Subcentral Automorphisms

R.G. Ghumde and S.H. Ghate

Abstract A concept of subcentral automorphisms of group *G* with respect to a characterstic subgroup M of $Z(G)$ along with relevant mathematical paraphernalia has been introduced. With the help of this, a number of results on central automorphisms have been generalized.

Keywords Central automorphisms· Subcentral automorphisms· Purely nonabelian group

1 Introduction

Let *G* be a group. We shall denote the commutator, center, group of automorphisms, and group of inner automorphisms of *G* by G' , $Z(G)$, $Aut(G)$, and Inn(*G*), respectively. Let exp(*G*) denote the exponent of *G*.

For any group H and abelian group K , let $Hom(H, K)$ denote the group of all homomorphisms from *H* to *K*. This is an abelian group with binary operation $f g(x) = f(x)g(x)$ for $f, g \in \text{Hom}(H, K)$.

An automorphism α of *G* is called central if $x^{-1}\alpha(x) \in Z(G)$ for all $x \in G$. The set of all central automorphisms of G , which is here denoted by $Aut_c(G)$, is a normal subgroup of Aut(*G*). Notice that $Aut_c(G) = C_{Aut(G)}(Inn(G))$, the centralizer of the subgroup $\text{Inn}(G)$ in the group $\text{Aut}(G)$. The elements of $\text{Aut}_c(G)$ act trivially on G' .

There have been number of results on the central automorphisms of a group. M.J. Curran [\[2](#page-7-0)] proved that, "For any non abelian finite group G , $Aut_z^z(G)$ is isomorphic with Hom $(G/G'Z(G), Z(G))$, where $Aut_z^z(G)$ is group of all those central

R.G. Ghumde (\boxtimes)

S.H. Ghate

Department of Mathematics, Ramdeobaba College of Engineering and Management, Nagpur 440013, India e-mail: ranjitghumde@gmail.com

Department of Mathematics, R.T.M. Nagpur University, Nagpur 440013, India e-mail: sureshghate@gmail.com

[©] Springer India 2015

R.N. Mohapatra et al. (eds.), *Mathematics and Computing*, Springer Proceedings in Mathematics & Statistics 139, DOI 10.1007/978-81-322-2452-5_32

automorphisms which preserve the centre $Z(G)$ elementwise." In [\[3](#page-7-1)], Franciosi et al. showed that, If " $Z(G)$ is torsion free and $Z(G)/G' \cap Z(G)$ is torsion, then Aut_c(*G*) acts trivially on $Z(G)$. It is an abelian and torsion free group". They further proved that, "Aut_c(*G*) is trivial when $Z(G)$ is torsion free and G/G' is tor-sion." In [\[5](#page-7-2)], Jamali et al. proved that, "For a finite group *G* in which $Z(G) \leq G'$, Aut_{*c*}(*G*) \cong Hom(*G*/*G'*, *Z*(*G*))." They also proved that, "If *G* is a purely nonabelian finite p-group of class two (p odd), then $Aut_c(G)$ is elementary abelian if and only if $\Omega_1(Z(G)) = \phi(G)$, and $exp(Z(G)) = p$ or $exp(G/G') = p$," where $\phi(G)$ is Frattini subgroup of *G* and $\Omega_1(Z(G)) = \langle x \in Z(G) | x^p = 1 \rangle$. Note that, a group *G* is called purely nonabelian if it has no nontrivial abelian direct factor. Adney [\[1\]](#page-7-3) proved that, "If a finite group *G* has no abelian direct factor, then there is a one-one and onto map between $Aut_c(G)$ and $Hom(G, Z(G))$."

In this article, we generalize the above results to subcentral automorphisms.

2 Subcentral Automorphisms

Let *M* and *N* be two normal subgroups of *G*.

By Aut^N(*G*), we mean the subgroup of Aut(*G*) consisting of all automorphisms which induce identity on *G*/*N*.

By Aut_M (G) , we mean the subgroup of Aut (G) consisting of all automorphisms which induce identity on *M*.

