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Preface

The Second International Conference on Mathematics and Computing (ICMC
2015) was held at the Haldia Institute of Technology, Haldia, from January 5 to 10,
2015. Haldia is a city and a municipality in Purba Medinipur in the Indian state of
West Bengal, and Haldia Institute of Technology is a premier institution that gives
training to engineers and computer scientists. It has gained reputation through its
institutional dedication to teaching and research.

In response to the call for papers for ICMC 2015, a total of 69 papers were
submitted for presentation and inclusion in the proceedings of the conference.
These papers were evaluated and ranked on the basis of their significance, novelty,
and technical quality by at least two reviewers per paper. After a careful and blind
refereeing process, 34 papers were selected for inclusion in the conference pro-
ceedings. The papers cover current research in cryptography, abstract algebra,
functional analysis, Pal and fractal approximation, fluid dynamics, fuzzy modeling
and optimization, and statistics. ICMC 2015 saw eminent personalities both from
India and abroad (USA, France, Russia, Japan, Turkey, China, and Indonesia) who
delivered invited addresses, workshop lectures, and tutorial talks. Speakers from
India were recognized leaders from government, industry, and academic institutions
like Defense Research and Development Organization (DRDO), New Delhi; Indian
Institute of Sciences (IISc), Bangalore; Indian Statistical Institute (ISI), Kolkata;
Indian Institute of Technology (IIT) Kharagpur; and IIT Madras. All of them are
involved in research dealing with the current issues of interest related to the theme
of the conference. The conference hosted four tutorial talks by Prof. Peeyush
Chandra (IIT Kanpur), Dr. Prasanta Kumar Srivastava (IIT Patna), Dr. Dhanonjoy
Dey (DRDO, New Delhi), and Prof. Ram N. Mohapatra (University of Central
Florida, USA). There were four workshops, ranging over 2 days by Prof. Ram N.
Mohapatra, Prof. Manoranjan Maiti (Vidyasagar University), Prof. C. Pandurangan
(IIT Madras), and Prof. Abhijit Das (IIT Kharagpur). In addition to these, there was
one keynote talk by Prof. Heinrich Begehr (Freie Universitat Berlin, Germany) and
11 invited talks by Prof. C.E Venimadhavan (IISc, Bangalore), Prof. Ekrem Savaş
(Istanbul Commerce University, Turkey), Dr. P.K. Saxena (DRDO, New Delhi),
Prof. Peeyush Chandra, Dr. Christina Boura (Versailles Saint-Quentin-en-Yvelines
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University, France), Prof. Birendra Nath Mandal (ISI, Kolkata), Dr. Mridul Nandi
(ISI, Kolkata), Prof. G.P. Kapoor (IIT Kanpur), Prof. P.D. Srivastava (IIT
Kharagpur), Prof. Abhijit Das (IIT Kharagpur), and Prof. B.C. Tripathy (Institute of
Advanced Study in Science and Technology, India).

A conference of this kind would not be possible to organize without the full
support from different people across different committees. All logistics and general
organizational aspects were looked after by the organizing committee members who
spent their time and energy in making the conference a reality. We also thank all the
technical program committee members and external reviewers for thoroughly
reviewing the papers submitted to the conference and sending their constructive
suggestions within the deadlines. Our hearty thanks to Springer for agreeing to
publish the proceedings.

We are indebted to DRDO, Department of Electronics and Information
Technology (Ministry of Communication and Information Technology, the
Government of India), Indian Space Research Organisation (ISRO), University of
Central Florida, The International Society for Analysis, its Applications and
Computation (ISAAC), Cryptology Research Society of India (CRSI), Science and
Engineering Research Board (DST), and Haldia Institute of Technology for spon-
soring/supporting the event. Their support has significantly helped in raising the
profile of the conference.

Last but not least, our sincere thanks go to all authors who submitted papers to
ICMC 2015 and to all speakers and participants. We sincerely hope that the readers
will find the proceedings stimulating and inspiring.

Ram N. Mohapatra
Dipanwita Roy Chowdhury

Debasis Giri
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Message from the General Chairs

As we all are aware mathematics has always been a discipline of interest not only to
theoreticians but also to all practitioners, irrespective of their specific profession. Be
it science, technology, economics, commerce, or even sociology, new mathematical
principles and models have been emerging and helping in new research and in
drawing inferences from practical data as well as through logic. The past few
decades have seen enormous growth in applications of mathematics in different
areas multidisciplinary in nature. Cryptography and signal processing are such
areas, which have got more focus recently due to the need for securing commu-
nication while connecting with others. With emerging computing facilities and
speeds, a phenomenal growth has happened in the problem solving area. Earlier,
some observations were made and conjectures were drawn which remained con-
jectures till somebody could either prove it theoretically or found counter examples.
But today, we can write algorithms and use computers for long calculations, ver-
ifications, or for generation of huge amounts of data. With available computing
capabilities, we can find factors of very large integers of the size of hundreds of
digits; we can find inverses of very large size matrices and solve a large set of linear
equations, and so on. Thus, mathematics and computations have become more
integrated areas of research these days, and it was thought to organize an event
where thoughts may be shared by researchers and new challenging problems could
be deliberated for solving these.

Apart from many other interdisciplinary areas of research, cryptography has
emerged as one of the most important areas of research with discrete mathematics as
a base. Several research groups are actively pursuing research on different aspects of
cryptology not only in terms of new crypto-primitives and algorithms, but a whole
lot of concepts related to authentication, integrity, and security proofs/protocols,
many times with open and competitive evaluation mechanism to evolve standards.

As conferences, seminars, and workshops are the mechanisms to share knowl-
edge and new research results that give us a chance to get new innovative ideas for
futuristic needs as threats and computational capabilities of adversaries are ever-
increasing, it was thought appropriate to organize the present conference focused on
mathematics and computations covering theoretical as well as practical aspects of
research, cryptography being one of them.
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Eminent personalities working in mathematical sciences and related areas were
invited from abroad as well as from within the country to deliver invited talks and
tutorials for participants. The talks by these speakers covered a wide spectrum,
namely number theoretic concepts, cryptography, algebraic concepts, and appli-
cations. The conference was spread over 6 days (January 5–10, 2015) with the first
2 days dedicated to workshops and the next one day dedicated to tutorials. The
main conference was planned with special talks by experts and paper presentations
in each session.

We hope that the conference met the aspirations of the participants and its
objective of ideas and current research being shared and new targets/problems
identified in the domain of cryptography, computational number theory, algebra,
frame theory, optimizations, fuzzy logic, stochastic processes, compressive sensing,
functional analysis, complex variables, etc., so that researchers and students would
get new directions to pursue their future research.

P.K. Saxena
P.D. Srivastava

Message from the Program Chairs

It is a great pleasure for us to organize the Second International Conference on
Mathematics and Computing 2015 held from January 5 to 10, 2015 at the Haldia
Institute of Technology, Purba Medinipur, West Bengal, India. Our main goal was
to provide an opportunity to the participants to learn about contemporary research
in mathematics and computing and exchange ideas among themselves and with
experts present in the conference as workshop presenters, tutorial presenters, and
the plenary as well as invited speakers. With this aim in mind, we carefully selected
the invited speakers and the speakers for the workshops and tutorials. It is our
sincere hope that the conference would help the participants in their research and
training and open new avenues for work for those who are either starting their
research or are looking for extending their area of research to a different area of
current research in mathematics and computing.

The below table shows the workshops held on January 5–6, 2015.

Title of the workshop Name of the speaker Duration of the workshop

Signcryption in standard model Prof. C. Pandu Rangan 3 h and 45 min

Elliptic curve cryptography Prof. Abhijit Das 3 h and 45 min

Riesz bases and frames Prof. Ram N. Mohapatra 3 h and 45 min

Conventional and metaheuristic
optimization techniques

Prof. Manoranjan Maiti 3 h and 45 min
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The below table shows the tutorials held on January 7, 2015.

The conference began after a formal opening ceremony on January 8. There was
one keynote 90-min talk by Prof. Heinrich Begehr and seven invited 1-h talks by
Prof. Peeyush Chandra, Prof. C.E. Venni Madhavan, Dr. P.K. Saxena, Prof. Ekrem
Savaş, Prof. Abhijit Das, Dr. Christina Boura, Dr. Mridul Nanadi, Prof. Birendra
Nath Mandal, Prof. P.D. Srivastava, Prof. G.B. Kapoor, and Prof. Binod Chandra
Tripathy. There were 32 contributed half-hour talks. Our speakers/contributors
came from Germany, France, Japan, Turkey, Indonesia, India, China, and USA.
After an initial call for papers, 69 papers were submitted for presentation at the
conference. All submitted papers were sent to external referees and after refereeing,
34 papers were recommended for presentation. The proceedings of the conference
contains 34 papers published by Springer. We are grateful to the speakers, par-
ticipants, referees, organizers, sponsors, and funding agencies (from DRDO,
University of Central Florida, DeitY-DIT, ISRO, CRSI, ISAAC, SERB-DST,
Haldia Institute of Technology) for their support and help, without which it would
have been impossible to organize the conference, the workshops, and the tutorials.
We owe our gratitude to the volunteers who worked behind the scene tirelessly in
taking care of the details in making this conference a success.

Ram N. Mohapatra
Dwipanita Roy Chowdhury

Debasis Giri

Title of the tutorial Name of the speaker Duration of the tutorial

Mathematical epidemiology Prof. Peeyush Chandra 2 h

Mathematical epidemiology Dr. Prasanta K. Srivastava 1 h and 45 min

A gentle introduction to block
ciphers: design and analysis

Dr. Dhananjoy Dey 2 h

Some mathematical snapshots Prof. Ram N. Mohapatra 1 h and 45 min
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Integral Representations Related to Complex
Partial Differential Operators

Heinrich Begehr

Abstract Integral representations are an essential tool for treating differential equa-
tions. They serve to solve initial and boundary value problems and to guarantee
smoothness properties for solutions. Well known are the Green representation for-
mulas for harmonic functions and the Cauchy formula for analytic functions. This
survey concentrates on representation formulas in plane domains for the polyan-
alytic and the polyharmonic operators. They generalize the Cauchy-Riemann and
the Laplace operator, respectively, to higher order partial differential operators. The
kernels of these operators are the sets of polyanalytic and polyharmonic functions.
Having constructed the fundamental solutions to these particular model operators,
higher order Pompeiu area integral operators, providing particular solutions to the
related inhomogeneous equations, serve to treat any higher order linear partial dif-
ferential equation, the leading term of which is a product of the mentioned model
operators.

Keywords Polyanalytic and polyharmonic equations · Integral representations ·
Hybrid polyharmonic Green functions · Iterated polyharmonic Green and Neumann
functions · Polyharmonic Green-Almansi functions

Mathematics Subject Classifications: 31A25 · 31A30 · 30E25 · 35J05 · 35J08 ·
35J30 · 35G15 · 35C15

1 Basic Integral Representations

The Gauss divergence theorem is the origin of a variety of integral representations
related to partial differential operators. It is in fact the main theorem of calculus
in higher dimensions. While the main theorem of calculus in the case of one real
variable immediately leads to an integral representation formula for continuously dif-
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2 H. Begehr

ferentiable functions and by an iteration process directly to the Taylor representation
formula, in higher dimensions on one hand different kinds of differential operators
are available and on the other a modification of the divergence theorem is needed
in order to create representation formulas. The Gauss theorem is at first applied to
the product of two admissible functions and then the resulting formula applied when
one of the two is chosen as the fundamental solution to the respective differential
operator. A representation formula then arises from the point singularity of the fun-
damental solution. As in the one real variable case, these representation formulas
are proper for being iterated leading as well to a hierarchy of representation formu-
las for higher order differential operators, arbitrary powers of the original one, and
on the other hand at the same time to fundamental solutions of these higher order
differential operators.

Fundamental solutions to higher order differential operators can also be con-
structed from the ones for lower order operators. A fundamental solution to the
product of two differential operators ∂1, ∂2 is found from a fundamental solution to
∂1, say f1, as a primitivewith respect to ∂2 of f1, ∂

−1
2 f1. As f1 satisfies ∂1 f1 = δ with

the Dirac δ-operator, then ∂1∂2∂
−1
2 f1 = δ. This process is used in [25] to construct

fundamental solutions to complex partial differential operators of arbitrary order
∂m

z ∂n
z for m, n ∈ N in the complex planeC. Here ∂z, ∂z are the Cauchy-Riemann dif-

ferential operator and its complex conjugate, given by 2∂z = ∂x +i∂y, 2∂z = ∂x −i∂y ,
where z = x + iy ∈ C, x, y ∈ R. The initial fundamental solution to ∂z is up to
the factor − 1

π
the Cauchy kernel 1

z . Taking continued primitives against ∂z leads to
zn−1

[n−1]!z for the polyanalytic differential operator ∂n
z , n ∈ N. Similarly, a primitive to

the Cauchy kernel with respect to ∂z is log z, a better one because symmetric in z and
z is log z + log z = log |z|2, the fundamental solution to ∂z∂z , the complex form of

the Laplace differential operator �z = 4∂z∂z . Continuing, zm−1zn−1

(m−1)!(n−1)! log |z|2 turns
out as a fundamental solution to ∂m

z ∂n
z . A better one is

zm−1zn−1

(m − 1)!(n − 1)!
[
log |z|2 +

m−1∑
μ=1

1

μ
+

n−1∑
ν=1

1

ν

]
.

Applying differential operators ∂z, ∂z , respectively, keeps its form with m and n,
respectively, lowered by 1. Based on these fundamental solutions, integral represen-
tation formulas are available. They are, however, not proper to solve boundary value
problems. For this purpose, the fundamental solutions have to be adjusted to certain
boundary behavior. For the polyanalytic operator, there is the polyanalytic Schwarz
kernel, see [1, 2, 8, 25, 27, 38, 42] related to the Schwarz problem. Also a Neumann,
a particular Robin [11, 22, 61] and many mixed problems [60] are treatable.

For the polyharmonic operator (∂z∂z)
n , there are a variety of different bound-

ary conditions, the higher the order n the more possible boundary conditions exist.
Exactly, n conditions may be posed and this may be done in many different ways
[6, 7, 10, 12–14, 16, 17, 19–21, 24, 28–30, 39, 44, 45, 47, 49–51, 56, 59, 63,
65–70, 72, 73]. For the harmonic operator, n = 1, there are three main boundary
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conditions, the Dirichlet, the Neumann, and the Robin condition. The related funda-
mental solutions are well know in the literature. They are called the harmonic Green,
the harmonic Neumann, and the harmonic Robin function. Explicit formulas and
methods to find them are given, e.g., in [29, 30, 33, 34, 36, 48]. For a certain class
of plane domains, the parqueting reflection principle [18, 23, 24, 30–33, 35, 37, 69,
72] is effective.

One possibility to determine such fundamental solutions for the polyharmonic
operator is to iteratively convolute the three types of harmonic fundamental solu-
tions. This process leads to hybrid polyharmonic Green functions [3–5, 14, 29, 30].
The procedure of iterating representation formulas [11, 12] can be used to deduce
the Poisson representation formula and the one for the Bitsadze operator from the
Cauchy-Pompeiu formulas just on the basis of the Gauss divergence theorem. In a
natural way, even the idea of Green and Neumann functions arises here.

The theory of hybrid polyharmonic representations is far from being complete.
Calculating particular samples demands a lot of area integral evaluations. Also not
all convolutions seem to be obvious, for the Robin function, e.g., iterations are only
performed for particular parameters [23] and the modified Robin function [36] is not
yet iterated.

The iteration process for constructing certain fundamental solutions and related
integral representation formulas for higher order differential operators does work
also in higher dimensional cases as in quarternionic, in octonionic, and in Clifford
analysis [9, 40, 41, 43, 64, 71]. Some other complex differential equations were
treated in a similar way in [26, 46, 50].

Inhomogeneous polyanalytic and polyharmonic equations are just model equa-
tions for arbitrary higher order elliptic equations. But their potentials serve to treat
more general equations, the leading term of which is the operator of one of the model
equations. Such general linear equations can be investigated on the basis of the Fred-
holm alternative for singular integral equations [2–6]. The general model differential
operator

∂m
z ∂n

z = (∂z∂z)
m∂

(n−m)
z , (m ≤ n)

can bewritten as a product of a polyanalytic and a polyharmonic operator.An iteration
of the representation formulas for these two factors will lead to one for this general
operator.

1.1 Cauchy-Pompeiu Representations

A direct consequence of the Gauss divergence theorem for bounded domains D of
the complex plane C with piecewise smooth boundary ∂ D are the Cauchy-Pompeiu
formulas [11]. Under proper growth restrictions, they also hold for unbounded
domains [56].
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Theorem 1 Any w ∈ C1(D;C) ∩ C(D;C) can be represented as

w(z) = 1

2π i

∫

∂ D

w(ζ )
dζ

ζ − z
− 1

π

∫

D

wζ (ζ )
dξdη

ζ − z
,

w(z) = − 1

2π i

∫

∂ D

w(ζ )
dζ

ζ − z
− 1

π

∫

D

wζ (ζ )
dξdη

ζ − z
.

These two representation formulas are the basis for an iteration process leading to
all subsequent higher order representations. Second-order formulas are attained by
representing wz by the first formula and inserting this expression into the original
formula. Also, applying the second formula to wz and inserting the result into the
first one leads to another representation formula. On this way, four second-order
formulas are attained. Two of them are as follows [11].

Theorem 2 Any w ∈ C2(D;C) ∩ C1(D;C) can be represented as

w(z) = 1

2π i

∫

∂ D

w(ζ )
dζ

ζ − z
− 1

2π i

∫

∂ D

wζ (ζ )
ζ − z

ζ − z
dζ

+ 1

π

∫

D

wζ ζ (ζ )
ζ − z

ζ − z
dξdη

and as

w(z) = 1

2π i

∫

∂ D

w(ζ )
dζ

ζ − z
+ 1

2π i

∫

∂ D

wζ (ζ ) log |ζ − z|2dζ

+ 1

π

∫

D

wζ ζ (ζ ) log |ζ − z|2dξdη.

The second-order differential operators ∂2z and ∂z∂z are the bianalytic or Bitsadze
and the harmonic or Laplace operator, respectively. The representation formula for
the Laplace operator requires alteration [11]. Because harmonic functions are known
to be determined just by their boundary values, the boundary integral with first-order
derivatives of the function involved is redundant.
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1.2 Green Representations

There are different ways to change the representation formula for the Laplace oper-
ator. Just applying the Gauss theorem appropriately in the case of the unit disk,
the concepts of the Green and the Neumann functions arise [11]. Using them for
proper domains, Green and Neumann representation formulas are attained adjusted
to certain boundary behavior of the function represented. Using the concept of Robin
functions, both these representation formulas can be combined into one formula [36].

Definition 1 For α, β ∈ R, 0 < α2+β2, a real-valued function R1;α,β(z, ζ ), z, ζ ∈
D, z �= ζ, is called Robin function if for any ζ ∈ D it has the properties

• R1;α,β( · , ζ ) is harmonic in D \ {ζ } and continuously differentiable in D \ {ζ },
• h(z, ζ ) = R1;α,β(z, ζ ) + log |ζ − z|2 is harmonic for z ∈ D,

• αR1;α,β(z, ζ ) + β∂νz R1;α,β(z, ζ ) = βσ(s) for z = z(s) ∈ ∂ D, where the den-
sity function σ is a real-valued, piecewise constant function of s, the arc length

parameter on ∂ D, with finite mass
∫

∂ D

σ(s)ds,

• β

∫

∂ D

σ(sz)R1;α,β(z, ζ )dsz = 0 (normali zation condition).

This Robin function can be shown to satisfy

R1;α,β(z, ζ ) = R1;α,β(ζ, z) (symmetry).

For β = 0 it is the Green function for the domain D, G1(z, ζ ) = R1;α,0(z, ζ ), for
α = 0 it is the Neumann function, N1(z, ζ ) = R1;0,β(z, ζ ). For the Green function,
there appears no normalization condition and the density function σ is not needed.
Both functions differ mainly in their boundary behavior.

Manipulating the representation formula for the Laplacian in introducing the
Robin function some formulas appear interpolating the Green and the Neumann
representation.

Theorem 3 Any function w ∈ C2(D;C) ∩ C1(D;C) can be represented as

w(z) = ωk(z) − 1

π

∫

D

∂ζ ∂
ζ

w(ζ )R1;α,β(ζ, z)dξdη, k = 1, 2, 3,

ω1(z) = − 1

4π

∫

∂ D

{w(ζ )∂νζ R1;α,β(ζ, z) − ∂νw(ζ )R1;α,β(ζ, z)}dsζ ,

4πβω2(z) =
∫

∂ D

{αw(ζ ) + β∂νw(ζ )}R1;α,β(ζ, z)dsζ − β

∫

∂ D

σw(ζ )dsζ (β �= 0),
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4παω3(z) = −
∫

∂ D

{αw(ζ ) + β∂νw(ζ )}∂νζ R1;α,β(ζ, z)dsζ + β

∫

∂ D

σ∂νw(ζ )dsζ (α �= 0).

The two subcases for β �= 0 and α �= 0 are proper for representing functions w
satisfying the Robin boundary value problem.

Definition 2 A solution of the Poisson equation

∂z∂zw = f in D

satisfying the Robin boundary condition

αw + β∂νw = γ on ∂ D

is called a solution to the Robin problem.

For β = 0 this is the Dirichlet, for α = 0 the Neumann problem. In general, the
Robin problem is conditionally solvable. The conditions for solvability depend on
the domain. Here is the result for the unit disk D [36].

Theorem 4 For f ∈ L p(D;C), 2 < p, γ ∈ C(∂D;C), the Robin problem

∂z∂z w = f in D, αw + β∂νw = γ on ∂D,

(i) if β �= 0 is solvable if and only if

1

2π i

∫

∂D

γ (ζ )
dζ

ζ
− α

2π i

∫

∂D

w(ζ )
dζ

ζ
= 2β

π

∫

D

f (ζ )dξdη,

the solution being then

w(z) = 1

4π iβ

∫

∂D

γ (ζ )R1;α,β(ζ, z)
dζ

ζ
+ 1

2π i

∫

∂D

w(ζ )
dζ

ζ
− 1

π

∫

D

f (ζ )R1;α,β(ζ, z)dξdη,

(ii) if α �= 0 is solvable if and only if

β

2π i

∫

∂D

∂νw(ζ )
dζ

ζ
= 2β

π

∫

D

f (ζ )dξdη,

the solution then being

w(z) = − 1

4π iα

∫

∂D

γ (ζ )∂νζ R1;α,β(ζ, z)
dζ

ζ
− β

2π iα

∫

∂D

∂νw(ζ )
dζ

ζ
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− 1

π

∫

D

f (ζ )R1;α,β(ζ, z)dξdη.

Remark 1 If α = 0 then γ = β∂νw and the solvability condition is the known one
for the Neumann problem, see, e.g., [11]. In case of β = 0 there is no solvability
condition!

2 Polyharmonic Representations

The iteration of integral representation formulas can also be applied to get repre-
sentations for poly-Poisson equations (∂z∂z)

nw = f, n ∈ N. As this equation can
be decomposed into a system of n, Poisson equations ∂z∂zwμ = wμ+1, 0 ≤ μ ≤
n − 1, w0 = w, wn = f , and each of these Poisson equations allows one boundary
condition, there exists a variety of boundary value problems for the poly-Poisson
equation. The classical ones are [57, 66] the Dirichlet, the Neumann, and the Riquier
problem.

Definition 3 A solution of the inhomogeneous polyharmonic equation

(∂z∂z)
nw = f in D

is a solution to the polyharmonic Dirichlet problem if it satisfies

∂μ
ν w = γμ, 0 ≤ μ ≤ n − 1 on ∂ D, (1)

solves the polyharmonic Neumann problem if

∂μ
ν w = γμ, 1 ≤ μ ≤ n on ∂ D (2)

are satisfied, and solves the polyharmonic Riquier problem if

(∂z∂z)
μw = γμ, 0 ≤ μ ≤ n − 1 on ∂ D (3)

hold.

Some other boundary value problems for the n-Poisson equation are
Problem 1

∂ν(∂z∂z)
μw = γμ, 0 ≤ μ ≤ n − 1, on ∂ D,

Problem 2
(∂z∂z)

μw = γ0μ, 0 ≤ 2μ ≤ n − 1,

∂ν(∂z∂z)
μw = γ1μ, 0 ≤ 2μ ≤ n − 2, on ∂ D,
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Problem 3
(∂z∂z)

2μw = γ0μ, 0 ≤ 2μ ≤ n − 1,

∂ν(∂z∂z)
2μ+1w = γ1μ, 0 ≤ 2μ ≤ n − 2, on ∂ D,

Problem 4
(∂z∂z)

2μ+1w = γ0μ, 0 ≤ 2μ ≤ n − 2,

∂ν(∂z∂z)
2μw = γ1μ, 0 ≤ 2μ ≤ n − 1, on ∂ D.

Prescribing arbitrarily boundary conditions for the functions wμ of the decompo-
sition ofw produces a variety of boundary conditions, and iterating the representation
formulas for these functions results in a family of hybrid polyharmonic Green func-
tions [13–17, 28–30, 39, 47, 49, 51, 56, 59, 69, 72].

2.1 Hybrid Polyharmonic Green Functions

Choosing just Dirichlet conditions for all the wμ leads to a certain iterated polyhar-
monic Green function

Ĝμ(z, ζ ) = − 1

π

∫

D

G1(z, ζ̃ )Ĝμ−1(̃ζ , ζ )d ξ̃dη̃, 2 ≤ μ ≤ n,

where Ĝ1(z, ζ ) = G1(z, ζ ) for n = 1.

Definition 4 Areal-valued function Km(z, ζ ) on D×D, z �= ζ,with the properties

• Km(·, ζ ) is polyharmonic of order m in D\{ζ },
• Km(z, ζ )+ |ζ−z|2(m−1)

(m−1)!2 log |ζ −z|2 is polyharmonic of order m in D for any ζ ∈ D,
• Km(z, ζ ) satisfies the (boundary and side) conditions Bm for z ∈ ∂ D, ζ ∈ D,

is called polyharmonic Green function of order m with boundary behavior Bm .

Definition 5 For two polyharmonic Green functions of order m and n and with
boundary behavior Bm and B̂n , Km and K̂n , respectively, the convolution

Km K̂n(z, ζ ) = − 1

π

∫

D

Km(z, ζ̃ )K̂n (̃ζ , ζ )d ξ̃dη̃ (4)

is called hybrid polyharmonic Green function.
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Theorem 5 Km K̂n(z, ζ ) satisfies as a function of z for any ζ ∈ D the boundary
value problem

(∂z∂z)
m Km K̂n(z, ζ ) = K̂n(z, ζ ) in D, (5)

Bm(Km K̂n(z, ζ )) = − 1

π

∫

D

(Bm(Km(z, ζ̃ )))K̂n (̃ζ , ζ )d ξ̃dη̃ on ∂ D, (6)

and as a function of ζ for any fixed z ∈ D

(∂ζ ∂ζ )
n(Km K̂n(z, ζ )) = Km(z, ζ ) in D, (7)

B̂n(Km K̂n(z, ζ )) = − 1

π

∫

D

Km(z, ζ̃ )B̂n(K̂n (̃ζ , ζ ))d ξ̃dη̃ on ∂ D. (8)

In cases where Km(z, ζ ) and K̂n(z, ζ ) are both symmetric then

Km K̂n(z, ζ ) = K̂n Km(ζ, z)

follows.

Of particular interest are the cases when only Dirichlet and only Neumann condi-
tions are involved leading to the iterated polyharmonicGreen andNeumann functions
Ĝn(z, ζ ) and Nn(z, ζ ), respectively, [6, 29, 39].

2.2 Riquier Problem, Iterated Polyharmonic Green Function

The iterated polyharmonic Green function Ĝμ of order μ, 2 ≤ μ, is a solution to the
Dirichlet problem for the Poisson equation,

∂z∂z Ĝμ(z, ζ ) = Ĝμ−1(z, ζ ) in D,

Ĝμ(z, ζ ) = 0, on ∂ D.

It has for any ζ ∈ D the properties

• Ĝμ(·, ζ ) is a polyharmonic function of order μ in D\{ζ },
• Ĝμ(z, ζ ) + |ζ−z|2(μ−1)

(μ−1)!2 log |ζ − z|2 is polyharmonic of order μ in D,

• (∂z∂z)
ν Ĝμ(z, ζ ) = 0, 0 ≤ ν ≤ μ − 1, on ∂ D,

• Ĝμ(z, ζ ) = Ĝμ(ζ, z), z, ζ ∈ D, z �= ζ (symmetry).

The normal derivatives of these polyharmonic Green functions are needed for the
solution to the Riquier problem (3).
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Definition 6 For 1 ≤ μ

gμ(z, ζ ) = −1

2
∂νζ Ĝμ(z, ζ ), z ∈ D, ζ ∈ ∂ D

is called polyharmonic Poisson kernel of order μ.

Theorem 6 The unique solution to the Riquier problem (3) is

w(z) = 1

2π

n−1∑
μ=0

∫

∂ D

γ μ(ζ )gμ+1(z, ζ )dsζ − 1

π

∫

D

f (ζ )Ĝn(z, ζ )dξdη.

2.3 Polyharmonic Poisson Kernels

Obviously, explicit knowledge of the polyharmonic Poisson kernels is important.
Unfortunately, the procedure of repeatedly iterating the Green function is involved.
Even for the unit disk polyharmonic Green functions are explicitly known only up
to order 4 [29, 30, 49, 72]. But the polyharmonic Poisson kernels [45] are found in
[47, 51, 52] on the basis of fife characteristic properties without explicit knowledge
of the iterated polyharmonic Green functions.

Theorem 7 The sequence of polyharmonic Poisson kernels {gn(z, ζ )} for the unit
disk D is uniquely determined by

• ∂z∂zg1(z, ζ ) = 0, ∂z∂zgn(z, ζ ) = gn−1(z, ζ ), 2 ≤ n,

• lim
z→t,|z|<1,|t |=1

1

2π i

∫

∂D

γ (ζ )g1(z, ζ )
dζ

ζ
= γ (t), for γ ∈ C(∂D;C),

• lim
z→t,|z|<1,|t |=1

1

2π i

∫

∂D

γ (ζ )g2(z, ζ )
dζ

ζ
= 0 for γ ∈ C(∂D;C),

• lim
z→t,|z|<1,|t |=1

gn(z, ζ ) = 0 for 2 < n and |ζ | = 1,

• gn(·, ζ ) ∈ C2n(D;C) for any ζ ∈ ∂D,

gn(z, ζ ), ∂zgn(z, ζ ), ∂zgn(z, ζ ) ∈ C(D × ∂D;C), n ∈ N.

The polyharmonic Poisson kernels for the upper half plane are constructed in
[53]; in [54, 55] they are calculated for the n-dimensional unit ball and a half space.

2.4 Iterated Polyharmonic Neumann Function

Iterating the harmonic Neumann function gives the iterated polyharmonic Neumann
functions Nn [39]. According to (4)
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Nn(z, ζ ) = − 1

π

∫

D

N1(z, ζ̃ )Nn−1(̃ζ , ζ )d ξ̃dη̃, 2 ≤ n.

Theorem 8 The polyharmonic Neumann function Nn for the unit disk D satisfies

• Nn(·, ζ ) is polyharmonic of order n in D\{ζ },
• Nn(z, ζ ) + |ζ−z|2(n−1)

(n−1)!2 log |ζ − z|2 is polyharmonic of order n in D for any ζ ∈ D,

• ∂νz Nn(z, ζ ) = − 2
(n−1)!2 (|ζ |2 − 1)n−1

+
n−2∑

μ=[ n
2 ]

μ!2
(n − 1)!(n − 1 − μ)!2(2μ − n + 1)!∂νz Nμ+1(z, ζ ) for z ∈ ∂D, ζ ∈ D,

• 1
2π i

∫
∂D

Nn(z, ζ ) dz
z = 0 for ζ ∈ D (normali zation),

• Nn(z, ζ ) = Nn(ζ, z) for z, ζ ∈ D, z �= ζ (symmetry).

Moreover, for 1 < n

∂z∂z Nn(z, ζ ) = Nn−1(z, ζ ) in D.

Explicit formulas for the first three Nn, n = 1, 2, 3, are given in [16, 49, 72].
The polyharmonic Neumann problem (2) with certain additional normalization

conditions is conditionally uniquely solvable [39].

2.5 Polyharmonic Green-Almansi Function

The classical polyharmonic Green-Almansi function [7, 10, 56, 70] is not an iterated
Green function.

Definition 7 A real-valued function Gn(z, ζ ), z, ζ ∈ D, z �= ζ, satisfying

• Gn(·, ζ ) is polyharmonic of order n in D\{ζ },
• Gn(z, ζ ) + |ζ−z|2(n−1)

(n−1)!2 log |ζ − z|2 is polyharmonic of order n in D for any ζ ∈ D,

• ∂
μ
νz Gn(z, ζ ) = 0 for z ∈ ∂ D, ζ ∈ D, 0 ≤ μ ≤ n − 1,

• Gn(z, ζ ) = Gn(ζ, z) for z, ζ ∈ D, z �= ζ (symmetry),

is called polyharmonic Green-Almansi function.

Moreover, Gn satisfies the additional boundary conditions

• (∂z∂z)
μGn(z, ζ ) = 0, 0 ≤ 2μ ≤ n − 1, for z ∈ ∂ D, ζ ∈ D,

• ∂νz (∂z∂z)
μGn(z, ζ ) = 0, 0 ≤ 2μ ≤ n − 2, for z ∈ ∂ D, ζ ∈ D.
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For the unit disk D [10, 70]

Gn(z, ζ ) = |ζ − z|2(n−1)

(n − 1)!2 log
∣∣∣1 − zζ

ζ − z

∣∣∣
2

−
n−1∑
μ=1

1

μ
|ζ − z|2(n−1−μ)(1 − |z|2)μ(1 − |ζ |2)μ, z, ζ ∈ D, z �= ζ.

For the upper half plane H [56]

Gn(z, ζ ) = |ζ − z|2(n−1)

(n − 1)!2 log
∣∣∣ζ − z

ζ − z

∣∣∣
2

+
n−1∑
n=1

1

μ
|ζ − z|2(n−1−μ)(ζ − ζ )μ(z − z)μ, z, ζ ∈ H

+, z �= ζ.

The polyharmonic Green-Almansi function serves for a representation formula.

