Subcentral Automorphisms

R.G. Ghumde and S.H. Ghate

Abstract A concept of subcentral automorphisms of group G with respect to a characteristic subgroup M of Z(G) along with relevant mathematical paraphernalia has been introduced. With the help of this, a number of results on central automorphisms have been generalized.

Keywords Central automorphisms • Subcentral automorphisms • Purely nonabelian group

1 Introduction

Let *G* be a group. We shall denote the commutator, center, group of automorphisms, and group of inner automorphisms of *G* by G', Z(G), Aut(G), and Inn(G), respectively. Let exp(G) denote the exponent of *G*.

For any group *H* and abelian group *K*, let Hom(*H*, *K*) denote the group of all homomorphisms from *H* to *K*. This is an abelian group with binary operation fg(x) = f(x)g(x) for $f, g \in \text{Hom}(H, K)$.

An automorphism α of G is called central if $x^{-1}\alpha(x) \in Z(G)$ for all $x \in G$. The set of all central automorphisms of G, which is here denoted by $\operatorname{Aut}_c(G)$, is a normal subgroup of $\operatorname{Aut}(G)$. Notice that $\operatorname{Aut}_c(G) = C_{\operatorname{Aut}(G)}(\operatorname{Inn}(G))$, the centralizer of the subgroup $\operatorname{Inn}(G)$ in the group $\operatorname{Aut}(G)$. The elements of $\operatorname{Aut}_c(G)$ act trivially on G'.

There have been number of results on the central automorphisms of a group. M.J. Curran [2] proved that, "For any non abelian finite group G, $\operatorname{Aut}_z^z(G)$ is isomorphic with Hom (G/G'Z(G), Z(G)), where $\operatorname{Aut}_z^z(G)$ is group of all those central

R.G. Ghumde (🖂)

Department of Mathematics, Ramdeobaba College of Engineering and Management, Nagpur 440013, India e-mail: ranjitghumde@gmail.com

S.H. Ghate Department of Mathematics, R.T.M. Nagpur University, Nagpur 440013, India e-mail: sureshghate@gmail.com

[©] Springer India 2015

R.N. Mohapatra et al. (eds.), *Mathematics and Computing*, Springer Proceedings in Mathematics & Statistics 139, DOI 10.1007/978-81-322-2452-5_32

automorphisms which preserve the centre Z(G) elementwise." In [3], Franciosi et al. showed that, If "Z(G) is torsion free and $Z(G)/G' \cap Z(G)$ is torsion, then Aut_c(G) acts trivially on Z(G). It is an abelian and torsion free group". They further proved that, "Aut_c(G) is trivial when Z(G) is torsion free and G/G' is torsion." In [5], Jamali et al. proved that, "For a finite group G in which $Z(G) \leq G'$, Aut_c(G) \cong Hom(G/G', Z(G))." They also proved that, "If G is a purely nonabelian finite p-group of class two (p odd), then Aut_c(G) is elementary abelian if and only if $\Omega_1(Z(G)) = \phi(G)$, and exp(Z(G)) = p or exp(G/G') = p," where $\phi(G)$ is Frattini subgroup of G and $\Omega_1(Z(G)) = \langle x \in Z(G) | x^p = 1 \rangle$. Note that, a group G is called purely nonabelian if it has no nontrivial abelian direct factor. Adney [1] proved that, "If a finite group G has no abelian direct factor, then there is a one-one and onto map between Aut_c(G) and Hom(G, Z(G))."

In this article, we generalize the above results to subcentral automorphisms.

2 Subcentral Automorphisms

Let M and N be two normal subgroups of G.

By Aut^N(G), we mean the subgroup of Aut(G) consisting of all automorphisms which induce identity on G/N.

By $\operatorname{Aut}_M(G)$, we mean the subgroup of $\operatorname{Aut}(G)$ consisting of all automorphisms which induce identity on M.

