (xk) : lim

i

1

λi

∑
k∈Ii

|xk − L| = 0, for some L

⎫⎬
⎭ .

Note that in the special case where λi = i , the space [V,λ] reduces the space w

of strongly Cesàro summable sequences which is defined as

w =
{

x = (xk) : lim
i

1

i

i∑
k=1

|xk − L|) = 0, for some L

}
.

More results on λ- strong convergence can be seen from [12, 20–24].
Ruckle [16] used the idea of a modulus function f to construct a class of FK

spaces

L( f ) =
{

x = (xk) :
∞∑

k=1

f (|xk |) < ∞
}

.

The space L( f ) is closely related to the space l1, which is an L( f ) space with
f (x) = x for all real x ≥ 0.
Maddox [8] introduced and examined some properties of the sequence spaces

w0( f ), w( f ), and w∞( f ) defined using a modulus f , which generalized the well-
known spaces w0, w and w∞ of strongly summable sequences.

Recently, Savas [19] generalized the concept of strong almost convergence using
a modulus f and examined some properties of the corresponding new sequence
spaces.
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Waszak [26] defined the lacunary strong (A,ϕ)—convergence with respect to a
modulus function.

Following Ruckle [16], a modulus function f is a function from [0,∞) to [0,∞)

such that

(i) f (x) = 0 if and only if x = 0,
(ii) f (x + y) ≤ f (x) + f (y) for all x, y ≥ 0,
(iii) f increasing,
(iv) f is continuous from the right at zero.

Since | f (x) − f (y)| ≤ f (|x − y|), it follows from condition (iv) that f is con-
tinuous on [0,∞).

If x = (xk) is a sequence and A = (ank) is an infinite matrix, then Ax is the
sequence whose nth term is given by An(x) = ∑∞

k=0 ank xk . Thus we say that x is
A-summable to L if limn→∞ An(x) = L . Let X and Y be two sequence spaces and
A = (ank) an infinite matrix. If for each x ∈ X the series An(x) = ∑∞

k=0 ank xk

converges for each n and the sequence Ax = An(x) ∈ Y we say that A maps X into
Y . By (X, Y ) we denote the set of all matrices which maps X into Y , and in addition
if the limit is preserved then we denote the class of such matrices by (X, Y )reg .

A matrix A is called regular , i.e., A ∈ (c, c)reg. if A ∈ (c, c) and limn An(x) =
limk xk for all x ∈ c.

In 1993, Nuray and Savas [14] defined the following sequence spaces:

Definition 1 Let f be a modulus and A a nonnegative regular summability method.
We let

w( Â, f ) =
{

x : limn

∞∑
k=1

ank f (|xk+m − L|) = 0, for some L, uniformly in m

}

and

w( Â, f )0 =
{

x : limn

∞∑
k=1

ank f (|xk+m |) = 0, uniformly in m

}
.

If we take A = (ank) as

ank := {
1
n , if n ≥ k,

0, otherwise.

Then the above definitions are reduced to [ĉ( f )] and [ĉ( f )]0 which were defined
and studied by Pehlivan [15].

If we take A = (ank) is a de la Valée poussin mean, i.e.,

ank := {
1
λn

, if k ∈ In = [n − λn + 1, n],
0, otherwise.



484 E. Savaş

Then these definitions are reduced to the following sequence spaces which were
defined and studied by Malkowsky and Savas [9].

w(V̂ ,λ, f ) =
⎧⎨
⎩x : lim j

1

λ j

∑
k∈I j

f (|xk+m − L|) = 0, for some L, uniformly in m

⎫⎬
⎭

and

w(V̂ ,λ, f )0 =
⎧⎨
⎩x : lim j

1

λ j

∑
k∈I j

f (|xk+m |) = 0, uniformly in m

⎫⎬
⎭

When λ j = j the above sequence spaces become [ĉ( f )]0 and [ĉ( f )].
By aϕ-function we understand a continuous nondecreasing functionϕ(u) defined

for u ≥ 0 and such that ϕ(0) = 0,ϕ(u) > 0, for u > 0 and ϕ(u) → ∞ as u → ∞,
(see, [26]).
A ϕ-function ϕ is called non-weaker than a ϕ-function ψ if there are constants
c, b, k, l > 0 such that cψ(lu) ≤ bϕ(ku), (for all large u) and we write ψ ≺ ϕ.
A ϕ-function ϕ and ψ are called equivalent and we write ϕ ∼ ψ if there are positive
constants b1, b2, c, k1, k2, l such that b1ϕ(k1u) ≤ cψ(lu) ≤ b2ϕ(k2u), (for all large
u ), (see, [26]).
A ϕ-function ϕ is said to satisfy (Δ2)-condition, (for all large u) if there exists
constant K > 1 such that ϕ(2u) ≤ Kϕ(u).