Theorem 9 Any w ∈ C2n(D;C) ∩ C2n−1(D;C), n ∈ N, is representable by

w(z) = −
[ n
2 ]−1∑
μ=0

1

4π

∫

∂ D
∂νζ (∂ζ ∂ζ )

n−μ−1Gn(z, ζ )(∂ζ ∂ζ )
μw(ζ )dsζ

+
[ n−1

2 ]∑
μ=0

1

4π

∫

∂ D
(∂ζ ∂ζ )

n−μ−1Gn(z, ζ )∂νζ (∂ζ ∂ζ )
μw(ζ )dsζ (9)

− 1

π

∫

D
Gn(z, ζ )(∂ζ ∂ζ )

nw(ζ )dξdη.

On the basis of this representation, in [15, 20, 44] proper polyharmonic Dirichlet
problems (see Problem 2 in Sect. 2) are treated for the n-Poisson equation in the unit
disk and in the upper half plane. The unique solutions are given in explicit form.

A polyharmonic Green-Almansi function for the n-dimensional unit ball is con-
structed in [58, 62].

2.6 A Particular Hybrid Tetraharmonic Green Function

Taking m = n = 2 in (4) and choosing K2 and K̂2 as G2 and Ĝ2, respectively, the
hybrid tetraharmonic Green function [29]

H4(z, ζ ) = G2Ĝ2(z, ζ ) = − 1

π

∫

D
G2(z, ζ̃ )Ĝ2(̃ζ , ζ )d ξ̃dη̃
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is attained. As function of z it is a solution to theDirichlet problem for the biharmonic
Poisson equation

(∂z∂z)
2H4(z, ζ ) = Ĝ2(z, ζ ) in D for any ζ ∈ D,

H4(z, ζ ) = 0, ∂νz H4(z, ζ ) = 0 for z ∈ ∂ D, ζ ∈ D.

Moreover, as a function of ζ it solves the Requier problem for the biharmonic
Poisson equation

(∂ζ ∂ζ )
2H4(z, ζ ) = G2(z, ζ ) in D for any ζ ∈ D,

H4(z, ζ ) = 0, ∂ζ ∂ζ H4(z, ζ ) = 0 for ζ ∈ ∂ D, z ∈ D.

Its properties are

• H4(z, ζ ) is tetraharmonic for z ∈ D\{ζ } and for ζ ∈ D\{z},
• H4(z, ζ ) + |ζ−z|6

3!2 log |ζ − z|2 is tetraharmonic for z, ζ ∈ D,

• H4(z, ζ ) = 0, ∂νz H4(z, ζ ) = 0, (∂z∂z)
2H4(z, ζ ) = 0, (∂z∂z)

3H4(z, ζ ) = 0 for
z ∈ ∂ D, ζ ∈ D,

• H4(z, ζ ) = 0, ∂ζ ∂ζ H4(z, ζ ) = 0, (∂ζ ∂ζ )
2H4(z, ζ ) = 0, ∂νζ (∂ζ ∂ζ )

2H4(z, ζ ) = 0
for ζ ∈ ∂ D, z ∈ D.

Obviously, H4(z, ζ ) is not symmetric in its variables. Therefore two different
representation formulas are available, proper for different tetraharmonic boundary
value problems.

Theorem 10 Any w ∈ C8(D;C) ∩ C7(D;C) can be represented as

w(z) = − 1

4π

∫

∂ D

{
∂νζ (∂ζ ∂ζ )

3H4(z, ζ )w(ζ ) − (∂ζ ∂ζ )
3H4(z, ζ )∂νζ w(ζ )

+∂νζ ∂ζ ∂ζ H4(z, ζ )(∂ζ ∂ζ )
2w(ζ ) + ∂νζ H4(z, ζ )(∂ζ ∂ζ )

3w(ζ )
}

dsζ

− 1

π

∫

D
H4(z, ζ )(∂ζ ∂ζ )

4w(ζ )dξdη, (10)

w(z) = − 1

4π

∫

∂ D

{
∂νζ (∂ζ ∂ζ )

3H4(ζ, z)w(ζ ) + ∂νζ (∂ζ ∂ζ )
2H4(ζ, z)∂ζ ∂ζ w(ζ )

+∂νζ ∂ζ ∂ζ H4(ζ, z)(∂ζ ∂ζ )
2w(ζ ) − ∂ζ ∂ζ H4(ζ, z)∂νζ (∂ζ ∂ζ )

2w(ζ )
}

dsζ

− 1

π

∫

D
H4(ζ, z)(∂ζ ∂ζ )

4w(ζ )dξdη. (11)
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H4 is just one of a whole variety of hybrid polyhamonic Green functions.
Calculating them for simple domains will demand many area integral evaluations
via the Gauss and the Cauchy integral theorems. This would be some task for com-
puter algebraists. Also the evaluation of iterated polyharmonic Green functions could
be done with computer algebra help.
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Higher Order Hybrid Invexity
Frameworks and Discrete Multiobjective
Fractional Programming Problems

Ram U. Verma

Abstract Based on the higher order hybrid (Φ, ρ, η, ζ, θ)−invexities, first some
parametrically generalized sufficient efficiency conditions for multiobjective frac-
tional programming are developed and then efficient solutions to the multiobjective
fractional programming problems are established. Furthermore, the obtained results
on sufficient efficiency conditions are generalized to the case of the ε−efficient solu-
tions. The results thus obtained generalize andunify awide spectrumof investigations
on the theory and applications to the multiobjective fractional programming based
on the hybrid (Φ, ρ, η, ζ, θ)−invexity frameworks.

Keywords Higher order hybrid invexity ·Multiobjective fractional programming ·
Efficient solutions

AMS Subject Classification 90C32 · 90C45

1 Introduction

Mangasarian [8] investigated second order duality for a conventional nonlinear
programming problem, where the approach is based on constructing a second
order dual problem by taking linear and quadratic approximations of the objec-
tive and constraint functions for an arbitrary but fixed point leading to the Wolfe
dual model for the approximated problem, while letting the fixed point to vary.
Recently, Verma [22] investigated a general framework for a class of (ρ, η, θ)−invex
functions to examine some parametric sufficient efficiency constraints for multiob-
jective fractional programming problems leading to weakly ε−efficient solutions.
Motivated by these research developments, we first introduce the higher order hybrid
(Φ, ρ, η, ζ, θ)−invexities, second, introduce some parametrically sufficient effi-
ciency conditions for multiobjective fractional programming, and finally, explore the
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efficient solutions to multiobjective fractional programming problems. The results
established in this paper, not only generalize and unify the results on general sufficient
efficiency conditions for multiobjective fractional programming problems based on
the hybrid invexity of functions, but also generalize second order invexity results in
more general settings.

We consider, based on the higher order hybrid (Φ, ρ, η, ζ, θ)−invexities of func-
tions, the following multiobjective fractional programming problem:
(P)

Minimize
( f1(x)

g1(x)
,

f2(x)

g2(x)
, · · · ,

f p(x)

gp(x)

)

subject to x ∈ Q = {x ∈ X : Hj (x) ≤ 0, j ∈ {1, 2, · · ·, m}}, where X is an open
convex subset of �n (n-dimensional Euclidean space), fi and gi for i ∈ {1, · · ·, p}
and Hj for j ∈ {1, ···, m} are real-valued functions defined on X such that fi (x) ≥ 0,
gi (x) > 0 for i ∈ {1, · · ·, p} and for all x ∈ Q. Here Q denotes the feasible set of
(P).

Next, we observe that problem (P) is equivalent to the nonfractional programming
problem:
(Pλ)

Minimize
(

f1(x) − λ1g1(x), · · ·, f p(x) − λpgp(x)
)

subject to x ∈ Q with

λ =
(
λ1, λ2, · · ·, λp

)
=

( f1(x∗)
g1(x∗)

,
f2(x∗)
g2(x∗)

, · · ·, f p(x∗)
gp(x∗)

)
,

where x∗ is an efficient solution to (P).
General mathematical programming problems offer a wide range of applications to
other fields, such as applications to game theory, statistical analysis, engineering
design (including design of control systems, design of earthquake-resistant struc-
tures, digital filters, and electronic circuits), random graphs, boundary value prob-
lems,wavelet analysis, environmental protection planning, decision andmanagement
sciences, optimal control problems, continuum mechanics, and others. Recently,
Pitea and Postolache [18] introduced and studied a new class of multitime multi-
objective variational problems for minimizing a vector of functionals of curvilinear
integral type relating toMond-Weir-Zalmai type duality based on the notion of (ρ, b)-
quasiivexity. They also established some weak duality theorems showing the value
of the objective function of the primal cannot exceed the value of the dual. On the
other hand, there are accelerated advances on duality models for a class of multi-
objective control problems with generalized invexity, especially the work of Zhian
and Qingkai [41], where they have discussed the duality models for multiobjective
control problems using the generalized invexity. For more details on generalized
efficiency and efficiency results and applications, we recommend the reader [1–41].
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This submission is organized as follows: the introductory section deals with a brief
historical development for the multiobjective fractional mathematical programming,
while emphasizing the roles of the generalized invex functions. In Sect. 2, the hybrid
(Φ, ρ, η, ζ, θ)−invex functions of higher orders are introduced, and Sect. 3 deals
with sufficient efficiency conditions leading to the solvability of the problem (P)
using the hybrid (Φ, ρ, η, ζ, θ)−invexities.

2 Hybrid Invexities

In this section, we introduce the notion of higher order (Φ, ρ, η, ζ, θ)−invexities,
which encompass most of the existing generalized invexities in the current literature.
Let X be an open convex subset of �n (n-dimensional Euclidean space). Let 〈·, ·〉
denote the inner product, and let z ∈ �n . Suppose that f : X → � is a real-valued
twice continuously differentiable function defined on X , and that
 f (y) and∇2 f (y)

denote, respectively, the gradient and Hessian of f at y.

Definition 2.1 A twice differentiable function f : X → � is said to be hybrid
(Φ, ρ, η, ζ, θ)−invex at x∗ of second order if there exists a function Φ : � → �
such that for each x ∈ X , ρ : X × X → �, η, θ, ζ : X × X → �n , and z ∈ �n ,

Φ
(

f (x) − f (x∗)
)

≥ 〈
 f (x∗) + ∇2 f (x∗)z, η(x, x∗)〉 − 1

2

〈∇2 f (x∗)z, ζ(x, x∗)
〉

+ ρ(x, x∗)‖θ(x, x∗)‖2.
Definition 2.2 A twice differentiable function f : X → � is said to be hybrid
(Φ, ρ, η, ζ, θ)−pseudo-invex at x∗ of second order if there exists a function Φ :
� → � such that for each x ∈ X , ρ : X × X → �, η, ζ, θ : X × X → �n , and
z ∈ �n ,

〈
 f (x∗) + ∇2 f (x∗)z, η(x, x∗)〉 − 1

2

〈∇2 f (x∗)z, ζ(x, x∗)
〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0

⇒ Φ
(

f (x) − f (x∗)
)

≥ 0.

Definition 2.3 A twice differentiable function f : X → � is said to be strictly
hybrid (Φ, ρ, η, ζ, θ)− pseudo-invex at x∗ of second order if there exists a function
Φ : � → � such that for each x ∈ X , ρ : X × X → �, η, θ : X × X → �n , and
z ∈ �n ,

〈
 f (x∗) + ∇2 f (x∗)z, η(x, x∗)〉 − 1

2

〈∇2 f (x∗)z, ζ(x, x∗)
〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≥ 0

⇒ Φ
(

f (x) − f (x∗)
)

> 0.

Definition 2.4 A twice differentiable function f : X → � is said to be prestrictly
hybrid (Φ, ρ, η, ζ, θ)−pseudo-invex at x∗ of second order if there exists a function
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Φ : � → � such that for each x ∈ X , ρ : X × X → �, η, ζ, θ : X × X → �n , and
z ∈ �n ,

〈
 f (x∗) + ∇2 f (x∗)z, η(x, x∗)〉 − 1

2

〈∇2 f (x∗)z, ζ(x, x∗)
〉 + ρ(x, x∗)‖θ(x, x∗)‖2 > 0

⇒ Φ
(

f (x) − f (x∗)
)

≥ 0.

Definition 2.5 A twice differentiable function f : X → � is said to be hybrid
(Φ, ρ, η, ζ, θ)−quasi-invex at x∗ of second order if there exists a function Φ : � →
�) such that for each x ∈ X , ρ : X × X → �, η, ζ, θ : X × X → �n , and z ∈ �n ,

Φ
(

f (x) − f (x∗)
) ≤ 0

⇒ 〈
 f (x∗) + ∇2 f (x∗)z, η(x, x∗)〉 − 1

2

〈∇2 f (x∗)z, ζ(x, x∗)
〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0.

Definition 2.6 A twice differentiable function f : X → � is said to be strictly
hybrid (Φ, ρ, η, ζ, θ)−quasi-invex at x∗ of second order if there exists a function
Φ : � → � such that for each x ∈ X , ρ : X × X → �, η, ζ, θ : X × X → �n , and
z ∈ �n ,

Φ
(

f (x) − f (x∗)
)

≤ 0

⇒ 〈
 f (x∗) + ∇2 f (x∗)z, η(x, x∗)〉 − 1

2

〈∇2 f (x∗)z, ζ(x, x∗)
〉 + ρ(x, x∗)‖θ(x, x∗)‖2 < 0.

Definition 2.7 A twice differentiable function f : X → � is said to be prestrictly
hybrid (Φ, ρ, η, ζ, θ)−quasi-invex at x∗ of second order if there exists a function
Φ : � → � such that for each x ∈ X , ρ : X × X → �, η, ζ, θ : X × X → �n , and
z ∈ �n ,

Φ
(

f (x) − f (x∗)
)

< 0

⇒ 〈
 f (x∗) + ∇2 f (x∗)z, η(x, x∗)〉 − 1

2

〈∇2 f (x∗)z, ζ(x, x∗)
〉 + ρ(x, x∗)‖θ(x, x∗)‖2 ≤ 0,

equivalently,

〈
 f (x∗) + ∇2 f (x∗)z, η(x, x∗)〉 − 1

2

〈∇2 f (x∗)z, ζ(x, x∗)
〉 + ρ(x, x∗)‖θ(x, x∗)‖2 > 0

⇒ Φ
(

f (x) − f (x∗)
) ≥ 0.

Definition 2.8 A point x∗ ∈ Q is an efficient solution to (P) if there exists no x ∈ Q
such that

fi (x)

gi (x)
≤ fi (x∗)

gi (x∗)
∀ i = 1, · · ·, p,
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f j (x)

g j (x)
<

f j (x∗)
g j (x∗)

for some j ∈ {1, · · ·, p}.

Next to this context, we have the following auxiliary problem:
(Pλ̄)

minimizex∈Q( f1(x) − λ̄1g1(x), · · ·, f p(x) − λ̄pgp(x)),

subject to x ∈ Q,
where λ̄i for i ∈ {1, · · ·, p} are parameters, and λ̄i = fi (x∗)

gi (x∗) .

Example 2.1 Consider a twice differentiable function f : X → � such that there
exist functions Φ : � → �, ρ : X × X → �, η, θ, ζ : X × X → �n . Then f is
hybrid (Φ, ρ, η, ζ, θ)−invex at x∗ of second order since for each x ∈ X , and z ∈ �n ,

Φ
(

f (x) − f (x∗)
)

≥ 〈
 f (x∗) + 1

2
∇2 f (x∗)z, η(x, x∗)〉 + ρ(x, x∗)‖θ(x, x∗‖2.

Example 2.2 Consider a differentiable function f : X → � such that there exist
functions Φ : � → �, ρ : X × X → �, η, θ, ζ : X × X → �n . Then f is hybrid
(Φ, ρ, η, θ)−invex at x∗ of first order since for each x ∈ X , and z ∈ �n ,

Φ
(

f (x) − f (x∗)
)

≥ 〈
 f (x∗), η(x, x∗)〉 + ρ(x, x∗)‖θ(x, x∗‖2.

Next, we introduce the efficiency solvability conditions for (Pλ̄) problem.

Definition 2.9 A point x∗ ∈ Q is an efficient solution to (Pλ̄) if there does not exist
an x ∈ Q such that

fi (x) − λ̄i gi (x) ≤ fi (x∗) − λ̄i gi (x∗)∀ i = 1, · · ·, p,

f j (x) − λ̄ j g j (x) < f j (x∗) − λ̄ j g j (x∗) for some j ∈ {1, · · ·, p},

where λ̄i = fi (x∗)
gi (x∗) for i = 1, · · ·, p.

Next, we recall the following result (Verma [24]) that provides a set of necessary
efficiency conditions for problem (P) for developing some sufficient efficiency con-
ditions for the next section based on second order (Φ, ρ, η, ζ, θ)−invexities.

Theorem 2.1 [24] Let x∗ ∈ F and λ∗ = max1≤i≤p fi (x∗)/gi (x∗) for each i ∈ p,
and let fi and gi be twice continuously differentiable at x∗ for each i ∈ p. For each
j ∈ q, let the function z → G j (z, t) be twice continuously differentiable at x∗ for
all t ∈ Tj , and for each k ∈ r , let the function z → Hk(z, s) be twice continuously
differentiable at x∗ for all s ∈ Sk. If x∗ is an efficient solution of (P), if the second
order generalized Abadie constraint qualification holds at x∗, and if for any critical
direction y, the set cone
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{
(
∇G j (x∗, t), 〈y,∇2G j (x∗, t)y〉

)
: t ∈ T̂ j (x∗), j ∈ q}

+ span{
(
∇Hk(x∗, s), 〈y,∇2Hk(x∗, s)y〉

)
: s ∈ Sk, k ∈ r},

where T̂j (x∗) ≡ {t ∈ Tj : G j (x∗, t) = 0}, is closed, then there exist u∗ ∈ U ≡
{u ∈ R

p : u ≥ 0,
∑p

i=1 ui = 1} and integers ν∗
0 and ν∗ with 0 ≤ ν∗

0 ≤ ν∗ ≤ n + 1
such that there exist ν∗

0 indices jm with 1 ≤ jm ≤ q together with ν∗
0 points tm ∈

T̂ jm (x∗), m ∈ ν∗
0 , ν∗ − ν∗

0 indices km with 1 ≤ km ≤ r together with ν∗ − ν∗
0 points

sm ∈ Skm for m ∈ ν∗\ν∗
0 , and ν∗ real numbers v∗

m with v∗
m > 0 for m ∈ ν∗

0 with the
property that

p∑
i=1

u∗
i [∇ fi (x∗) − λ∗(∇gi (x∗)] +

ν∗
0∑

m=1

v∗
m[∇G jm (x∗, tm)

+
ν∗∑

m=ν∗
0+1

v∗
m∇Hk(x∗, sm) = 0, (2.1)

〈y,
[ p∑

i=1

u∗
i [∇2 fi (x∗) − λ∗∇2gi (x∗)] +

ν∗
0∑

m=1

v∗
m∇2G jm (x∗, tm)

+
ν∗∑

m=ν∗
0+1

v∗
m∇2Hk(x∗, sm)

]
y〉 ≥ 0, (2.2)

u∗
i [ fi (x∗) − λ∗gi (x∗)] = 0, i ∈ p, (2.3)

where ν \ ν0 is the complement of the set ν0 relative to the set ν.

3 Sufficient Efficiency Conditions for Problem (P)

This section deals with some parametrically sufficient efficiency conditions for prob-
lem (P) under the hybrid frameworks for (Φ, ρ, η, ζ, θ)−invexities. We begin with
real-valued functions Ei (., x∗, u∗) and B j (., v) defined by

Ei (x, x∗, u∗) = ui [ fi (x) −
( fi (x∗)

gi (x∗)

)
gi (x)], i ∈ {1, · · ·, p}

and
B j (., v) = v j Hj (x), j = 1, · · ·, m.
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Theorem 3.1 Let x∗ ∈ Q, fi , gi for i ∈ {1, · · ·, p} with fi (x∗)
gi (x∗) ≥ 0, gi (x∗) > 0 and

Hj for j ∈ {1, · · ·, m} be twice continuously differentiable at x∗ ∈ Q, and let there
exist u∗ ∈ U = {u ∈ �p : u > 0, 
 p

i=1ui = 1} and v∗ ∈ �m+ such that



p
i=1u∗

i [
 fi (x∗) − (
fi (x∗)
gi (x∗)

) 
 gi (x∗)] + 
m
j=1v∗

j 
 Hj (x∗) = 0, (3.1)

〈[ p∑
i=1

u∗
i [∇2 fi (x∗) − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)] +
m∑

j=1

v∗
j∇2Hj (x∗)

]
z, η(x, x∗)

〉
≥ 0,

(3.2)

− 1

2

〈[ p∑
i=1

u∗
i [∇2 fi (x∗)− (

fi (x∗)
gi (x∗)

)∇2gi (x∗)]+
m∑

j=1

v∗
j∇2Hj (x∗)

]
z, ζ(x, x∗)

〉
≥ 0,

(3.3)
and

v∗
j H j (x∗) = 0, j ∈ {1, · · ·, m}. (3.4)

Suppose, in addition, that any one of the following assumptions holds (for
ρ(x, x∗) ≥ 0):

(i) Ei (. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are hybrid (Φ, ρ, η, ζ, θ)−pseudo-invex at
x∗ with Φ̄(a) ≥ 0 ⇒ a ≥ 0, and B j (. , v∗) ∀ j ∈ {1, · · ·, m} are
hybrid (Φ̃, ρ̄, η, ζ, θ)−quasi-invex at x∗ for Φ̃ increasing and Φ̃(0) = 0.

(ii) Ei (. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly hybrid (Φ, ρ, η, ζ, θ)−pseudo-
invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and B j (. , v∗) ∀ j ∈ {1, · · ·, m} arestrictly
hybrid (Φ̃, ρ, η, ζ, θ)−quasi-invex at x∗ for Φ̃ increasing and Φ̃(0) = 0.

(iii) Ei (. ; x∗, u∗) ∀ i ∈ {1, ···, p} are prestrictly hybrid (Φ, ρ, η, ζ, θ)−quasi-invex
at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and B j (. , v∗) ∀ j ∈ {1, · · ·, m} are strictly hybrid
(Φ̃, ρ̄, η, ζ, θ)−quasi-invex at x∗ for Φ̃ increasing and Φ̃(0) = 0.

(iv) For each i ∈ {1, · · ·, p}, fi is hybrid (Φ, ρ1, η, θ)−invex and −gi is hybrid
(Φ,�, ρ2, η, θ)−invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, Hj (. , v∗) ∀ j ∈
{1, · · ·, m} is hybrid (Φ̄, ρ3, η, θ)−quasi-invex at x∗ for Φ̄ increasing and
Φ̄(0) = 0, and 
m

j=1v∗
jρ3(x, x∗)+ρ∗(x, x∗) ≥ 0 for ρ∗ = 


p
i=1u∗

i (ρ1(x, x∗)+
φ(x∗)ρ2(x, x∗)) and for φ(x∗) = fi (x∗)

gi (x∗) .

Then x∗ is an efficient solution to (P).

Proof If (i) holds, and if x ∈ Q, then it follows from (3.1)–(3.3) that

〈



p
i=1u∗

i [
 fi (x∗) − (
fi (x∗)
gi (x∗)

) 
 gi (x∗)]

+
p∑

i=1

u∗
i [∇2 fi (x∗)z − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)z], η(x, x∗)
〉



26 R.U. Verma

− 1

2

〈 p∑
i=1

u∗
i [∇2 fi (x∗)z − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)z], ζ(x, x∗)
〉

+
〈

m

j=1v∗
j 
 Hj (x∗) + 
m

j=1v∗
j∇2Hj (x∗)z, η(x, x∗)

〉

− 1

2

〈

m

j=1v∗
j∇2Hj (x∗)z, ζ(x, x∗)

〉
≥ 0. (3.5)

Since v∗ ≥ 0, x ∈ Q and (3.4) holds, we have


m
j=1v∗

j H j (x) ≤ 0 = 
m
j=1v∗

j H j (x∗),

and in light of assumptions on Φ̃, we find

Φ̃
(

m

j=1v∗
j H j (x) − 
m

j=1v∗
j H j (x∗)

)
≤ 0,

which applying the hybrid (Φ̃, ρ̄, η, ζ, θ)−quasi-invexity of B j (., v∗) at x∗, results in

〈

m

j=1v∗
j 
 Hj (x∗) + 
m

j=1v∗
j∇2Hj (x∗)z, η(x, x∗)

〉

− 1

2

〈

m

j=1v∗
j∇2Hj (x∗)z, ζ(x, x∗)

〉
+ ρ̄(x, x∗)‖θ(x, x∗)‖2 ≤ 0. (3.6)

It follows from (3.5) and (3.6) that

〈



p
i=1u∗

i [
 fi (x∗) − (
fi (x∗)
gi (x∗)

) 
 gi (x∗)]

+
p∑

i=1

u∗
i [∇2 fi (x∗)z − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)z], η(x, x∗)
〉

− 1

2

〈 p∑
i=1

u∗
i [∇2 fi (x∗)z − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)z], ζ(x, x∗)
〉

≥ ρ̄(x, x∗)‖θ(x, x∗)‖2 ≥ −ρ(x, x∗)‖θ(x, x∗)‖2. (3.7)

Since ρ(x, x∗) ≥ 0, applying the hybrid (Φ, ρ, η, ζ, θ)−pseudo-invexity at x∗
to (3.7) and assumptions on Φ, we have

Φ
(



p
i=1u∗

i [ fi (x) − (
fi (x∗)
gi (g∗)

)gi (x)] − 

p
i=1u∗

i [ fi (x∗) − (
fi (x∗)
gi (x∗)

)gi (x∗)]
)

≥ 0,
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which implies



p
i=1u∗

i [ fi (x) − (
fi (x∗)
gi (x∗)

)gi (x)]

≥ 

p
i=1u∗

i [ fi (x∗) − (
fi (x∗)
gi (x∗)

)gi (x∗)])
= 0.

Thus, we have



p
i=1u∗

i [ fi (x) − (
fi (x∗)
gi (x∗)

)gi (x)] ≥ 0. (3.8)

Since u∗
i > 0 for each i ∈ {1, · · ·, p},we conclude that there does not exist an x ∈ Q

such that
fi (x)

gi (x)
− (

fi (x∗)
gi (x∗)

) ≤ 0 ∀ i = 1, · · ·, p,

f j (x)

g j (x)
− (

f j (x∗)
g j (x∗)

) < 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an efficient solution to (P).
Next, If (ii) holds, and if x ∈ Q, then it follows from (3.1)–(3.3) that

〈



p
i=1u∗

i [
 fi (x∗) − (
fi (x∗)
gi (x∗)

) 
 gi (x∗)]

+
p∑

i=1

u∗
i [∇2 fi (x∗)z − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)z], η(x, x∗)
〉

− 1

2

〈 p∑
i=1

u∗
i [∇2 fi (x∗)z − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)z], ζ(x, x∗)
〉

+
〈

m

j=1v∗
j 
 Hj (x∗) + 
m

j=1v∗
j∇2Hj (x∗)z, η(x, x∗)

〉

− 1

2

〈

m

j=1v∗
j∇2Hj (x∗)z, ζ(x, x∗)

〉
≥ 0. (3.9)

Since v∗ ≥ 0, x ∈ Q and (3.3) holds, we have


m
j=1v∗

j H j (x) ≤ 0 = 
m
j=1v∗

j H j (x∗),

which results (using assumptions on Φ̃) in

Φ̃
(

m

j=1v∗
j H j (x) − 
m

j=1v∗
j H j (x∗)

)
≤ 0.
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Now, in light of the strictly hybrid (Φ̃, ρ̄, η, ζ, θ)−quasi-invexity of B j (., v∗) at x∗,
we find

〈

m

j=1v∗
j 
 Hj (x∗) +

〈

m

j=1v∗
j∇2Hj (x∗)z, η(x, x∗)

〉

− 1

2

〈

m

j=1v∗
j∇2Hj (x∗)z, ζ(x, x∗)

〉
+ ρ̄(x, x∗)‖θ(x, x∗)‖2 < 0. (3.10)

It follows from (3.9) and (3.10) that

〈



p
i=1u∗

i [
 fi (x∗) − (
fi (x∗)
gi (x∗)

) 
 gi (x∗)]

+
p∑

i=1

u∗
i [∇2 fi (x∗)z − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)z], η(x, x∗)
〉

− 1

2

〈 p∑
i=1

u∗
i [∇2 fi (x∗)z − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)z], ζ(x, x∗)
〉

> ρ̄(x, x∗)‖θ(x, x∗)‖2 > −ρ(x, x∗)‖θ(x, x∗)‖2. (3.11)

As a result, since ρ(x, x∗) ≥ 0, applying the prestrictly hybrid (Φ, ρ, η, ζ, θ)−
pseudo-invexity at x∗ to (3.11) and assumptions on Φ, we have

Φ
(



p
i=1u∗

i [ fi (x) − (
fi (x∗)
gi (g∗)

)gi (x)] − 

p
i=1u∗

i [ fi (x∗) − (
fi (x∗)
gi (x∗)

)gi (x∗)]
)

≥ 0,

which implies



p
i=1u∗

i [ fi (x) − (
fi (x∗)
gi (x∗)

)gi (x)]

≥ 

p
i=1u∗

i [ fi (x∗) − (
fi (x∗)
gi (x∗)

)gi (x∗)])
= 0.

Thus, we have



p
i=1u∗

i [ fi (x) − (
fi (x∗)
gi (x∗)

)gi (x)] ≥ 0. (3.12)

Since u∗
i > 0 for each i ∈ {1, · · ·, p},we conclude that there does not exist an x ∈ Q

such that
fi (x)

gi (x)
− (

fi (x∗)
gi (x∗)

) ≤ 0 ∀ i = 1, · · ·, p,

f j (x)

g j (x)
− (

f j (x∗)
g j (x∗)

) < 0 for some j ∈ {1, · · ·, p}.
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Hence, x∗ is an efficient solution to (P).
The important aspect of the proof applying (iii) is that we use the equivalent form

for Definition 2.7 instead. Since B j (·, v j∗) is strictly hybrid (Φ̃, ρ̄, η, ζ, θ)−quasi-
invex at x∗ for Φ̃ increasing and Φ̃(0) = 0, we have

〈

m

j=1v∗
j 
 Hj (x∗) + 
m

j=1v∗
j∇2Hj (x∗)z, η(x, x∗)

〉

− 1

2

〈

m

j=1v∗
j∇2Hj (x∗)z, ζ(x, x∗)

〉
+ ρ̄(x, x∗)‖θ(x, x∗)‖2 < 0. (3.13)

Next, applying (3.13)–(3.15), we arrive at

〈



p
i=1u∗

i [
 fi (x∗) − (
fi (x∗)
gi (x∗)

) 
 gi (x∗)]

+
p∑

i=1

u∗
i [∇2 fi (x∗)z − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)z], η(x, x∗)
〉

− 1

2

〈 p∑
i=1

u∗
i [∇2 fi (x∗)z − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)z], ζ(x, x∗)
〉

> ρ̄(x, x∗)‖θ(x, x∗)‖2 > −ρ(x, x∗)‖θ(x, x∗)‖2. (3.14)

At this stage, since Ei (. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly hybrid (Φ, ρ, η,

ζ, θ)−quasi-invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, we have

Φ
(



p
i=1u∗

i [ fi (x) − (
fi (x∗)
gi (g∗)

)gi (x)] − 

p
i=1u∗

i [ fi (x∗) − (
fi (x∗)
gi (x∗)

)gi (x∗)]
)

≥ 0,

which implies



p
i=1u∗

i [ fi (x) − (
fi (x∗)
gi (x∗)

)gi (x)]

≥ 

p
i=1u∗

i [ fi (x∗) − (
fi (x∗)
gi (x∗)

)gi (x∗)]) = 0.

Thus, we have



p
i=1u∗

i [ fi (x) − (
fi (x∗)
gi (x∗)

)gi (x)] ≥ 0. (3.15)

Since u∗
i > 0 for each i ∈ {1, · · ·, p},we conclude that there does not exist an x ∈ Q

such that
fi (x)

gi (x)
− (

fi (x∗)
gi (x∗)

) ≤ 0 ∀ i = 1, · · ·, p,
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f j (x)

g j (x)
− (

f j (x∗)
g j (x∗)

) < 0 for some j ∈ {1, · · ·, p}.

Hence, x∗ is an efficient solution to (P).
Finally, we prove using (iv) as follows: since x ∈ Q, it follows that Hj (x) ≤

Hj (x∗), which implies Φ̄
(

Hj (x) − Hj (x∗)
)

≤ 0. Then applying the hybrid

(Φ̄, ρ3, η, ζ, θ)−quasi-invexity of Hj at x∗ and v∗ ∈ Rm+ , we have
〈

m

j=1v∗
j 
 Hj (x∗) + 
m

j=1v∗
j∇2Hj (x∗)z, η(x, x∗)

〉

− 1

2

〈

m

j=1v∗
j∇2Hj (x∗)z, ζ(x, x∗)

〉
+ ρ̄(x, x∗)‖θ(x, x∗)‖2 ≤ 0. (3.16)

Since u∗ ≥ 0 and fi (x∗)
gi (x∗) ≥ 0, it follows from the hybrid (Φ, ρ3, η, ζ, θ)−invexity

assumptions that

Φ
(



p
i=1u∗

i [ fi (x) − (
fi (x∗)
gi (x∗)

)gi (x)]
)

= Φ
(



p
i=1u∗

i {[ fi (x) − fi (x∗)] − (
fi (x∗)
gi (x∗)

)[gi (x) − gi (x∗)]}
)

≥ 

p
i=1u∗

i {〈
 fi (x∗) − (
fi (x∗)
gi (x∗)

) 
 gi (x∗)

+ 

p
i=1u∗

i [∇2 fi (x∗)z − (
fi (x∗)
gi (x∗)

)∇2gi (x∗)z, η(x, x∗)〉]

− 1

2
〈
 p

i=1u∗
i [∇2 fi (x∗)z − (

fi (x∗)
gi (x∗)

)∇2gi (x∗)z, ζ(x, x∗)〉]
+ 


p
i=1u∗

i [ρ1(x, x∗) + φ(x∗)ρ2(x, x∗)]‖θ(x, x∗)‖2
≥ −[〈
m

j=1v∗
j 
 Hj (x∗) + 
m

j=1v∗
j∇2Hj (x∗)z, η(x, x∗)

〉

− 1

2
〈
m

j=1v∗
j∇2Hj (x∗)z, ζ(x, x∗)〉

]

+ 

p
i=1u∗

i [ρ1(x, x∗) + φ(x∗)ρ2(x, x∗)]‖θ(x, x∗)‖2
≥ (
m

j=1v∗
jρ3(x, x∗) + 


p
i=1u∗

i [ρ1(x, x∗) + φ(x∗)ρ2(x, x∗)])‖θ(x, x∗)‖2
= (
m

j=1v∗
jρ3 + ρ∗(x, x∗))‖θ(x, x∗)‖2

≥ 0,

where φ(x∗) = fi (x∗)
gi (x∗) and ρ∗ = 


p
i=1u∗

i (ρ1(x, x∗) + φ(x∗)ρ2(x, x∗)).
This implies that

Φ
(



p
i=1u∗

i [ fi (x) − (
fi (x∗)
gi (x∗)

)gi (x)]
)

≥ 0.
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Next we consider the case when the functions are first-order differentiable,
Theorem 3.1 reduces to the result which is similar to the results of Zalmai ([35],
Theorems 3.1, 3.2), and Zalmai and Zhang [38].