Let $\operatorname{Aut}_{M}^{N}(G) = \operatorname{Aut}^{N}(G) \cap \operatorname{Aut}_{M}(G)$. From now onward, M will be a characteristic central subgroup, and elements of $\operatorname{Aut}^{M}(G)$ will be called as subcentral automorphisms of G (with respect to subcentral subgroup M). It can be seen that, $\operatorname{Aut}^{M}(G)$ is a normal subgroup of $\operatorname{Aut}_{c}(G)$.

We further, let $C^* = \{ \alpha \in \operatorname{Aut}_M(G) | \alpha \beta = \beta \alpha, \forall \beta \in \operatorname{Aut}^M(G) \}.$

Clearly, C^* is a normal subgroup of Aut(G). Since every inner automorphism commutes with elements of Aut_c(G), Inn(G) $\leq C^*$. If we take M = Z(G), then C^* is same as Inn(G).

Let $K = \langle \{[g, \alpha] | g \in G, \alpha \in C^* \} \rangle$, where $[g, \alpha] \equiv g^{-1}\alpha(g)$.

If M = Z(G) then K = G'. However, in general, G' is a subgroup of K for every central subgroup M.

In the following, K and C^* will always correspond to a central subgroup of M of G as in the above definitions.

Our main results are given by the following theorems.

Theorem 1 For a finite group G, $\operatorname{Aut}_{M}^{M}(G) \cong \operatorname{Hom}\left(\frac{G}{KM}, M\right)$.

Theorem 2 Let G be a group with M torsion free and $M/M \cap K$ torsion. Then $\operatorname{Aut}^M(G)$ is a torsion-free abelian group which acts trivially on M.

Theorem 3 Let G be a purely nonabelian finite group, then $|\operatorname{Aut}^{M}(G)| = |\operatorname{Hom} (G, M)|$.

Theorem 4 Let G be a purely nonabelian finite p-group (p odd), then $Aut^M(G)$ is an elementary abelian p-group if and only if exp(M) = p or exp(G/K) = p.

Following proposition shows that each element of K is invariant under the natural action of $\operatorname{Aut}^M(G)$.

Proposition 1 Aut^M(G) acts trivially on K.

Proof Consider an automorphism $\alpha \in \operatorname{Aut}^M(G)$. This implies $x^{-1}\alpha(x) \in M$, for all $x \in G$. So $\alpha(x) = xm$ for some $m \in M$. Let $\beta \in C^*$. By definition of C^* , we have $\alpha([x,\beta]) = \alpha(x^{-1}\beta(x)) = (\alpha(x))^{-1}\beta(\alpha(x)) = m^{-1}x^{-1}\beta(xm) =$ $m^{-1}x^{-1}\beta(x)m = x^{-1}\beta(x) = [x, \beta]$. Hence the results follows. П

Proof of Theorem 1 For any $\mu \in \operatorname{Aut}_{M}^{M}(G)$, define the map $\psi_{\mu} \in \operatorname{Hom}\left(\frac{G}{KM}, M\right)$ as $\psi_{\mu}(gKM) = g^{-1}\mu(g).$

We first show that ψ_{μ} is well defined. Let gKM = hKM, i.e., $gh^{-1} \in KM$. $\therefore \mu(gh^{-1}) = gh^{-1} \Rightarrow g^{-1}\mu(g) = h^{-1}\mu(h) \Rightarrow \psi_{\mu}(gKM) = \psi_{\mu}(hKM).$

For proving ψ_{μ} is a homomorphism, consider $\psi_{\mu}(gKMhKM) = \psi_{\mu}(ghKM) =$ $(gh)^{-1}\mu(gh) = h^{-1}g^{-1}\mu(g)\mu(h) = g^{-1}\mu(g)h^{-1}\mu(h) = \psi_{\mu}(gKM).\psi_{\mu}(hKM)$

Now define a map ψ : Aut^{*M*}_{*M*}(*G*) \longrightarrow Hom $\left(\frac{G}{KM}, M\right)$, as $\psi(\mu) = \psi_{\mu}$.