Let $Aut_M^N(G) = Aut^N(G) \cap Aut_M(G)$. From now onward, M will be a characteristic central subgroup, and elements of $Aut^M(G)$ will be called as subcentral automorphisms of *G* (with respect to subcentral subgroup *M*). It can be seen that, Aut^{*M*}(*G*) is a normal subgroup of Aut_{*c*}(*G*).

We further, let $C^* = {\alpha \in Aut_M(G)|\alpha\beta = \beta\alpha, \forall \beta \in Aut^M(G)}$.

Clearly, C^* is a normal subgroup of $Aut(G)$. Since every inner automorphism commutes with elements of Aut_{*c*}(*G*), Inn(*G*) < C^* . If we take $M = Z(G)$, then C^* is same as $Inn(G)$.

Let $K = \{ [g, \alpha] | g \in G, \alpha \in C^* \}$, where $[g, \alpha] \equiv g^{-1} \alpha(g)$.

If $M = Z(G)$ then $K = G'$. However, in general, G' is a subgroup of K for every central subgroup *M*.

In the following, *K* and *C*∗ will always correspond to a central subgroup of *M* of *G* as in the above definitions.

Our main results are given by the following theorems.

Theorem 1 *For a finite group G*, $Aut_M^M(G) \cong Hom(\frac{G}{KM}, M)$ *.*

Theorem 2 *Let* G *be a group with M* torsion free and $M/M \cap K$ torsion. Then Aut^{*M*}(*G*) *is a torsion-free abelian group which acts trivially on M.*

Theorem 3 Let G be a purely nonabelian finite group, then $|\text{Aut}^M(G)| = |$ Hom (G, M) |.

Theorem 4 *Let G be a purely nonabelian finite p-group (p odd), then* $Aut^M(G)$ *is an elementary abelian p-group if and only if* $exp(M) = p$ *or* $exp(G/K) = p$ *.*

Following proposition shows that each element of *K* is invariant under the natural action of $Aut^M(G)$.

Proposition 1 Aut^M(*G*) *acts trivially on K*.

Proof Consider an automorphism $\alpha \in Aut^M(G)$. This implies $x^{-1}\alpha(x) \in M$, for all $x \in G$. So $\alpha(x) = xm$ for some $m \in M$. Let $\beta \in C^*$. By definition of *C*^{*}, we have $\alpha([x, \beta]) = \alpha(x^{-1}\beta(x)) = (\alpha(x))^{-1}\beta(\alpha(x)) = m^{-1}x^{-1}\beta(xm) =$ $m^{-1}x^{-1}\beta(x) m = x^{-1}\beta(x) = [x, \beta]$. Hence the results follows.

Proof of Theorem 1 For any $\mu \in \text{Aut}_{M}^{M}(G)$, define the map $\psi_{\mu} \in \text{Hom}\left(\frac{G}{KM}, M\right)$ as $\psi_{\mu}(gKM) = g^{-1}\mu(g).$ We first show that ψ_{μ} is well defined.

Let *gKM* = hKM , i.e., gh^{-1} ∈ *KM*. ∴ $\mu(gh^{-1}) = gh^{-1} \Rightarrow g^{-1}\mu(g) = h^{-1}\mu(h) \Rightarrow \psi_{\mu}(gKM) = \psi_{\mu}(hKM).$

For proving ψ_{μ} is a homomorphism, consider $\psi_{\mu}(gK/MK M) = \psi_{\mu}(gK/M) =$ $(gh)^{-1}\mu(gh) = h^{-1}g^{-1}\mu(g)\mu(h) = g^{-1}\mu(g)h^{-1}\mu(h) = \psi_{\mu}(gKM).\psi_{\mu}(hKM)$

Now define a map ψ : Aut $_M^M(G) \longrightarrow$ Hom $\left(\frac{G}{KM}, M\right)$, as $\psi(\mu) = \psi_{\mu}$.

We show that ψ is the required isomorphism. For $f, g \in Aut_M^M(G)$ and $h \in G$, $\psi(fg)(hKM) = \psi_{fg}(hKM) = h^{-1}fg(h) =$ $h^{-1} f(hh^{-1}g(h)) = h^{-1} f(h)h^{-1}g(h) = \psi_f(hKM)\psi_g(hKM) = \psi_f \cdot \psi_g(hKM).$ Hence $\psi(fg) = \psi(f)\psi(g)$.