Theorem 3.2 For x∗ ∈ Q, let fi , gi for i ∈ {1, · · ·, p} with fi (x∗)
gi (x∗) ≥ 0, gi (x∗) > 0

and Hj for j ∈ {1, · · ·, m} be differentiable at x∗ ∈ Q, and let there exist u∗ ∈ U =
{u ∈ �p : u > 0, 
 p

i=1ui = 1} and v∗ ∈ �m+ such that

〈



p
i=1u∗

i [
 fi (x∗)−(
fi (x∗)
gi (x∗)

)
gi (x∗)]+
m
j=1v∗

j 
Hj (x∗), η(x, x∗))
〉
≥ 0 (3.17)

and
v∗

j H j (x∗) = 0, j ∈ {1, · · ·, m}. (3.18)

Suppose, in addition, that any one of the following assumptions holds (for
ρ(x, x∗) ≥ 0):

(i) Ei (. ; x∗, u∗) ∀ i ∈ {1, ···, p} are first-order hybrid (Φ, ρ, η, θ)−pseudo-invex
at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and B j (. , v∗) ∀ j ∈ {1, · · ·, m} are first-order
hybrid (Φ̄, ρ̄, η, θ)−quasi-invex at x∗ for Φ̄ increasing and Φ̄(0) = 0.

(ii) Ei (. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are first-order hybridprestrictly (Φ, ρ, η, θ)−
pseudo-invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and B j (. , v∗) ∀ j ∈ {1, · · ·, m}
are first-order strictly hybrid (Φ̄, ρ̄, η, θ)−quasi-invex at x∗ for Φ̄ increasing
and Φ̄(0) = 0.

(iii) Ei (. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are first-order prestrictly hybrid (Φ, ρ, η, θ)−
quasi-invex at x∗ Φ(a) ≥ 0 ⇒ a ≥ 0, and B j (. , v∗) ∀ j ∈ {1, · · ·, m} are
first-order strictly hybrid (Φ̄, ρ̄, η, θ)−quasi-invex at x∗ for Φ̄ increasing and
Φ̄(0) = 0.

(iv) For each i ∈ {1, · · ·, p}, fi is first-order hybrid (Φ, ρ1, η, θ)−invex and −gi

is first-order hybrid (Φ, ρ2, η, θ)−invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0.
Hj (. , v∗) ∀ j ∈ {1, · · ·, m} is hybrid (Φ̄, ρ̄3, η, θ)−quasi-invex at x∗,
and 
m

j=1v∗
jρ3(x, x∗) + ρ∗(x, x∗) ≥ 0 for Φ̄ increasing and Φ̄(0) = 0,

ρ∗(x, x∗) = 

p
i=1u∗

i (ρ1(x, x∗) + φ(x∗)ρ2(x, x∗)) and for φ(x∗) = fi (x∗)
gi (x∗) .

Then x∗ is an efficient solution to (P).
We observe that Theorem 3.1 can be further generalized to the case of the

ε−efficient conditions based on the hybrid (Φ, ρ, η, ζ, θ)−invexity frameworks. As
a matter of fact, we generalize the ε−efficient solvability conditions for problem (P)

based on the work of Verma [22], and Kim, Kim and Lee [6], where they have investi-
gated the ε−efficiency as well as the weak ε−efficiency conditions for multiobjective
fractional programming problems under constraint qualifications. We recall some
auxiliary concepts (for the hybrid (Φ, ρ, η, ζ, θ)−invexity) crucial to the problem
on hand.

Definition 3.1 A point x∗ ∈ Q is an ε−efficient solution to (P) if there does not
exist an x ∈ Q such that
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fi (x)

gi (x)
≤ fi (x∗)

gi (x∗)
− εi ∀ i = 1, · · ·, p,

f j (x)

g j (x)
<

f ( j x∗)
g j (x∗)

− ε j for some j ∈ {1, · · ·, p},

where εi=(ε1, · · ·, εp) is with εi ≥ 0 for i = 1, · · ·, p.

For ε = 0, Definition 3.1 reduces to the case that x∗ ∈ Q is an efficient solution
to (P).
Next, we start with real-valued functions Ei (., x∗, u∗) and B j (., v) defined by

Ei (x, x∗, u∗) = ui [ fi (x) −
( fi (x∗)

gi (x∗)
− εi

)
gi (x)], i ∈ {1, · · ·, p}

and
B j (., v∗) = v∗

j H j (x), j = 1, · · ·, m.

Theorem 3.3 Let x∗ ∈ Q, fi , gi for i ∈ {1, ···, p} with fi (x∗) ≥ εi gi (x∗), gi (x∗) >

0 and Hj for j ∈ {1, · · ·, m} be twice continuously differentiable at x∗ ∈ Q, and let
there exist u∗ ∈ U = {u ∈ �p : u > 0, 
 p

i=1ui = 1}, v∗ ∈ �m+ and z ∈ �n such
that



p
i=1u∗

i [∇ fi (x∗) −
( fi (x∗)

gi (x∗)
− εi

)

 gi (x∗)] + 
m

j=1v∗
j 
 Hj (x∗) = 0, (3.19)

〈[ p∑
i=1

u∗
i [∇2 fi (x∗)− (

fi (x∗)
gi (x∗)

−εi )∇2gi (x∗)]+
m∑

j=1

v∗
j∇2Hj (x∗)

]
z, η(x, x∗)

〉
≥ 0,

(3.20)

− 1

2

〈[ p∑
i=1

u∗
i [∇2 fi (x∗) − (

fi (x∗)

gi (x∗)
− εi )∇2gi (x∗)] +

m∑
j=1

v∗
j ∇2H j (x∗)

]
z, ζ(x, x∗)

〉
≥ 0,

(3.21)
and

v∗
j H j (x∗) = 0, j ∈ {1, · · ·, m}. (3.22)

Suppose, in addition, that any one of the following assumptions holds (for
ρ(x, x∗) ≥ 0):

(i) Ei (. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are hybrid (Φ, ρ, η, θ)−pseudo-invex at x∗
for Φ(a) ≥ 0 ⇒ a ≥ 0, and B j (. , v∗) ∀ j ∈ {1, · · ·, m} arehybrid
(Φ̃, ρ̄, η, θ)−quasi-invex at x∗ for Φ̃ increasing and Φ̃(0) = 0.

(ii) Ei (. ; x∗, u∗) ∀ i ∈ {1, ···, p} areprestrictly hybrid (Φ, ρ, η, θ)−pseudo-invex
at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and B j (. , v∗) ∀ j ∈ {1, ···, m} arestrictly hybrid
(Φ, ρ, η, θ)−quasi-invex at x∗ for Φ̄ increasing and Φ̄(0) = 0.
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(iii) Ei (. ; x∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly hybrid (Φ, ρ, η, θ)−quasi-invex
at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and B j (. , v∗) ∀ j ∈ {1, · · ·, m} are strictly
hybrid (Φ̄, ρ̄, η, θ)−quasi-invex at x∗ for Φ̄ increasing and Φ̄(0) = 0.

(iv) For each i∈ {1, ···, p}, fi is hybrid (Φ, ρ1, η, θ)−invex and−gi is (Φ, ρ2, η, θ)−
invex at x∗ for Φ(a) ≥ 0 ⇒ a ≥ 0, and Hj (. , v∗) ∀ j ∈ {1, · · ·, m}
is hybrid (Φ̄, ρ3, η, θ)−quasi-invex at x∗ for Φ̄ increasing and Φ̄(0) =
0 and 
m

j=1v∗
jρ3(x, x∗) + ρ∗(x, x∗) ≥ 0 for ρ∗ = 


p
i=1u∗

i (ρ1(x, x∗) +
φ(x∗)ρ2(x, x∗)), where φ(x∗) = fi (x∗)

gi (x∗) − εi .

Then x∗ is an ε−efficient solution to (P).

Proof The proofs are similar to that of Theorem 3.1.

4 Concluding Remarks

We observe that the higher order hybrid (Φ, ρ, η, ζ, θ)− invexities can effectively
be applied generalizing/unifying the first-order sufficient efficiency condition results
[35], first-order parametric duality model results [36] as well as second order duality
model results (Zalmai [37]) on Hanson-Antczak-type generalized V-invex functions
in semi-infinite multiobjective fractional programming. Based on new duality mod-
els and suitable constraint structures, the weak, strong, and strict converse duality
theorems can be established using appropriate hybrid (Φ, ρ, η, ζ, θ)− invexities.
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A Study of Generalized Invex Functions
on Riemannian Manifold

S. Jana and C. Nahak

Abstract In this article,we introduce (p, r)-invex,ρ−(p, r)-invex, and semistrictly
geodesic η-prequasi invex functions in the setting of Riemannian manifolds. We
construct counter examples to show that these functions generalize the notion of
invexity. We also study the optimality conditions of a minimization problem under
these generalized invexities on Riemannian manifolds.

Keywords Riemannian manifold · Generalized invexity · KKT conditions ·
Nonconvex optimization

1 Introduction

Convexity plays a vital role in the theory of optimization but it is often not enjoyed
by real problems. Therefore, several generalizations have been developed for the
classical properties of convexity. An important and significant generalization of con-
vexity is invexity which was introduced by Hanson [6], in the year 1981. Later on
Zalmai [19] generalized the class of invex functions into ρ − (η, θ)-invex functions.
In 2001, Antczak [3] introduced (p, r)-invex sets and functions. Mandal and Nahak
[10] introduced (p, r)−ρ−(η, θ)-invexity which is a generalization of the results of
both Zalmai [19] and Antczak [3]. Yang and Li [17] introduced semistrictly preinvex
functions on Euclidean spaces.
Rapcsak [14] introduced a generalization of convexity called geodesic convexity
and extended many results of convex analysis and optimization theory from lin-
ear spaces to Riemannian manifolds. Udriste [15] established duality results for
a convex programming problem on Riemannian manifolds. Pini [13] introduced
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the notion of invex functions on a manifold. Motivated by Pini [13], Mititelu
[12] generalized invexity by defining (ρ, η)-invex, (ρ, η)-pseudoinvex, and (ρ, η)-
quasiinvex functions. Mititelu [12] also established the necessary and sufficient con-
ditions of Karush-Kuhn-Tucker type for a vector programming problem defined on a
differentiable manifold. Mond–Weir-type duality for vector programming problems
on differentiable manifolds was developed by Ferrara and Mititelu [5]. The con-
cepts of geodesic invex sets, geodesic invex, and geodesic preinvex functions were
introduced by Barani and Pouryayevali [4] on Riemannian manifolds. Ahmad et al.
[2] extended these results by introducing geodesic η-pre-pseudo invex functions and
geodesic η-prequasi invex functions. Recently, Iqbal et al. [7] defined geodesic E-
convex sets and geodesic E-convex functions. Further, Agarwal et al. [1] introduced
geodesic α-invex sets, geodesic α-invex, and α-preinvex functions. Agarwal et al. [1]
extended the results of Yang and Li by introducing semistrictly geodesic η-preinvex
functions over a Riemannian manifold.
Motivated by the above concepts, we extend (p, r)-invex, ρ − (p, r)-invex functions
from Euclidean spaces to Riemannian manifolds. We introduce the notion of semi-
strictly geodesic η-prequasi invex functions on Riemannian manifolds which extend
semistrictly quasi invex functions introduced by Yang et al. [18]. We have stud-
ied optimality conditions of the nonlinear programming problems on Riemannian
manifolds under these generalized invexity assumptions.

2 Preliminaries

In this section, we recall some definitions concerning Riemannian geometry which
will be used throughout the article. These standardmaterials can be found in [15, 16].
A Riemannian manifold M is a C∞ smooth manifold endowed with a Riemannian
metric < ., . > on the tangent space Tx M and the corresponding norm is denoted by
‖.‖x , where the subscript x will be omitted. The tangent bundle of M is denoted by
T M = ∪x∈M Tx M, which is naturally a manifold. The length of a piecewise smooth
curve γ : [a, b] → M joining x to y such that γ (a) = x and γ (b) = y, is defined
by L(γ ) = ∫ b

a ‖ γ̇ (t) ‖γ (t) dt. We define the distance d between any two points
x, y ∈ M by

d(x, y) = inf{L(γ ) : γ is a piecewise C1 curve joining x to y}.

Then d is a distancewhich induces the original topology on M.On every Riemannian
manifold, there exists exactly one covariant derivation called Levi-Civita connection
denoted by ∇X Y for any vector fields X, Y on M. We recall that a geodesic is a
C∞ smooth path γ whose tangent is parallel along the path γ, that is γ satisfies the
equation ∇ dγ (t)

dt

dγ (t)
dt = 0. A geodesic joining x to y in M is said to be a minimal

geodesic if its length equals d(x, y).
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ARiemannianmanifold is complete if for any x ∈ M all geodesics emanating from x
are defined for all t ∈ R.By the Hopf-Rinow theorem; we know that if M is complete
then any pair of points in M can be joined by a minimal geodesic. Moreover, (M, d)

is a complete metric space and bounded closed subsets are compact.

Definition 1 ([5]) Let F : M → R be a differentiable function. The differential of
F at x , namely dFx : Tx M → TF(x)R ≡ R, is introduced by dFx (v) = dF(x)v,
v ∈ Tx M.

Definition 2 ([14]) A subset K of M is said to be geodesic convex if and only
if for any two points x, y ∈ K , the geodesic joining x to y is contained in K .

That is if γ : [0, 1] → M is a geodesic with x = γ (0) and y = γ (1), then
γ (t) ∈ K , f or 0 ≤ t ≤ 1.

Definition 3 ([14]) A real-valued function f : M → R defined on a geodesic
convex set K is said to be geodesic convex function if and only if for 0 ≤ t ≤ 1,

f (γ (t)) ≤ (1 − t) f (γ (0)) + t f (γ (1)).

We consider now a map η : M × M → T M such that η(x, y) ∈ Ty M for every
x, y ∈ M .

Definition 4 ([4]) Let M be an n-dimensional Riemannian manifold and η : M ×
M → T M be a function such that for every x, y ∈ M, η(x, y) ∈ Ty M.A nonempty
subset S of M is said to be geodesic invex set with respect to η if for every x, y ∈ S,
there exists a unique geodesic γx,y : [0, 1] → M such that

γx,y(0) = y, γ ′
x,y(0) = η(x, y), γx,y(t) ∈ S, ∀t ∈ [0, 1].

Definition 5 ([4]) Let M be an n-dimensional Riemannian manifold and S be an
open subset of M which is geodesic invex with respect to η : M × M → T M. A
function f : S → R is said to be geodesic η-preinvex if ∀x, y ∈ S, we have

f (γx,y(t)) ≤ t f (x) + (1 − t) f (y) ∀t ∈ [0, 1].

If f be differentiable on S. We say that f is geodesic η-invex on S if the following
holds

f (x) − f (y) ≥ d fy(η(x, y)), ∀x, y ∈ S.

Later on Mititelu [12] generalized the above definition as follows.

Definition 6 The differentiable function f is said to be (ρ, η)-invex at y if there
exist an η : M × M → T M and ρ ∈ R such that

∀x ∈ M : f (x) − f (y) ≥ d fy(η(x, y)) + ρd2(x, y).



40 S. Jana and C. Nahak

Definition 7 ([4]) A closed η-path joining the points y and u = αx,y(1) is a set of
the form Pyu = {v : v = α(t) : t ∈ [0, 1]}.
Definition 8 ([2]) Let M be an n-dimensional Riemannian manifold and S be an
open subset of M which is geodesic invex with respect to η : M × M → T M. A
function f : S → R is said to be geodesic η-prequasi invex on S if

f (γx,y(t)) ≤ max{ f (x), f (y)} ∀x, y ∈ S, ∀t ∈ [0, 1].

3 Main Results

3.1 (p,r)-Invexity

In the year 2001, Antczak [3] introduced (p, r)-invex function over R
n which gen-

eralizes the notion of invexity.

Definition 9 (Antczak (2001)) Let f : R
n → R be a differentiable function and

p, r be arbitrary real numbers. The function f is said to be (p, r)-invex with respect
to η : R

n × R
n → R

n at u, if any one of the following conditions holds

1

r
er f (x) ≥ 1

r
er f (u)[1 + r

p
∇ f (u)(epη(x,u) − 1)], f or p = 0, r = 0, (1)

1

r
er f (x) ≥ 1

r
er f (u)[1 + r∇ f (u)η(x, u)], f or p = 0, r = 0, (2)

f (x) − f (u) ≥ 1

p
∇ f (u)(epη(x,u) − 1), f or p = 0, r = 0, (3)

f (x) − f (u) ≥ ∇ f (u)η(x, u), f or p = 0, r = 0. (4)

We introduce the (p, r)-invex function on a Riemannian manifold M . Using (p, r)-
invexity assumptions, we derive optimality conditions for optimization problems on
these spaces.

Definition 10 ([8]) Let M be an n-dimensional Riemannianmanifold and f : M →
R be a differentiable function. Let η be a map η : M × M → T M such that η(x, u) ∈
Tu M for all x, u ∈ M . The exponential map on M is a map expu : Tu M → M and
the differential of the exponential map (dexpu)a : Ta(Tu M) ∼= Tu M → Tc M , where
a = t0η(x, u), t0 ∈ [0, 1], and c ∈ Pxu where Pxu is a closed path joining the point
x and u. Let p, r be arbitrary real numbers. If for all x ∈ M, the relations

1

r
(er( f (x)− f (u)) −1) ≥ 1

p
d fc([(dexpu)a(pη(x, u))]− I), f or p = 0, r = 0, (5)
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1

r
(er( f (x)− f (u)) − 1) ≥ d fu(η(x, u)), f or p = 0, r = 0, (6)

f (x) − f (u) ≥ 1

p
d fc([(dexpu)a(pη(x, u))] − I), f or p = 0, r = 0, (7)

f (x) − f (u) ≥ d fu(η(x, u)), f or p = 0, r = 0, (8)

hold, then f is said to be (p, r)-invex function at u on M. Here I ∈ Tc M such that
for a co-ordinate chart φ, φ(I) = 1, where 1 = (1, 1, ..., 1) ∈ R

n .

Remark 1 We denote the exponential map on the manifold by exp(x) for x ∈ M
and ex for x ∈ R.

Example 1 The circle S can be thought of as the set {(x, y) ∈ R
2 : x2 + y2 = 1}

of the Euclidean space R
2. In the case of the circle S the possible co-ordinate charts

are
U1 = {(x, y) : x > 0} φ1(x, y) = y
U2 = {(x, y) : x < 0} φ2(x, y) = y
U3 = {(x, y) : y > 0} φ3(x, y) = x
U4 = {(x, y) : y < 0} φ4(x, y) = x .

We define a differentiable function on S. Let x = (x1, x2) ∈ S, and f : S → R be
defined by f (x) = x1 + sin x2. Let u = (u1, u2) ∈ S.

The tangent space of S at u is the set Tu S = {v ∈ R
2 : u · v = 0}.

We choose η : S × S → Tu S as η(x, u) = (−u2, u1) ∈ Tu S.

Let a = η(x, u) = (−u2, u1).
We now find d fu(a). We take a chart φ3(−u2, u1) = φ(−u2, u1) = u2 at a and the
identity mapping as a chart ψ at f (a). Here both S and R are of dimension 1. We
now find the Jacobian matrix ψof oφ−1 at φ(a).

d fa(
∂

∂φ
)(ψ) = ∂

∂φ
(ψof ) = ∂

∂φ
( f (−u2, u1)) = ∂

∂u2
(−u2 + sin u1) = −1.

i.e., d fu(η(x, u)) = −1.
Now e f (x)− f (u) − 1 − d fu(η(x, u)) = e f (x)− f (u) − 1 + 1 = e f (x)− f (u) ≥
0,∀x, u ∈ S.
Hence f is (0, 1)-invex on S.

But if we take x = (1/
√
2,−1

√
2) ∈ S, u = (1/

√
2, 1

√
2) ∈ S.

Then f (x) − f (u) = 1/
√
2 − sin 1/

√
2 − 1/

√
2 − sin 1/

√
2 = −1.299 and

d fu(η(x, u)) = −1. Hence f (x) − f (u) ≤ d fu(η(x, u)), i.e., f is not invex on S.

Sufficient Optimality Conditions

In recent years, many traditional optimization methods have been successfully
generalized to minimize objective functions on manifolds. Mititelu [12] established
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necessary and sufficient conditions of Karush-Kuhn-Tucker (KKT) [11] type for a
vector programming problem on differentiable manifolds. Consider the following
primal optimization problem on a Riemannian manifold M
(P) Minimize f (x)

subject to gi (x) ≤ 0, i = 1, ..., m,

where f : M → R, gi : M → R, i = 1, ..., m, are differentiable functions. Let D
denote the set of all feasible solutions of (P).
Let x̄ ∈ D be an optimal solution of (P) and we define the set J ◦ = { j ∈ 1, ..., m :
g j (x̄) = 0}. Suppose that the domainD satisfies the following constraint qualification
at x̄ :

R(x̄) : ∃v ∈ T M : d(gJ ◦)x̄ (v) ≤ 0.

Here d(gJ ◦)x̄ (v) is the vector components of d(g j )x̄ (v), ∀ j ∈ J ◦, taken in increasing
order of j .

Lemma 1 (Necessary Karush-Kuhn-Tucker (KKT) condition) [12] If a feasible
point x̄ ∈ M is an optimal solution of the problem (P) and satisfies the constraint
qualification R(x̄), then there exists multiplier ξ = (ξ1, ..., ξm)T ∈ R

m, such that
the following conditions hold

d fx̄ + ξ T dgx̄ = 0, (9)

ξ T g(x̄) = 0, (10)

ξ ≥ 0, i = 1, 2, ..., m, (11)

here g = (g1, g2, ..., gm)T .

Theorem 1 (Sufficient Optimality Condition)Assume that a point x̄ ∈ M is feasible
for problem (P), and let the KKT conditions (9)–(11) be satisfied at (x̄, ξ). If the
objective function f and the function ξ T g are (p, r)-invex with respect to the same
function η at x̄ on D, then x̄ is a global minimum point of the problem (P).

Proof Let x be a feasible point for the problem (P). Since f and ξ T g are (p, r)-invex
with respect to the same function η at x̄ on D, ∀x , x̄ ∈ D, we have,

1

r
(er( f (x)− f (x̄)) − 1) ≥ 1

p
d fx̄ (d(expx̄ (pη(x, x̄))) − I), (12)

1

r
(er(ξT g(x)−ξT g(x̄)) − 1) ≥ ξ T

p
dgx̄ (d(expx̄ (pη(x, x̄))) − I). (13)

Adding (12) and (13), we have

1

r
[(er( f (x)− f (x̄))−1+er(ξT g(x)−ξT g(x̄))−1] ≥ 1

p
(d fx̄ +ξT dgx̄ )(d(expx̄ (pη(x, x̄)))−I),
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and by KKT condition (9), we have

1

r
(er( f (x)− f (x̄)) − 1) ≥ 1

r
(1 − er(ξT g(x)−ξT g(x̄))),

or, by KKT condition (10)

1

r
(er( f (x)− f (x̄)) − 1) ≥ 1

r
(1 − er(ξT g(x))).

Without loss of generality, let r > 0 (in the case when r < 0 the proof is analogous;
one should change only the direction of some inequalities below to the opposite one).
Since x is a feasible point of (P), then g(x) ≤ 0 and ξ ≥ 0 imply that 1−erξT g(x) ≥ 0
and er( f (x)− f (x̄)) ≥ 1.
Hence f (x) ≥ f (x̄). Therefore, x̄ is an optimal solution of the problem (P).

3.2 ρ-(p,r)-Invexity

Definition 11 (Mandal and Nahak (2011)) Let f : R
n → R be a differentiable

function and p, r be arbitrary real numbers, ρ ∈ R. The function f is said to be
(p, r) − ρ − (η, θ)-invex with respect to η, θ : R

n × R
n → R

n at u, if any one of
the following conditions holds

1

r
(er( f (x)− f (u)) −1) ≥ 1

p
∇ f (u)(epη(x,u) −1)]+ρ‖θ(x, u)‖2, f or p = 0, r = 0,

(14)
1

r
(er( f (x)− f (u)) − 1) ≥ ∇ f (u)η(x, u) + ρ‖θ(x, u)‖2, f or p = 0, r = 0, (15)

f (x) − f (u) ≥ 1

p
∇ f (u)(epη(x,u) − 1) + ρ‖θ(x, u)‖2, f or p = 0, r = 0, (16)

f (x) − f (u) ≥ ∇ f (u)η(x, u) + ρ‖θ(x, u)‖2, f or p = 0, r = 0. (17)

Here the exponentials appearing on the right-hand sides of inequalities above are
understood to be taken componentwise and 1 = (1, 1, ..., 1).
Motivated by the (p, r)−ρ−(η, θ)-invex function, we introduce the ρ−(p, r)-invex
function and study the sufficient optimality conditions for optimization problems
defined on a Riemannian manifold.

Definition 12 ([9]) Let M be an n-dimensional Riemannianmanifold and f : M →
R be a differentiable function. Let η be a map η : M × M → T M such that η(x, u) ∈
Tu M for all x, u ∈ M . The exponential map on M is a map expu : Tu M → M and
the differential of the exponential map (dexpu)a : Ta(Tu M) ∼= Tu M → Tc M , where
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a = t0η(x, u), t0 ∈ [0, 1], and c ∈ Pxu where Pxu is a closed path joining the point
x and u. Let p, r , and ρ be arbitrary real numbers. If for all x ∈ M, the relations

1

r
(er( f (x)− f (u)) − 1) ≥ 1

p
d fc([(dexpu)a(pη(x, u))] − I) + ρd2(x, u), f or p = 0, r = 0,

(18)

1

r
(er( f (x)− f (u)) − 1) ≥ d fu(η(x, u)) + ρd2(x, u), f or p = 0, r = 0, (19)

f (x) − f (u) ≥ 1

p
d fc([(dexpu)a(pη(x, u))] − I) + ρd2(x, u), f or p = 0, r = 0,

(20)
f (x) − f (u) ≥ d fu(η(x, u)) + ρd2(x, u), f or p = 0, r = 0, (21)

hold, then f is said to be ρ − (p, r)-invex function at u on M. Here I ∈ Tc M such
that for a co-ordinate chart φ, φ(I) = 1, where 1 = (1, 1, ..., 1).

Note

1. If ρ > 0, then we call the functions as “strongly ρ − (p, r)-invex” functions.
2. If ρ = 0, then the functions reduce to “(p, r)-invex” functions.
3. If ρ < 0, then we call the functions as “weakly ρ − (p, r)-invex” functions.

It is clear that every strongly ρ − (p, r)-invex function is (p, r)-invex but weakly
ρ − (p, r)-invex function is not (p, r)-invex in general. We construct the following
counter example.

Example 2 We consider the circle S = {(x, y) ∈ R
2 : x2 + y2 = 182} of the

Euclidean space R
2. In the case of the circle S the possible co-ordinate charts are

U1 = {(x, y) : x > 0} φ1(x, y) = y
U2 = {(x, y) : x < 0} φ2(x, y) = y
U3 = {(x, y) : y > 0} φ3(x, y) = x
U4 = {(x, y) : y < 0} φ4(x, y) = x .

Let x = (x1, x2) ∈ S and we define a differentiable function f on S by f : S →
R, f (x) = −x1 + cos x2. Let u = (u1, u2) ∈ S and the angle between x and u is
θ◦, (θ ≥ 1).
Hence d(x, u) = 2π×18θ

360 = 11θ
35 = .3143θ.

The tangent space of S at u is the set Tu S = {v ∈ R
2 : u · v = 0}.

We choose η : S × S → Tu S as η(x, u) = (−u2, u1) ∈ Tu S.

Let a = η(x, u) = (−u2, u1).

We now find d fu(a). We take a chart φ3(−u2, u1) = φ(−u2, u1) = u2 at a and the
identity mapping as a chart ψ at f (a). Here both S and R are of dimension 1. We
now find the Jacobian matrix ψof oφ−1 at φ(a).

d fa(
∂

∂φ
)(ψ) = ∂

∂φ
(ψof ) = ∂

∂φ
( f (−u2, u1)) = ∂

∂u2
(u2 + cos u1) = 1.
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i.e., d fu(η(x, u)) = 1.
Now e f (x)− f (u)−1−d fu(η(x, u))−ρd2(x, u) = e f (x)− f (u)−1−1−(0.3143)2ρθ2

> −2 − .0987ρθ2 (since e f (x)− f (u) > 0).
If we take ρ = −50, then e f (x)− f (u) − 1 − d fu(η(x, u)) − ρd2(x, u) > −2 +
4.935θ2 > 0, ∀x, u ∈ S (we take θ ≥ 1). Hence f is ((-50)-(0,1))-invex on S, i.e.,
f is weakly 50 − (0, 1)-invex.
But if we take x = (15, 3

√
11) ∈ S, u = (15,−3

√
11) ∈ S,

then e f (x)− f (u) −1−d fu(η(x, u)) = 1−1−1 = −1 < 0, i.e., f is not (0,1)-invex
on S.

Sufficient Optimality Conditions

We now consider the optimization problem (P) and prove the sufficient optimality
conditions.

Theorem 2 (Sufficient Optimality Condition)Assume that a point x̄ ∈ M is feasible
for problem (P), and let the KKT conditions (9)–(11) be satisfied at (x̄, ξ). If the
objective function f and the function ξ T g are ρ1 − (p, r)-invex and ρ2 − (p, r)-
invex, respectively, at x̄ on D with respect to the same function η with (ρ1 +ρ2) ≥ 0,
then x̄ is an optimal solution of the problem (P).

Proof Let x be a feasible point for the problem (P). Since f and ξ T g are ρ1−(p, r)-
invex and ρ2− (p, r)-invex, respectively, at x̄ on D with respect to the same function
η, ∀x ∈ D, we have

1

r
(er( f (x)− f (x̄)) − 1) ≥ 1

p
d fx̄ (d(expx̄ (pη(x, x̄))) − I) + ρ1d

2(x, x̄), (22)

1

r
(er(ξT g(x)−ξT g(x̄)) − 1) ≥ ξ T

p
dgx̄ (d(expx̄ (pη(x, x̄))) − I) + ρ2d

2(x, x̄). (23)

Adding (22) and (25) we have

1

r
[(er( f (x)− f (x̄)) − 1 + er(ξT g(x)−ξT g(x̄)) − 1)] ≥ 1

p
(d fx̄ + ξ T dgx̄ )(d(expu(pη(x, x̄))) − I)

+ (ρ1 + ρ2)d
2(x, x̄).

By KKT conditions and as (ρ1 + ρ2) ≥ 0, we have

1

r
[(er( f (x)− f (x̄)) − 1] ≥ 1

r
(1 − er(ξT g(x))). (24)

Without loss of generality, let r > 0 (in the case when r < 0 the proof is analogous;
one should change only the direction of some inequalities below to the opposite one).
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Since x is a feasible solution of the problem (P), then g(x) ≤ 0 and ξ ≥ 0 imply
that (1 − er(ξT g(x))) ≥ 0. From which we get er( f (x)− f (x̄)) ≥ 1.
Hence f (x) ≥ f (x̄) holds for all feasible x ∈ D of the problem (P). Therefore, x̄ is
an optimal solution of the problem (P).

3.3 Semistrictly Geodesic η-prequasi Invex Functions

In this section, the notion of semistrictly geodesic η-prequasi invex functions is
introduced and their properties are studied. Throughout the section, M denotes a
finite dimensional Riemannian manifold.

Definition 13 Let S be an open subset of M which is geodesic invex with respect
to η : M × M → T M. A function f : S → R is said to be semistrictly geodesic
η-prequasi invex if ∀x, y ∈ S, f (x) = f (y), we have

f (γx,y(t)) < max{ f (x), f (y)} ∀t ∈ (0, 1).

We show by an example that semistrictly geodesic η-prequasi invex function need
not be geodesic η-prequasi invex function [2].

Example: Let M = {eiθ = | − π ≤ θ < π} and S = {eiθ = | − π
2 < θ < π

2 }.
Then S is an open set in M. Let x, y ∈ S, where x = eiθ1 , y = eiθ2 , and η(x, y) =
(θ2 − θ1)(sin θ2,− cos θ2).

We define a geodesic on M as γx,y : [0, 1] → M such that γx,y(t) = (cos((1 −
t)θ2 + tθ1), sin((1 − t)θ2 + tθ1)). Clearly

γx,y(0) = y, γ
′
x,y(0) = η(x, y), γx,y(t) ∈ S, ∀t ∈ [0, 1].

Hence S is a geodesic invex set in M.

Now we define f : S → R by

f (x) =
{
1, if θ = 0,
0, otherwise.

Then ∀x, y ∈ S, f (x) = f (y), we have

f (γx,y(t)) < max{ f (x), f (y)} ∀t ∈ (0, 1).

i.e., f is semistrictly geodesic η-prequasi invex function.
Let θ1 = π

4 , θ2 = −π
4 , t = 1

2 , then
f (γx,y(t)) = f (cos( 12θ2 + 1

2θ1), sin(
1
2θ2 + 1

2θ1)) = f (cos 0, sin 0) = 1

≮ max{ f (e
iπ
4 ), f (e− iπ

4 )} = 0.
Hence f is not geodesic η-prequasi invex function.
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Theorem 3 Let S be a nonempty geodesic invex subset of M with respect to η :
M × M → T M and f : M → R be a semistrictly geodesic η-prequasi invex
function. If x̄ ∈ S is a local optimal solution to the problem

(M P) min
x∈S

f (x)

then x̄ is a global minimum of (MP).

Proof let x̄ ∈ S be a local minimum of (MP). Then there is a neighborhood Nε(x̄)

of x̄ such that
f (x̄) ≤ f (x) ∀x ∈ S ∩ Nε(x̄). (25)

If possible let x̄ is not a global minimum of f then there exists a point x∗ ∈ S such
that f (x∗) ≤ f (x̄).

Since S is a geodesic invex set with respect to η, there exists exactly one geodesic
γx∗,x̄ joining x∗, x̄ such that

γx∗,x̄ (0) = x̄, γ
′
x∗,x̄ (0) = η(x∗, x̄), γx∗,x̄ (t) ∈ S ∀t ∈ [0, 1].