We show that ψ is the required isomorphism. For $f, g \in \operatorname{Aut}_{M}^{M}(G)$ and $h \in G$, $\psi(fg)(hKM) = \psi_{fg}(hKM) = h^{-1}fg(h) = h^{-1}f(hh^{-1}g(h)) = h^{-1}f(h)h^{-1}g(h) = \psi_{f}(hKM)\psi_{g}(hKM) = \psi_{f}.\psi_{g}(hKM).$ Hence $\psi(fg) = \psi(f)\psi(g)$.

Consider $\psi(\mu_1) = \psi(\mu_2)$, i.e., $\psi_{\mu_1}(gKM) = \psi_{\mu_2}(gKM), g \in G$. This implies $g^{-1}\mu_1(g) = g^{-1}\mu_2(g) \Rightarrow \mu_1 = \mu_2$, as g is an arbitrary element of G. Thus ψ is a monomorphism.

We next show that ψ is onto. For any $\tau \in \text{Hom}\left(\frac{G}{KM}, M\right)$, define a map $\mu: G \to G$ as $\mu(g) = g\tau(gKM), g \in G$.

Now we show that $\mu \in \operatorname{Aut}_{M}^{M}(G)$. For $g_{1}, g_{2} \in G, \mu(g_{1}g_{2}) = g_{1}g_{2}\tau(g_{1}g_{2}KM)$ $= g_1 \tau(g_1 KM) g_2 \tau(g_2 KM) = \mu(g_1) \mu(g_2) \therefore \mu$ is a homomorphism on G.

Further, let $\mu(g) = 1$. This implies $g\tau(gKM) = 1 \Rightarrow \tau(gKM) = g^{-1} \Rightarrow g^{-1} \in M$ $\therefore gKM = KM \Rightarrow \tau(gKM) = 1 \Rightarrow g = 1$. Hence μ is one-one.

As G is finite, μ must be onto. So $\mu \in Aut(G)$. Further, as $g^{-1}\mu(g) = g^{-1}g\tau(gKM)$ $= \tau(gKM) \in M$, so $\mu \in Aut^M(G)$. Also if $g \in M$, then $\mu(g) = g(\tau(gKM)) =$ $g\tau(KM) = g$. Thus, $\mu \in \operatorname{Aut}_{M}^{M}(G)$ and $\psi(\mu) = \tau$. Hence the theorem follows.

Corollary 1 Let G be finite group with $M \leq K$, then $\operatorname{Aut}^{M}(G) \cong \operatorname{Hom}(G/K, M)$.

Proof Since $M \leq K$, $\frac{G}{KM} = G/K$. The result follows directly from Theorem 1 and Proposition 1.

Proof of Theorem 2 Let $\alpha \in \operatorname{Aut}^M(G)$. If x is an element of M, then by the hypothesis $x^n \in M \cap K$ for some positive integer n. By Proposition 1, we have $x^n = \alpha(x^n) = (\alpha(x))^n$, and hence $x^{-n}(\alpha(x))^n = 1$. Since $x^{-1}\alpha(x) \in M$, this implies $(x^{-1}\alpha(x))^n = 1$. As M is torsion free, this implies that $x^{-1}\alpha(x) = 1$, i.e., $\alpha(x) = x$. Therefore, $\operatorname{Aut}^M(G)$ acts trivially on M.

Let $\alpha, \beta \in \operatorname{Aut}^{M}(G)$ and $x \in G$. So $\alpha\beta(x) = \alpha(\beta(x)) = \alpha(xx^{-1}\beta(x)) = \alpha(x)x^{-1}\beta(x) = xx^{-1}\alpha(x)x^{-1}\beta(x) = \beta(x)x^{-1}\alpha(x) = \beta(x)\beta(x^{-1}\alpha(x)) = \beta\alpha(x)$. Thus, $\operatorname{Aut}^{M}(G)$ is an abelian group.