In this paper, we introduce and study some properties of the following sequence
space that is defined using the ϕ- function and de la Valée-Poussin mean and some
known results are also obtained as special cases.

2 Main Results

Let Λ = (λ j ) be the same as above, ϕ be given ϕ-function, and f be given mod-
ulus function, respectively. Moreover, let A = (ank(i)) be the generalized three-
parametric real matrix. Then we define

V 0
λ ((A, ϕ), f ) =

⎧⎨
⎩x = (xk) : lim

j

1

λ j

∑
n∈I j

f
(

∣∣∣∣∣∣
∞∑

k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣∣
)

= 0, uniformly in i

⎫⎬
⎭ .

If λ j = j, we have

V 0
λ ((A,ϕ), f ) =

⎧⎨
⎩x = (xk) : lim

j

1

j

j∑
n=1

f
(

∣∣∣∣∣∣
∞∑

k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣∣
)

= 0, uniformly in i

⎫⎬
⎭ .
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If x ∈ V 0
λ ((A,ϕ), f ), the sequence x is said to be λ—strong (A,ϕ)—convergent

to zero with respect to a modulus f . When ϕ(x) = x for all x , we obtain

V 0
λ ((A), f ) =

⎧⎨
⎩x = (xk) : lim

j

1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)(|xk |)
∣∣∣∣∣
)

= 0, uniformly in i

⎫⎬
⎭ .

If f (x) = x , we write

V 0
λ (A, ϕ) =

⎧⎨
⎩x = (xk) : lim

j

1

λ j

∑
n∈I j

( ∣∣∣∣∣
∞∑

k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

= 0, uniformly in i

⎫⎬
⎭ .

If we take A = I and ϕ(x) = x respectively, then we have

V 0
λ (I, f ) =

⎧⎨
⎩x = (xk) : lim

j

1

λ j

∑
k∈I j

f
(

|xk |
)

= 0

⎫⎬
⎭ .

If we take A = I , ϕ(x) = x and f (x) = x respectively, then we have

V 0
λ ((I )) =

⎧⎨
⎩x = (xk) : lim

j

1

λ j

∑
k∈I j

|xk | = 0

⎫⎬
⎭ ,

which was defined and studied by Savaş and Savaş [18].
If we define the matrix A = (ank(i)) as follows: for all i

ank(i) := {
1
n , if n ≥ k,

0, otherwise.

then we have,

V 0
λ (C, ϕ, f ) =

⎧⎨
⎩x = (xk) : lim

j

1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

1

n

n∑
k=1

ϕ(|xk |)
∣∣∣∣∣
)

= 0

⎫⎬
⎭ .
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If we define

ank(i) := {
1
n , if i ≤ k ≤ i + n − 1,
0, otherwise.

then we have,

V 0
λ (ĉ, ϕ, f ) =

⎧⎨
⎩x = (xk) : lim

j

1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

1

n

i+n∑
k=i

ϕ(|xk |)
∣∣∣∣∣
)

= 0, uniformly in i

⎫⎬
⎭ .

We now have:

Theorem 1 Let A = (ank(i)) be the generalized three parametric real matrix and
let the ϕ—function ϕ(u) satisfy the condition (Δ2). Then the following conditions
are true:

(a) If x = (xk) ∈ w((A,ϕ), f ) and α is an arbitrary number, then αx ∈
w((A,ϕ), f ).

(b) If x, y ∈ w((A,ϕ), f ) where x = (xk), y = (yk) and α,β are given numbers,
then αx + βy ∈ w((A,ϕ), f ).

The proof is a routine verification by using standard techniques and hence is
omitted.

Theorem 2 Let f be a modulus function.

V 0
λ (A,ϕ) ⊆ V 0

λ ((A,ϕ), f ).

Proof Let x ∈ V 0
λ (A,ϕ). For a given ε > 0we choose 0 < δ < 1 such that f (x) < ε

for every x ∈ [0, δ]. We can write for all i

1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

= S1 + S2,

where S1 = 1
λ j

∑
n∈I j

f
( ∣∣∑∞

k=1 ank(i)ϕ(|xk |)
∣∣ ) and this sum is taken over

∞∑
k=1

ank(i)ϕ(|xk |) ≤ δ
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and

S2 = 1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

and this sum is taken over ∞∑
k=1

ank(i)ϕ(|xk |) > δ.