Let us choose ε > 0 small enough such that d(γx∗,x̄ (t), x̄) < ε, then γx∗,x̄ (t) ∈
Nε(x̄).

Since f is semistrictly geodesic η-prequasi invex function, we have

f (γx∗,x̄ (t)) < max{ f (x∗), f (x̄)} ∀t ∈ (0, 1).

i.e., for all γx∗,x̄ (t) ∈ S ∩ Nε(x̄), we have f (γx∗,x̄ (t)) < f (x̄), which is a contra-
diction to (25).
Hence x̄ is a global minimum of (MP).

4 Conclusions

The notions of (p, r)-invex and ρ − (p, r)-invex functions on Riemannian mani-
folds are introduced in this paper which generalizes invex functions. We establish
optimality conditions under these generalized invexity assumptions for a general non-
linear programming problem that is built upon on Riemannian manifolds. We extend
the notion of semistrictly prequasi invex functions from Euclidean spaces to Rie-
mannian manifolds by introducing semistrictly geodesic η-prequasi invex functions.
We hope that our results give a new direction to the researchers in this interesting
area of research. Variational and control problems on Riemannian manifolds under
geodesic η-invexity will orient the future study of the authors.
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Second-order Symmetric Duality
and Variational Problems

Saroj Kumar Padhan, Pramod Kumar Behera and R.N. Mohapatra

Abstract The concept of second-order symmetric duality of the variational problem
is studied in the present investigation. Appropriate duality results for a pair of second-
order symmetric variational problems are established under generalized invexity
assumptions. It is observed that some of the known results in the literature are the
particular cases of our work.

Keywords Second-order symmetric duality · Variational problem · Generalized
invexity · Weak duality · Strong duality · Converse duality
Mathematics Subject Classifications: 65K05 · 65K10 · 65K99

1 Introduction

In general nonlinear programming problems, the dual of a dual need not be the orig-
inal primal. So, the concept of symmetric duality in general nonlinear programming
was introduced by Dorn [3], where the dual of the dual is always the original primal.
Gulati et al. [4] established theMond-Weir type symmetric duality for multiobjective
variational problems and proved the desired duality results under generalized con-
vexity assumptions. Kim and Lee [8] formulated a pair of multiobjective generalized
nonlinear symmetric dual variational problems involving vector valued functions
which unify the Wolfe and Mond-Weir type duals. They also observed that various
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known results are the particular cases of their work. Symmetric dual for the multiob-
jective fractional variational problems with partial invexity was studied by Xiuhong
[17]. Kassem [7] introduced a new class of generalized cone-pseudo convex func-
tions and strongly cone-pseudo convex functions and established different duality
theorems. A variety of duality theorems for variational problems and symmetric
mathematical programming problems have appeared in the literature (Husain and
Zabeen [6], Husain et al. [5], Lotfi et al. [10], Padhan and Nahak [11, 12], Suneja
and Louhan [15], Verma [16]). There are many problems in real-life situations for
which the first-order dual has no solution, while the second-order dual has a solu-
tion. Again, convexity assumptions make the solution of an optimization problem
relatively easy and assure global optimal results. But there are many optimization
problems which contain nonconvex objective functions. To minimize a vector of
functionals of curvilinear integral type, Pitea and Postolache [13] considered a new
class of multitime multiobjective variational problems. They established duals of
Mond-Weir type and generalized Mond-Weir-Zalmai type, based on the normal effi-
ciency conditions for multitime multiobjective variational problems. Desired duality
results were also studied under (ρ, b)-quasiinvexity assumptions. Recently, Ahmed
et al. [1] proved results on mixed type symmetric duality for multiobjective varia-
tional problems with cone constraints. Moreover, the variational problems have been
given special attention in the optimization theory which is concerned with problems
involving infinite dimensional spaces. To the best of our knowledge, no one has
studied the second-order symmetric duality for variational problems.

In this paper, we develop the concept of second-order symmetric duality of the
variational problem and obtained duality results for a pair of symmetric variational
problem under generalized invexity assumptions. The results proved by Smart and
Mond [14] and Kim and Lee [9] are the particular cases of this paper.

2 Notation and Preliminaries

Let I = [a, b] be an interval (through out) and f : I ×R
n ×R

n ×R
m ×R

m → R.
Consider the real valued function f (t, x, ẋ, y, ẏ), where t ∈ I , x : I → R

n ,
y : I → R

m and ẋ, ẏ denote the derivatives of x and y, respectively, with respect
to t . Assume that f has continuous fourth-order partial derivatives with respect to
x, y, ẋ and ẏ. Notational distinction is not considered between row and column
vectors. Denote the first partial derivatives of f with respect to x , and ẋ by fx and
fẋ , respectively, that is,

fx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂ f
∂x1
∂ f
∂x2
.

.

.
∂ f
∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, fẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂ f
∂ ẋ1
∂ f
∂ ẋ2
.

.

.
∂ f
∂ ẋn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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fxx , the n × n Hessian matrix of f with respect to x , is defined as

fxx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2 f

∂x1∂x1

∂2 f

∂x1∂x2
. . .

∂2 f
∂x1∂xn

∂2 f

∂x2∂x1

∂2 f

∂x2∂x2
. . .

∂2 f
∂x2∂xn

. . . . . .

. . . . . .

. . . . . .

∂2 f

∂xn∂x1

∂2 f

∂xn∂x2
. . .

∂2 f
∂xn∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Similarly fx ẋ , fẋ ẋ , fy , fyy, f ẏ , fy ẏ , and f ẏ ẏ are also defined.
Consider the variational problem

(VP) min
∫ b

a
f (t, x(t), ẋ(t)) dt, (1)

subject to

g (t, x(t), ẋ(t)) ≤ 0, (2)

x(a) = γ1, x(b) = γ2; ẋ(a) = δ1, ẋ(b) = δ2, (3)

where f and g are twice continuously differentiable functions from I × R
n × R

n

into R and R
m , respectively.

Lemma 2.1 [2] If (VP) attains a local (or global) minimum at x̄ ∈ S, then there
exist Lagrange multiplier τ ∈ R and piecewise smooth λ : I → R

m such that,

τ fx (t, x̄(t), ˙̄x(t)) + gx (t, x̄(t), ˙̄x(t))T λ(t)

= d

dt
[τ fẋ (t, x̄(t), ˙̄x(t)) + gẋ (t, x̄(t), ˙̄x(t))T λ(t)], t ∈ I (4)

λ(t)T g(t, x̄(t), ˙̄x(t)) = 0, t ∈ I (5)

(τ, λ(t)T ) ≥ 0, t ∈ I. (6)

Remark 2.1 Equations (4), (5) and (6) give the Fritz-John necessary conditions for
(V P), and they become Kuhn-Tucker conditions if τ = 1.
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Definitions of invexity:
Definition 2.1 The functional

∫ b
a f (t, ., ., ., .)dt is said to be second-order ρ1 −

(η, θ)−invex in x and ẋ if for each v : I → R
m , with v̇ is piecewise smooth, there

exist functions η : I ×R
n ×R

n ×R
n ×R

n → R
n , θ : I ×R

n ×R
n ×R

m ×R
m → R

and ρ1 ∈ R, such that

∫ b

a
f (t, x, ẋ, v, v̇)dt −

∫ b

a
f (t, u, u̇, v, v̇)dt

≥
∫ b

a

{
η(t, x, ẋ, u, u̇)

[
fx (t, u, u̇, v, v̇) − d

dt
fẋ (t, u, u̇, v, v̇)

]

+ 1

2
η(t, x, ẋ, u, u̇)

[
fxx (t, u, u̇, v, v̇) − 2

d

dt
fx ẋ (t, u, u̇, v, v̇)

+ d2

dt2
fẋ ẋ (t, u, u̇, v, v̇)

]
u(t) + ρ1|θ(t, x, u, y, v)|2}dt,

for all x : I → R
n , u : I → R

n with (ẋ, u̇) piecewise smooth on I .

Definition 2.2 The functional − ∫ b
a f (t, ., ., ., .)dt is said to be second-order ρ2 −

(ξ, θ)−invex in y and ẏ if for each x : I → R
n , with ẋ is piecewise smooth, there

exist functions ξ : I ×R
m ×R

m ×R
m ×R

m → R
m , θ : I ×R

n ×R
n ×R

m ×R
m → R

and ρ2 ∈ R, such that

−
∫ b

a

[
f (t, x, ẋ, v, v̇) − f (t, x, ẋ, y, ẏ)

]
dt

≥ −
∫ b

a

{
ξ(t, v, v̇, y, ẏ)

[
fy(t, x, ẋ, y, ẏ) − d

dt
f ẏ(t, x, ẋ, y, ẏ)

]

+ 1

2
ξ(t, v, v̇, y, ẏ)

[
fyy(t, x, ẋ, y, ẏ) − 2

d

dt
fy ẏ(t, x, ẋ, y, ẏ)

+ d2

dt2
f ẏ ẏ(t, x, ẋ, y, ẏ)

]
y(t) + ρ2|θ(t, x, u, y, v)|2}dt,

for all v : I → R
m , y : I → R

m with (v̇, ẏ) piecewise smooth on I .

Note: Throughout the paper, ρ1− (η, θ)−invex means invexity with respect to x and
ẋ . Again ρ2 − (ξ, θ)−invex means invexity with respect to y and ẏ.

3 Symmetric Duality

We formulate the following pair of second-order symmetric nonlinear variational
primal problems, where (ẋ(t), ẏ(t)) is piecewise smooth.
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(SSVP) min
∫ b

a

{
f (t, x, ẋ, y, ẏ) − y(t) fy(t, x, ẋ, y, ẏ) + y(t)

d

dt
f ẏ(t, x, ẋ, y, ẏ) −

1

2
y(t)[ fyy(t, x, ẋ, y, ẏ) − 2

d

dt
fy ẏ(t, x, ẋ, y, ẏ) + d2

dt2
f ẏ ẏ(t, x, ẋ, y, ẏ)]y(t)

}
dt

subject to x(a) = x0, x(b) = x1, y(a) = y0, y(b) = y1, (7)

fy(t, x, ẋ, y, ẏ) − d

dt
f ẏ(t, x, ẋ, y, ẏ) + [ fyy(t, x, ẋ, y, ẏ)

− 2
d

dt
fy ẏ(t, x, ẋ, y, ẏ) + d2

dt2
f ẏ ẏ(t, x, ẋ, y, ẏ)]y(t) ≤ 0, (8)

x(t) ≥ 0. (9)

(SSVD) max
∫ b

a

{
f (t, u, u̇, v, v̇) − u(t) fx (t, u, u̇, v, v̇) + u(t)

d

dt
fẋ (t, u, u̇, v, v̇) −

1

2
u(t)[ fxx (t, u, u̇, v, v̇) − 2

d

dt
fx ẋ (t, u, u̇, v, v̇) + d2

dt2
fẋ ẋ (t, u, u̇, v, v̇)]u(t)

}
dt

subject to u(a) = u0, u(b) = u1, v(a) = v0, v(b) = v1, (10)

fx (t, u, u̇, v, v̇) − d

dt
fẋ (t, u, u̇, v, v̇) + [ fxx (t, u, u̇, v, v̇)

− 2
d

dt
fx ẋ (t, u, u̇, v, v̇) + d2

dt2
fẋ ẋ (t, u, u̇, v, v̇)]u(t) ≥ 0, (11)

v(t) ≥ 0, (12)

where inequalities (3) and (11) may not satisfy at the corners of (ẋ(t), ẏ(t)) and
(u̇(t), v̇(t)), respectively, but must be satisfied for unique right- and left- hand limits.

Theorem 3.1 (Weak Duality) Let (x, y) and (u, v) be the feasible solutions of
(SSVP) and (SSVD), respectively. Suppose

∫ b
a f (t, ., ., ., .)dt and − ∫ b

a
f (t, ., ., ., .)dt are second-order ρ1 − (η, θ)−invex and second-order ρ2 − (ξ, θ)−
invex functions, respectively, with respect to the same function θ , and ρ2 − ρ1 ≥ 0.
Also assume that η(t, x, ẋ, u, u̇) + u(t) ≥ 0 and ξ(t, v, v̇, y, ẏ) + y(t) ≥ 0 (except
perhaps at the corner of (ẋ(t), ẏ(t)) and (u̇(t), v̇(t), respectively, but must be sat-
isfied for unique right- and left- hand limits). Then the following inequality holds
between the primal (SSVP) and the dual (SSVD),
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∫ b

a
{ f (t, x, ẋ, y, ẏ) − y(t) fy(t, x, ẋ, y, ẏ) + y(t)

d

dt
f ẏ(t, x, ẋ, y, ẏ)

− 1

2
y(t)[ fyy(t, x, ẋ, y, ẏ)

− 2
d

dt
fy ẏ(t, x, ẋ, y, ẏ) + d2

dt2
f ẏ ẏ(t, x, ẋ, y, ẏ)]y(t)}dt

≥
∫ b

a
{ f (t, u, u̇, v, v̇) − u(t) fx (t, u, u̇, v, v̇)

+ u(t)
d

dt
fẋ (t, u, u̇, v, v̇) − 1

2
u(t)[ fxx (t, u, u̇, v, v̇)

− 2
d

dt
fx ẋ (t, u, u̇, v, v̇) + d2

dt2
fẋ ẋ (t, u, u̇, v, v̇)]u(t)}dt.

Proof By the assumptions of second-orderρ1−(η, θ)−invexity of
∫ b

a f (t, ., ., ., .)dt

and second-order ρ2 − (ξ, θ)−invexity of − ∫ b
a f (t, ., ., ., .)dt , we have

∫ b

a
f (t, x, ẋ, y, ẏ)dt −

∫ b

a
f (t, u, u̇, v, v̇)dt

≥
∫ b

a
{η(t, x, ẋ, u, u̇)

[
fx (t, u, u̇, v, v̇) − d

dt
fẋ (t, u, u̇, v, v̇)

]

+ 1

2
η(t, x, ẋ, u, u̇)[ fxx (t, u, u̇, v, v̇)

− 2
d

dt
fx ẋ (t, u, u̇, v, v̇) + d2

dt2
fẋ ẋ (t, u, u̇, v, v̇)]u(t)}dt

− ξ(t, v, v̇, y, ẏ)
[

fy(t, x, ẋ, y, ẏ)

− d

dt
f ẏ(t, x, ẋ, y, ẏ)

] − 1

2
ξ(t, v, v̇, y, ẏ)[ fyy(t, x, ẋ, y, ẏ)

− 2
d

dt
fy ẏ(t, x, ẋ, y, ẏ)

+ d2

dt2
f ẏ ẏ(t, x, ẋ, y, ẏ)]y(t) + (ρ1 − ρ2)|θ(t, x, u, y, v)|2}dt

(13)

Now using the assumptions η(t, x, ẋ, u, u̇) + u(t) ≥ 0, ξ(t, v, v̇, y, ẏ) + y(t) ≥ 0
and ρ2 − ρ1 ≥ 0, inequality (13) becomes
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∫ b

a
f (t, x, ẋ, y, ẏ)dt −

∫ b

a
f (t, u, u̇, v, v̇)dt

≥
∫ b

a
{−u(t)

[
fx (t, u, u̇, v, v̇) − d

dt
fẋ (t, u, u̇, v, v̇)

] − 1

2
u(t)[ fxx (t, u, u̇, v, v̇)

− 2
d

dt
fx ẋ (t, u, u̇, v, v̇) + d2

dt2
fẋ ẋ (t, u, u̇, v, v̇)]u(t)}dt + y(t)

[
fy(t, x, ẋ, y, ẏ)

− d

dt
f ẏ(t, x, ẋ, y, ẏ)

] + 1

2
y(t)[ fyy(t, x, ẋ, y, ẏ) − 2

d

dt
fy ẏ(t, x, ẋ, y, ẏ)

+ d2

dt2
f ẏ ẏ(t, x, ẋ, y, ẏ)]y(t)}dt

⇒
∫ b

a
{ f (t, x, ẋ, y, ẏ) − y(t) fy(t, x, ẋ, y, ẏ) + y(t)

d

dt
f ẏ(t, x, ẋ, y, ẏ) − 1

2
y(t)[ fyy(t, x, ẋ, y, ẏ)

− 2
d

dt
fy ẏ(t, x, ẋ, y, ẏ) + d2

dt2
f ẏ ẏ(t, x, ẋ, y, ẏ)]y(t)}dt

≥
∫ b

a
{ f (t, u, u̇, v, v̇) − u(t) fx (t, u, u̇, v, v̇) + u(t)

d

dt
fẋ (t, u, u̇, v, v̇) − 1

2
u(t)[ fxx (t, u, u̇, v, v̇)

− 2
d

dt
fx ẋ (t, u, u̇, v, v̇) + d2

dt2
fẋ ẋ (t, u, u̇, v, v̇)]u(t)}dt.

�

Theorem 3.2 (StrongDuality) Let (x, y) be an optimal solution of (SSVP). Suppose∫ b
a f (t, ., ., ., .)dt and − ∫ b

a f (t, ., ., ., .)dt are second-order ρ1− (η, θ)− invex and
second-order ρ2 − (ξ, θ)− invex functions, respectively, with respect to the same
functions θ , and ρ2 − ρ1 ≥ 0. Also the weak duality Theorem 3.1 holds between
(SSVP) and (SSVD). Then (x(t), y(t) = 0) is an optimal solution of (SSVD), and
the optimal values of (SSVP) and (SSVD) are equal.

Proof (x, y) is an optimal solution of (SSVP). Using Lemma 2.1, it can be eas-
ily shown that (x(t), y(t) = 0) satisfies all the constraints of (SSVD). Again
weak duality Theorem 3.1 shows that (x(t), y(t) = 0) is an optimal solution of
(SSVD). �

Theorem 3.3 (Converse Duality) Let (u, v) be an optimal solution of (SSVD). Sup-
pose

∫ b
a f (t, ., ., ., .)dt and − ∫ b

a f (t, ., ., ., .)dt are second-order ρ1−(η, θ)−invex
and second-order ρ2 − (ξ, θ)−invex functions, respectively, with respect to the same
functions θ , and ρ2 − ρ1 ≥ 0. Again the weak duality Theorem 3.1 holds between
(SSVP) and (SSVD). Further, assume that
(i) u(t) ≤ 0 and fuu(t, u, u̇, v, v̇) − 2 d

dt fuu̇(t, u, u̇, v, v̇) + d2

dt2
fu̇u̇(t, u, u̇, v, v̇) ≤ 0,

(ii) v(t) ≤ 0 and fvv(t, u, u̇, v, v̇) − 2 d
dt fvv̇(t, u, u̇, v, v̇) + d2

dt2
fv̇v̇(t, u, u̇, v, v̇) ≤ 0.

Then (u, v) is an optimal solution of (SSVP).

Proof Suppose (u, v) is not anoptimal solutionof (SSVP). Then there exists a feasible
solution (x, y) such that



56 S.K. Padhan et al.

∫ b

a
{ f (t, x, ẋ, y, ẏ) − y(t) fy(t, x, ẋ, y, ẏ) + y(t)

d

dt
f ẏ(t, x, ẋ, y, ẏ) − 1

2
y(t)[ fyy(t, x, ẋ, y, ẏ)

− 2
d

dt
fy ẏ(t, x, ẋ, y, ẏ) + d2

dt2
f ẏ ẏ(t, x, ẋ, y, ẏ)]y(t)}dt

<

∫ b

a
{ f (t, u, u̇, v, v̇) − v(t) fv(t, u, u̇, v, v̇) + v(t)

d

dt
fẋ (vt, u, u̇, v, v̇) − 1

2
v(t)[ fvv(t, u, u̇, v, v̇)

− 2
d

dt
fvv̇(t, u, u̇, v, v̇) + d2

dt2
fv̇v̇(t, u, u̇, v, v̇)]v(t)}dt. (14)

Now by the assumptions of second-order ρ1 − (η, θ)−invexity of
∫ b

a f (t, ., ., ., .)dt ,

second-orderρ2−(ξ, θ)−invexity of− ∫ b
a f (t, ., ., ., .)dt andweak duality Theorem

3.1, we have

∫ b

a
{ f (t, x, ẋ, y, ẏ) − y(t) fy(t, x, ẋ, y, ẏ) + y(t)

d

dt
f ẏ(t, x, ẋ, y, ẏ) − 1

2
y(t)[ fyy(t, x, ẋ, y, ẏ)

− 2
d

dt
fy ẏ(t, x, ẋ, y, ẏ) + d2

dt2
f ẏ ẏ(t, x, ẋ, y, ẏ)]y(t)}dt

−
∫ b

a
{ f (t, u, u̇, v, v̇) − v(t) fv(t, u, u̇, v, v̇) + v(t)

d

dt
fẋ (vt, u, u̇, v, v̇) − 1

2
v(t)[ fvv(t, u, u̇, v, v̇)

− 2
d

dt
fvv̇(t, u, u̇, v, v̇) + d2

dt2
fv̇v̇(t, u, u̇, v, v̇)]v(t)}dt.

≥
∫ b

a
{ f (t, u, u̇, v, v̇) − u(t) fu(t, u, u̇, v, v̇) + u(t)

d

dt
fu̇(t, u, u̇, v, v̇) − 1

2
u(t)[ fuu(t, u, u̇, v, v̇)

− 2
d

dt
fuu̇(t, u, u̇, v, v̇) + d2

dt2
fu̇u̇(t, u, u̇, v, v̇)]u(t)}dt

−
∫ b

a
{ f (t, u, u̇, v, v̇) − v(t) fv(t, u, u̇, v, v̇) + v(t)

d

dt
fẋ (vt, u, u̇, v, v̇) − 1

2
v(t)[ fvv(t, u, u̇, v, v̇)

− 2
d

dt
fvv̇(t, u, u̇, v, v̇) + d2

dt2
fv̇v̇(t, u, u̇, v, v̇)]v(t)}dt.

≥ 0.
(
By (i), (ii) and (u, v), (x, y)are optimal solutions of (SSVD) and (SSVP)

)

Which is a contradiction and hence the result. �

4 Concluding Remarks

1. For the first time we have established the second-order symmetric duality for
variational problems.

2. When ρ1 = 0 = ρ2 and eliminate all second-order partial derivatives, the invex-
ity and duality defined by Smart and Mond [14], and Kim and Lee [9] are the
particular cases of our work.

Acknowledgments The authors wish to thank the referees for their valuable suggestions that
improved the presentation of the paper.
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Efficient Portfolio for Interval
Sharpe Ratio Model

Mrinal Jana, Pankaj Kumar and Geetanjali Panda

Abstract In this paper a problem related to portfolio optimizationmodel is proposed
to maximize the Sharpe ratio of the portfolio with varying parameters. The Sharpe
ratio model is an interval fractional programming problem in which the function in
objective and in constraints are interval-valued function.Amethodology is developed
to solve the Sharpe ratiomodel. Thismodel is transformed into a general optimization
problem and relation between the original problem and the transformed problem is
established.

Keywords Portfolio optimization · Efficient portfolio · Fractional programming ·
Interval-valued function · Interval inequalities

1 Introduction

Balancing reward against risk is the base of a general mean-variance portfolio opti-
mization problem. Reward is measured by the portfolio expected return and risk is
measured by the portfolio variance. In the most basic form, portfolio optimization
model determines the proportion of the total investment x j of j th asset of a portfolio
x = (x1, x2, ..., xn), where

∑n
j=1 x j = 1. A common criterion for this assessment

is the expected return-to-risk trade-off which is known as the Sharpe ratio of the
portfolio [7, 8]. An important objective of selecting a portfolio is to maximize the
Sharpe ratio [2, 5, 9]. In general the portfolio optimization model which maximizes
the Sharpe ratio, is a fractional programming problem, when the coefficients in the
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objective function and constraints (return, risk, and other parameters) are usually
crisp values. Due to uncertainty in financial market, return of the asset is not fixed.
Usually expected return is estimated from historical data, which in term affects the
risk and performances of the portfolio. Recently many researchers have tried to
select efficient portfolios by solving portfolio optimization models and addressing
the uncertain parameters like return, risk, etc., using probability theory and fuzzy set
theory. These methods have certain limitations while selecting suitable probability
distribution functions and membership functions, respectively. Selection of suitable
distribution function and membership function can be avoided if we consider the
lower and upper level of the return from historical data. In that case the return of an
asset will lie in closed interval which can include all types of market uncertainties.
But, if the return is considered as a closed interval then the risk and performance
of the portfolio have to be expressed in terms of intervals, which may be treated
as interval-valued functions in mathematical sense. In these situations the portfo-
lio optimization model cannot be handled by general optimization techniques. As
a result of which, the parameters of the Sharpe ratio model become intervals and
the portfolio selection model becomes an interval fractional programming model.
Formulation of such a model is discussed in detail in Sect. 2. To study this model,
we focus on its solution methodology. In the proposed methodology, the interval
Sharpe ratio model is transformed to a general optimization problem which is free
from interval uncertainty and relation between the original problem and the trans-
formed problem is established. The theoretical developments are illustrated through
a numerical example.

Hladík [4] consider a generalized linear fractional programming problem with
interval data and present a method for computing the range of optimal values. Inter-
val nonlinear fractional programming problem has been discussed by [1]. In [1],
the denominator of the objective function is interval-valued affine function and in
our paper the denominator of the objective function is an interval-valued quadratic
function. In this paper we concentrate on nonlinear interval fractional programming
problem and studied the existence of its solution. Then the Sharpe ratio model in
Sect. 2 is solved by the proposed methodology. Throughout this paper (SOI) denotes
an interval Sharpe ratio model.

The paper is divided in sixmajor sections. Section2 describes the proposed Sharpe
ratio model as an interval fractional programming problem. Section3 describes solu-
tion methodology for solving (SOI) with a numerical example. Section4 includes
an application of methodology to portfolio selection, and Sect. 5 provides some con-
cluding remarks.

2 Sharpe Ratio Model

Aswe discussed earlier, an important objective of selecting a portfolio, based on risk-
adjusted performance, is to maximize the Sharpe ratio. The higher portfolio’s Sharpe
ratio, the better its risk-adjusted performance has been. A negative Sharpe ratio
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indicates that a riskless asset would perform better than the security/risky asset.The
parameters like return, variance, etc., are estimated from historical data. However,
in the financial market, several types of uncertainties are affecting while estimating
these parameters. For this reason, it is reasonable to consider the upper and lower
bound of these parameters. We propose a Sharpe ratio model with parameters varies
into closed intervals. Assuming that an investor invests his/her money into n-number
of risky securities in such a way that the portfolio performance measure Sharpe ratio
become maximum. Following are the notations and assumptions:

Λk {1, 2, ..., k}.
T Total number of time period.
p jt Rate of return of j th risky asset in kth time period, j ∈ Λn, t ∈ ΛT .
p j Expected return of j th asset and is equal to 1

T

∑T
k=1 r jt .

pL
j (pR

j ) Lower (upper) bound of expected return of j th asset such that r L
j ≤ r j ≤ r R

j .
pf Return of riskless asset.
si j The covariance between i th and j th assets returns.
sL

i j (s
R
i j ) Lower(upper) bound of covariance of return between i th and j th assets,

i.e., sL
i j ≤ si j ≤ s R

i j , this implies si j ∈ [sL
i j , s R

i j ].
s j standard deviation of j th asset.
sL

j (s R
j ) Lower(upper) bound of standard deviation of j th asset.

x j The proportion of the total funds invested on j th assets.

Total expected return of portfolio (x1, x2, . . . , xn) is
∑n

j=1 p j x j . Since p j ∈
[pL

j , pR
j ], therefore portfolio return becomes

∑n
j [pL

j , pR
j ]x j . Since pf is the return

of riskless assets, so total expected return is

n∑
j

[pL
j , pR

j ]x j � [pf , pf ] =
n∑
j

[pL
j − pf , pR

j − pf ]x j .

Since the return vary in intervals so they will affect the variance of the portfolio.
Hence the variance of the portfolio is

n∑
i

n∑
j=1

[sL
i j , s R

i j ]xi x j .

Consequently, the Sharpe ratio becomes an interval-valued function

n∑
j

[pL
j − pf , pR

j − pf ]x j �
√√√√

n∑
i

n∑
j=1

[sL
i j , s R

i j ]xi x j ,

where
√∑n

i=1
∑n

j=1 sL
i j xi x j > 0.
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In addition to this, the sum of the proportion of total investment for each stock of
the portfolio is equal to one, i.e.,

∑n
j=1 x j = 1.

Sometimes the solution of the model, considering the above constraint only, typ-
ically leads to extreme portfolio weights, particularly when the number of assets is
large. One can take the naive 1

n portfolio as the benchmark and impose the con-
straint:

∣∣x j − 1
n

∣∣ ≤ α, where α is a positive constant. To get better portfolio output
we impose constraints on each asset to improve the portfolio performance. The main
idea of these constraints is that the estimation error of return, variance for all the
assets from the historical data is not same for all the assets. The estimation errors
are larger for the assets with larger sample variances. The constraint imposed on the
weight of a given asset is inversely proportional to its standard deviation. We replace
the constraint

∣∣x j − 1
n

∣∣ ≤ α by

∣∣∣∣x j − 1

n

∣∣∣∣ [sL
j , s R

j ] � α

n

n∑
j=1

[sL
j , s R

j ], j = 1, 2, . . . , n,

where [sl
j , s R

j ] is the standard deviation of j th asset. This constraint implies that the

higher [sL
j , s R

j ] (relative to the average standard deviation) the tighter the constraint
imposed on the weight of stock j . Note that if all stocks have the same standard
deviation, these constraints reduce to the homogeneous constraint

∣∣x j − 1
n

∣∣ ≤ α.
Hence the maximization of Sharpe ratio model with interval parameter is formulated
as follows:

3 Solving Sharpe Ratio Model

The feasible region of the model (SOI) is

S =
⎧
⎨
⎩(x1, x2, ..., xn) :

n∑
j=1

x j = 1,

∣∣∣∣x j − 1

n

∣∣∣∣ [sL
j , s R

j ] � α

n

n∑
j=1

[sL
j , s R

j ], x j ≥ 0, j ∈ Λn

⎫
⎬
⎭ .

The objective function is an interval-valued function. So the conditions for exis-
tence of feasible and optimal solution of (SOI) is not similar as classical optimiza-
tion problem. A partial ordering is required to prove this result. I (R) is not a totally
ordered set. Several partial orderings in I (R) exist in literature (see [3, 6]). Order
relations between two intervals â and b̂ can be explained in two ways; first one is an
extension of < on real line, that is, â < b̂ iff aR < bL , and the other is an extension
of the concept of set inclusion, that is, â ⊆ b̂ iff aL ≥ bL and aR ≤ bR . These order
relations cannot explain ranking between two overlapping intervals. We introduce
the following order relations�χ and	χ in I (R)which describes partial ordering for
overlapped intervals and helps to justify the existence of solution of (SOI) at later
stage. We call this partial order as χ -partial order.
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3.1 χ-Partial Order Relation

Two intervalsmayoverlap, one intervalmay lie behind another interval or one interval
may include another interval. To describe this concept mathematically, associate a
function χ : I (R) × I (R) → [0, 1] as follows. For two intervals â and b̂,

χ(â, b̂) =

⎧⎪⎨
⎪⎩

1, aR ≤ bL

0, aL ≥ bR

bR−aL

(bR−bL )+(a R−aL )
∈ (0, 1), aL < bR and aR > bL .

χ(â, b̂) represents degree of closeness of â with b̂. One may observe here that χ is
continuous and belongs to [0, 1]. Moreover χ(â, b̂) + χ(b̂, â) = 1.

Based upon this concept of closeness of two intervals, we define order relation
	χ between two intervals as follows:

Definition 1 For two intervals â, b̂ ∈ I (R),

â 	χ b̂ iff μ(â) ≤ μ(b̂) and χ(b̂, â) ∈ [1
2
, 1],

â �χ b̂ iff μ(â) ≤ μ(b̂) and χ(b̂, â) = 1,

â = b̂ iff μ(â) = μ(b̂) and χ(â, b̂) = 1/2.

χ(b̂, â) ∈ [ 12 , 1] means χ(â, b̂) ≤ χ(b̂, â).
For example, μ([1, 4]) < μ([0, 4]) and χ([0, 4], [1, 4]) = 4

7 . So [1, 4] 	χ [0, 4]
with degree of closeness 4

7 ;
χ([3, 6], [2, 8]) = 5

9 but [2, 8] 	χ [3, 6] is not true, since μ([2, 8]) � μ([3, 6]).
μ([4, 5]) < μ([2, 3]) andχ([2, 3], [4, 5]) = 1. So [4, 5] �χ [2, 3]with degree of

closeness 1;μ([−3, 0]) = μ([1, 4]) but χ([1, 4], [−3, 0]) = 0, so [−3, 0] 	χ [1, 4]
is not true.

It is easy to prove that 	χ is a partial order.
I (R)n is not a totally ordered set. To compare the interval vectors in I (R)n , we

define the following partial ordering 	n
χ .

Definition 2 For âv = (â1 â2 ... ân)T and b̂v = (b̂1 b̂2 ... b̂n)T in I (R)n ,

âv 	n
χ b̂v iff âi 	χ b̂i , ∀i ∈ Λn .

Using the concept of closeness between two intervals, degree of closeness between
two interval vectors âv and b̂v of dimension n can be defined as

χ(âv, b̂v) = min
i∈Λn

{χ(âi , b̂i )}. (1)
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Consider the interval vectors âv=
([0, 4]

[2, 3]
)
and b̂v =

([−2, 3]
[1, 3]

)
.χ([−2, 3], [0, 4]) =

2
3 and χ([1, 3], [2, 3]) = 2

3 .

χ(b̂v, âv) = min {χ([−2, 3], [0, 4]), 1− χ([1, 3], [2, 3])} = 2
3 . Hence âv 	2

χ b̂v

with degree of closeness 2
3 .

In similar way, we define order relation �χ between two intervals as follows:

Definition 3 For two intervals â, b̂ ∈ I (R),

â �χ b̂ iff μ(â) ≤ μ(b̂) and χ(â, b̂) ∈ [1/2, 1],
â ≺χ b̂ iff μ(â) ≤ μ(b̂) and χ(â, b̂) = 1,

â = b̂ iff μ(â) = μ(b̂) and χ(â, b̂) = 1/2.

χ(â, b̂) ∈ [ 12 , 1] means χ(â, b̂) ≥ χ(b̂, â).
For example, μ([1, 4]) < μ([0, 5]) and χ([1, 4], [0, 5]) = 1

2 . So [1, 4] �χ [0, 5]
with degree of closeness 1

2 ;
χ([1, 5], [3, 6]) = 5

7 but [1, 5] �χ [3, 6] is not true, so μ([1, 5]) � μ([3, 6]).
μ([1, 4]) < μ([5, 9]) and χ([1, 4], [5, 9]) = 1. So [1, 4] ≺χ [5, 9] with degree of
closeness 1;

μ([1, 4]) = μ([−3, 0]) but χ([1, 4], [−3, 0]) = 0, so [1, 4] �χ [−3, 0] is not
true.