Now, consider $\alpha \in \operatorname{Aut}^M(G)$, and suppose there exists $k \in N$ such that $\alpha^k = 1$. Since $x^{-1}\alpha(x) \in M$ for all $x \in G$, there exists $g \in M$ such that $\alpha(x) = xg$. Further, $\alpha^2(x) = \alpha(\alpha(x)) = \alpha(xg) = \alpha(x)\alpha(g) = xg^2(\because \alpha \text{ acts trivially on } M)$. Hence, by induction, $\alpha^n(x) = xg^n$. But $\alpha^k = 1 \Rightarrow x = xg^k$, i.e., $g^k = 1$. As M is torsion free, we must have g = 1. Thus $\alpha(x) = x$ for every x, i.e., $\alpha = 1$. Therefore, $\operatorname{Aut}^M(G)$ is torsion free, and the theorem follows.

Proposition 2 Let G be a group in which M is torsion free and G/K is torsion, then $Aut^M(G) = 1$.

Proof Let $\alpha \in \operatorname{Aut}^M(G)$ and $x \in G$. Then by the assumption, $x^n \in K$ for some $n \in N$. As α fixes K elementwise, we have $(\alpha(x))^n = \alpha(x^n) = x^n$. So $x^{-n}(\alpha(x))^n = 1$. But $\alpha \in \operatorname{Aut}^M(G)$ and hence $x^{-1}\alpha(x) \in M \leq Z(G)$. This implies that $(x^{-1}\alpha(x))^n = 1$. Since M torsion free, it follows that $x^{-1}\alpha(x) = 1$, i.e., $\alpha(x) = x$, $\forall x \in G$. So $\operatorname{Aut}^M(G) = 1$.

Proof of Theorem 3 For $f \in \operatorname{Aut}^{M}(G)$, we let $\alpha(f) \equiv \alpha_{f}$ defined as $\alpha(f)(g) \equiv \alpha_{f}(g) = g^{-1}f(g), g \in G$. It can be shown that $\alpha_{f} \in \operatorname{Hom}(G, M)$. We thus have $\alpha : \operatorname{Aut}^{M}(G) \to \operatorname{Hom}(G, M)$.

One can easily see that α is injective.

It just remains to show that α is onto.

For $\sigma \in \text{Hom}(G, M)$, consider the map $f : G \to G$ given by $f(g) = g\sigma(g)$. f is an endomorphism and also $g^{-1}f(g) = \sigma(g) \in M$, which implies that f is subcentral endomorphism of G, and hence f is normal endomorphism(i.e., f commutes with all inner automorphisms). So, clearly Im(f) is a normal subgroup of G.

It is easy to see that f^n is also normal endomorphism and hence Im f^n is a normal subgroup of G, for all $n \ge 1$. Since G is a finite group, the two series

$$\operatorname{Ker} f \leq \operatorname{Ker} f^2 \leq \dots$$
$$\operatorname{Im} f \geq \operatorname{Im} f^2 \geq \dots$$

will terminate.

So there exists $k \in N$ such that

$$\operatorname{Ker} f^{k} = \operatorname{Ker} f^{k+1} = \dots = A$$
$$\operatorname{Im} f^{k} = \operatorname{Im} f^{k+1} = \dots = B$$

Now, we prove that G = AB.

Let $g \in G$, $f^k(g) \in \text{Im } f^k = \text{Im } f^{2k}$, and so $f^k(g) = f^{2k}(h)$, for some $h \in G$. Therefore $f^k(g) = f^k(f^k(h))$. This implies $f^k(g^{-1})f^k(g) = f^k(g^{-1})f^k(f^k(h))$. Thus $(f^k(h))^{-1}g \in \text{Ker } f^k = A$. Thus $g \in AB$ and hence G = AB.

Clearly $A \cap B = \langle 1 \rangle$ and therefore $G = A \times B$. If f(g) = 1, then $g^{-1}\sigma(g) = 1$. This implies Ker $f \leq M$. Similarly, if $f^2(g) = 1$, i.e., f(f(g)) = 1. Thus $f(g) \in$ ker $f \leq M$. Therefore, $g\sigma(g) \in M \Rightarrow g \in M$. Hence ker $f^2 \leq M$. Repetition of this argument gives, $A \equiv \ker f^k \leq M \leq Z(G)$. This implies A is an abelian group. By assumption, G is purely nonabelian and hence, we must have $A \equiv \operatorname{Ker} f^k = 1$. This further implies Ker f = 1, i.e., f is injective. So $G = B \equiv \operatorname{Im} f^k = \operatorname{Im} f$. Thus f surjective. Hence, $f \in \operatorname{Aut}^M(G)$. From the definition of α , it follows that $\alpha(f) = \sigma$. α is thus surjective. Therefore, α is the required bijection. Hence the result follows.