Consider $\psi(\mu_1) = \psi(\mu_2)$, i.e., $\psi_{\mu_1}(gKM) = \psi_{\mu_2}(gKM)$, $g \in G$. This implies $g^{-1}\mu_1(g) = g^{-1}\mu_2(g) \Rightarrow \mu_1 = \mu_2$, as *g* is an arbitrary element of *G*. Thus ψ is a monomorphism.

We next show that ψ is onto. For any $\tau \in$ Hom $\left(\frac{G}{KM}, M\right)$, define a map $\mu : G \to G$ as $\mu(g) = g\tau(gKM)$, $g \in G$.

Now we show that $\mu \in \text{Aut}_{M}^{M}(G)$. For $g_{1}, g_{2} \in G$, $\mu(g_{1}g_{2}) = g_{1}g_{2}\tau(g_{1}g_{2}KM)$ $= g_1 \tau (g_1 K M) g_2 \tau (g_2 K M) = \mu (g_1) \mu (g_2)$. ∴ μ is a homomorphism on *G*.

Further, let $\mu(g) = 1$. This implies $g\tau(gKM) = 1 \Rightarrow \tau(gKM) = g^{-1} \Rightarrow g^{-1} \in M$ ∴ $gKM = KM \Rightarrow \tau(gKM) = 1 \Rightarrow g = 1$. Hence μ is one-one.

As *G* is finite, μ must be onto. So $\mu \in \text{Aut}(G)$. Further, as $g^{-1}\mu(g) = g^{-1}g\tau(gKM)$ $= \tau (gKM) \in M$, so $\mu \in \text{Aut}^M(G)$. Also if $g \in M$, then $\mu(g) = g(\tau(gKM)) =$ $g\tau(KM) = g$. Thus, $\mu \in \text{Aut}_{M}^{M}(G)$ and $\psi(\mu) = \tau$. Hence the theorem follows. 

Corollary 1 *Let G be finite group with* $M \leq K$, *then* $\text{Aut}^M(G) \cong \text{Hom}(G/K, M)$ *.*

Proof Since $M \le K$, $\frac{G}{KM} = G/K$. The result follows directly from Theorem [1](#page-1-0) and Proposition [1.](#page-2-0)

$$
\Box
$$

Proof of Theorem 2 Let $\alpha \in Aut^M(G)$. If *x* is an element of *M*, then by the hypothesis $x^n \in M \cap K$ for some positive integer *n*. By Proposition [1,](#page-2-0) we have $x^n = \alpha(x^n) = (\alpha(x))^n$, and hence $x^{-n}(\alpha(x))^n = 1$. Since $x^{-1}\alpha(x) \in M$, this implies $(x^{-1}\alpha(x))^n = 1$. As *M* is torsion free, this implies that $x^{-1}\alpha(x) = 1$, i.e., $\alpha(x) = x$. Therefore, Aut^M(G) acts trivially on *M*.

Let $\alpha, \beta \in \text{Aut}^M(G)$ and $x \in G$. So $\alpha\beta(x) = \alpha(\beta(x)) = \alpha(xx^{-1}\beta(x)) =$ $\alpha(x)x^{-1}\beta(x) = x^{1} \alpha(x)x^{-1}\beta(x) = \beta(x)x^{-1}\alpha(x) = \beta(x)\beta(x^{-1}\alpha(x)) =$ $\beta \alpha(x)$. Thus, Aut^M(G) is an abelian group.

Now, consider $\alpha \in \text{Aut}^M(G)$, and suppose there exists $k \in N$ such that $\alpha^k = 1$. Since $x^{-1}\alpha(x) \in M$ for all $x \in G$, there exists $g \in M$ such that $\alpha(x) = xg$. Further, $\alpha^{2}(x) = \alpha(\alpha(x)) = \alpha(xg) = \alpha(x)\alpha(g) = xg^{2}(\cdot)$ α acts trivially on *M*). Hence, by induction, $\alpha^n(x) = x g^n$. But $\alpha^k = 1 \Rightarrow x = x g^k$, i.e., $g^k = 1$. As *M* is torsion free, we must have $g = 1$. Thus $\alpha(x) = x$ for every *x*, i.e., $\alpha = 1$. Therefore, $Aut^M(G)$ is torsion free, and the theorem follows.