It is easy to prove that �χ is a partial order.
I (R)n is not a totally ordered set. To compare the interval vectors in I (R)n , we

define the following partial ordering �n
χ .

Definition 4 For âv = (â1 â2 ... ân)T and b̂v = (b̂1 b̂2 ... b̂n)T in I (R)n ,

âv �n
χ b̂v iff âi �χ b̂i , ∀i ∈ Λn .

Using the concept of closeness between two intervals, degree of closeness between
two interval vectors âv and b̂v of dimension n can be defined as

χ(âv, b̂v) = min
i∈Λn

{χ(âi , b̂i )}. (2)

Consider the interval vectors âv = ([0, 2] [2, 3])T and b̂v = ([1, 4] [2, 4])T. Here
χ([0, 2], [1, 4]) = 4

5 and χ([2, 3], [2, 4]) = 2
3 .

χ(âv, b̂v) = min {χ([0, 2], [1, 4]), χ([2, 3], [2, 4])} = 2
3 . Hence we say âv �2

χ

b̂v with degree of closeness 66%.
In this present work we follow 	χ partial ordering to interpret the meaning of

minimization in the problem and �χ partial ordering to interpret the feasible region.
Here χ -partial ordering is considered. Similar methodology in the light of the devel-
opments of this section can be established with respect to any other type partial
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ordering in the set of intervals. In that case the construction of (SOI) and proof of
the corresponding theorem may be derived accordingly following the steps of this
section, which is beyond the scope of the present work.

It is clear from the above discussion that two types of uncertainties are present in
(SOI), one in objective function and another in constraints. These two uncertainties
can be addressed separately in the following subsections to find the solution of (SOI).

3.2 Addressing the Uncertainty Present in
Constraints of (SOI)

It can be observed that uncertainty is associated with n interval inequalities∣∣x j − 1
n

∣∣ [sL
j , s R

j ] � α
n

∑n
j=1[sL

j , s R
j ], j ∈ Λn . Every x in S satisfying the inter-

val inequalities
∣∣x j − 1

n

∣∣ [sL
j , s R

j ] � α
n

∑n
j=1[sL

j , s R
j ], j ∈ Λn can be less or more

acceptable for a decision maker. That is, every point x in S is associated with certain

degree of feasibility/closeness between the interval vectors

⎛
⎜⎜⎜⎝

∣∣x1 − 1
n

∣∣ [sL
1 , s R

1

]
∣∣x2 − 1

n

∣∣ [sL
2 , s R

2

]
...∣∣xn − 1

n

∣∣ [sL
n , s R

n

]

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎝

α
n [∑n

j=1 sL
j ,

∑n
j=1 s R

j ]
α
n [∑n

j=1 sL
j ,

∑n
j=1 s R

j ]
...

α
n [∑n

j=1 sL
j ,

∑n
j=1 s R

j ]

⎞
⎟⎟⎟⎟⎠
. Using the concept of closeness of two interval vectors

discussed in (1), if χ F
j : I (R) × I (R) → [0, 1] given by

χ F
j

⎛
⎝
∣∣∣∣x j − 1

n

∣∣∣∣ [sL
j , s R

j ], α

n

n∑
j=1

[sL
j , s R

j ]
⎞
⎠ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1,
∣∣x j − 1

n

∣∣ s R
j ≤ α

n

∑n
j=1 sL

j

0,
∣∣x j − 1

n

∣∣ sL
j ≥ α

n

∑n
j=1 s R

j
α
n

∑n
j=1 s R

j −
∣∣∣x j − 1

n

∣∣∣sL
j∣∣∣x j − 1

n

∣∣∣
(

s R
j −sL

j

)
+ α

n

(∑n
j=1 s R

j −∑n
j=1 sL

j

) elsewhere

(3)
describes the closeness of

∣∣x j − 1
n

∣∣ [sL
j , s R

j ] with α
n

∑n
j=1[sL

j , s R
j ] for every j ,

then degree of feasibility of x is min
1≤ j≤n

{
χ F

j

(∣∣x j − 1
n

∣∣ [sL
j , s R

j ], α
n

∑n
j=1[sL

j , s R
j ]
)}

.

Define a set

Sa =
⎧
⎨
⎩(x : τ) : τ = min

1≤ j≤n

⎧
⎨
⎩χ F

j

⎛
⎝
∣∣∣∣x j − 1

n

∣∣∣∣ [sL
j , s R

j ], α

n

n∑
j=1

[sL
j , s R

j ]
⎞
⎠
⎫
⎬
⎭ ,

n∑
j=1

x j = 1,

x j ≥ 0
}
.
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For (x : τ) ∈ Sa , we say x is a feasible point with acceptable degree τ and Sa is the
acceptable feasible region.

Feasible solution of (SOI) associated with degree of closeness can be defined as
follows:

Definition 5 x ∈ R
n is said to an acceptable feasible portfolio of (SOI)with accept-

able degree τ if x ∈ Sa with degree of closeness/acceptability τ , where τ ∈ [ 12 , 1].
We denote an acceptable feasible portfolio as (x : τ) henceforth.

3.3 Addressing Uncertainty Present in the Objective Function

Since the objective function is in interval form, theminimization in the problem (SOI)
can be defined with respect to some partial ordering. In this present work we follow
�χ partial ordering (defined in Sect. 3.1) to interpret the meaning of minimization
in the problem. The objective function of (SOI) is a ratio of two interval valued
functions, which can be expressed as a interval valued function as follows:

n∑
j=1

[pL
j , pR

j ]x j � [pf , pf ] �
√√√√

n∑
i=1

n∑
j=1

[sL
i j , s R

i j ]xi x j

=
⎡
⎣

n∑
j=1

pL
j x j − pf ,

n∑
j=1

pR
j x j − pf

⎤
⎦ �

⎡
⎣
√√√√

n∑
i=1

n∑
j=1

sL
i j xi x j ,

√√√√
n∑

i=1

n∑
j=1

s R
i j xi x j

⎤
⎦

=
⎡
⎣

n∑
j=1

pL
j x j − pf ,

n∑
j=1

pR
j x j − pf

⎤
⎦⊗

⎡
⎣ 1√∑n

i=1
∑n

j=1 s R
i j xi x j

,
1√∑n

i=1
∑n

j=1 sL
i j xi x j

⎤
⎦

=
⎡
⎣

n∑
j=1

pL
j x j − pf ,

n∑
j=1

pR
j x j − pf

⎤
⎦ × q

where
1√∑n

i=1
∑n

j=1 s R
i j xi x j

≤ q ≤ 1√∑n
i=1

∑n
j=1 sL

i j xi x j

=
⎡
⎣

n∑
j=1

pL
j (x j q) − pf q,

n∑
j=1

pR
j (x j q) − pf q

⎤
⎦

with
n∑

i=1

n∑
j=1

sL
i j (xi q)(x j q) ≤ 1 and

n∑
i=1

n∑
j=1

s R
i j (xi q)(x j q) ≥ 1

=
⎡
⎣

n∑
j=1

pL
j y j − pf q,

n∑
j=1

pR
j y j − pf q

⎤
⎦

with
n∑

i=1

n∑
j=1

sL
i j yi y j ≤ 1,

n∑
i=1

n∑
j=1

s R
i j yi y j ≥ 1 and x j q=y j ∀ j ∈ Λn .

Hence the transformed objective function is
[∑n

j=1 pL
j y j − pf q,

∑n
j=1 pR

j y j − pf q
]

with sL
i j yi y j ≤ 1, s R

i j yi y j ≥ 1 and x j q = y j ∀ j ∈ Λn . The transformed objective
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function is an interval-valued function. So the conditions for existence of feasible and
optimal solution (SOI) is not similar as classical optimization problem. To compare
two intervals we have considered 	χ partial order relation. Following the definition
of χ -partial ordering, we define solution of (SOI) as follows.

Definition 6 An acceptable feasible portfolio (x∗ : τ ∗) with degree of feasibility
τ ∗ of (SOI) is said to be a χ -efficient portfolio of (SOI) if there does not exist any
acceptable feasible portfolio (x : τ) with τ > τ ∗ of (SOI) such that

n∑
j=1

[pL
j , pR

j ]x j � [pf , pf ] �
√√√√

n∑
i=1

n∑
j=1

[sL
i j , s R

i j ]xi x j

�χ

n∑
j=1

[pL
j , pR

j ]x∗
i � [pf , pf ] �

√√√√
n∑

i=1

n∑
j=1

[sL
i j , s R

i j ]x∗
i x∗

j .

Considering the transformed objective function we construct the (SOI)(y)model as

(SOI)(y) : max

⎡
⎣

n∑
j=1

pL
j y j − pf q,

n∑
j=1

pR
j y j − pf q

⎤
⎦

subject to
n∑

i, j

sL
i j yi y j ≤ 1,

n∑
i, j

s R
i j yi y j ≥ 1,

∣∣∣∣
y j

q
− 1

n

∣∣∣∣ [sL
j , s R

j ] � α

n

n∑
j=1

[sL
j , s R

j ], ∀ j ∈ Λn,

n∑
j=1

y j = q,

y j ≥ 0, ∀ j ∈ Λn .

Using the discussion in Sect. 3.2, we get the acceptable feasible region of the interval
optimization problem (SOI)(y) as
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Sa(y) =
⎧⎨
⎩(y : τ) : τ = min

1≤ j≤n

⎧⎨
⎩χ F

j

⎛
⎝
∣∣∣∣

y j

q
− 1

n

∣∣∣∣ [sL
j , s R

j ], α

n

n∑
j=1

[sL
j , s R

j ]
⎞
⎠
⎫⎬
⎭ ,

n∑
i, j

sL
i j yi y j ≤ 1,

n∑
i, j

s R
i j yi y j ≥ 1,

n∑
j=1

y j = q, y j ≥ 0

⎫⎬
⎭ .

For (y : τ) ∈ Sa(y), we say y is a feasible point with acceptable degree τ and Sa(y)

is the acceptable feasible region of (SOI). In the light of the definition of χ -efficient
portfolio of (SOI), χ -efficient portfolio of (SOI)(y) can be defined as follows.

Definition 7 An acceptable feasible portfolio (y∗, q∗ : τ ∗)with degree of feasibility
τ ∗ of (SOI)(y) is said to be a χ -efficient portfolio of (SOI) if there does not exist
any acceptable feasible portfolio (y, q : τ) with τ > τ ∗ of (SOI)(y) such that

⎡
⎣

n∑
j=1

pL
j y j − pf q,

n∑
j=1

pR
j y j − pf q

⎤
⎦ �χ

⎡
⎣

n∑
j=1

pL
j y∗

j − pf q∗,
n∑

j=1

pR
j y∗

j − pf q∗
⎤
⎦

One may observe that solution of (SOI) is related to the solution of (SOI)(y) by the
relation y j = x j q, ∀ j .

To address the uncertainty present in objective function in (SOI)(y), we will
assign goal to the objective function. Goal can be provided by decision-makers. Let
[l, u] is preassigned goal of the objective function. That is,[∑n

j=1 pL
j y j − pf q,

∑n
j=1 pR

j y j − pf q
]

	χ [l, u]. For every (y, q : τ) ∈
Sa(y), deviation of the objective function from the goal [l, u] may be more or less
acceptable for the decision-maker. This implies that every interval-valued objective
function is associated with certain degree of flexibility from its goal.

This logic is similar to the discussion in Sect. 3.1 for the closeness between two
intervals. Using the closeness between two intervals, we get the degree of closeness
between two intervals[∑n

j=1 pL
j y j − pf q,

∑n
j=1 pR

j y j − pf q
]
and [l, u] as

χ O

⎛
⎝[l, u],

⎡
⎣

n∑
j=1

pL
j y j − pf q,

n∑
j=1

pR
j y j − pf q

⎤
⎦
⎞
⎠

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if u ≤
(∑n

j=1 pL
j y j − pf q

)

0, if l ≥
(∑n

j=1 pR
j y j − pf q

)

(
∑n

j=1 pR
j y j −pf q)−l

(u−l)+
(
(
∑n

j=1 pR
j y j −pf q)−(

∑n
j=1 pL

j y j −pf q)
) , elsewhere.

(4)
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3.4 Conversion of the Sharpe Ratio Model into
Deterministic Form

The objective functions are characterized by their degree of flexibility

χ O
(
[l, u],

[∑n
j=1 pL

j y j − pf q,
∑n

j=1 pR
j y j − pf q

])
, and the constraints are

characterizedby their degreeof feasibilityχ F
j

(∣∣x j − 1
n

∣∣ [sL
j , s R

j ], α
n

∑n
j=1[sL

j , s R
j ]
)
.

So in this uncertain environment a decision y for (SOI)(y) is the selection of activi-
ties that simultaneously satisfies the objective function and constraints. Hence degree
of acceptability of this y is

min

⎧⎨
⎩χ O

⎛
⎝
⎡
⎣[l, u],

n∑
j=1

pL
j y j − pf q,

n∑
j=1

pR
j y j − pf q

⎤
⎦
⎞
⎠ ; (y : τ) ∈ Sa(y)

⎫⎬
⎭

= min
(y:τ)∈Sa(y)

(
∑n

j=1 pL
j y j − pf q) − l

(u − l) +
(
(
∑n

j=1 pR
j y j − pf q) − (

∑n
j=1 pL

j y j − pf q)
) .

(5)

This problem is equivalent to the max–min problem

(SOI)(y) : max θ

subject to θ ≤ (
∑n

j=1 pR
j y j − pf q) − l

(u − l) +
(
(
∑n

j=1 pR
j y j − pf q) − (

∑n
j=1 pL

j y j − pf q)
) ,

θ ≤
α
n

∑n
j=1 s R

j −
∣∣∣ y j

q − 1
n

∣∣∣ sL
j∣∣∣ y j

q − 1
n

∣∣∣
(

s R
j − sL

j

)
+ α

n

(∑n
j=1 s R

j − ∑n
j=1 sL

j

) ,

n∑
i, j

sL
i j yi y j ≤ 1,

n∑
i, j

s R
i j yi y j ≥ 1,

n∑
j=1

y j = q,

y j ≥ 0, q > 0,
1

2
≤ θ ≤ 1.
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It can be observed that (SOI)(y) a general non linear programming problem. Solu-
tion of this problem can be found using any nonlinear programming technique. Let
(y∗, q∗, θ∗) be a solution of the problem (SOI)(y). The following theorem states the
relation between the solution of (SOI)(y) and (SOI)(y).

Theorem 1 If (y∗, q∗, θ∗) be an optimal solution of the problem (SOI)(y), then
(y∗, q∗) is an χ -efficient portfolio of the problem (SOI)(y).

Above methodology is explained in the following numerical example first. Then the
methodology is applied for real data from BSE, India.

Example 1 Consider the following problem

max P̂(x) � Q̂(x)

subject to x1 + x2 = 1,∣∣∣∣x1 − 1

2

∣∣∣∣ [0.144, 0.1764] � 2

2
� [0.2809, 0.3445],

∣∣∣∣x2 − 1

2

∣∣∣∣ [0.1369, 0.1681] � 2

2
� [0.2809, 0.3445],

x1, x2 ≥ 0,

where

P̂(x) = [0.12, 0.14]x1 ⊕ [0.18, 0.22]x2 � [0.04, 0.04]
and Q̂(x) =

√
[0.144, 0.1764]x21 ⊕ 2[0.0703, 0.0681]x1x2 ⊕ [0.1369, 0.1681]x22 .

Solution The transformed interval optimization problem (SOI)(y) is given by

(SOI)(y) : max [0.12y1 + 0.18y2 − 0.04q, 0.14y1 + 0.22y2 − 0.04q]
subject to 0.144y21 + 0.1406y1y2 + 0.1369y22 ≤ 1,

0.176y21 + 0.1722y1y2 + 0.1681y22 ≥ 1,∣∣∣∣
y1
q

− 1

2

∣∣∣∣ [0.144, 0.1764] � 2

2
� [0.2809, 0.3445],

∣∣∣∣
y2
q

− 1

2

∣∣∣∣ [0.1369, 0.1681] � 2

2
� [0.2809, 0.3445],

y1 + y2 = q,

y1, y2 ≥ 0,

q > 0.

The acceptable feasible region of the interval optimization problem (SOI)(y) is given
by
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Sa(y) =
{
(y : τ) : τ = min

{
χ F
1

(∣∣∣∣
y1
q

− 1

2

∣∣∣∣ [0.144, 0.1764],
2

2
� [0.2809, 0.3445]

)
,

χ F
2

(∣∣∣∣
y2
q

− 1

2

∣∣∣∣ [0.1369, 0.1681],
2

2
� [0.2809, 0.3445]

)}
,

0.144y21 + 0.1406y1y2 + 0.1369y22 ≤ 1, 0.176y21 + 0.1722y1y2 + 0.1681y22 ≥ 1, y1 + y2 = q, y1, y2 ≥ 0
}

.

where

χ F
1

(∣∣∣∣
y1
q

− 1

2

∣∣∣∣ [0.144, 0.1764],
2

2
� [0.2809, 0.3445]

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1,
∣∣∣ y1

q − 1
2

∣∣∣ 0.1764 ≤ 0.2809

0,
∣∣∣ y1

q − 1
2

∣∣∣ 0.144 ≥ 0.3445

0.3445−0.144
∣∣∣ y1

q − 1
2

∣∣∣
0.0636+0.0324

∣∣∣ y1
q − 1

2

∣∣∣
, elsewhere

(6)

χ F
2

(∣∣∣∣
y2
q

− 1

2

∣∣∣∣ [0.1369, 0.1681],
2

2
� [0.2809, 0.3445]

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1,
∣∣∣ y2

q − 1
2

∣∣∣ 0.1681 ≤ 0.2809

0,
∣∣∣ y2

q − 1
2

∣∣∣ 0.3974 ≥ 0.3445

0.3445−0.1369
∣∣∣ y2

q − 1
2

∣∣∣
0.0636+0.0312

∣∣∣ y2
q − 1

2

∣∣∣
, elsewhere.

(7)

Let goal of the objective function of (SOI)(y) is given by [0.3, 0.5], then degree of
flexibility of the objective function is given by

χ O ([0.3, 0.5], [0.12y1 + 0.18y2 − 0.04q, 0.14y1 + 0.22y2 − 0.04q])

=

⎧⎪⎨
⎪⎩

1, if 0.5 ≤ (0.12y1 + 0.18y2 − 0.04q)

0, if 0.3 ≥ (0.14y1 + 0.22y2 − 0.04q)
(0.14y1+0.22y2−0.04q)−0.3

(0.2)+((0.14y1+0.22y2−0.04q)−(0.12y1+0.18y2−0.04q))
, elsewhere.

(8)

Hence the deterministic model is

(SOI)(y) : max θ

subject to θ ≤ (0.14y1 + 0.22y2 − 0.04q) − 0.3

(0.2) + (0.02y1 + 0.04y2)
,

θ ≤
0.3445 − 0.144

∣∣∣ y1
q − 1

2

∣∣∣
0.0636 + 0.0324

∣∣∣ y1
q − 1

2

∣∣∣
,

θ ≤
0.3445 − 0.1369

∣∣∣ y2
q − 1

2

∣∣∣
0.0636 + 0.0312

∣∣∣ y2
q − 1

2

∣∣∣
,

0.144y21 + 0.1406y1y2 + 0.1369y22 ≤ 1,

0.176y21 + 0.1722y1y2 + 0.1681y22 ≥ 1,

y1 + y2 = q,

y1, y2 ≥ 0, q > 0,
1

2
≤ θ ≤ 1.
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χ-efficient portfolio of the problem (SOI)(y) is ((y∗
1 , y∗

2 ), q∗) = ((0.1736, 2.6091), 2.7828) with
degree of acceptability 0.6075. Objective value is [0.4592, 0.5670]. Accordingly the χ-efficient
portfolio of the original problem (SOI) is given by (x∗

1 , x∗
2 ) = (0.0624, 0.9376).

In order to show the applicability of our proposed model, we apply this model to
real data set taken from Indian stocks market National Stock Exchange, India.

4 Empirical Result

In this section we present an illustration of proposed Sharpe ratio model considering
fifteen stocks from the Bombay Stock Exchange, India. The code of all fifteen stocks
are given in Table1. We also consider a riskless asset with rate of return 0.2% per
month. We collect the weekly opening-, maximum-, minimum-, and closing price
from April 1, 2010 to December 30, 2013. Rate of return of each week and average
rate of return of each stocks are calculated. To estimate the bounds of expected
return of each stocks, we find the maximum and minimum average return from the
average rate of returns corresponding to all the prices, which represent upper and
lower bound, respectively. The lower and upper bound of all the fifteen stocks are
given in Table2. Further, we estimated the bounds of elements of covariance matrix
based on the obtained bound of expected rate of return of stocks. The lower bound
and upper bound of elements of covariance are given in Tables3 and 4, respectively.

Based on the above information, next we obtain an efficient portfolio. In order
to obtain the efficient portfolio we apply our proposed methodology established in
section for targeted value of the objective function [0.02, 0.03].We choose α = 0.97.
Using LINGO 11, we solve (SOI)(y), and obtain the value of y1 = 0.041, y2 =
8.038, y3 = 8.930, y4 = 6.118, y5 = 8.111, y6 = 0.060, y7 = 0.000, y8 = 7.174,
y9 = 2.119, y10 = 5.038, y11 = 6.815, y12 = 0.174, y13 = 8.037, y14 = 0.098,
y15 = 0.081, value of θ = 1 and Q = 60.831 for α = 0.97. Hence the χ -efficient
portfolio is given by x1 = 0.001, x2 = 0.132, x3 = 0.147, x4 = 0.101, x5 = 0.133,
x6 = 0.001, x7 = 0.000, x8 = 0.118, x9 = 0.035, x10 = 0.083, x11 = 0.112,
x12 = 0.003, x13 = 0.132, x14 = 0.002 x15 = 0.001.

5 Concluding Remarks

This paper presents a Sharpe ratio in which all the coefficients of the objective
function and constraints are intervals. Concept of existence of χ -efficient portfolio is
introduced. A methodology is developed to determine an χ -efficient portfolio based
on a partial order relation in the set of interval. Themethodology is illustrated through
a numerical example. Finally, the portfolio selection model, based on the real data
from Bombay Stock Exchange, India, is solved by the developed methodology to
find a χ -efficient portfolio.
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On Solvability for Certain Functional
Equations Arising in Dynamic Programming

Deepmala and A.K. Das

Abstract In this paper, we study the existence, uniqueness, and iterative approxi-
mations of solutions for the functional equations arising in dynamic programming
under Banach spaces and complete metric spaces. Our results unify the results of
Bellman [1], Bhakta andMitra [3], Bhakta and Choudhury [4], Liu [8], Liu and Ume
[10], Liu et al. [11], Liu et al. [13], Liu and Kang [9], and Jiang et al. [7]. Examples
are provided to support our results.

Keywords Dynamic programming · Multistage decision process · Functional
equations · Fixed point · Banach space · Metric space

1 Introduction

The existence of solutions for various functional equations arising in dynamic
programming is important in both theory and practice. In optimization, dynamic
programming is an interesting field of research because of its applicability in mul-
tistage decision processes. For details, see [1, 6, 14, 15] and references therein.
Bellman [1, 2] worked on the existence of solutions for some classes of functional
equations arising in dynamic programming. Bellman and Lee [2] considered the
functional equation in dynamic programming of multistage decision process as

f (x) = opty∈DH(x, y, f (T(x, y))), ∀x ∈ S.

In the past two decades, Bhakta and Mitra [3], Bhakta and Chuodhary [4], Liu and
Ume [10], Liu et al. [11, 13], Liu and Kang [9] and Jiang et al. [7] established the
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existence of solutions for the following functional equation (1)–(9) in Banach spaces
and complete metric spaces.

f (x) = inf
y∈D

max{r(x, y), s(x, y), f (b(x, y))}, x ∈ S. (1)

f (x) = inf
y∈D

max{r(x, y), f (b(x, y))}, x ∈ S. (2)

f (x) = sup
y∈D

{p(x, y) + A(x, y, f (a(x, y)))}, x ∈ S. (3)

f (x) = sup
y∈D

{p(x, y) + f (a(x, y))}, x ∈ S. (4)

f (x) = opt
y∈D

{a [u(x, y) + f (T(x, y))] + b opt[v(x, y), f (T(x, y))]}, x ∈ S, a + b = 1.

(5)

f (x) = opt
y∈D

{u(x, y) + opt{pi (x, y) + qi (x, y) fi (ai (x, y)) : i = 1, 2}}, x ∈ S. (6)

f (x) = opt
y∈D

{p(x, y) + q(x, y) f (a(x, y))

+ opt{r(x, y), s(x, y) f (b(x, y)), t (x, y) f (c(x, y))}}. (7)

f (x) = inf
y∈D

max{p(x, y), f (a(x, y)), q(x, y) + f (b(x, y))}, ∀ x ∈ S. (8)

f (x) = opt
y∈D

opt{p(x, y), q(x, y) f (a(x, y)), r(x, y) f (b(x, y)), s(x, y) f (c(x, y))},

f orall x ∈ S. (9)

We introduce the following generalized functional equation related to dynamic pro-
gramming of multistage decision processes:

f (x) = opt
y∈D

{u(x, y) + r(x, y) f (s(x, y))

+ opt{v(x, y), pi (x, y) + qi (x, y) f (ai (x, y)) : i = 1, 2, 3}},∀x ∈ S
(10)

where opt denotes the sup or inf, x and y stands for the state and decision vectors,
respectively, ai represents the transformation of the processes, f (x) denotes the
optimal return function with initial state x . We establish the existence and uniqueness
of solutions for the proposed functional equation.
In Sect. 2, we recall some of the basic concepts and results to be used in this paper. In
Sect. 3, we utilize the fixed point theorem due to Boyd and Wong [5] to establish the
existence, uniqueness, and iterative approximation of solution for this generalized
functional equation in Banach spaces. In Sect. 4, we obtain the existence, uniqueness,
and iterative approximations of solutions for that functional equation in the complete
metric spaces. We construct some nontrivial examples to explain our results. The
results presented here unify the results of Bellman [1], Bhakta and Mitra [3], Bhakta
and Choudhury [4], Liu and Ume [10], Liu et al. [11], Liu et al. [13], Liu and Kang
[9], Jiang et al. [7], and Liu [8].
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2 Preliminaries

We begin by introducing some notations, definitions, and results that will be used
in this paper. Let R = (−∞,+∞), R+ = [0,+∞) and R− = (−∞, 0]. For any
t ∈ R, [t] denotes the largest integer not exceeding t and (X, ‖.‖) and (Y , ‖.‖′

)

be real Banach spaces. S ⊆ X and D ⊆ Y denote state space and decision space,
respectively. Define

Φ1 = {ϕ|ϕ : R+ −→ R+ is nondecreasing},
Φ2 = {(ϕ, ψ) : ϕ,ψ ∈ Φ1, ψ(t) > 0 and

∑∞
n=0 ψ(ϕn(t)) < ∞ for t > 0},

Φ3 = {(ϕ, ψ) : ϕ,ψ ∈ Φ1, ψ(t) > 0 and limn−→∞ ψ(ϕn(t)) = 0 for t > 0},
Φ4 = {ϕ : ϕ ∈ Φ1 and

∑∞
n=0 ϕn(t) < ∞ for t > 0},

B(S) = { f | f : S −→ R is bounded},
BC(S) = { f : f ∈ B(S) is continuous},
BB(S) = { f | f : S −→ R is bounded on bounded subsets of S}.

Define norm ‖ f ‖1 = supx∈S | f (x)|, then (B(S), ‖.‖1) and (BC(S), ‖.‖1) are Banach
spaces. Put,

dk( f, g) = sup {| f (x) − g(x)| : x ∈ B(0, k)},

d( f, g) =
∞∑

k=1

1

2k
.

dk( f, g)

1 + dk( f, g)
,

for any positive integer k, B(0, k) = {x : x ∈ S and ‖x‖ ≤ k} and f, g ∈ BB(S).
Thus, (BB(S), d) is a complete metric space. A metric space (M, ρ) is said to met-
rically convex if for each x, y ∈ M, there is a z 
= x, y for which ρ(x, y) =
ρ(x, z) + ρ(z, y) and any Banach space is metrically convex.

Lemma 1 [5] Suppose (M, ρ) is a completely metrically convex metric space and
f : M −→ M satisfies

ρ( f (x), f (y)) ≤ ϕ(ρ(x, y)) f or x, y ∈ M, (11)

where ϕ : P −→ R+ satisfies ϕ(t) < t for t ∈ P−{0}, P = {ρ(x, y) : x, y ∈ M} and
P denotes the closure of P. Then f has a fixed point u ∈ M and limn−→∞ f n(x) = u,
for each x ∈ M.

Lemma 2 [7] {ai , bi : 1 ≤ i ≤ n} ⊆ R. Then

| opt{ai : 1 ≤ i ≤ n} − opt{bi : 1 ≤ i ≤ n}| ≤ max {|ai − bi | : 1 ≤ i ≤ n}. (12)

Lemma 3 [7]

(i) Assume that A : S × D → R is a mapping such that opty∈DA(x0, y) is bounded
for some x0 ∈ S. Then
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| opt
y∈D

A(x0, y)| ≤ sup
y∈D

|A(x0, y)|; (13)

(ii) Assume that A, B : S × D → R is a mapping such that opty∈DA(x1, y) and
opty∈DB(x2, y) is bounded for some x1, x2 ∈ S. Then

| opt
y∈D

A(x1, y) − opt
y∈D

B(x2, y)| ≤ sup
y∈D

|A(x1, y) − B(x2, y)|. (14)

3 Main Results

First of all, we show the existence and uniqueness of solutions in BC(S) and B(S).

Theorem 1 Let S be compact. Let u, v, r, pi , qi : S×D −→ R and s, ai : S×D −→
S for i = 1, 2, 3, and satisfy the following conditions:

(C1) u, v and pi are bounded for i = 1, 2, 3.
(C2) for each x0 ∈ S, u(x, y) −→ u(x0, y), r(x, y) −→ r(x0, y), s(x, y) −→

s(x0, y), v(x, y) −→ v(x0, y), pi (x, y) −→ pi (x0, y), qi (x, y) −→
qi (x0, y), ai (x, y) −→ ai (x0, y) as x −→ x0 uniformly for y ∈ D and
i = 1, 2, 3.

(C3) |r(x, y)|+ max{|qi (x, y)| : i = 1, 2, 3} ≤ α, for some α ∈ (0, 1)and (x, y) ∈
S × D.

Then the functional equation (10) possesses a unique solution w ∈ BC(S) and
{Hnh}n≥1 converges to w for each h ∈ BC(S), where H is defined as

Hh(x) = opt
y∈D

{u(x, y) + r(x, y)h(s(x, y))

+ opt{v(x, y), pi (x, y) + qi (x, y)h(ai (x, y)) : i = 1, 2, 3}},∀x ∈ S.

(15)

Proof Let h ∈ BC(S) and x0 ∈ S and ε > 0, by (C1), (C2) and compactness of S,
there exist a constant M > 0, δ > 0 and δ1 > 0 such that

max{|u(x, y)|, |v(x, y)|, |pi (x, y)| : i = 1, 2, 3} ≤ M, ∀ (x, y) ∈ S × D. (16)

max{|h(x)|, |h(s(x, y))|, |h(ai (x, y))| : i = 1, 2, 3} ≤ M, ∀ (x, y) ∈ S × D. (17)

sup
y∈D

{|u(x, y) − u(x0, y)|} ≤ ε/4, with ‖x − x0‖ < δ. (18)

max{|pi (x, y) − pi (x0, y)| : i = 1, 2, 3} ≤ ε/4, with ‖x − x0‖ < δ. (19)

max{|r(x, y) − r(x0, y)|} ≤ ε/4M, with ‖x − x0‖ < δ. (20)

max{|qi (x, y) − qi (x0, y)| : i = 1, 2, 3} ≤ ε/4M, with ‖x − x0‖ < δ. (21)
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|h(x1) − h(x2)| < ε/4, ∀ x1, x2 ∈ S,

with ‖x1 − x2‖ < δ1. (22)

max{‖ai (x, y) − ai (x0, y)‖ : i = 1, 2, 3} < δ1,

∀ (x, y) ∈ S × D with ‖x − x0‖ < δ. (23)

|Hh(x)| ≤ supy∈D|{u(x, y) + r(x, y)h(s(x, y))

+ opt{v(x, y), pi (x, y) + qi (x, y) h(ai (x, y)) : i = 1, 2, 3}}|
≤ supy∈D{|u(x, y)| + |r(x, y)| |h(s(x, y))|+

max{|v(x, y)|, |pi (x, y)| + |qi (x, y)| |h(ai (x, y))| : i = 1, 2, 3}}
≤ 2M + αM,

This implies H is bounded.
From (C3), (15), (17)–(23) and Lemmas 2 and 3, we obtain that for all (x, y) ∈ S×D
with ‖x − x0‖ < δ,

|Hh(x) − Hh(x0)| = | opt
y∈D

{u(x, y) + r(x, y)h(s(x, y))

+ opt{v(x, y), pi (x, y) + qi (x, y)h(ai (x, y)) : i = 1, 2, 3}}
− opt

y∈D
{u(x0, y) + r(x0, y)h(s(x0, y))

+ opt{v(x0, y), pi (x0, y) + qi (x0, y)h(ai (x0, y)) : i = 1, 2, 3}}|
≤ supy∈D{|u(x, y) − u(x0, y)| + |r(x, y)h(s(x, y)) − r(x0, y)h(s(x0, y))|

+max{|v(x, y) − v(x0, y)|, |pi (x, y) − pi (x0, y)|
+|qi (x, y)h(ai (x, y)) − qi (x0, y)h(ai (x0, y))| : i = 1, 2, 3}}

≤ supy∈D{|u(x, y) − u(x0, y)| + |r(x, y) − r(x0, y)| |h(s(x, y))|
+|r(x0, y)| |h(s(x, y)) − h(s(x0, y))|
+max{|v(x, y) − v(x0, y)|, |pi (x, y) − pi (x0, y)|
+|qi (x, y)h(ai (x, y)) − qi (x0, y)h(ai (x0, y))| : i = 1, 2, 3}}

≤ ε

4
+ ε

4M
M + α

ε

4
+ max{ ε

4
,

ε

4
+ ε

4M
M + α

ε

4
}

< ε, (24)

which ensure that Hh is continuous at x0. So, H is a self-mapping on BC(S).
Given ε > 0, x ∈ S and h, g ∈ BC(S). Suppose opty∈D = supy∈D. Then ∃y, z ∈ D
such that

Hh(x) < u(x, y) + r(x, y)h(s(x, y)) + opt{v(x, y), pi (x, y) + qi (x, y)h(ai (x, y)) : i = 1, 2, 3} + ε,

Hg(x) < u(x, z) + r(x, z)g(s(x, z)) + opt{v(x, z), pi (x, z) + qi (x, z)g(ai (x, z)) : i = 1, 2, 3} + ε,

Hh(x) ≥ u(x, z) + r(x, z)h(s(x, z)) + opt{v(x, z), pi (x, z) + qi (x, z)h(ai (x, z)) : i = 1, 2, 3},
Hg(x) ≥ u(x, y) + r(x, y)g(s(x, y)) + opt{v(x, y), pi (x, y) + qi (x, y)g(ai (x, y)) : i = 1, 2, 3}.