Proposition 3 Let G be a purely nonabelian finite group, then for each $\alpha \in$ Hom(G, M) and each $x \in K$, we have $\alpha(x) = 1$. Further Hom $(G/K, M) \cong$ Hom(G, M).

Proof Whenever *G* is purely nonabelian group, then by Theorem 3, $|\operatorname{Aut}^M(G)| = |\operatorname{Hom}(G, M)|$. For every $\sigma \in \operatorname{Aut}^M(G)$, it follows that $f_\sigma : x \to x^{-1}\sigma(x)$ is a homomorphism from *G* to *M*. Further the map $\sigma \to f_\sigma$ is one-one and thus a bijection because $|\operatorname{Aut}^M(G)| = |\operatorname{Hom}(G, M)|$. So every homomorphism from *G* to *M* can be considered as an image of some element of $\operatorname{Aut}^M(G)$ under this bijection. Let $\alpha \in \operatorname{Hom}(G, M)$. Since $K = \{[g, \alpha] | g \in G, \alpha \in C^*\}$, a typical generator of *K* is given by $g^{-1}\beta(g)$ for some $g \in G$, and $\beta \in C^*$. So $\alpha(g^{-1}\beta(g)) = f_\sigma(g^{-1}\beta(g)) = (g^{-1}\beta(g))^{-1}\sigma(g^{-1}\beta(g)) = \beta^{-1}(g)gg^{-1}\beta(g) = 1(\because g^{-1}\beta(g) \in K)$. It follows that $\alpha(x) = 1$, for every $x \in K$.

Now consider the map ϕ : Hom $(G, M) \longrightarrow$ Hom(G/K, M) such that $\phi(f) = \overline{f}$, where $\overline{f}(gK) = f(g)$ for all $g \in G$. Clearly this map ϕ is an isomorphism. \Box

Proposition 4 Let G be a purely nonabelian finite group, then $|\operatorname{Aut}^{M}(G)| = |\operatorname{Hom}(G/K, M)|.$

Proof Proof follows directly from Theorem 3 and Proposition 3.

Proposition 5 Let p be a prime number. If G is a purely nonabelian finite p-group then $Aut^M(G)$ is a p-group.

Proof By the assumption, the subgroup M and hence Hom (G/K, M) are finite pgroups. Hence the result follows directly from Proposition 4.

Proposition 6 Let G be a purely nonabelian finite group (i) If gcd(|G/K|, |M|) = 1, then $Aut^{M}(G) = 1$. (ii) If $\operatorname{Aut}^{M}(G) = 1$, then $M \leq K$.

Proof (i) Follows from Proposition 4. (ii) Let |G/K| = a and |M| = b. Since Aut^M(G) = 1, hence by Proposition 4, (a, b) = 1. So there exist integers λ and μ such that $\lambda a + \mu b = 1$. Let $x \in M$. Thus $xK = (xK)^1 = (xK)^{\lambda a + \mu b} = (xK)^{\lambda a} (xK)^{\mu b} = K \Rightarrow x \in K.$

Remark 1 From Corollary 1, and Proposition 3, we can say that, whenever M < K, $\operatorname{Aut}^{M}(G) \cong \operatorname{Hom}(G, M)$. Even when $\operatorname{Im} f \leq K$, for all $f \in \operatorname{Hom}(G, M)$, this result holds. Thus, if G is a purely nonabelian finite group and if for all $f \in \text{Hom}(G, M)$, Im f < K, then Aut^M(G) \cong Hom(G/K, M).