By definition of the modulus f we have S1 = 1
λ j

∑
n∈I j

f
(
δ
)

= f (δ) < ε and
moreover

S2 = f (1)
1

δ

1

λ j

∑
n∈I j

∞∑
k=1

ank(i)ϕ(|xk |).

Thus we have x ∈ V 0
λ ((A,ϕ), f ).

This completes the proof.

3 Uniform (A,ϕ)—Statistical Convergence

The idea of convergence of a real sequence was extended to statistical convergence
by Fast [2] (see also Schoenberg [25]) as follows: If N denotes the set of natural
numbers and K ⊂ N then K (m, n) denotes the cardinality of the set K ∩ [m, n], the
upper and lower natural densities of the subset K are defined as

d(K ) = lim
n→∞ sup

K (1, n)

n
and d(K ) = lim

n→∞ inf
K (1, n)

n
.

If d(K ) = d(K ) then we say that the natural density of K exists and it is denoted

simply by d(K ). Clearly d(K ) = lim
n→∞

K (1, n)

n
.

A sequence (xk) of real numbers is said to be statistically convergent to L if for
arbitrary ε > 0, the set K (ε) = {k ∈ N : |xk − L| ≥ ε} has natural density zero.
Statistical convergence turned out to be one of the most active areas of research in
summability theory after the work of Fridy [4] and Šalát [17].

In another direction, a new type of convergence called λ-statistical convergence
was introduced in [13] as follows.

A sequence (xk) of real numbers is said to be λ- statistically convergent to L
(or, Sλ-convergent to L) if for any ε > 0,

lim
j→∞

1

λ j
|{k ∈ I j : |xk − L| ≥ ε}| = 0
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where |A| denotes the cardinality of A ⊂ N. In [13] the relation between λ-statistical
convergence and statistical convergence was established among other things.

Recently, Savas [20] defined almost λ-statistical convergence using the notion of
(V,λ)-summability to generalize the concept of statistical convergence.

Assume that A is a nonnegative regular summability matrix. Then the sequence
x = (xn) is called statistically convergent to L provided that, for every ε > 0, (see,
[5])

lim j

∑
n:|xn−L|≥ε

a jn = 0.

LetA = (ank(i)) be the generalized three parametric real matrix and the sequence
x = (xk), the ϕ-function ϕ(u) and a positive number ε > 0 be given. We write, for
all i

K j
λ((A,ϕ), ε) = {n ∈ I j :

∞∑
k=1

ank(i)ϕ(|xk |) ≥ ε}.

The sequence x is said to be uniform (A,ϕ)—statistically convergent to a number
zero if for every ε > 0

lim j
1

λ j
μ(K j

λ((A,ϕ), ε)) = 0, uniformly in i

whereμ(K j
λ((A,ϕ), ε)) denotes the number of elements belonging to K j

λ((A,ϕ), ε).
We denote by S0

λ((A,ϕ)), the set of sequences x = (xk)which are uniform (A,ϕ)—
statistical convergent to zero.

If we take A = I and ϕ(x) = x respectively, then S0
λ((A,ϕ)) reduce to S0

λ
which was defined as follows, (see, Mursaleen [13]).

S0
λ =

{
x = (xk) : lim j

1

λ j
|{k ∈ I j : |xk | ≥ ε}| = 0

}
.

Remark 1 (i) If for all i ,

ank := {
1
n , if n ≥ k,

0, otherwise.

then Sλ((A,ϕ)) reduce to S0
λ((C,ϕ)), i.e., uniform (C,ϕ)—statistical convergence.

(ii) If for all i , (see, [1]),

ank := {
pk
Pn

, if n ≥ k,

0, otherwise.
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then Sλ((A,ϕ)) reduce to S0
λ((N , p),ϕ)), i.e., uniform ((N , p),ϕ)—statistical con-

vergence, where p = pk is a sequence of nonnegative numbers such that p0 > 0
and

Pi =
n∑

k=0

pk → ∞(n → ∞).

We are now ready to state the following theorem.

Theorem 3 If ψ ≺ ϕ then S0
λ((A,ψ)) ⊂ S0

λ((A,ϕ)).