(25)

By (25), we get
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Hh(x) − Hg(x) < r(x, y)(h(s(x, y)) − g(s(x, y)))

+ opt{v(x, y), pi (x, y) + qi (x, y)h(ai (x, y)) : i = 1, 2, 3}.
− opt{v(x, y), pi (x, y) + qi (x, y)g(ai (x, y)) : i = 1, 2, 3} + ε,

≤ |r(x, y)| |(h(s(x, y)) − g(s(x, y)))|
+ max{|qi (x, y)| |h(ai (x, y)) − g(ai (x, y))| : i = 1, 2, 3} + ε,

≤ [ |r(x, y)| + max{|qi (x, y)| : i = 1, 2, 3}]
max{|(h(s(x, y)) − g(s(x, y)))|, |h(ai (x, y)) − g(ai (x, y))| : i = 1, 2, 3} + ε,

≤ α max{|(h(s(x, y)) − g(s(x, y)))|, |h(ai (x, y)) − g(ai (x, y))| : i = 1, 2, 3} + ε.

and

Hh(x) − Hg(x) > r(x, z)(h(s(x, z)) − g(s(x, z)))

+ opt{v(x, z), pi (x, z) + qi (x, z)h(ai (x, z)) : i = 1, 2, 3}.
− opt{v(x, z), pi (x, z) + qi (x, z)g(ai (x, z)) : i = 1, 2, 3} − ε,

≥ −|r(x, z)| |(h(s(x, z)) − g(s(x, z)))|
max{|qi (x, z)| |h(ai (x, z)) − g(ai (x, z))| : i = 1, 2, 3} − ε,

≥ [ −|r(x, z)| + max{|qi (x, z)| : i = 1, 2, 3}]
max{|(h(s(x, z)) − g(s(x, z)))|, |h(ai (x, z)) − g(ai (x, z))| : i = 1, 2, 3} − ε,

≥ −α max{|(h(s(x, z)) − g(s(x, z)))|, |h(ai (x, z)) − g(ai (x, z))| : i = 1, 2, 3} − ε.

which implies that

|Hh(x) − Hg(x)| ≤ α‖h − g‖1 + ε.

by which we get

‖Hh − Hg‖1 ≤ ϕ(‖h − g‖1) + ε, ∀ h, g ∈ BC(S)

where ϕ(λ) = αλ, λ ∈ R+. Letting ε → 0+, we get

‖Hh − Hg‖1 ≤ ϕ(‖h − g‖1), ∀ h, g ∈ BC(S) (26)

In a similar way, we conclude that (26) holds for opty∈D = inf y∈D. Lemma 1 ensures
that H has a unique fixed point w ∈ BC(S) and {Hnh}n≥1 converges to w for each
h ∈ BC(S). It is obvious that w is also a unique solution of the functional equation
(10) in BC(S). This completes the proof.

If we remove the condition of compactness of S and (C2) in Theorem 1, we obtain
the below result.

Theorem 2 Let u, v, r, pi , qi : S×D −→ R and s, ai : S×D −→ S for i = 1, 2, 3,
and satisfies conditions (C1) and (C3). Then the functional equation (10) possesses
a unique solution w ∈ B(S) and {Hnh}n≥1 converges to w for each h ∈ B(S), where
H is defined by (15).
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Remark 1 If u(x, y) = r(x, y) = pi (x, y) = 0, for i = 1, 2, 3 and ∀(x, y) ∈ S×D,
then Theorems 1 and 2 reduce to the results of Jiang et al. [7]. The following example
shows that Theorems 1 and 2 unify substantially the results in [7].

Example 1 Let X = Y = R, S = [1, 2], D = R+, then Theorem 2 ensures that the
functional equation given below possesses a unique solution in B(S).

f (x) = opt
y∈D

{
x

x + y2
+

(
x + y

1 + 3(x + y)

)
f

(
2x2 + y2

x2 + y2

)
+ opt

{
x2

1 + xy
, sin(x + 2y + 1)

+ 1

5
sin(2x2y + 3) f

(
3x + y3

x + y3

)
, cos(x + y2 + 1) + 1

7
sin(2x + 3y) f

(
7x2 + y

x2 + y

)
,

x2

x + y2
+ sin(3x + 5y + 1)

7 + x2 + y
f

(
x2y sin(1 + xy)

1 + xy2

)}}
, ∀x ∈ S. (27)

Since,

∣∣∣∣
x + y

1 + 3(x + y)

∣∣∣∣+max

{
1

5
| sin(2x2y + 3)|, 1

7
| sin(2x + 3y)|, | sin(3x + 5y + 1)|

7 + x2 + y

}
< 1.

However, the corresponding results in [7] are not applicable for the functional equa-
tion (27). Because,

x

x + y2
> 0, ∀ (x, y) ∈ S × D.

We point out that the functional equation (27) possesses also a unique solution in
BC(S).
We discuss properties of solutions in BB(S) in our next results.

Theorem 3 Let u, v, s, pi , qi : S×D −→ Rand s, ai : S×D −→ S for i = 1, 2, 3,
and satisfy the following conditions:

(B1) u, v and pi are bounded on B(0, k) × D for k ≥ 1 and i = 1, 2, 3,
(B2) max {‖s(x, y)‖, ‖ai (x, y)‖ : i = 1, 2, 3} ≤ ‖x‖, for (x, y) ∈ S × D,
(B3) there exists a constant α such that

sup(x,y)∈S×D {|r(x, y)| + max |qi (x, y)| : i = 1, 2, 3} ≤ α < 1,

then the functional equation (10) possesses a unique solution w ∈ BB(S) and
{Hnh}n≥1 converges to w for each h ∈ BB(S), where H is defined by (15).

Proof For each k ≥ 1 and h ∈ BB(S), (B1) and (B2) imply that there exist β(k) > 0
and η(k, h) > 0 such that

sup
(x,y)∈B(0,k)×D

{|u(x, y)|, |v(x, y)|, |pi (x, y)| : i = 1, 2, 3} ≤ β(k) (28)

sup
(x,y)∈B(0,k)×D

{|h(s(x, y))|, |h(ai (x, y))| : i = 1, 2, 3} ≤ η(k, h). (29)

In view of (B3), (28) and (29), we get
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|Hh(x)| ≤ supy∈D{|u(x, y)| + |r(x, y)| |h(s(x, y))|
+ max{|v(x, y)|, |pi (x, y)| + |qi (x, y)| |h(ai (x, y))| : i = 1, 2, 3}},

≤ 2β(k) + 2η(k, h).

Thus Hh is bounded, i.e., H is a self-mapping on BB(S).
Let k ∈ N , x ∈ B(0, k), g, h ∈ BB(S) and ε > 0. Suppose opty∈D = supy∈D. Then
there exist y, z ∈ D satisfying

Hh(x) < u(x, y) + r(x, y)h(s(x, y))

+ opt{v(x, y), pi (x, y) + qi (x, y)h(ai (x, y)) : i = 1, 2, 3} + ε,

Hg(x) < u(x, z) + r(x, z)g(s(x, z))
+ opt{v(x, z), pi (x, z) + qi (x, z)g(ai (x, z)) : i = 1, 2, 3} + ε,

Hh(x) ≥ u(x, z) + r(x, z)h(s(x, z))
+ opt{v(x, z), pi (x, z) + qi (x, z)h(ai (x, z)) : i = 1, 2, 3},

Hg(x) ≥ u(x, y) + r(x, y)g(s(x, y))

+ opt{v(x, y), pi (x, y) + qi (x, y)g(ai (x, y)) : i = 1, 2, 3}.

Using (B3), Lemma 2 and applying in the similar way as in Theorem 1 the above
terms, we get

|Hh(x) − Hg(x)| ≤ αdk(h, g) + ε, ∀h, g ∈ BB(S). (30)

Similarly, we can show that (30) holds for opty∈D = inf y∈D. It follows that

dk(Hg, Hh) ≤ ϕ(dk(h, g)) + ε, (31)

where ϕ(λ) = αλ for λ ∈ R+. As ε −→ 0+ in (31), we get

dk(Hg, Hh) ≤ ϕ(dk(h, g)).

It follows from Theorem 2.2 in [4] that H has a unique fixed point w ∈ BB(S) and
{Hnh}n≥1 converges to w for each h ∈ BB(S). Obviously, w is also a unique solution
of the functional equation (10). This completes the proof.

Remark 2

1. If u = v = r = q1 = q3 = p1 = p2 = 0, opty∈D = inf y∈D and opt = max,
then Theorem 3 reduces to Theorem 3.4 of Bhakta and Choudhary [4] and a
result of Bellman [1].

2. If v = r = p3 = q3 = 0, then Theorem 3 reduces to a result of Liu et al. [11].
3. If p1 = p2 = p3 = q3 = 0, then Theorem 3 reduces to Theorem 4.1 of Liu et

al. [13], which, in turn, generalizes the results in [1, 4].
4. Theorem 3.3 of Jiang et al. [7] is a particular case of Theorem 3.

The example below shows that Theorem 3 unifies the results in [1, 4, 7, 11, 13].
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Example 2 Let X = Y = R and S = D = R+. Consider the following functional
equation:

f (x) = opt
y∈D

{
(1 + | sin(x + 2y − 1)|) + 1 + sin(1 + xy2)

5 + 5xy2
f

(
x2

1 + 2x + 3y

)

+ opt

{(
1 + 1

2 + x2y

)
,

3x2

1 + x2y2
+

(
sin(x2 + y2)

4 + (x2 + y2)

)
f

(
x3

2 + x2 + y

)
,

x cos(x + 2y − 1) +
(

1

3 + xy

)
f

(
x2

1 + x + y

)
, x sin(2x + 3y)

+
(
1 + sin(xy + 2)

7 + x3y

)
f

(
x3

1 + x2 + y

)}}
, ∀x ∈ S. (32)

Clearly,

sup
(x,y)∈B(0,k)×D

{
(1 + | sin(x + 2y − 1)|), (1 + 1

2 + x2y
),

3x2

1 + x2y2
,

x | cos(x + 2y − 1)|, x | sin(2x + 3y)|
}
≤ 3k, k ≥ 1,

max

{
x2

1 + 2x + 3y
,

x3

2 + x2 + y
,

x2

1 + x + y
,

x3

1 + x2 + y

}
≤ |x |, (x, y) ∈ S × D

and

sup
(x,y)∈S×D

{
1 + | sin(1 + xy2)|

5 + 5xy2
+max

{ | sin(x2 + y2)|
4 + (x2 + y2)

,
1

3 + xy
,
1 + | sin(xy + 2)|

7 + x3y

}}
< 1.

It follows from Theorem 3 that the functional equation (32) possesses a unique
solution in BB(S). However, the results in [1, 4, 7, 11, 13] are not applicable to the
functional equation (32). Since

(1 + | sin(x + 2y − 1)|) > 0,

(
1 + 1

2 + x2y

)
> 0 and

(
1 + | sin(xy + 2)|

7 + x3y

)
> 0, ∀ (x, y) ∈ S × D.

In the following theorem, we present the proof in line with the proof of Theorem 4.3
of Pathak and Deepmala [15].

Theorem 4 Let u, v, r, pi , qi : S×D −→ R and s, ai : S×D −→ S for i = 1, 2, 3,
and let (ϕ, ψ) be in (Φ2) satisfying the following conditions:



88 Deepmala and A.K. Das

(B4) max{|u(x, y)| + |v(x, y)|, |pi (x, y)| : i = 1, 2, 3} ≤ ψ(‖x‖),∀(x, y) ∈
S × D.

(B5) max{‖s(x, y)‖, ‖ai (x, y)‖ : i = 1, 2, 3} ≤ ϕ(‖x‖),∀(x, y) ∈ S × D.

(B6) supy∈D{|r(x, y)| + max{|qi (x, y)| : i = 1, 2, 3}} ≤ 1,∀x ∈ S.

Then the functional equation (10) possesses a solution w ∈ BB(S) that satisfies the
following conditions:

(B7) The sequence {wn}n≥0 defined by
w0(x) = opty∈D {u(x, y) + v(x, y) + opt{pi (x, y) : i = 1, 2, 3}} ,∀x ∈ S

wn(x) = opty∈D

{
u(x, y) + r(x, y)wn−1(s(x, y)) + opt{v(x, y), pi (x, y)

+ qi (x, y)wn−1(ai (x, y)) : i = 1, 2, 3}
}
,

∀x ∈ S, n ≥ 1 converges to w.
(B8) limn→∞ w(xn) = 0 for any x0 ∈ S,

{yn}n≥1 ⊂ D and xn ∈ {ai (xn−1, yn−1) : i = 1, 2, 3},∀n ∈ N.
(B9) w is unique with respect to condition (B8)

Proof Since (ϕ, ψ) ∈ Φ2, thus

ϕ(t) < t for t < 0 (33)

First, we show that the mapping H defined by (15) is nonexpansive on BB(S), by
(33) and (B5), we get max{‖s(x, y)‖, ‖ai (x, y)‖ : i = 1, 2, 3} ≤ ϕ(‖x‖) < k, for
(x, y) ∈ B(0, k) × D, which implies that ∃ a constant θ(k, h) > 0 with

max{|h(s(x, y))|, |h(ai (x, y))| : i = 1, 2, 3} ≤ θ(k, h), f or(x, y) ∈ B(0, k) × D.

(34)
By virtue of (B4), (B6), (15), (34), Lemmas 2 and 3, we deduce that

|Hh(x)| ≤ supy∈D{|u(x, y)| + |r(x, y)||h(s(x, y))|
+max{|v(x, y)|, |pi (x, y)| + |qi (x, y)| |h(ai (x, y))| : i = 1, 2, 3}}

≤ supy∈D{|u(x, y)| + |v(x, y)| + max{|pi (x, y)| : i = 1, 2, 3} + [ |r(x, y)|
+max{|qi (x, y)| : i = 1, 2, 3} ] max{|h(s(x, y))|, |h(ai (x, y))| : i = 1, 2, 3}}

≤ 2ψ(k) + θ(k, h) f or x ∈ B(0, k).

Thus H is a self-mapping on BB(S).
By (B6) and following the similar approach as in proof of Theorem 3, we conclude
that for h, g ∈ BB(S) and k ≥ 1,

dk(Hh, Hg) ≤ dk(h, g),

which implies that

d(Hh, Hg) =
∞∑

k=1

1

2k

dk(Hh, Hg)

1 + dk(Hh, Hg)
≤

∞∑
k=1

1

2k

dk(h, g)

1 + dk(h, g)
= d(h, g)
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for h, g ∈ BB(S). That is, H is nonexpansive.
Now we assert that for each n ≥ 0,

|wn(x)| ≤ 2
n∑

j=0

ψ(ϕ j (‖x‖)), x ∈ S (35)

Now by (B4) we see that

|w0(x)| ≤ supy∈D{|u(x, y)| + |v(x, y)| + max{|pi (x, y)| : i = 1, 2, 3}}
≤ 2ψ(‖x‖), x ∈ S

That is, (35) is true for n = 0. Suppose (35) holds for some n ≥ 0. From (B4)–(B6)
we know that

|wn+1(x)| = | opt
y∈D

{u(x, y) + r(x, y)wn(s(x, y))

+ opt{v(x, y), pi (x, y) + qi (x, y)wn(ai (x, y)) : i = 1, 2, 3}}|
≤ sup

y∈D
{|u(x, y)| + |r(x, y)| |wn(s(x, y))|

+ max{|v(x, y)|, |pi (x, y)| + |qi (x, y)| |wn(ai (x, y))| : i = 1, 2, 3}}
≤ sup

y∈D
{|u(x, y)| + |v(x, y)| + max{|pi (x, y)| : i = 1, 2, 3}

+ [ |r(x, y)| + max{|qi (x, y)| : i = 1, 2, 3}]
max{|wn(s(x, y))|, |wn(ai (x, y))| : i = 1, 2, 3}}

≤ 2ψ(‖x‖) + 2
n∑

j=0

ψ(ϕ j (‖x‖))

≤ 2
n+1∑
j=0

ψ(ϕ j (‖x‖)),

Hence (35) holds for n ≥ 0.
Next we claim that {wn}n≥0 is a cauchy sequence in BB(S). Given k ≥ 1 and
x0 ∈ B(0, k). Let ε > 0, n, m ∈ N . Suppose opty∈D = supy∈D. Then we select
y, z ∈ D such that

wn(x0) < u(x0, y) + r(x0, y)wn−1(s(x0, y))

+ opt{v(x0, y), pi (x0, y) + qi (x0, y) wn−1(ai (x0, y)) : i = 1, 2, 3} + ε

2
wn+m(x0) < u(x0, z) + r(x0, z)wn+m−1(s(x0, z))

+ opt{v(x0, z), pi (x0, z) + qi (x0, z) wn+m−1(ai (x0, z)) : i = 1, 2, 3} + ε

2
wn(x0) ≥ u(x0, z) + r(x0, z)wn−1(s(x0, z))

+ opt{v(x0, z), pi (x0, z) + qi (x0, z) wn−1(ai (x0, z)) : i = 1, 2, 3},
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wn+m(x0) ≥ u(x0, y) + r(x0, y)wn+m−1(s(x0, y))

+ opt{v(x0, y), pi (x0, y) + qi (x0, y) wn+m−1(ai (x0, y)) : i = 1, 2, 3}.
(36)

Using (36), (B6) and Lemma 2, we show that

|wn+m(x0) − wn(x0)| < max{max{|wn+m−1(ai (x0, z)) − wn−1(ai (x0, z))| : i = 1, 2, 3},
max{|wn+m−1(ai (x0, y)) − wn−1(ai (x0, y))| : i = 1, 2, 3}} + ε/2,

= |wn+m−1(x1) − wn−1(x1)| + ε/2, (37)

for some y1 ∈ {y, z} and x1 ∈ {ai (x0, y1) : i = 1, 2, 3}.
Similarly, we conclude that the above inequality (37) holds for opty∈D = inf y∈D.
Proceeding in this way, we select y j ∈ D and x j ∈ {ai (x j−1, y j ) : i = 1, 2, 3} for
j = 2, 3, ..., n such that

|wn+m−1(x1) − wn−1(x1)| < |wn+m−2(x2) − wn−2(x2)| + 2−2ε

|wn+m−2(x2) − wn−2(x2)| < |wn+m−3(x3) − wn−3(x3)| + 2−3ε

· · · · · · · · ·
|wm+1(xn−1) − w1(xn−1)| < |wm(xn) − w0(xn)| + 2−nε. (38)

It follows from (B5), (33), (35), (37) and (38) that

|wn+m(x0) − wn(x0)| < |wm(xn) − w0(xn)| + ∑n
i=12

−iε

< |wm(xn)| + |w0(xn)| + ε

≤ 2
∑m

i=0ψ(ϕi (‖xn‖)) + 2ψ(‖xn‖) + ε

≤ 2
∑m

i=0ψ(ϕi+n(‖x0‖)) + 2ψ(ϕn(‖x0‖)) + ε

≤ 2
∑∞

j=n−1ψ(ϕ j (k)) + ε,

which implies that

dk(wn+m, wn) ≤ 2
∞∑

j=n−1

ψ(ϕ j (k)) + ε (39)

As ε → 0+ in the above inequality, we get dk(wn+m, wn) ≤ 2
∑∞

j=n−1 ψ(ϕ j (k)),

which implies that {wn}n≥0 is a cauchy sequence in (BB(S), d) since,
∑∞

i=0 ψ(ϕn(t))
< ∞, for each t > 0. Suppose {wn}n≥0 converges to some w ∈ BB(S). Since H is
nonexpansive, it follows that

d(w, Hw) ≤ d(w, Hwn) + d(Hwn, Hw)

≤ d(w, wn+1) + d(wn, w)

→ 0 as n → ∞.

That is, Hw = w. So, the functional equation (10) possesses a solution w.



On Solvability for Certain Functional Equations Arising in Dynamic Programming 91

Now we show that (B8) holds. Let ε > 0, x0 ∈ S, {yn}n≥1 ⊂ D and xn ∈
{ai (x, y), i = 1, 2, 3} for n ≥ 1. Put k = [‖x0‖] + 1. Then there exists a posi-
tive integer m satisfying

dk(w, wn) + 2
∞∑

j=n

ψ(ϕ j (k)) < ε, f or n > m. (40)

By (35), (B5) and (40), we show that for n > m,

|w(xn)| ≤ |w(xn) − wn(xn)| + |wn(xn)|
≤ dk(w, wn) + 2

∑∞
j=0ψ(ϕ j (‖xn‖))

≤ dk(w, wn) + 2
∑∞

j=nψ(ϕ j (k))

≤ ε,

which means that limn→∞ w(xn) = 0.
Finally, we show that (B9) holds. Suppose the functional equation (10) possesses
another solution h ∈ BB(S), which satisfies condition (B8). Let ε > 0 and x0 ∈ S. If
opty∈D = supy∈D, then there exist y, z ∈ S such that

w(x0) < u(x0, y) + r(x0, y)w(s(x0, y))

+ opt{v(x0, y), pi (x0, y) + qi (x0, y)w(ai (x0, y)) : i = 1, 2, 3} + ε

2
,

h(x0) < u(x0, z) + r(x0, z)h(s(x0, z))

+ opt{v(x0, z), pi (x0, z) + qi (x0, z)h(ai (x0, z)) : i = 1, 2, 3} + ε

2
,

w(x0) ≥ u(x0, z) + r(x0, z)w(s(x0, z))

+ opt{v(x0, z), pi (x0, z) + qi (x0, z)w(ai (x0, z)) : i = 1, 2, 3},
h(x0) ≥ u(x0, y) + r(x0, y)w(h(x0, y))

+ opt{v(x0, y), pi (x0, y) + qi (x0, y)h(ai (x0, y)) : i = 1, 2, 3}. (41)

By Lemma 2, (B6), and (41) we obtain

|w(x0) − h(x0)| < max{max{|w(ai (x0, y)) − h(ai (x0, y))| : i = 1, 2, 3},
max{|w(ai (x0, z)) − h(ai (x0, z))| : i = 1, 2, 3}} + ε

2
,

= |w(x1) − h(x1)| + ε

2
. (42)

for some y1 ∈ {y, z} and x1 ∈ {ai (x0, y1) : i = 1, 2, 3}. Similarly, we conclude
that (42) holds for opty∈D = inf y∈D. Proceeding in this way, we select y j ∈ D and
x j ∈ {ai (x j−1, y j )} for j = 2, 3, ..., n satisfying
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|w(x1) − h(x1)| < |w(x2) − h(x2)| + 2−2ε

|w(x2) − h(x2)| < |w(x3) − h(x3)| + 2−3ε

· · · · · · · · ·
|w(xn−1) − h(xn−1)| < |w(xn) − h(xn)| + 2−nε (43)

Combining (42) and (43), we obtain

|w(x0) − h(x0)| < |w(xn) − h(xn)| +
∑n

j=1
2− jε < |w(xn) − h(xn)| + ε.

Letting n → ∞ in the above inequalities, by (B8) we get

|w(x0) − h(x0)| ≤ ε.

As ε → 0+ in the above inequality, we know that w(x0) = h(x0). This completes
the proof.

Remark 3

1. Theorem 4 unifies the results of Liu et al. [11, 13].
2. In case, u = r = p1 = p2 = p3 = 0 and (ϕ, ψ) ∈ Φ3, then Theorem 4 reduces

to Theorem 3.4 of Jiang et al. [7], which, in turn, unifies the results of Bellman
[1], Bhakta and Choudhary [4], Liu [8] and Liu and Ume [10].

3. If r = p1 = p2 = p3 = 0, q1 = q2 = q3 = (1 − λ), a1 = a2 = a3 = a(x, y),
v(x, y) = (1 − λ) v1(x, y), u(x, y) = λ [u1(x, y) + f (a(x, y))], ψ(t) = Mt
and ϕ ∈ Φ4, for (x, y) ∈ S × D, t ∈ R+, where λ is a constant in [0, 1] and M
is a positive constant, then Theorem 4 reduces to Theorem 3.1 of Liu and Ume
[10], which, in turn, unifies Theorem 3.5 in [4], Theorem 2.4 in [3] and a result
in [1].

4. If we put opty∈D = supy∈D, u = r = p1 = p3 = q3 = 0, q1 = q2 = 1, then
Theorem 4 reduces to Theorem 2.2 of Liu et al. [12].

5. Dropping condition (B6) and replacing opty∈D = inf y∈D, opt = max, q1 = q2 =
1, u = r = p1 = p3 = q3 = 0, then Theorem 4 reduces to Theorem 3.4 of Liu
and Kang [9], which, in turn, unifies the results in [9], [4] and [1].

The example given below demonstrates that Theorem 4 unifies the results in [1, 3,
4, 7–13]

Example 3 Let X = Y = R, S = D = [1,∞), ψ(t) = 2t2, ϕ(t) = t
3 , ∀ t ∈ R+.

Consider the following functional equation:

f (x) = opt
y∈D

{
x2

(
1 + 1

x + 2y

)
+ 1

3
sin(x2 − y2) f

(
x cos(2x + y)

3 + xy

)
+ opt

{
1

2 + sin(2x + y)
,

x2

1 + xy
+ 1

2
cos2(x + 2y) f

(
x sin x

3 + x2y

)
,

x2

1 + sin(x + 3y)
+ 1

3 + xy
f

(
x

3 + sin xy

)
,

x

1 + x2 + y2
+ 1

5 + sin(2x + y − 1)
f

(
x

3 + xy2

)}}
, ∀ x ∈ S. (44)
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Note that

|u(x, y)| = x2
(
1 + 1

x+2y

)
≤ 2x2 = ψ(|x |),

|v(x, y)| = 1
2+| sin(2x+y)| ≤ 2x2 = ψ(|x |),

|p1(x, y)| = x2
1+xy ≤ 2x2 = ψ(|x |),

|p2(x, y)| = x2
1+| sin(x+3y)| ≤ 2x2 = ψ(|x |),

|p3(x, y)| = x
1+x2+y2

≤ 2x2 = ψ(|x |),

Also,

max

{
1

3
| sin(x2 − y2)| + max

{
1

2
| cos2(x + 2y)|, 1

3 + xy
,

1

5 + | sin(2x + y − 1)|
}}

< 1,

|s(x, y)| = x | cos(2x+y)|
3+xy ≤ x

3 = ϕ(|x |),
|a1(x, y)| = x | sin x |

3+x2 y
≤ x

3 = ϕ(|x |),
|a2(x, y)| = x

3+| sin xy| ≤ x
3 = ϕ(|x |),

|a3(x, y)| = x
3+xy2

≤ x
3 = ϕ(|x |).

It follows from Theorem 4 that the functional equation (44) possesses a solution
w ∈ BB(S). However, the corresponding results in [1, 3, 4, 7–13] are not applicable
for the functional equation (44). Because,

∣∣∣∣x2
(
1 + 1

x + 2y

)∣∣∣∣≤ M|x |,

does not holds for (x, y) = (1+ M, 1) ∈ S × D, where M is a positive constant, also

x2
(
1 + 1

x + 2y

)
> 0 and

1

2 + | sin(2x + y)| > 0.

4 Conclusion

Dynamic programming is an important and challenging research field because of
its applicability in multistage decision processes. For solving a class of functional
equations arising in formulation of some real world problem, it is always demanding
to show that the solution of these types of functional equations exists or not. If exists,
then unique or multiple. Thus, we conclude that the results developed are useful for
the researchers to show the existence and uniqueness of the solutions of the functional
equations.
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CASca:A CA Based Scalable Stream Cipher

Shamit Ghosh and Dipanwita Roy Chowdhury

Abstract This paper presents a scalable stream cipher based on Cellular Automata.
The cipher uses linear and nonlinear cellular automata as crypto primitives. The
properties of maximum length nonlinear cellular automata have been exploited to
design the cipher. Rotational symmetric bent function is used in the final combiner
of the cipher which is proven to be secured against certain kind of fault attacks.
The scalability provides different security level for different applications. Finally the
cipher is shown to be very hardware efficient.

Keywords Cellular automata ·Streamcipher ·Pseudo random sequence generator ·
Scalable stream cipher

1 Introduction

Stream Cipher is an important branch in symmetric key cryptography. The goal of
a stream cipher design is that it must provide high-speed encryption and less design
overhead in comparison with block ciphers. The conventional stream ciphers used
linear feedback shift registers (LFSR) for randomness and sufficiently large period.
However, attempts are made to replace LFSRwith linear CA to get excellent random
sequences with a high speed of execution. Nonlinearity is another essential prop-
erty for security, which is typically introduced by nonlinear feedback shift registers
(NFSR) in stream cipher designs. The challenge of designing a crypto-system is,
in addition to providing the required security, the crypto-system should be easy to
implement in both hardware and software together with high performance and mini-
mal resource usage. Stream ciphers have gained a lot of attention in the past fewyears.
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The eSTREAM [4] project was launched in 2004 in search of a good stream cipher.
The eSTREAMproject has been instrumental for this attention. The eSTREAMport-
folio ciphers fall into two profiles. Profile 1 contains stream ciphers more suitable for
software applications with high throughput requirements. The winners in this profile
are HC-128 [11], Rabbit [6], Salsa20/12 [5], SOSEMANUK [3]. Profile 2 stream
ciphers are particularly suitable for hardware applications with restricted resources
such as limited storage, gate count, or power consumption. Grain v1 [10], MICKEY
2.0 [1] and Trivium [7] are the winner in this category.

The basic philosophy of a stream cipher is to generate pseudo-random sequences
from a secret key or a seed. There is an optional provision for an initial value (IV)
which provides security for multiple encryptions using the same secret key. This fact
is the motivation of designing fast pseudo-random sequence generators. The cellular
automata (CA) provide very good pseudo-random sequences which exhibit excellent
statistical properties. A necessary requirement for such a sequence generator is large
period. In our design, both linear and nonlinear part are maximum length sequence
generator.Moreover, scalability is an important aspect any cryptographic design.Due
to advancement of computing speed, the current security standard may be obsolete
after a fewyears.Only for a scalable design, the new security standard can be achieved
by increasing the key size without discarding the whole algorithm.

Our Contribution: In this paper we have designed a new CA-based scalable
stream cipher CASca. The design specification and design rationale of the cipher
is portrayed. Crypto properties of CASca is shown in detail which proves its secu-
rity against all existing attacks. The design is shown to be suitable for constrained
hardware environment.

The remainder of the paper is organized as follows. Section2 draws the idea about
some notions, definitions, and basic studies on CA. The design of CASca is depicted
in Sect. 3. Section4 shows the scalability and initialization of the cipher. Section5
gives a security analysis of CASca against some popular cryptanalysis techniques.
Finally Sect. 6 concludes the work.

2 Preliminaries

In this section we discuss some basic notions required for security analysis. Some
definitions and properties related to CA are also highlighted. Based on these theo-
retical studies, we further proceed to our proposed scheme.

2.1 Notions

Throughout the paper, we use ’+’ to represent Boolean XOR operation in GF(2).
In this subsection, some basic security properties for evaluating a cryptographic
primitive are given. The entire theoretical studies and analysis of our scheme is done
based on these properties.
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Definition 1 Hamming Weight: Number of Boolean 1’s in a Boolean function’s
truth table is called the Hamming weight of the function.

Definition 2 Affine Function in GF(2):ABoolean functionwhich canbe expressed
as XOR of some or all of its input variables and a Boolean constant is an affine
function.

In this paper the term Affine Function simply refers to Affine Function in GF(2).

Definition 3 Nonlinearity: Let, f be a Boolean function of variables, x1, x2,
· · · , xn and A be the set of all affine functions in x1, x2, · · · , xn . The minimum
of all the Hamming distances between f and the Boolean functions in A is the
nonlinearity of f .

Definition 4 Algebraic Normal Form: Any Boolean function can be expressed as
XORof conjunctions and aBoolean constant, True or False. This form of theBoolean
function is called its Algebraic Normal Form (ANF).

Definition 5 Correlation Immunity : A function f : Fn
2 → F2 is kth order corre-

lation immune if for any independent n binary random variables X0 . . .Xn−1, the ran-
domvariableZ = f (X0, . . . ,Xn−1) is independent of any randomvector (Xi1 . . .Xik )

with 0 ≤ i1 < . . . < ik < n.

Definition 6 Resiliency : A function f : F
n
2 → F2 is kth order resistant if it is

balanced and correlation immune of order k.

2.2 CA Basics

Cellular automata are studied as mathematical model for self-organizing statistical
systems. CA can be one-dimensional or multi-dimensional. In this paper, we discuss
only one-dimensional two state CA. They can be considered as an array of cells
where each cell is a one-bit memory element.

The neighbor setN(i) is defined as the set of cells onwhich the i th cell is dependent
on each iteration. The simplest class of CA are elementary CA or three-neighborhood
CA where each cell evolves in every time step based on some combinatorial logic on
the cell itself and its two nearest neighbors. More formally, for a three-neighborhood
CA, N(i) = {i − 1, i, i + 1}. So, if the value of i th cell at t th time step is qi (t), then

qi (t + 1) = f (qi−1(t), qi (t), qi+1(t))

where f denotes some combinatorial logic. We call the set of all feedback functions
as ruleset and express asF . The state transition of one iteration of a CA is expressed
as St+1 = F(St ) where St is the set of all cells in the CA at t th time step.
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Fig. 1 4-cell
3-neighborhood null
boundary LHCA with ruleset
1011

Since, a three-neighborhood CA having two states (0 or 1) can have 23 = 8
possible binary states, there are a total of 22

3 = 256 possible rules. Each rule can be
represented as an decimal integer from 0 to 255. If the combinatorial logic for the
rules have onlyBooleanXORoperation, then it is called linear or additive rule. Some
of the three-neighborhood additive CA rules are 0, 60, 90, 102, 150 etc. Moreover,
if the combinatorial logic contains AND/OR operations, then it is called nonlinear
rule.