Remark 2 For every $f \in \text{Hom}(G, M)$, the map $\sigma_f : x \to xf(x)$ is a subcentral endomorphism of G. This endomorphism is an automorphism if and only if $f(x) \neq f(x)$ x^{-1} for all $1 \neq x \in G$ (G is finite).

Following lemma has been proved in [4], we shall use it to prove Theorem 4.

Lemma 1 Let x be an element of a finite p-group G and N a normal subgroup of G containing G' such that o(x) = o(xN) = p. If the cyclic subgroup $\langle x \rangle$ is normal in G such that ht(xN) = 1, then $\langle x \rangle$ is a direct factor of G.

In the above statement ht denotes height. Height of an element a of a group G is defined as the largest positive integer *n* such that for some *x* in *G*, $x^n = a$.

Proof of Theorem 4 For the odd prime p, let $Aut^M(G)$ be an elementary abelian pgroup. Assume that the exponent of M and G/K are both strictly greater than p. Since G/K is finite abelian, it has a cyclic direct summand $\langle xK \rangle$ say, of order $p^n (n > 2)$ and hence $G/K \cong \langle xK \rangle \times L/K$. For $f \in \text{Hom}(G, M)$, consider f(x) = a for any $x \in G$. So $\overline{f}(xK) = a$. Since exp (M) is strictly greater than p, the order of a is p^m , for some $m, 2 \le m \le n$.

We can use the homomorphism \bar{f} to get corresponding homomorphism (also denoted by same notation) \overline{f} as \overline{f} : $\langle xK \rangle \times L/K \to M$ with $(x^iK, lK) \to a^i$. The map \overline{f} on $\langle xK \rangle \times L/K$ is well defined, since o(a)|o(xK) (as $m \le n$).

If $aK = (x^s K, lK)$ then we show that p|s. Assume p|s, then $\langle xK \rangle = \langle x^s K \rangle$ and hence $G/K = \langle aK \rangle L/K$. Now we have $o(a) \geq o(aK) \geq o(x^s K) =$ $o(xK) \ge o(\bar{f}(xK)) = o(a)$. This implies that o(a) = o(aK). Thus $\langle a \rangle \cap K = 1$. As o(aK) = o(xK), we get $G/K \cong \langle aK \rangle \times L/K$ and hence $G \cong \langle a \rangle \times L$. This is a contradiction, as G is a purely nonabelian group. Thus p|s.

By Remark 2 and Theorem 3, $\sigma_f \in \operatorname{Aut}^M(G)$ and by assumption $o(\sigma_f) = p$.

Now, we have $\sigma_f(x) = xf(x) = xa$. Since $f(a) = \overline{f}((xK)^s, lK) = a^s$, we have $\sigma_f^2(x) = xa^{s+2} = xa^{\frac{(s+1)^2-1}{s}}$. Also, $\sigma_f^3(x) = xa^{\left(\frac{(s+1)^3-1}{s}\right)}$. Generalizing this, we get $\sigma_f^t(x) = xa^{\left(\frac{(s+1)^t-1}{s}\right)}$, for every $t \in N$. As the order of σ_f is p, we have $a^{\frac{(s+1)^p-1}{s}} = 1$. Since p is odd and p|s, we have $p^2|\left(\left(\frac{(s+1)^p-1}{s}\right) - p\right)$. $\therefore qp^2 + p = \frac{(s+1)^p-1}{s}$ for some $q \in Z$. Thus $(a^p)^{qp+1} = 1$. But $o(a) = p^m \Rightarrow o(a^p) = p^{m-1}$.

Now

(1) if $a^p \neq 1$, then $p^{m-1}|(qp+1)$. But this is impossible as $m \geq 2$. (2) $a^p = 1$ is also not possible as $o(a) = p^m$ and $m \geq 2$.