Proposition 2 *Let G be a group in which M is torsion free and G*/*K is torsion, then* $Aut^{\mathbf{\tilde{M}}}(G) = 1.$

Proof Let $\alpha \in Aut^M(G)$ and $x \in G$. Then by the assumption, $x^n \in K$ for some $n \in N$. As α fixes K elementwise, we have $(\alpha(x))^n = \alpha(x^n) = x^n$. So $x^{-n}(\alpha(x))^n = 1$. But $\alpha \in \text{Aut}^M(G)$ and hence $x^{-1}\alpha(x) \in M \leq Z(G)$. This implies that $(x^{-1}\alpha(x))^n = 1$. Since *M* torsion free, it follows that $\overline{x}^{-1}\alpha(x) = 1$, i.e., $\alpha(x) = x$, $\forall x \in G$. So Aut^{*M*}(*G*) = 1. i.e., $\alpha(x) = x$, $\forall x \in G$. So Aut^M(G) = 1.

Proof of Theorem 3 For $f \in Aut^M(G)$, we let $\alpha(f) \equiv \alpha_f$ defined as $\alpha(f)(g) \equiv$ $\alpha_f(g) = g^{-1} f(g), g \in G$. It can be shown that $\alpha_f \in \text{Hom}(G, M)$. We thus have α : Aut^{*M*}(*G*) \rightarrow Hom(*G*, *M*).

One can easily see that α is injective.

It just remains to show that α is onto.

For $\sigma \in \text{Hom}(G, M)$, consider the map $f : G \to G$ given by $f(g) = g\sigma(g)$. *f* is an endomorphism and also $g^{-1} f(g) = \sigma(g) \in M$, which implies that *f* is subcentral endomorphism of *G*, and hence *f* is normal endomorphism(i.e., *f* commutes with all inner automorphisms). So, clearly Im(*f*) is a normal subgroup of *G*.

It is easy to see that f^n is also normal endomorphism and hence Im f^n is a normal subgroup of *G*, for all $n > 1$. Since *G* is a finite group, the two series

$$
\text{Ker}\, f \le \text{Ker}\, f^2 \le \dots
$$

$$
\text{Im}\, f \ge \text{Im}\, f^2 \ge \dots
$$

will terminate.

So there exists $k \in N$ such that

$$
\text{Ker } f^k = \text{Ker } f^{k+1} = \dots = A
$$

$$
\text{Im } f^k = \text{Im } f^{k+1} = \dots = B
$$

Now, we prove that $G = AB$.

Let *g* ∈ *G*, $f^k(g)$ ∈ Im f^k = Im f^{2k} , and so $f^k(g) = f^{2k}(h)$, for some $h \in G$. Therefore $f^k(g) = f^k(f^k(h))$. This implies $f^k(g^{-1})f^k(g) = f^k(g^{-1})f^k(f^k(h))$. Thus $(f^k(h))^{-1}g \in \text{Ker } f^k = A$. Thus $g \in AB$ and hence $G = AB$.

Clearly $A \cap B = < 1$ > and therefore $G = A \times B$. If $f(g) = 1$, then $g^{-1}\sigma(g) = 1$. This implies Ker $f \leq M$. Similarly, if $f^2(g) = 1$, i.e., $f(f(g)) = 1$. Thus $f(g) \in$ ker *f* ≤ *M*. Therefore, $g\sigma(g)$ ∈ *M* \Rightarrow *g* ∈ *M*. Hence ker *f*² ≤ *M*. Repetition of this argument gives, $A = \ker f^k < M < Z(G)$. This implies *A* is an abelian group. By assumption, *G* is purely nonabelian and hence, we must have $A \equiv \text{Ker } f^k = 1$. This further implies Ker $f = 1$, i.e., *f* is injective. So $G = B \equiv \text{Im } f^k = \text{Im } f$. Thus *f* surjective. Hence, $f \in Aut^M(G)$. From the definition of α , it follows that $\alpha(f) = \sigma$. α is thus surjective. Therefore, α is the required bijection. Hence the result follows. result follows.