An n cell CA with cells {x0, x1, · · · , xn−1}is called null boundary CA if xn = 0
and x−1 = 0. Similarly, for a periodic boundary CA xn = x0.

A CA is called uniform, if all its cells follow the same rule. Otherwise, it is called
nonuniform or hybrid CA. For a hybrid CA, the sequence of the rules followed by
the cells in a particular order (MSB to LSB or vise versa). If all the ruleset of a hybrid
CA is linear, then we call the CA linear hybrid cellular automata (LHCA), otherwise
it is called nonlinear hybrid cellular automata (NHCA). In Fig. 1, a four-cell null
boundary LHCA is shown.

The shifting operation [9] on an NHCA is defined as follows.

Definition 7 The one-cell shifting operation, denoted by fi
P−→ fi±1 moves a set of

ANF monomials P from i th cell of an NHCA to all the cells from (i − 1) to (i + 1)-
th cell, according to the dependency of the affected cells upon the i th cell. Each
variable in P is changed by its previous state. Similarly, a k cell shifting is obtained
by applying the one-cell shifting operation for k times upon the initial NHCA and

symbolized as fi
P−→ fi±k .

For example, we have a 5-bit 3 neighborhood CA with the following initial ruleset:

f0 = (x1 ⊕ x0)

f1 = (x2 ⊕ x1 ⊕ x0)

f2 = (x3 ⊕ x2 ⊕ x1) ⊕ x4
f3 = (x4 ⊕ x3 ⊕ x2)

f4 = x3
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It is clear from the equations that x3 is the previous state of x4. Now applying the

shifting f2
x4−→ f2±1, the new ruleset becomes:

f0 = x1 ⊕ x0
f1 = (x2 ⊕ x1 ⊕ x0) ⊕ x3
f2 = (x3 ⊕ x2 ⊕ x1) ⊕ x3
f3 = (x4 ⊕ x3 ⊕ x2) ⊕ x3
f4 = x3

3 Design of Scalable a Stream Cipher

The design of the proposed stream cipher consists of three parts, a maximum length
sequence generator, a nonlinear sequence generator, and a final combiner function.
Their design rationale and construction are discussed below. The overall scheme is
depicted in Fig. 2.

3.1 Maximum Length Sequence Generator

The necessity of maximum length sequence is to prevent low period attack. We
designed themaximumlength sequenceusing linear hybrid cellular automata(LHCA)
as it is widely known that linear functions provide good diffusion properties. To syn-
thesize a maximum length LHCA rule a primitive polynomial is needed. From that
primitive polynomial, a ruleset is generated using the algorithm described in [8]. In
our design, the polynomial x128 + x29 + x27 + x2 + 1 is used. We call this LHCA
as L. The individual bits of L is denoted by si where i ∈ {0, 127}. It is trivial that L
is a null boundary CA.

Fig. 2 Operations of cipher
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3.2 Nonlinear Sequence Generator

Linear functions alone cannot provide cryptographic security as they can be easily
cryptanalyzed. To introduce nonlinearity, a nonlinear sequence generator is needed.
The design the nonlinear sequence generator should be in such a way that it has a
long period. In this case, we use Algorithm 1 depicted in [9]. This algorithm takes a
maximum length LHCA as input and injects required nonlinearity into some given
positions of the CAwhile retaining the period of 2n −1. In our design we synthesized
the nonlinear sequence generator from an LHCA, the same as L and then injected
nonlinearity at positions {20, 42, 79, 117}. For each position i , the nonlinear function
fN, injected at i th position is, (xi+2.xi−2). We will call this nonlinear sequence
generator as N . The individual bits of N is denoted by bi where i ∈ {0, 127}. The
bit b0 is bounded by null value, whereas b127 is bounded by s0.

Algorithm [1]: NHCA Synthesize Algorithm

Input: A maximum length LHCA with ruleset FL , A position j to inject nonlinearity and the set
of cells of the LHCA S
Output: A maximum length NHCA ruleset FN

1: FN ← FL
2: Let FN = { fn−1, · · · , f0}
3: X ⊂ S : ∀x ∈ X , x /∈ N( j) 	 select a subset from S
4: P ← fN(X ) 	 fN is non-linear function
5: f j ← f j ⊕ P

6: ( f j
P−→ f j+1) 	 Apply shifting operation

7: f j ← f j ⊕ P
8: return FN

3.3 Final Combiner Function

Some suitable tap bit positions are chosen from bothL andN .We call the set of these
tap bit positions as T . The final combiner function H is defined as H : 0, 1{|T |} →
{0, 1}where the input toH is T . The construction ofH has two primary parts, a bent
function hbent and a linear part hl . The bent function provides high nonlinearity,1

whereas the linear part increases the correlation immunity and resiliency of H. The
Boolean xor of l and b generates the required value ofH. The function b is defined as

1The nonlinearity of a bent function is the highest possible value among all Boolean functions of
the same number of variables.
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Fig. 3 Initialization of cipher

hbent (x) = x0x2 + x0x6 + x1x3 + x1x7 + x2x4 + x3x5 + x4x6+
x5x7 + x0x2x5 + x0x3x5 + x0x3x6 + x1x3x6+
x1x4x6 + x1x4x7 + x2x4x7 + x2x5x7

where x = {b17, s12, s35, s58, s78, s97, s117, b97}. Similarly, l is defined as

hl =
∑
k∈A

bk

where A = {21, 43, 80, 118}.

4 Scalability and Key Initialization

Before generating any keystream, the cipher is initialized with a key k and initial
vector IV . The number of bits in IV is 96 and we denote the bits of IV as IVi ,
0 ≤ i ≤ 95. The size of k is variable and can vary from 80 and 128. The size is
chosen by the user according to the security parameter. Let n be the size of the key
for a particular scheme where i th bit of the key is denoted as ki , 0 ≤ i ≤ n. The
96 LSB bits of L is initialized with IV , si = IVi , 0 ≤ i ≤ 95. The rest of the bits
are set at 1. This ensures that L cannot be initialized with all in case of a chosen IV
attack. Similarly, the first n bits of N is filled with k, bi = ki , 0 ≤ i ≤ n and the
remaining bits (if any) are set to 1. Next the cipher is clocked for 128 cycles without
producing any keystream and the keystream is XORed with both the MSB of L and
N as shown in Fig. 3.

5 Security

The principal design criteria of a stream cipher is to be secured against all existing
cryptanalysis techniques. The best possible algorithm to recover the secret key is to
be no less than exhaustive search of the key space. In this section we discuss some
possible attacks and the corresponding design criteria in our cipher against them.
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(a) (b)

Fig. 4 Nonlinearity of the tap bits. a Nonlineartiy with iteration. b Nonlineartiy graph

5.1 Linear Cryptanalysis

Linear cryptanalysis tries to formulate a linear approximation of the cipher. High
nonlinear value of the cipher protects the cipher against this attack. Table4a shows
the nonlinear values of the tap points with each iteration. After a few initial rounds
the nonlinearity reaches a high value. So the cipher is expected to be secured against
linear cryptanalysis techniques (Fig. 4).

5.2 Algebraic Attacks

Algebraic cryptanalysis techniques are very efficient in terms of finding loopholes
in the design. Weak or careless design principal can cause such kinds of attacks. In
our design, the H function provides a boolean function of degree three. With each
iteration this degree increases if the output bit is expressed as a function of only the
initial state bits. Hence, solving algebraic equations to cryptanalyze the system is
computationally infeasible.

5.3 Correlation Attacks

Correlation immunity is an important aspect of designing stream ciphers which pre-
vents the chosen IV attacks. The idea of the attack is to find any correlation between
the IV and the output stream. Unbalanced output helps an adversary to find a correla-
tion. Using only bent functions inHmay cause vulnerability for finding correlation.
Thus a linear function hl is needed. The H function has correlation immunity 3
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Table 1 Results of NIST
statistical test suite

Test name Status

Frequency (Monobit) test Pass

Frequency test within a block Pass

Runs test Pass

Discrete fourier transform (Spectral) test Pass

Non-overlapping template matching test Pass

Overlapping template matching test Pass

Serial test Pass

Approximate entropy test Pass

Cumulative sums (Cusum) test Pass

and nonlinearity 1664. It is a balanced function, so it is also a 3 resilient function.
If the input bits of H are represented as functions of the initial state bits, then with
each iteration the nonlinearity as well as resiliency increases very fast. So correlation
attack against CASca will not be faster than a brute force attack.

5.4 Statistical Analysis

Statistical analysis of the cipher is carried out using NIST Randomness Test Suite
and Table1 summarizes the result. The tests are performed by taking 10,000 bit
keystream from a fixed 128 bit key and IV pair.

5.5 Fault Attacks

Fault attacks are the most powerful and popular cryptanalysis techniques. The easier
way to inject fault into the cryptographic devicesmakes it highly feasible.Designing a
cryptographic scheme that is fault attack resistant is a challenging task for researchers.
Initially, an attacker injects single or multibit fault into the state of the cipher. The
output difference of the fault-free and faulty ciphertext leaks some information about
the state of the cipher. This leakage is indicated with some equation. This method is
repeated multiple times until a probabilistic polynomial time algorithm can recover
the secret key (or the state of the cipher). The fault locations are chosen by the attacker
in such a fashion that the set of equation can be solved easily. In our design, the state
of the cipher is implemented as CA. The high diffusion property of CA infects the
state with the fault within a very few iteration. Hence, the algebraic degree and the
number of unknown variables in the set of equations becomes so high that it is a hard
problem to solve. Moreover, a fault attack based on the decomposition of the final
combiner function in Grain v1 is discussed in [2]. This attack was possible as the
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combiner function can be decomposed into a form of s.u +v where u is a function of
only the nonlinear state bits and v is a function of the linear state bits. In our design, the
hbent function is a rotational symmetric bent function. This function hardly reveals
any information about the fault positions for their symmetric property and cannot
be decomposed like the above-mentioned attack. Thus the design is expected to be
robust against fault attacks.

6 Conclusion

A new stream cipher CASca is proposed in this paper. The choice of design rationale
of the cipher considers the existing cryptanalysis techniques. The size of IV is 96
bits but the key length has been kept as a variable one. The reason behind this is to
provide scalability for the applications where the security parameter can vary. The
design of CASca is very hardware efficient. It suitable for applications where low
power consumption and low area overhead are required, such as mobile devices.
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Improved Cryptographic Puzzle Based
on Modular Exponentiation

Lakshmi Kuppusamy and Jothi Rangasamy

Abstract Cryptographic puzzles are moderately hard–neither easy nor hard to
solve—computational problems. They have been identified to be useful in mitigating
a type of resource exhaustion attacks on Internet protocols. Puzzles based on modu-
lar exponentiation are interesting as they possess some desirable properties such as
deterministic solving time, sequential (non-parallelizable) solving process and linear
granularity. We propose a cryptographic puzzle based on modular exponentiation.
Our puzzle is as efficient as the state-of-art puzzle of its kind and also overcomes the
major limitation of the previous schemes.

Keywords Cryptographic puzzle · Proof-of-work · Denial-f-service protection ·
Unforgeability · Difficulty

1 Introduction

A cryptographic puzzle is a moderately difficult computational problem in which
a prover(client) must demonstrate to a puzzle generator (verifier) that it has per-
formed the required computational task. Cryptographic puzzles were first introduced
as proof-of-work systems by Dwork and Naor [8] in 1992 for combating junk emails
[8]. Rivest et al. (1996) used puzzles for realizing time-release cryptography [19].
Juels and Brainard (1999) considered puzzles to mitigate Denial-of-Service (DoS)
attacks in network protocols. In server-client scenario, they are known as client puzzle
protocols.

DoS attack is one of the most common real-world network security attacks and
presents a severe threat to the Internet and e-commerce. In DoS attack, the attacker
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targets to drain out the service provider’s resources such as bandwidth, memory,
and computational time so that the resources will become unavailable to process
legitimate clients’ requests. In recent years, major e-commerce sites including eBay,
Yahoo!, Amazon, and Microsoft’s name server [17] have faced huge financial loss
due to DoS attacks. Very recently, a DoS attack on several thousands of time keeping
servers distributed across the world to keep the time in sync by running the net-
work time protocol (NTP) has been mounted. Two vulnerabilities in the NTP were
exploited by the attackers to mount the DoS attack using IP spoofing technique.
This attack has been described as the world’s largest DoS attack to date by security
researchers due to its amplification factor of 206x.

Cryptographic puzzles have been shown to be a promising and effective mecha-
nism to deter the effect of malicious requests. When the server is under DoS attack,
it generates a (client) puzzle instance and sends it as a reponse to the client’s con-
nection request. The server processes the client’s request only if the client proves its
legitimate intentions of getting the request by sending the correct puzzle solution.
Generating and verifying a client puzzle must be computationally easy for the server.
That is, it must add a little computational and memory overhead to the server. Other-
wise, the client puzzle may introduce a resource exhaustion attack where an attacker
triggers puzzle generation and verification process by sending a large number of
pretended requests or a large number of fake puzzle solutions respectively.

On the other hand, finding a correct solution to the client puzzle must be moder-
ately hard for the client. This property is called puzzle difficulty which is a property
that every good puzzle must satisfy. That is, for a legitimate client, the computational
burden for solving a client puzzle is not high, whereas for an attackerwhomakesmul-
tiple connection requests, finding solution for many client puzzles received through
multiple requests must be a huge resource-consuming process.

1.1 Modular Exponentiation-Based Puzzle

Client puzzles are mostly either hash based [3, 9, 11] or modular exponentiation
[12, 19] based puzzles. Though it is essential that all the client puzzles must sat-
ify the puzzle difficulty property, exponentiation-based client puzzles are known
to achieve additional properties such as non-parallelizability, deterministic solving
time, and finer granularity. In a non-parallelizable client puzzle, the solution finding
time remains constant even if the attacker/client uses multiple machines to solve a
single client puzzle. Unlike in the hash-based puzzles where the running time to find
a puzzle solution is probabilistic, the modular exponentiation-based puzzles have
the property that the minimum amount of work required to solve a puzzle can be
determined. Moreover, these puzzles support linear granularity; the puzzle generator
(server) has the ability to increase the puzzle difficulty level linearly. This property is
useful since the puzzle issuing server will have more options for the difficulty level
and can choose one accordingly.
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Rivest et al. [19] gave the first modular exponentiation-based puzzle which
achieves non-parallelizability, deterministic solving time, and finer granularity. A
problem with Rivest et al. puzzle construction is that the server has to perform mod-
ular exponentiation in order to verify the puzzle solution. Karame and Čapkun [12]
proposed two puzzle constructions. First, one works for the fixed-difficulty level and
reduces the running time of the puzzle verification by a factor of |n|

2k for a given RSA
modulus n, where k is the security parameter compared to Rivest et al.’s puzzle. In a
puzzle with fixed difficulty, the busy server cannot adjust the difficulty levels of the
puzzle based on its load. The second scheme of Karame and Čapkun supports vari-
ous difficulty levels but it doubles the verification cost of their first scheme. Though
Karame and Čapkun’s puzzle is superior in efficiency compared to Rivestet al. puz-
zle, it still requires modular exponentiation for puzzle verification. To avoid mdoular
exponentiation in the Karame-Čapkun puzzle verification, an alternative construc-
tion, namelyRSApuzwas proposed in [18],wherein the verification requires only few
modular multiplications. However, the approach in [18] works only for the fixed dif-
ficulty level. In real-world attacks such as denial-of-service attacks, the target server
is kept very busy in performing varoius computational tasks. Thus puzzles can be an
effective countermeasure to DoS attacks when they support variable difficulty levels
and avoidmodular exponentiation cost on their side. The state-of-art puzzles, namely
[12] and [18] fail to meet at least one of the above desirable properties as seen in
Table1.

1.2 Contributions

1. We give an efficient modular exponentiation-based puzzle which achieves non-
parallelizability, deterministic solving time, and finer granularity. Our puzzle is
superior in efficiency to Karame and Čapkun’s variable puzzle difficulty level
puzzle. Though our scheme is similar to [12] and [18], our puzzle does not involve
any modular exponentiation during puzzle verification unlike [12] and does not
require to repeat the pre-computation procedure to change the puzzle difficulty
level unlike [18]. Our construction requires only a few modular multiplications

Table 1 Comparision of modular exponentiation-based puzzles

Puzzle Difficulty level Verification

RSWpuz [19] variable |n|-bit mod. exp.

KCpuz [12] fixed k-bit mod. exp.

KCpuz [12] variable 2k-bit mod. exp.

RSApuz [18] fixed 3 mod. mul.

Ours variable 3 mod. mul.

Legend n is an RSA modulus, k � n is a security parameter
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to verify puzzle solutions. Table1 compares our puzzle with other puzzles of the
same kind.

2. We show that our puzzle is unforgeable and difficult in the puzzle security model
proposed by Chen et al. [7]

Outline: We organize the rest of the paper as follows: Sect. 2 breifly presents the
related work. Design and security analysis of our puzzle construction is described in
Sect. 3. Finally Sect. 4 concludes our work.

2 Background on Modular Exponentiation-Based Puzzles

This section discusses the state-of-art puzzle schemes and identifies their limitations.
Throughout the paper we use the following notations: Let n be an integer and |n| be
the length of the interger in bits; let φ(n) be the Euler phi function of n; the set of all
integers {a, . . . , b} between and including a and b be denoted by [a, b]; denote by
x ←r S to choose an element x uniformly at random from s set S; for an algorithm
A to run on input y and produce an output x, we denote it by x ← A(y); let negl(k)

denote a function which is neglible in k, where k is a security parameter; We denote
p.p.t for a probabilistic polynomial time algorithm.

2.1 RSWpuz

Rivest et al. [19] proposed a puzzle scheme based on repeated squarings, which we
callRSWPuz. In their puzzle construction, the puzzle generating server first chooses
an RSA modulus n = pq using two large primes p and q and then computes the
Euler totient function φ(n) = (p−1)·(q −1).Now the server sends a tuple (a, Q, n)

as a puzzle instance to the client after selecting the difficulty level Q and an integer
a ←r Z

∗
n .Observe that the difficulty level determines the amount of work a client has

to do. Now, the client performs Q repeated squarings to compute b ← a2Q
mod n

and returns b to the server as a puzzle solution. After receivng the puzzle solution,

the server checks whether ac ?≡ b mod n where c = 2Q mod φ(n). The server can
reuse the computation of c as long as the puzzle difficutly value Q is fixed. Since
the server knows the trapdoor information φ(n) the server can verify the solution in
one |n|-bit exponentiation, whereas the client is forced to do Q repeated squarings
for Q � |n|.

Note that the puzzle verification step is expensive in RSWPuz scheme as it
involves the computation of full |n|-bit modular exponentiation on the server side.
A malicious client can exploit this weakness to send a large number of fake puzzle
solutions. The busy server now needs to engage in computationally expensive oper-
ation to verify all of them. Hence, the client puzzle construction itself introduces a
new vulnerability to a resource exhaustion-based DoS attack.
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2.2 KCpuz

Rivest et al.’s puzzle construction was improved by Karame and Čapkun [12]. The
improvement in terms of computational efficiency is the significant reduction of
puzzle verification cost from |n|-bit exponentiation (Rivest et al. puzzle verification
cost) to 2k-bit exponentiationmodulo n for a security parameter k.That is, the burden
for the server is reduced by a factor of |n|

2k . Their scheme with variable difficulty
level, which we call KCPuz is illustrated in Fig. 1. Unlike [19], Karame and Čapkun
analyzed their puzzle scheme under the security notions from [7] and showed that
the puzzle satisfies both the unforgeability and difficulty notions.

ThoughKCPuz scheme requires less computation cost to verify each puzzle solu-
tion compared to RSWPuz, it still needs a 2k−bit modular exponentiation. This
could still be a burdensome computation for DoS defending servers. Also, KCPuz
does not provide the property of finer granularity. That is, the gap between the two
adjacent difficulty levels must be large for security reasons. In particular, the next
difficulty level R′ must satisfy R′

R ≥ n2 where R is the current difficulty level. This
reduces the number of possible and acceptable difficulty levels to be chosen by the
puzzle generator.

Client Server

Puzzle Setup
1. (n, p, q) ← GenMod(1k)
2. d ←r [2k, 2k+1] such that

e = d−1 mod φ(n) exists and e ≥ n2.
3. s ← (e, d, φ(n))
4. Select R ≥ e, |R| = Q.

request−−−−−−−−−−−−−→ Puzzle Generation
1. Z ←r {0, 1}k

2. X ← HMAC(d, Z)
3. v ← HMAC(d, X), |v| ≥ k, gcd(v, d) = 1
4. K ← e · v − (R mod φ(n)).

Finding Solution
puz←−−−−−−−−−−−−− 5. puz ← (n, R, K, Z, X)

1. Y1 ← XR mod n

2. Y2 ← XK mod n
Y1, Y2, puz−−−−−−−−−−−−−→ Puzzle Authentication

1. X ← HMAC(d, Z)
2. v ← HMAC(d, X)
Solution verification

3. Verify (Y1 · Y2)d ?≡ Xv mod n

Fig. 1 The KCPuz Scheme [12]
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The difficulty level for client puzzles employed in DoS scenarios is typically
set between 0 to 225 operations. Hence, the possible successive difficulty levels for
KCPuz scheme are R = 2512, R′ = 21536 and R′′ = 22560 for 512-bit moduli.

2.3 RSApuz

An alternative and more efficient vewrsion version of KCPuz was proposed in [18],
which we call RSAPuz. In RSAPuz the puzzle issuing server does the most com-
putation work offline so that it does not perform any modular exponentiation online
during puzzle generation and solution verification. In fact, the solution verification
requires only three bit modular multiplications and thus its efficiency is compara-
ble with that of hash function-based puzzles [18]. RSAPuz is shown to meet the
security notions of Chen et al. and additional desirable properties such as finer gran-
ularity, non-parallelizability, and deterministic solving time. The RSAPuz scheme
is depicted in Fig. 2.

RSAPuz uses the (BPV) technique due to Boyko et al. [5] which reduces the
online computation cost for the pair (x, X). The technique has two phases: BPV pre-
processing phase, namely BPVPre and the BPV pair generation phase BPVGen.

The pre-processing phase computes N pairs of the form (αi , βi )whereαi ←r Z
∗
n and

βi ← αi
u mod n for i = 1, . . . , N and stores them in a table. Whenever a new pair

(x, X) is required to be computed online, the pair generation phase randomly chooses

� out of N pairs and computes the new pair as follows: (x, X) ← (
�∏

j=1
α j ,

�∏
j=1

β j ).

Thus RSAPuz does not perform any computationally intensive operation online.
Though the puzzle verification requires only fewmodularmultiplications, it works

only for the fixed difficulty level. For changing one difficulty level to the other, the
puzzle scheme needs to run the computationally demanding pre-computation again.
That is, in the pre-computation phase (as seen in Fig. 2), the server first selects the
difficulty parameter R of length Q, computes u ← d − (2Q mod φ(n)) and then
runs the BPV pre-processing step with inputs (u, n, N ) to obtain N pairs (αi , βi ).

Hence the server has to run the pre-computation phase every time the difficulty needs
to be changed.

All the modular exponentiation-based puzzles in the related literature add compu-
tational burden, either offline (e.g., precomputation in Fig. 2) or online (e.g., solution
verification in Fig. 1), to support change of difficulty. In the following section, we
overcome the limitations in the above puzzle schemes by proposing a new modular
exponentiation-based client puzzle which is as fast as RSAPuz and adds no cost to
support variable difficulty. We then analyze its security properties.
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Client (C) Server (S)

Pre-Computation
1. (n, p, q) ← GenMod(1k)
2. d ← 3−1 mod φ(n)
3. Set the difficulty level Q.
4. u ← d − (2Q mod φ(n))
5. τ = ((αi, βi))N

i=1 ← BPVPre(u, n, N)
6. ρ ←r {0, 1}k

7. s ← (ρ, d, φ(n), τ)
8. params ← (Q, n)

1. random NC
NC−−−−−−−−−−−−−→ Puzzle Generation

1. (x, X) ← BPVGen(n, �, τ)
2. NS ←r {0, 1}k

3. Z ← Hρ(NC , NS , IPC , IDS , x, Q)

Finding Solution
NC , puz←−−−−−−−−−−−−− 4. puz ← (n, x, NS , Q, Z)

1. y ← x2Q mod n

2. soln ← y
NC , puz, soln−−−−−−−−−−−−−→ Puzzle Authentication

1. Verify Z
?= Hρ(NC , NS , IPC , IDS , x, Q)

Solution Verification

1. Verify (X · soln)3
?≡ x mod n

Fig. 2 The RSAPuz Scheme [18]

3 The Proposed Puzzle Scheme

Now we propose an efficient puzzle scheme requiring only few modular multiplica-
tions for puzzle generation and solution verification. Unlike in the existing puzzle
schemes, our puzzle achieves both efficiency and the security properties such as
unforgeability, puzzle difficulty, deterministic, non-parallelizability, and finer gran-
ularity. Our scheme uses all the algorithms used by RSAPuz in Fig. 2.

3.1 Definitions

We begin by defining an algorithm to generate a modulus n = pq similar to the
generation of RSA modulus as below:

Definition 1 (Generating Modulus n) For a security parameter k, the algorithm to
generate a modulus n is a probabilistic polynomial time algorithm GenMod which
accepts the input 1k and produces (n, p, q) as output such that n = pq where p and
q are k-bit primes.
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Like [18], our puzzle requires a server to generate a pair (x, X) for each puzzle
which involves modular exponentiation. To avoid this exponentiation cost, we use
the (BPV)technique proposed by Boyko et al. [5] which requires few modular multi-
plications and pre-computed values to generate the pairs of the form (xi , Xi ) where
Xi = xu

i mod n for some predefined exponent u.

Definition 2 (BPV Technique) Suppose that N ≥ � ≥ 1 for the parameters N and �.

Let n ← GenMod(1k) be an RSA modulus and u be an element in Zφ(n) of length
m. The BPV technique has the following two phases:

• BPVPre(u, n, N ): This pre-processing algorithm run once, generates N random
integers α1, α2, . . . , αN ←r Z

∗
n and computes βi ← αi

u mod n for each i . A
table τ ← ((αi , βi ))

N
i=1 consisting of pairs (αi , βi ) is finally returned.

• BPVGen(n, �, τ ):Whenever a pair (x, X mod n) is needed, the algorithmchooses
a random set S ⊆r {1, . . . , N } of size � and computes x ← ∏

j∈S α j mod n. If
x = 0, then the algorithm stops and generates S again. Else, it computes X ←∏

j∈S β j mod n and return (x, X). The indices S and the corresponding pairs
((α j , β j )) j∈S are kept secret.

Security Analysis of BPV Technique. The results by Boyko and Goldwasser [4] and
Shparlinski [20] show that the value x generated using the BPV technique are statis-
tically close to the uniform distribution. In particular, the following theorem shows
that with overwhelming probability on the choice of αi ’s, the distribution of x is
statistically close to the uniform distribution of a randomly chosen x ′ ∈ Z

∗
n .

Theorem 1 ([4], Chap.2) If α1, . . . , αN are chosen independently and uniformly
from Z

∗
n and if x = ∏

j∈S α j mod n is computed from a random set S ⊆ {1, . . . N }
of � elements, then the statistical distance between the computed x and a randomly

chosen x ′ ∈ Z
∗
n is bounded by 2

− 1
2

(
log (N

� )+1
)
. That is,

∣∣∣∣∣∣
Pr

⎛
⎝∏

j∈S

α j = x mod n

⎞
⎠ − 1

φ(n)

∣∣∣∣∣∣
≤ 2

− 1
2

(
log (N

� )+1
)

.

BPV Metrics. For defending against DoS attacks, the difficulty level Q can be set
between 0 and 225 operations. In [18] it is recommended to select N and � such that(N

�

)
> 240. Instead of choosing N = 512 and � = 6 for the BPV generator as per

Boyko et al. [4, 5], we can choose N = 2500 and � = 4 so as to reduce the number of
online modular multiplications performed during the BPV pair generation process.
We refer to [18] for more details about the choices of N and � in a DoS scenario.

Making BPV pair generation process offline. At ESORICS 2014, Wang et al.
[23] proposed that the BPV pair generation process can be executed offline. That
is, the pairs generated during the BPV pre process BPVPre(u, n, N ) are stored in
the static table (ST) and the pairs generated during the BPV pair generation process
BPVGen(n, �, τ ) are stored in the dynamic table (DT). Whenever a BPV pair is

http://dx.doi.org/10.1007/978-81-322-2452-5_2
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required during puzzle generation, an entry from DT is selected and the table is
updated with another BPV pair in idle time. The use of dynamic table allows us to
completely avoid the number of modular multiplication computations required for
the BPV pair generation process and thus make our puzzle more efficient.

3.2 The Construction

Our client puzzle illustrated in Fig. 3 is executed as a series of message exchanges
between a client and a DoS defending server. The server generates a puzzle instance
using BPV pairs computed offline and verifies the puzzle solution sent by the client
as follows:

Client (C) Server (S)

Off-line Phase
Setup(1k)
1. (n, p, q) ← GenMod(1k)
2. d ← 3−1 mod φ(n)
3. Select u such that |u| ≥ k.

4. τ = ((αi, βi))N
i=1 ← BPVPre(u, n, N)

5. Set the difficulty level Q.

6. K ← d − ( 2Q
u mod φ(n))

7. ρ ←r {0, 1}k

8. s ← (ρ, d, φ(n), τ)
9. params ← (Q, n)

On-line Phase

1. random NC
NC−−−−−−−−−−−−−→ GenPuz(s, Q, NC)

1. (x, X) ← BPVGen(n, �, τ)
2. NS ←r {0, 1}k

3. Z ← Hρ(NC , NS , IPC , IDS , x, X, Q)
FindSoln(puz, t) puz←−−−−−−−−−−−−− 4. puz ← (n, x, X, NS , Q, Z)

1. y ← x2Q mod n
2. Y ← XK mod n

3. soln ← (y, Y )
NC , puz, soln−−−−−−−−−−−−−→ VerAuth(s, puz)

1. Verify Z
?= Hρ(NC , NS , IPC , IDS , x, X, Q)

VerSoln(s, puz, soln)

1. Verify (y · Y )3
?≡ X mod n

Fig. 3 Our modular exponentiation-based puzzle with variable difficulty
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• Pre- computation. In the pre-computation phase, the server generates (n, p, Q)

using the modulus generation algorithm and generates d as the inverse of 3 mod
φ(n). Then the server runs the BPVPre phase by selecting N and u such that
|u| ≥ k. Unlike [18], our algorithm requires to run the BPVPre phase (to obtain
N pairs of (αi , βi ) ) only once as it does not depend on the difficulty level Q.

For a client puzzle to be effective against resource exhaustion-based DoS attacks,
generation of puzzles and verification of their solutions should be very efficient for
the busy server as can be seen in our scheme described below:

• Puzzle generation (GenPuz). The server has to spend its significant compu-
tational resource for generating the puzzle through BPV pair generation BPVGen
process which requires 2(�− 1) modular multiplications. That is, it requires �− 1
modular multiplications to compute x and another � − 1 modular multiplications
to compute X . The server runs pseudo-random function Hρ to compute the puzzle-
authentication tag Z after generating a nonce Ns at random. Note that � could be
set between 4 and 16 so that the puzzle requires only 8 modular multiplications
for � = 4 [4, 18].

• Puzzle authenticity verification (VerAuth). Verifying that the puzzle is
originated from the server can be done using the pseudo-random function Hρ

again and comparing the result with the received Z .
• Puzzle verification (VerSoln). The puzzle solution is verified by performing
only 3 modular multiplications.

Observe that our puzzle scheme does not require the server perform any modular
exponentiation either to generate the puzzle or to verify its solution. On the other
hand, the client has to perform modular exponentiations to find the solution to the
puzzle as follows:

• Puzzle solution (FindSoln). After receiving the puzzle from the server, the
client computes the puzzle solution in the form of two modular exponentiations
x2

Q
mod n and x K mod n. The client can opt either to factor n or to perform

repeated squarings to solve the puzzle. Since factoring is hard, the best knowm
method for the client to find the solution is to implement the square and multi-
ply algorithm and perform repeated squarings, which is believed to be a highly
sequential process [10, 12, 19]. Hence the client will be performing exactly Q
sequential modular multiplications to find x2

Q
mod n and O(log K ) sequential

modular multiplications to find x K mod n, and hence the puzzle has deterministic
solving time of Q repeated squarings and non-parallelizability properties.

3.3 Security Analysis

Client puzzleswere analyzed in various securitymodels proposed in [6, 7, 21]. In this
section, we analyze our puzzle scheme using difficulty notions such as unforgeability
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and difficulty proposed by Chen et al. [7] and prove that our puzzle is unforgeable
and difficult. We refer [7] for a more formal treatment of these security difficulty
notions.

Unforgeability. In our puzzle scheme, we use a pseudo-random function Hρ in puz-
zle generation to generate Z . Thus showing that our puzzle meets the unforgeability
notion is striaghforward following the same argument in [18] if Hρ is a secure pseudo-
random function. Hence we omit the unforgeability proof due to space constraints.

Difficulty. For proving the difficulty of our puzzle we again adapt the approach from
[18] and show that our puzzle satisfies the difficulty notion of Chen et al. model as
long as the KCPuz in Sect. 2 is difficult. In particular we relate the security of our
puzzle to that of KCPuz with R = 2Q in Fig. 1. Note that our puzzle can be seen
as the result of applying the precomputation approach in RSAPuz to KCPuz. The
difficulty of our puzzle is proved in the following theorem.

Theorem 2 Assume that k is a security parameter and Q is a difficulty parameter.
If KCPuz with a modulus generation algorithm GenMod is εk,Q(t)-difficult, then
our puzzle, say puz, from Fig.3 is ε′

k,Q(t)-difficult for all probabilistic polynomial
time A running in time at most t , where

ε′
k,Q(t) = 2 · εk,Q (t + (qC + 1) (2(� − 1)TMul) + c) .

Here, qC is the total number of CreatePuzSoln queries issued in the experiment
and TMul is the time complexity for computing a multiplication modulo n, and c is a
constant.

Proof We prove the theorem using the game hopping technique. Assume thatA is a
probabilistic algorithm running in time t and wins the puzzle difficulty experiment
of puz. Using A, we construct an algorithm B that solves KCPuz easily. Let the
event Ei be such that A wins in game Gi .

Game G0. Let G0 be the original difficulty game ExpDiff
A,puz(k) defined as follows:

1. The challenger runs theSetup algorithm togenerate s ← (ρ, d, φ(n), (αi , βi )
N
i=1)

and params ← (Q, n). The challenger submits the parameters params to A
and keeps s.