So, the assumption that exp(M) and exp(G/M) are stricly greater than p is wrong. Conversly, assume that exp(G/K) = p and $f \in \text{Hom}(G, M)$. Then by proposition 3, $\overline{f} \in \text{Hom}(G/K, M)$. So for $x \in G$, put $\overline{f}(xK) = a$. If $aK \neq 1$, then it follows that o(aK(G)) = o(a) = p. Clearly $< a > \leq M(G) \leq Z(G)$ and hence the cyclic subgroup < a > is normal in G. We also have ht(aK) = 1. Now by the Lemma 1, the cyclic subgroup < a > is an abelian direct factor of G, and this contradicts the assumption. Therefore $a \in K$. This implies that $\text{Im}(f) \leq K$. Hence by Remark 1 $\text{Aut}^M(G) \cong \text{Hom}(G/K, M)$. But as M is abelian, Hom(G/K, M) is abelian. Thus $\text{Aut}^M(G)$ is abelian. Since exp(G/M) = p, this implies that $\text{Aut}^M(G)$ is an elementary abelian p-group.

Now assume that exp(M) = p. Consider $f, g \in \text{Hom}(G, M)$. We first show that $g \circ f(x) = 1$, for all $x \in G$. Assume that $\overline{f}(xK) = b \in M$, for $x \in G$. Since exp(M) = p, it implies that o(b)|p. If b = 1 then $g \circ f(x) = g(\overline{f}(xK(G))) = 1$. Now take, o(b) = p. If $b \in K$ then we have $g(f(x)) = g(\overline{f}(xK(G))) = g(b) = 1$. Assume b does not belong to K. As $b^p = 1$, it follows that o(bK) = p. Also, as $b \in M \leq Z(G), < b >$ is normal in G. Now if ht(bK(G)) = 1, then by the Lemma 1, the cyclic subgroup < b > is an abelian direct factor of G, giving a contradiction. So assume $ht(bk(G)) = p^m$ for some $m \in N$. By the definition of height, there exists an element yK in G/K such that $bK = (yK)^{p^m}$. But exp(M) = p. Therefore $g \circ f(x) = g(b) = \overline{g}(bK) = \overline{g}(yK)^{p^m} = 1$. Thus, for all $f, g \in \text{Hom}(G, M)$ and each $x \in G, g(f(x)) = 1$. We can similarly show that f(g(x)) = 1 and hence $f \circ g = g \circ f$. From Remark 2, $\sigma_f \circ \sigma_g = \sigma_g \circ \sigma_f$. This shows that $\text{Aut}^M(G)$ is abelian.

Now we show that each nontrivial element of $\operatorname{Aut}^M(G)$ has order p. So if $\alpha \in \operatorname{Aut}^M(G)$, then by Remark 2, there exists a homomorphism $f \in \operatorname{Hom}(G, M)$ such that $\alpha = \sigma_f$. Therefore, we have to show that $o(\sigma_f)|p$. Clearly, taking f = g and using $f(f(x)) = 1, x \in G$, we have $x \in G$, we have $\sigma_f^2(x) = \sigma_f(xf(x))$

= $x(f(x))^2$. In general for $n \ge 1$, $\sigma_f^n(x) = x(f(x))^n$. As exp (M) = p and $f(x) \in M$ we have, $\sigma_f^p(x) = x$ which implies $\sigma_f^p = 1_{\operatorname{Aut}^M(G)}$. Hence $o(\sigma_f)|p$. Thus, $o(\alpha)|p \forall \alpha \in \operatorname{Aut}_M(G)$. \therefore $\operatorname{Aut}^M(G)$ is an elementary abelian group.

References

- 1. Adney, J.E., Yen, T.: Automorphisms of a p-group. Illinious J. Math. 9, 137-143 (1965)
- 2. Curran, M.-J.: Finite groups with central automorphism group of minimal order. Math. Proc. Royal Irish Acad. **104**(A(2)), 223–229 (2004)
- Franciosi, S., Giovanni, F.D., Newell, M.L.: On central automorphisms of infinite groups. Commun. Algebra 22(7), 2559–2578 (1994)
- Jafri, M.H.: Elementary abelian p-group as central automorphisms group. Commun. Algebra 34(2), 601–607 (2006)
- 5. Jamali, A.R., Mousavi, H.: On central automorphism groups of finite p-group. Algebra Colloq. **9**(1), 7–14 (2002)