Proposition 3 Let G be a purely nonabelian finite group, then for each $\alpha \in$ Hom(*G*, *M*) and each $x \in K$, we have $\alpha(x) = 1$. Further Hom(*G*/*K*, *M*) \cong Hom(*G*, *M*)*.*

Proof Whenever *G* is purely nonabelian group, then by Theorem [3,](#page-1-1) $|\text{Aut}^M(G)| =$ $|\text{Hom}(G, M)|$. For every $\sigma \in \text{Aut}^M(G)$, it follows that $f_{\sigma}: x \to x^{-1}\sigma(x)$ is a homomorphism from *G* to *M*. Further the map $\sigma \rightarrow f_{\sigma}$ is one–one and thus a bijection because $|Aut^M(G)| = |Hom(G, M)|$. So every homomorphism from *G* to *M* can be considered as an image of some element of Aut^{*M*} (*G*) under this bijection. Let $\alpha \in \text{Hom}(G, M)$. Since $K = \{ [g, \alpha] | g \in G, \alpha \in C^* \}$, a typical generator of *K* is given by $g^{-1}\beta(g)$ for some $g \in G$, and $\beta \in C^*$. So $\alpha(g^{-1}\beta(g)) = f_{\sigma}(g^{-1}\beta(g)) =$ $(g^{-1}\beta(g))^{-1}\sigma(g^{-1}\beta(g)) = \beta^{-1}(g)gg^{-1}\beta(g) = 1(\because g^{-1}\beta(g) \in K)$. It follows that $\alpha(x) = 1$, for every $x \in K$.

Now consider the map ϕ : Hom(*G*, *M*) \longrightarrow Hom(*G*/*K*, *M*) such that $\phi(f) = \overline{f}$, where $\bar{f}(gK) = f(g)$ for all $g \in G$. Clearly this map ϕ is an isomorphism.

Proposition 4 *Let G be a purely nonabelian finite group, then* $|\text{Aut}^M(G)|$ = $|Hom(G/K, M)|$.

Proof Proof follows directly from Theorem [3](#page-1-1) and Proposition [3.](#page-4-0)

Proposition 5 *Let p be a prime number. If G is a purely nonabelian finite p-group then* Aut^{*M*} (*G*) *is a p-group.*

Proof By the assumption, the subgroup *M* and hence Hom $(G/K, M)$ are finite *p*groups. Hence the result follows directly from Proposition [4.](#page-4-1)

Proposition 6 *Let G be a purely nonabelian finite group* (i) If $gcd(|G/K|, |M|) = 1$, then Aut^M $(G) = 1$. (ii) If Aut^M (*G*) = 1*, then* $M \le K$.

Proof (i) Follows from Proposition [4.](#page-4-1)

(ii) Let $|G/K| = a$ and $|M| = b$. Since Aut^M (*G*) = 1, hence by Proposition [4,](#page-4-1) $(a, b) = 1$. So there exist integers λ and μ such that $\lambda a + \mu b = 1$. Let $x \in M$. Thus $xK = (xK)^{1} = (xK)^{\lambda a + \mu b} = (xK)^{\lambda a} (xK)^{\mu b} = K \Rightarrow x \in K$. $x K = (x K)^{1} = (x K)^{\lambda a + \mu b} = (x K)^{\lambda a} (x K)^{\mu b} = K \Rightarrow x \in K.$

Remark 1 From Corollary [1,](#page-2-1) and Proposition [3,](#page-4-0) we can say that, whenever $M \leq K$, $Aut^M(G) \cong Hom(G, M)$. Even when Im $f \leq K$, for all $f \in Hom(G, M)$, this result holds. Thus, if *G* is a purely nonabelian finite group and if for all $f \in Hom(G, M)$, $\text{Im } f \text{ ≤ } K$, then $\text{Aut}^{\overline{M}}(G) \cong \text{Hom}(G/K, M)$.

Remark 2 For every $f \in Hom(G, M)$, the map $\sigma_f : x \to xf(x)$ is a subcentral endomorphism of *G*. This endomorphism is an automorphism if and only if $f(x) \neq$ x^{-1} for all $1 \neq x \in G$ (*G* is finite).