Proof By our assumptions we have ψ(|xk |) ≤ bϕ(c|xk |) and we have for all i ,

∞∑
k=1

ank(i)ψ(|xk |) ≤ b
∞∑

k=1

ank(i)ϕ(c|xk |) ≤ K
∞∑

k=1

ank(i)ϕ(|xk |)

for b, c > 0, where the constant K is connected with properties of ϕ. Thus, the
condition

∑∞
k=1 ank(i)ψ(|xk |) ≥ ε implies the condition

∑∞
k=1 ank(i)ϕ(|xk |) ≥ ε

and in consequence we get

μ(K j
λ((A,ϕ), ε)) ⊂ μ(K j

λ((A,ψ), ε))

and

lim j
1

λ j
μ
(

K j
λ((A,ϕ), ε)) ≤ lim j

1

λ j
μ(K j

λ((A,ψ), ε))
)
.

This completes the proof.

Theorem 4 (a) If the matrix A, functions f , and ϕ are given, then

V 0
λ ((A,ϕ), f ) ⊂ S0

λ(A,ϕ).

(b) If the ϕ- function ϕ(u) and the matrix A are given, and if the modulus function
f is bounded, then

S0
λ(A,ϕ) ⊂ V 0

λ (A,ϕ), f ).

(c) If the ϕ- function ϕ(u) and the matrix A are given, and if the modulus function
f is bounded, then

S0
λ(A,ϕ) = V 0

λ (A,ϕ), f ).

Proof (a) Let f be a modulus function and let ε be a positive number. We write the
following inequalities:
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1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

≥ 1

λ j

∑

n∈I 1j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

≥ 1

λ j
f (ε)

∑

n∈I 1j

1

≥ 1

λ j
f (ε)μ(K j

λ(A,ϕ), ε),

where

I 1j =
{

n ∈ I j :
∞∑

k=1

ank(i)ϕ(|xk |) ≥ ε

}
.

Finally, if x ∈ V 0
λ ((A,ϕ), f ) then x ∈ S0

λ(A,ϕ).
(b) Let us suppose that x ∈ S0

λ(A,ϕ). If the modulus function f is a bounded
function, then there exists an integer M such that f (x) < M for x ≥ 0. Let us take

I 2j =
{

n ∈ I j :
∞∑

k=1

ank(i)ϕ(|xk |) < ε

}
.

Thus we have

1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

≤ 1

λ j

∑

n∈I 1j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

+ 1

λ j

∑

n∈I 2j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

≤ 1

λ j
Mμ(K j

λ((A,ϕ), ε) + f (ε).

Taking the limit as ε → 0, we obtain that x ∈ V 0
λ (A,ϕ, f ).

The proof of (c) follows from (a) and (b).
This completes the proof.
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In the next theorem we prove the following relation.

Theorem 5 If a sequence x = (xk) is S(A,ϕ)—convergent to L and

lim in f j

(λ j

j

)
> 0

then it is Sλ(A,ϕ) convergent to L, where

S(A,ϕ) = {x = (xk) : lim j
1

j
μ(K (A,ϕ, ε)) = 0}.

Proof For a given ε > 0, we have, for all i

{n ∈ I j :
∞∑

k=0

ank(i)ϕ(|xk − L|) ≥ ε} ⊆ {n ≤ j :
∞∑

k=0

ank(i)ϕ(|xk − L|) ≥ ε}.

Hence we have,
Kλ(A,ϕ, ε) ⊆ K (A,ϕ, ε).

Finally the proof follows from the following inequality:

1

j
μ(K (A,ϕ, ε)) ≥ 1

j
μ(Kλ(A,ϕ, ε)) = λ j

j

1

λ j
μ(Kλ(A,ϕ, ε)).

This completes the proof.

Theorem 6 If λ ∈ � be such that lim j
λ j
j = 1 and the sequence x = (xk) is

Sλ(A,ϕ)—convergent to L then it is S(A,ϕ) convergent to L,

Proof Let δ > 0 be given. Since lim j
λ j
j = 1, we can choose m ∈ N such that

|λ j
j − 1| < δ

2 , for all j ≥ m. Now observe that, for ε > 0

1

j

∣∣∣∣∣

{
n ≤ j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣

= 1

j

∣∣∣∣∣

{
k ≤ j − λ j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣

+ 1

j

∣∣∣∣∣

{
n ∈ I j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣

≤ j − λ j

j
+ 1

j

∣∣∣∣∣

{
n ∈ I j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣
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≤ 1 − (1 − δ

2
) + 1

j

∣∣∣∣∣

{
n ∈ I j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣

= δ

2
+ 1

j

∣∣∣∣∣

{
n ∈ I j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣ ,

This completes the proof.
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statistical core of double sequences. Acta Math. Sin. (Engl. Ser.) 26, 2131–2144 (2010)
13. Mursaleen, M.: λ-statistical convergence. Math. Slovaca 50, 111–115 (2000)
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