Following lemma has been proved in [\[4\]](#page-7-4), we shall use it to prove Theorem [4.](#page-1-2)

Lemma 1 *Let x be an element of a finite p-group G and N a normal subgroup of G containing G*^{\prime} *such that* $o(x) = o(xN) = p$ *. If the cyclic subgroup* $\lt x > i$ *s normal in G such that* $ht(xN) = 1$ *, then* $\langle x \rangle$ *x* $>$ *is a direct factor of G.*

In the above statement *ht* denotes height. Height of an element *a* of a group *G* is defined as the largest positive integer *n* such that for some *x* in G , $x^n = a$.

Proof of Theorem 4 For the odd prime p, let $Aut^M(G)$ be an elementary abelian pgroup. Assume that the exponent of *M* and *G*/*K* are both strictly greater than *p*. Since *G*/*K* is finite abelian, it has a cyclic direct summand $\langle xK \rangle$ say, of order $p^n (n \ge 2)$ and hence $G/K \cong \langle xK \rangle \times L/K$. For $f \in \text{Hom}(G, M)$, consider $f(x) = a$ for any $x \in G$. So $f(xK) = a$. Since exp (M) is strictly greater than p, the order of a is p^m , for some *m*, $2 \le m \le n$.

We can use the homomorphism \bar{f} to get corresponding homomorphism (also denoted by same notation) \bar{f} as \bar{f} : $\langle xK \rangle \times L/K \to M$ with $(x^i K, lK) \to a^i$. The map \bar{f} on $\langle xK \rangle \times \langle xK \rangle$ is well defined, since $o(a)|o(xK)$ (as $m \leq n$).

If $aK = (x^sK, lK)$ then we show that $p|s$. Assume p / s , then $\lt xK \gt \lt \lt x^sK \gt$ and hence $G/K = L/K$. Now we have $o(a) \ge o(aK) \ge o(x^{s}K) =$ $o(xK) \geq o(f(xK)) = o(a)$. This implies that $o(a) = o(aK)$. Thus < $a > \bigcap K = 1$. As $o(aK) = o(xK)$, we get $G/K \cong < aK > \times L/K$ and hence $G \cong < a > \times L$. This is a contradiction, as *G* is a purely nonabelian group. Thus *p*|*s*.

By Remark [2](#page-5-0) and Theorem [3,](#page-1-1) $\sigma_f \in \text{Aut}^M(G)$ and by assumption $o(\sigma_f) = p$.

Now, we have $\sigma_f(x) = xf(x) = xa$. Since $f(a) = \overline{f}((xK)^s, lK) = a^s$, we have $\sigma_f^2(x) = xa^{s+2} = xa^{\frac{(s+1)^2-1}{s}}.$

Also, $\sigma_f^3(x) = xa$ $\left(\frac{(s+1)^3-1}{s}\right)$. Generalizing this, we get $\sigma_f^t(x) = xa$ $\left(\frac{(s+1)^t-1}{s}\right)$, for every $t \in N$.

As the order of σ_f is *p*, we have $a^{\frac{(s+1)^p-1}{s}} = 1$. Since *p* is odd and *p*|*s*, we have $p^{2}|(\left(\frac{(s+1)^{p}-1}{s}\right)-p).$ ∴ $qp^2 + p = \frac{(s+1)^p - 1}{s}$ for some $q \in \mathbb{Z}$. Thus $(a^p)^{qp+1} = 1$. But $o(a) = p^m \Rightarrow$ $o(a^p) = p^{m-1}$. Now

(1) if $a^p \neq 1$, then $p^{m-1}|(qp + 1)$. But this is impossible as $m \geq 2$. (2) $a^p = 1$ is also not possible as $o(a) = p^m$ and $m > 2$.

So, the assumption that $exp(M)$ and $exp(G/M)$ are stricly greater than *p* is wrong. Conversly, assume that $exp(G/K) = p$ and $f \in Hom(G, M)$. Then by proposition [3,](#page-4-0) \bar{f} ∈ Hom(G/K , *M*). So for $x \in G$, put $\bar{f}(xK) = a$. If $aK ≠ 1$, then it follows that $o(aK(G)) = o(a) = p$. Clearly $\lt a \lt A(G) \lt Z(G)$ and hence the cyclic subgroup $\langle a \rangle$ is normal in *G*. We also have $ht(aK) = 1$. Now by the Lemma [1,](#page-5-1) the cyclic subgroup $\langle a \rangle$ is an abelian direct factor of G, and this contradicts the assumption. Therefore $a \in K$. This implies that $\text{Im}(f) \leq K$. Hence by Remark [1](#page-5-2) $Aut^M(G) \cong Hom(G/K, M)$. But as *M* is abelian, $Hom(G/K, M)$ is abelian. Thus Aut^M(*G*) is abelian. Since $exp(G/M) = p$, this implies that Aut^M(*G*) is an elementary abelian p-group.

Now assume that $exp(M) = p$. Consider $f, g \in Hom(G, M)$. We first show that $g \circ f(x) = 1$, for all $x \in G$. Assume that $\bar{f}(xK) = b \in M$, for $x \in G$. Since $exp(M) = p$, it implies that $o(b)|p$. If $b = 1$ then $g \circ f(x) = g(f(xK(G))) = 1$. Now take, $o(b) = p$. If $b \in K$ then we have $g(f(x)) = g(\bar{f}(xK(G))) = g(b) = 1$. Assume *b* does not belong to *K*. As $b^p = 1$, it follows that $o(bK) = p$. Also, as $b \in M \leq Z(G)$, **is normal in** *G***. Now if** $ht(bK(G)) = 1$ **, then by the Lemma** [1,](#page-5-1) the cyclic subgroup $$ So assume $ht(bk(G)) = p^m$ for some $m \in N$. By the definition of height, there exists an element *yK* in G/K such that $bK = (yK)^{p^m}$. But $exp(M) = p$. Therefore *g* \circ *f*(*x*) = $g(b) = \overline{g}(bK) = \overline{g}(yK)^{p^m} = 1$. Thus, for all *f*, *g* \in Hom(*G*, *M*) and each $x \in G$, $g(f(x)) = 1$. We can similarly show that $f(g(x)) = 1$ and hence $f \circ g = g \circ f$. From Remark [2,](#page-5-0) $\sigma_f \circ \sigma_g = \sigma_g \circ \sigma_f$. This shows that Aut^M(*G*) is abelian.

Now we show that each nontrivial element of Aut^M(*G*) has order *p*. So if $\alpha \in$ Aut^M(*G*), then by Remark [2,](#page-5-0) there exists a homomorphism $f \in Hom(G, M)$ such that $\alpha = \sigma_f$. Therefore, we have to show that $o(\sigma_f)|p$. Clearly, taking $f = g$ and using $f(f(x)) = 1, x \in G$, we have $x \in G$, we have $\sigma_f^2(x) = \sigma_f(xf(x))$

 $= x(f(x))^{2}$. In general for $n \ge 1$, $\sigma_{f}^{n}(x) = x(f(x))^{n}$. As exp $(M) = p$ and *f*(*x*) \in *M* we have, $\sigma_f^p(x) = x$ which implies $\sigma_f^p = 1_{\text{Aut}^M(G)}$. Hence $o(\sigma_f)|p$. Thus, $o(\alpha)|p \forall \alpha \in \text{Aut}_M(G)$. ∴ Aut^M(*G*) is an elementary abelian

group.

 \Box

References

- 1. Adney, J.E., Yen, T.: Automorphisms of a p-group. Illinious J. Math. **9**, 137–143 (1965)
- 2. Curran, M.-J.: Finite groups with central automorphism group of minimal order. Math. Proc. Royal Irish Acad. **104**(A(2)), 223–229 (2004)
- 3. Franciosi, S., Giovanni, F.D., Newell, M.L.: On central automorphisms of infinite groups. Commun. Algebra **22**(7), 2559–2578 (1994)
- 4. Jafri, M.H.: Elementary abelian p-group as central automorphisms group. Commun. Algebra **34**(2), 601–607 (2006)
- 5. Jamali, A.R., Mousavi, H.: On central automorphism groups of finite p-group. Algebra Colloq. **9**(1), 7–14 (2002)