2. Now, the challenger answers the CreatePuzSoln(NC ) query issued by A as
follows:

• The challenger runs the BPV pair generator BPVGen to obtain a pair (x, X)

and computes Z , y and Y as per the protocol in Fig. 3.
• The challenger submits (puz, soln) ← ((NS, Z , x, X), (y, Y )) to A.

3. At some time during the game, A is allowed to issue the Test(N∗
C ) query to the

challenger. The challenger answers the query with puz∗ by generating a puzzle
puz∗ = (N∗

S , Z∗, x∗, X∗) using GenPuz(s, Q, NC∗) algorithm. The A may
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continue to ask CreatePuzSoln(NC ) queries even after issuing the test query
Test(N∗

C ).
4. A outputs a valid solution soln∗ = (y∗, Y ∗).
5. The challenger outputs 1 if VerSoln(puz∗, soln∗) = true, otherwise the chal-

lenger outputs 0.

Then
Pr

(
ExpDiff

A,puz(k) = 1
)

= Pr(E0) . (1)

Game G1. The difference between Game G1 and Game G0 is that the KCPuz chal-
lenger is used to answer the CreatePuzSoln queries issued by A and the KCPuz
challenge is inserted in response to the Test query. Note that we assume that R = 2Q

in KCPuz shown in Fig. 1 in order to be compatible with our puzzle scheme puz.
The game is defined as folows:

1. The parameters params ← (Q, n) are obtained from the KCPuz challenger.
2. Initiate the adversary A with params as input.

The adversary is allowed oracle access toCreatePuzSoln(·) and Test(·) oracles.
That is, B interacts with KCPuz challenger and the adversary A individually. B
acts as a puz challenger for A. Whenever A issues CreatePuzSoln queries, B
simply forwards the queries toKCPuz challenger and returns whatever it receives
fromKCPuz challengerwithminormodifications toA.Weexplain the interaction
between B and KCPuz and between B and A in detail below:

• CreatePuzSoln(str): WheneverA issues CreatePuzSoln(str) query, our
challenger B forwards the same CreatePuzSoln query to the KCPuz chal-
lenger. The KCPuz challenger sends (puz = (X, R = 2Q, K , Z), soln =
(X2Q

, X K )) toB.Upon receiving a pair of the form (puz, soln) our challenger
B acts as follows:
– Assigns the puzzle values x ← X, X1 ← Xu, for a fixed u of its choice
and the solution values y ← X2Q

and Y ← (X K )u . Note that the value
X received each time from KCPuz challenger is an output of the HMAC
function, whereas in puz, (x, X) is an output of the BPV generator.

– Return (puz, soln) = ((x, X1), (y, Y )) to A.
• Test(str∗): When A issues a Test(str∗) query, B simply passes the same
query as its Test query to the KCPuz challenger that returns the challenge
puzzle puz∗ = (X∗, R∗ = 2Q, K ∗, Z∗), where X∗ is an output of HMAC.
Then B sets x∗ ← X∗, X∗

1 ← (X∗)u and sends the target puzzle puz∗ =
(x∗, X∗

1, R∗ = 2Q, K ∗, Z∗) to A.

3. A may continue its CreatePuzSoln queries and B answers them as explained
above.

4. When A outputs a potential solution soln∗ = (y∗ = (X∗)2Q
, Y ∗ = ((X∗)u)K ),

B omits Y ∗, computes (X∗)K and outputs its soln∗ as (y∗, (X∗)K ).
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We say that if theAwins gameG1, then the challengerBwins the puzzle difficulty
experiment of KCPuz. Hence,

Pr(E2) ≤ AdvDiff
B,KCPuz,Q(k) ≤ εk,Q(t) . (2)

where B runs in time t (B) = t (A) + (qC + 1)
(
TExp

)
where qC is the total number

of CreatePuzSoln queries issued by A in G0, and TExp is the total time needed to
compute an exponentiation modulo n.

In the game G0, a puzzle is of the form (NS, Z , x, X, R = 2Q, K ) where (x, X)

is an output from the BPV generator BPVGen whereas in G1, x is an output of
HMAC run by the KCPuz challenger and X = xu is uniform at random.

Hence by Theorem 1, we get

|Pr(E0) − Pr(E1)| ≤ 2
− 1

2

(
log (N

� )+1
)

≤ εk,Q(t), (3)

where the second inequality is due to the appropriate choices of N and �.

Game G2. The messages generated by the challenger in G2 are identical to those
in G1 except for the following modification: The value X which is returned during
the Test query: in G1 it is a random integer from [1, n] generated by the challenger
whereas in G2 it is the output of KCPuz challenger. This change is indistinguishable
as we basically replace one random x with another. Hence

|Pr(E1) − Pr(E2)| = 0 . (4)

Combining equations (1) through (3) yields the desired result. �

4 Conclusion

In this paper, we presented an efficient non-parallelizable puzzle based on modular
exponentiation. Our puzzle can be viewed as a combination of two previously known
puzzles, namely KCPuz and RSAPuz. However, our puzzle inherits all the advan-
tages of these two puzzles and eludes their disadvantages. Our puzzle is the first
modular exponentiation-based puzzle without computational burden, either offline
(e.g., precomputation in RSAPuz) or online (e.g., solution verification in KCPuz),
to support change of difficulty. Thus our puzzle supports scalability in an efficient
manner, making it more practical in detering attacks like denial-of-service attacks.
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Computationally Secure Robust Multi-secret
Sharing for General Access Structure

Angsuman Das, Partha Sarathi Roy and Avishek Adhikari

Abstract Secret sharing scheme plays a crucial role in distributed cryptosystems.
Due to its extensive use in numerous applications, an important goal in this area is
to minimize trust among the participants. To remove this bottleneck, robust secret
sharing, which allows the correct secret to be recovered even when some of the
shares presented during an attempted reconstruction are incorrect, can be an efficient
tool. However, as unconditional security demands honest majority and share size
to be at least equal to the size of the secret, the need for computational security of
such schemes has been felt over the years, specially in case of multi-secret sharing
schemes. In this paper, we provide a notion of computationally robust multi-secret
sharing scheme for general access structure. We also propose a robust multi-secret
sharing scheme for general access structure and prove its computational security
under the proposed notation.
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1 Introduction

Secret sharing scheme is one of the key components in various cryptographic proto-
cols and in particular distributed systems. It is not only a building block for interactive
cryptographic primitives, it is also an important tool to build non-interactive cryp-
tosystems (specially in public-key scenario). Informally, a secret sharing scheme
(SSS) allows a dealer D to split a secret s into different pieces, called shares, which
are given to a set of players P , such that only certain qualified subsets of players can
recover the secret using their respective shares. The collection of those qualified sets
of players is called access structure Γs corresponding to the secret s.

Blakley [2] and Shamir [19], in 1979, independently, came out with a scheme
known as (t, n) threshold secret sharing scheme. Later on, with increasing interest in
this area, secret sharing schemes with features like general access structures (where
qualified subsets are not all of same size t), multiple secrets (when number of secrets
to be shared is more than one), verifiability, multi-usability (reconstruction of one
secret does not endanger the security of the other secrets) [5, 13, 17] came into
existence.

In the basic form of (multi) secret sharing schemes, it was assumed that the
dishonest players involved with the protocol is semi-honest i.e., honest but curious.
But for the real life scenario, this assumptionmay not hold good due to the presence of
malicious players. This idea led to the development of secret sharing under various
adversarial models. It may happen that some players behave maliciously during
the execution of the protocol. Malicious players may also submit incorrect shares
resulting in incorrect secret reconstruction. This observation led to robust secret
sharing schemes [14, 16]. Informally, robust secret sharing schemes allow the correct
secret to be recovered even when some of the shares presented during an attempted
reconstruction are incorrect.

Most of the robust secret sharing schemes proposed and analysed so far enjoy
unconditional (or information-theoretic) security [16, 18],whichmeans that the value
of the shared secret is hidden to a computationally unbounded adversarywho controls
a subset of users. However, when secret sharing schemes are used in the design
of distributed public key cryptosystems (that can enjoy computational security, at
most), one could argue that requiring unconditional security for the underlying secret
sharing schemes may be unnecessarily restrictive. Moreover, in order to achieve
unconditional security, we need to have honest majority and share size at least equal
to the size of all the secrets. This may be considered as system resources consuming
and sometimes impracticable.

An alternative solution can be relying on computational security that serves well
in practical purposes and to have a lower share size along with the tolerance of
arbitrary number of dishonest participants. The trade-off to be made is how small
can we make the share-size without compromising much security.
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1.1 Related Work

Keeping these issues in mind, the idea of computationally secure secret sharing
schemes and robust secret sharing schemes came into existence with various propos-
als [1, 4, 5, 7, 9, 12, 15, 17, 20, 21]. In 1994, He-Dawson [9] proposed a multi-stage
(t, n) threshold secret sharing scheme. In 2007, Geng et al. [7] proposed a multi-use
threshold secret sharing scheme using one-way hash function and pointed out that the
He-Dawson scheme was actually an one-time-use scheme and can not endure con-
spiring attacks. A SSS is said to be multi-use if even after a secret is reconstructed
by some players, the reconstructor cannot misuse their submitted information to
reconstruct other secrets. Generally, to make a scheme multi-use, the players do not
provide the reconstructor with the original share but a shadow or image of that share,
which is actually an entity that depends on the original share. This image or shadow is
known as the pseudo-share. In 2006, Pang et al. [15] proposed a multi-secret sharing
scheme for general access structure in which all the secrets are revealed at a time. In
2008, Wei et al. [21] proposed a renewable secret sharing scheme for general access
structure, but the secrets are to be revealed in a pre-determined order. Recently, in
[20], Shao proposed a threshold multi-secret sharing scheme using hash function
which also suffers the drawback of revealing all the secrets at a time as in [15].

Multi-secret sharing schemes lacked a formal computational security notion and
analysis, until Herranz et al. [10], [11] came upwith a proper computational notion of
security for multi-secret sharing schemes and provided some concrete constructions
secure in that model. In [1, 4], authors discussed formal security notion for computa-
tionally secure robust threshold (single) secret sharing scheme. But, up to the best of
our knowledge, there does not exist any formal security notion for computationally
secure robust multi secret sharing scheme for general access structure.

1.2 Our Contribution

In this paper, we introduce a formal notion of security for computationally secure
robust multi secret sharing scheme for general access structure and propose a multi
secret sharing scheme which is secure under the proposed notion in random oracle
model.

2 Model and Definitions

In this section, we specify the adversarial and communication model used in the rest
of the paper. We also provide formal definitions of construction and security notion
of robust multi-secret sharing scheme for general access structure.
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Adversarial Model: The dealer D and the designated reconstructor are assumed to
be honest. The dealer delivers the shares to respective players over point-to-point
private channels. We assume that the adversary A is computationally bounded and
malicious. Once a player P is corrupted, the adversary learns his share and inter-
nal state. Moreover from that point onwards, A has full control over P . By being
malicious, we mean that A can deviate from the protocol in an arbitrary manner.
Communication Model: We assume synchronous network model. There are point
to point secure channels among the dealer and the players. Moreover, all of them
have an access to a common broadcast channel.

Definition 1 A Robust Multi Secret Sharing Scheme (Robust MSSS) Ω consists of
three probabilistic polynomial time algorithms (Setup, Dist, Reconst) as follows:

1. The setup protocol, Setup, takes as input a security parameter λ ∈ N, the
set of players P and the k access structures Γ1, Γ2, . . . , Γk , where Γi =
{Ai1, Ai2, . . . , Aiti } is the access structure for the i th secret and Ai j is the j th
qualified subset of the access structure for the i th secret si , and outputs some
public and common parameters pms for the scheme (such as the access struc-
tures and set of players, mathematical groups, hash functions, etc.). We implicitly
assume that pms also contains the descriptions of P and the access structures.

2. The share distribution protocol, Dist, (run by the dealer D) takes as input pms
and the global secret s = (s1, s2, . . . , sk) to be distributed, and produces the
set of shares {xα}Pα∈P , possibly some public output outpub and a set of public
verification values V = {Vϕ(xα,Ai j ) : Pα ∈ Ai j ∈ Γi }. (Note: ϕ(xα, Ai j ) is a
public function used to generate pseudo-shares from the share xα and the qualified
set Ai j .)

3. The secret reconstruction protocol, Reconst, takes as input pms, outpub, an
index i ∈ {1, 2, . . . , k}, V and the possible pseudo-shares {ϕ∗

α}Pα∈Ai j for all
qualified sets Ai j ∈ Γi = {Ai1, Ai2, . . . , Aiti } and outputs a possible value of the
secret s∗

i for the i-th secret.

For correctness, we require that, for any index i ∈ {1, 2, . . . , k} and any Ai j ∈ Γi ,
it holds

Reconst(pms, outpub,V, {ϕ(xα, Ai j )}Pα∈Ai j ) = si

if {xα}Pα∈Ai j ⊂ {xα}Pα∈P and (outpub,V, {xα}Pα∈P ) ← Dist(pms, s) is a dis-
tribution of the secret s = (s1, . . . , si , . . . sk) and the setup protocol has produced
pms ← Setup(1λ,P, {Γi }1≤i≤k).

The computational security and robustness of Robust-MSSS Ω is defined by the
games described in Definition 2 and Definition 3 respectively.

Definition 2 (Indistinguishability of Shares against Chosen Secret Attack): Indis-
tinguishability of shares of a Robust MSSS under chosen secret attack (IND-CSA)
is defined by the following game G between a challenger C and an adversary A as
follows:
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1. The adversary A publishes the set of players P and the k access structures
Γ1, Γ2, . . . , Γk ⊂ 2P .

2. The challenger C runs pms ← Setup(1λ,P, {Γi }1≤i≤k) and sends pms to A.
3. A outputs a subset B̃ ⊂ P of unqualified players (unqualified means ∃i ∈

{1, 2, . . . , k} such that B̃ /∈ Γi ) and two different global secrets s(0) �= s(1)

with the restriction:

s(0)
i = s(1)

i ,∀i ∈ {1, 2, . . . , k}, such that B̃ ∈ Γi .

4. The challenger C chooses at random a bit b ∈R {0, 1}, runs Dist(pms, s(b))

→ (
outpub,V, {xα}Pα∈P

)
and sends

(
outpub,V, {xα}Pα∈B̃

)
to A.

5. Finally, A outputs a bit b′.

The advantage of A in breaking the MSSS Ω is defined as AdvA(λ) = |Pr[b′ =
b] − 1

2 |.
The scheme Ω is said to be computationally IND-CSA secure if AdvA(λ) is

negligible for all polynomial-time adversaries A.

Definition 3 (Robustness): Robustness of a MSSS Ω is defined by the following
game G between a challenger C and an adversary A as follows:

1. The adversaryA chooses the set of playersP , a secret vector s = (s1, s2, . . . , sk)

and the corresponding k access structures Γ1, Γ2, . . . , Γk ⊂ 2P . Then A runs
pms ← Setup(1λ,P, {Γi }1≤i≤k) and sends (pms, s) to C.

2. The challenger C runs Dist(pms, s) → (
outpub,V, {xα}Pα∈P

)
and sends

(outpub,V, {xα}Pα∈P ) to A.
3. A outputs {x∗

α}Pα∈P with restriction:

∀i ∈ {1, 2, . . . , k}, ∃Bi ∈ Γi such that xα = x∗
α,∀α ∈ Bi .

4. The challenger C runs ∀i ∈ {1, 2, . . . , k}

Reconst(pms, outpub,V, {ϕ(x∗
α, Ai j )}Pα∈Ai j ,∀Ai j ∈ Γi ) → s∗

i

to output s∗ = (s∗
1 , s∗

2 , . . . , s∗
k ).

5. If s∗ = s, the challenger C sets b = 0, else sets b = 1. Finally, C outputs the bit b.

The scheme Ω is said to be computationally robust if Pr[b = 1] is negligible for
all polynomial-time adversaries A.
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3 A Robust Multi-secret Sharing Scheme

In this section, we modify the MSSS for general access structure proposed by [17]
and analyse its security in the computational model of IND-CSA and robustness. (It
is worth mentioning that the scheme in [17] lacked formal security analysis.) The
scheme Ω = (Setup, Dist, Reconst) consists of three basic phases,

1. Setup: On an input security parameter λ, the set of n players or participants
P = {Pα : α ∈ {1, 2, . . . , n}} and k-access structures Γ1, Γ2, . . . , Γk for k
secrets, where Γi = {Ai1, Ai2, . . . , Aiti } is the access structure for the i-th secret
and Ai j is the j th qualified subset of the access structure of i th secret si and
|Ai j | = ri j ,

a. Choose a q = q(λ)-bit prime p.
b. Choose a hash function H : {0, 1}q+l+m → Zp ⊆ {0, 1}q , where l =

[log2k] + 1, m = [log2t] + 1 such that t = max{t1, t2, . . . , tk}.
c. Choose distinct identifier I Dα ∈R Z

∗
p corresponding to each of the partici-

pant Pα,α ∈ {1, 2, . . . , n}
d. Choose a hash function G : {0, 1}q → {0, 1}u(λ).
e. Set as pms = (p, q, k, l, m, H, G, I Dα,P, Γ1, Γ2, . . . , Γk).

2. Dist: On input pms = (p, q, k, l, m, H, I Dα,P, Γ1, Γ2, . . . , Γk), where α ∈
{1, . . . , n}, and k secrets s1, s2, . . . , sk ∈ Zp ⊆ {0, 1}q ,

a. Choose xα ∈R {0, 1}q , α = 1, 2, . . . , n.
b. For Ai j where i = 1, 2, . . . , k; j = 1, 2, . . . , ti , choose di j

1 , di j
2 , . . . , di j

ri j −1
∈R Zp ⊆ {0, 1}q and set

fi j (x) = si + di j
1 x + di j

2 x2 + · · · + di j
ri j −1xri j −1.

c. For each Pα ∈ Ai j , compute
• ϕ(xα, Ai j ) = H(xα||il || jm) where il denotes the l-bit binary representa-
tion of i , jm denotes the m-bit binary representation of j and ‘||’ denotes
the concatenation of two binary strings.

• Bα
i j = fi j (I Dα) and Mα

i j = Bα
i j − ϕ(xα, Ai j ).

• the public verification values Vϕ(xα,Ai j ) = G(ϕ(xα, Ai j )).
d. Output {xα}1≤α≤n as shares, outpub = {Mα

i j : Pα ∈ Ai j , 1 ≤ i ≤ k; 1 ≤
j ≤ ti } as public output.

e. Output V = {Vϕ(xα,Ai j ) : Pα ∈ Ai j , 1 ≤ i ≤ k; 1 ≤ j ≤ ti } as public
verification value.

3. Reconst:

• Participant Phase: On input pms, outpub, an index i ∈ {1, 2, . . . , k},
a. Each participant Pα ∈ Ai j computesϕ(xα, Ai j )= H(xα||il || jm), ∀Ai j ∈Γi .
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b. ∀Ai j ∈ Γi , each participant Pα ∈ Ai j sends ϕ(xα, Ai j ) = H(xα||il || jm) to
the reconstructor.

• Verification Phase: On input V = {Vϕ(xα,Ai j ) : Pα ∈ Ai j , 1 ≤ i ≤ k; 1 ≤
j ≤ ti } and {ϕ(xα, Ai j ) : ∀Pα ∈ Ai j ,∀Ai j ∈ Γi },
a. ∀Ai j ∈ Γi and ∀Pα ∈ Ai j , the reconstructor checks G(ϕ(xα, Ai j )

?=
Vϕ(xα,Ai j ).

b. If equality holds for some Ai j ∈ Γi , that Ai j is considered as an honest
qualified set. Whereas, if G(ϕ(xα, Ai j ) �= Vϕ(xα,Ai j ) for some Ai j ∈ Γi ,
that Ai j is considered as a corrupted qualified set.

• Secret Reconstruction Phase: For an honest qualified set Ai j ∈ Γi , the
reconstructor
a. computes fi j (I Dα) = Bα

i j = Mα
i j + ϕ(xα, Ai j ), ∀Pα ∈ Ai j .

b. computes si from { fi j (I Dα) : Pα ∈ Ai j } using Lagrange’s Interpolation.

3.1 Analysis of the Scheme Ω

Theorem 1 Ω satisfies correctness condition.

Proof As correctness is considerable only when all the participants are honest, it is
obvious that, usingLagrange’s Interpolation, every qualified set of honest participants
can reconstruct corresponding secret. �
Theorem 2 Ω is IND-CSA secure MSSS in random oracle model.

Proof Let AΩ be an adversary against IND-CSA security of Ω . Let C be the chal-
lenger of the security game. AΩ starts the game by choosing a set of participants
P = {P1, P2, . . . , Pn} and k access structures Γ1, Γ2, . . . , Γk . C runs Setup of Ω to
generate pms and sends everything in pms except the hash functions G, H to AΩ .

AΩ outputs a set B̃ ⊂ P of corrupted players and two different global secrets
s(0) �= s(1) with the restriction:

s(0)
i = s(1)

i ,∀i ∈ {1, 2, . . . , k}, such that B̃ ∈ Γi .

C chooses pairwise distinct xα ∈R {0, 1}q , α = 1, 2, . . . , n.
Simulation of H -queries: C starts with two empty lists namely H -list and R-list.

When AΩ submits a hash query of the form x ||i || j (in this proof, for simplicity, we
write il , jm as i, j only.), C checks whether x = xα for some Pα ∈ P .

• If x �= xα,∀α ∈ {1, 2, . . . , n} do

⎧⎨
⎩
Choose γ ∈R {0, 1}q

Add (x ||i || j, γ) to the R-list
Return γ.
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• If x = xα for some α,

If x = xα & Pα ∈ B̃, If x = xα & Pα /∈ B̃,

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If Pα ∈ Ai j ∈ Γi

Choose hα,i, j ∈R {0, 1}q .

Add (xα||i || j, hα,i, j ) to H-list
Return hα,i, j .

If Pα /∈ Ai j ∈ Γi

Choose γ ∈R {0, 1}q .

Add (xα||i || j, γ) to R-list
Return γ.

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If Pα ∈ Ai j ∈ Γi

Choose hα,i, j ∈R {0, 1}q .

Add (xα||i || j, hα,i, j ) to H-list
Return hα,i, j .

If Pα /∈ Ai j ∈ Γi

Choose γ ∈R {0, 1}q .

Add (xα||i || j, γ) to R-list
Return γ.

If a hash query x ||i || j by AΩ is already in H or R-list, the stored value is sent
back to AΩ . It is to be noted that the entries in R-list are not required in the actual
execution of the MSSS, whereas H -list will be used by the challenger C to simulate
the outpub.

Simulation of G-queries: C starts with two empty lists namely G-list and G’-list.
When AΩ submits a hash query of the form h∗, C checks whether h∗ = hα,i, j for
some h∗ ∈ H -list.

If h∗ = hα,i, j ∈ H -list, If h∗ �∈ H -list,

do

⎧
⎨
⎩

Choose Vα,i, j ∈R {0, 1}u .

Add (hα,i, j , Vα,i, j ) to G-list
Return Vα,i, j .

do

⎧
⎨
⎩

Choose η ∈R {0, 1}u .

Add (h∗, η) to G’-list
Return η.

If a hash query h∗ by AΩ is already in G or G ′-list, the stored value is sent back
toAΩ . It is to be noted that it may happen thatAΩ queries the hash function G with
h∗ such that at that stage h∗ �∈ H -list, but h∗ was latter added to the H -list as some
hα,i, j . In that case, the entry (h∗, η) is shifted from G’-list to G-list and renamed
as (hα,i, j , Vα,i, j ). Observe that the entries in the final G’-list are not required in
the actual execution of Dist algorithm. Only the entries in G-list are used by the
challenger C to simulate the V .

C chooses a bit b ∈R {0, 1} and does the following:

• ∀Ai j ∈ Γi where i = 1, 2, . . . , k; j = 1, 2, . . . , ti , chooses di j
1 , di j

2 , . . . , di j
ri j −1

∈R Zp ⊆ {0, 1}q and sets

fi j (x) = si + di j
1 x + di j

2 x2 + · · · + di j
ri j −1xri j −1

• For each Pα ∈ Ai j , computes Bα
i j = fi j (I Dα),Mα

i j = Bα
i j − hα,i, j .

The values of hα,i, j are either recollected from H -list, if they exist, or they are
chosen randomly from {0, 1}q . In the latter case, the entry is added to the H -list for
answering further hash queries. Moreover, C generates a simulated set V = {Vα,i, j :
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Pα ∈ Ai j ∈ Γi } where Vα,i, j ’s are either collected from G-list, if they exist, or
randomly chosen from {0, 1}u and added in the G-list.

C returns the public output outpub = {Mα
i j : Pα ∈ Ai j , 1 ≤ i ≤ k; 1 ≤ j ≤ ti },

V = {Vα,i, j : Pα ∈ Ai j ∈ Γi } and the shares {xα : Pα ∈ B̃} of the corrupted
participants to AΩ . Finally, AΩ outputs its guess b′ for b.

Therefore, to compute the probability that AΩ outputs the correct bit, we distin-
guish between two cases, depending on whether AΩ somehow manages to get the
pseudo-share hα,i, j for some non-corrupted participant Pα �∈ B̃ and Pα ∈ Ai j ∈ Γi

or not. If AΩ gets hα,i, j for some Pα �∈ B̃, say with probability δ, this is the best
case forAΩ and he can correctly guess the secret bit. On the other hand, ifAΩ is not
able to output any pseudo-share corresponding to a non-corrupted participant, which
happens with probability 1 − δ, then the probability of AΩ guessing the correct bit
is exactly 1/2. Hence, in any case, the probability of AΩ guessing the correct bit is
δ + 1

2 (1 − δ) = δ
2 + 1

2 i.e., AdvAΩ
(λ) = |( δ

2 + 1
2 ) − 1

2 | = 1
2δ.

Now, let E1 be the event that AΩ make a hash query xα||i || j , where xα is the
share of Pα ∈ P \ B̃ and Pα ∈ Ai j ∈ Γi and |B̃| = t̃ . The probability that a single H

query leads to E1 is
n − t̃

2q − t̃
. Now, taking Q H to be the total number of H -queries,

we get

Pr[E1] = 1 −
(
1 − n − t̃

2q − t̃

) (
1 − n − t̃

2q − t̃ − 1

)
· · ·

(
1 − n − t̃

2q − t̃ − Q H + 1

)

≤ 1 −
(
1 − n − t̃

2q − t̃

)Q H

≈ Q H (n − t̃)

2q − t̃
≤ n · Q H

2q − t̃
≈ n · Q H

2q

as t̃, Q H are negligible compared to 2q . Let E2 be the event that AΩ guesses the
hα,i, j for some Pα �∈ B̃ and Pα ∈ Ai j ∈ Γi from the publicly available Vα,i, j . Since,
Vα,i, j is randomly chosen and letting QG to be the total number of G-queries, we
get,

Pr[E2] = 1 −
(
1 − 1

2q

)QG

≈ QG

2q

Now, δ = Pr[E1 ∪ E2] ≤ Pr[E1] + Pr[E2] ≈ n · Q H + QG

2q
. Thus,

AdvAΩ
(λ) ≈ n · Q H + QG

2q+1 .

�

Theorem 3 Ω is robust, if H and G are collision resistant.

Proof The adversaryA chooses the set of playersP , a secret vector s = (s1, s2, . . . ,
sk) and the corresponding k access structures Γ1, Γ2, . . . , Γk ⊂ 2P . Then A runs



132 A. Das et al.

Setup(1λ,P, {Γi }1≤i≤k) → pms = (p, q, k, l, m, H, G, I Dα) and sends (pms, s)
to C. The challenger C runs Dist(pms, s) to output the shares {xα}Pα∈P , public
outputs outpub = {Mα

i j : Pα ∈ Ai j , 1 ≤ i ≤ k; 1 ≤ j ≤ ti } and pub-
lic verification value V = {Vϕ(xα,Ai j ) : Pα ∈ Ai j , 1 ≤ i ≤ k; 1 ≤ j ≤ ti }
and sends (outpub,V, {xα}Pα∈P ) to A. A outputs {x∗

α}Pα∈P with restriction: ∀i ∈
{1, 2, . . . , k}, ∃Bi ∈ Γi such that xα = x∗

α,∀α ∈ Bi . Finally, the challenger C runs

Reconst(pms, outpub,V, {ϕ(x∗
α, Ai j )}Pα∈Ai j ,∀Ai j ∈ Γi ) → s∗

i , ∀i ∈ {1, 2, . . . , k}

to output s∗ = (s∗
1 , s∗

2 , . . . , s∗
k ).

Now, let us consider the case when A wins the game i.e., when C outputs b = 1.
Note that b = 1 ⇒ s∗ �= s ⇒ ∃ at least one i ∈ {1, 2, . . . , k} such that si �= s∗

i .
However, as s∗

i = Reconst(pms, outpub,V, {ϕ(x∗
α, Ai j )}Pα∈Ai j , ∀Ai j ∈ Γi ), there

exists one Ai j ∈ Γi such that {ϕ(x∗
α, Ai j )}Pα∈Ai j passed the verification phase of

Reconst algorithm, i.e.,

G(ϕ(x∗
α, Ai j )) = Vϕ(xα,Ai j ), ∀Pα ∈ Ai j

However, from the public verification values computed by C, we have

G(ϕ(xα, Ai j )) = Vϕ(xα,Ai j ), ∀Pα ∈ Ai j

⇒ G(ϕ(x∗
α, Ai j )) = G(ϕ(x∗

α, Ai j )), ∀Pα ∈ Ai j .

Ifϕ(x∗
α, Ai j ) �= ϕ(xα, Ai j ) for some Pα ∈ Ai j , we get a collision of G. On the other

hand,
ϕ(x∗

α, Ai j ) = ϕ(xα, Ai j ), ∀Pα ∈ Ai j

⇒ H(x∗
α||i || j) = H(xα||i || j), ∀Pα ∈ Ai j .

Now, if x∗
α = xα, ∀Pα ∈ Ai j , then Ai j is an honest qualified set in Γi , which in

turn implies si = s∗
i , a contradiction. Hence, ∃ at least one Pα ∈ Ai j with x∗

α �= xα,
thereby finding a collision (x∗

α||i || j, xα||i || j) for H .
Let us denote the events of finding collision for H and G by ColH and ColG

respectively and let Pr[ColH ] = δH and Pr[ColG ] = δG . Thus, the adversary wins
the game if ColH or ColG occurs, i.e.,

Pr[b = 1] ≤ Pr[ColH ∪ ColG] = δH + δG − δH · δG < δH + δG

Since, G and H are collision resistant, δG and δH are negligible and as a result,
Pr[b = 1] is negligible. Hence Ω is robust. �
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4 Conclusion

In this paper, the notion of computational robustness formulti-secret sharing schemes
for general access structure is established.We also provide construction and proofs of
security of a robust MSSS for general access structure. As a topic of future research,
one can think of more efficient construction of robust multi-secret sharing schemes
for general access structure.
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Key Chain-Based Key Predistribution
Protocols for Securing Wireless Sensor
Networks

Prasun Hazra, Debasis Giri and Ashok Kumar Das

Abstract Since the conception of the seminal work proposed by Eschenauer and
Gligor in 2002, several key predistribution mechanisms have been proposed in the
literature in order to establish symmetric secret keys between any twoneighbor sensor
nodes in wireless sensor networks (WSNs) for secure communication. However, due
to lack of prior deployment knowledge, limited resources of sensor nodes and security
threats posed in the unattended environment ofWSNs, it is always a challenging task
to propose a better secure key predistribution scheme apart from existing schemes. In
this paper, we aim to propose two new key predistribution schemes based on hashed
key chains, which provide secure communication between the sensor nodes with the
desired storage and communication overheads. The proposed schemes provide better
tradeoff among security, network connectivity, and overheads as compared to those
for other existing schemes.

Keywords Wireless sensor networks · Key predistribution · Key establishment ·
Security

1 Introduction

Usage of sensor nodes in several fields is growing rapidly as it is very economical [1].
A sensor is composed of some digital logic unit to perform basic computations such
as addition–multiplication comparison, memory chip (ranging from 8 to 128MB)
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Fig. 1 Sensor node architecture (Source [2])

with microcontroller, where we burn the key establishment logic, sensing unit to
retrieve raw information, radio unit with some communication range and energy
source. Figure1 explains how a sensor node works. First, the sensing unit digitizes
sensed data using ADC (Analog to Digital Converter). Then, these data are stored in
the memory location for further processing by digital logic under the instructions of
microcontroller. After that the transmitter sends these data to other sensor nodes and
also receives the processed data from other sensor nodes within the communication
range. All these components are directly connected with a constant power supply,
which is battery powered.

In a wireless sensor network, thousands of tiny sensor nodes are distributed over
an area and these nodes sense surrounding data from the area. These data need to
be transmitted to other neighbor nodes or to a base station via some intermediate
nodes securely. As sensor nodes are resource constrained, heavy computation is not
desirable. The symmetric key cryptography is feasible due to efficiency. We have no
prior information about sensor node’s deployment area and we have limited storage
capacity of sensor nodes and also have the possibility to node capture along with
node fabrication attack. All these make wireless sensor network communication very
sensitive.
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1.1 Related Work

In 2002, Eschenauer and Gligor proposed the seminal basic random key predistri-
bution scheme [3] (which is also known as the EG scheme), where the key ring of
each sensor node is generated by randomly picking a fixed amount of keys from a
key pool without any replacement. The key pool size and key ring size are selected
in a manner that any two key rings will share at least one key with some predefined
probability. However, it has low connectivity when the key pool size is large, and its
resilience to node capture becomes poor when the key pool size is small. In 2003,
Chan et al. proposed the q-composite scheme [4], which is an improvement of the
EG scheme, where a number of shared keys is greater than one. When the number
of node capture is less, the resilience against node capture is high in this scheme.
The random pairwise key predistribution is also proposed by Chan et al. [4], where
its resiliency is perfect, but it does not support a large network. Also, its network
connectivity is quite poor.

Castelluccia and Spognardi proposed a key management scheme, called RoK (a
robust key predistribution protocol for multiphase wireless sensor networks) [5]. In
this scheme, the sensors are deployed at different times in order to establish secure
channels. They showed that its resiliency against node capture is much better than
[4, 6]. Zo-RoK [7] is an improvement of RoK. This scheme is based on zone-based
deployment. Later, Unlu et al. [8] presented key predistribution schemes for contin-
uous deployment scenario. Their scheme performs better than other location-aware
schemes in terms of connectivity, resiliency, memory usage, and communication
cost. Other schemes such as [9–11] proposed in the literature provide significantly
better performance than [4, 6].

The main drawback of the basic random key predistribution scheme is that if
a node is captured, all keys stored in the memory are known to an adversary, and
these keys might have been chosen from the key pool by other noncaptured nodes
also. In the basic scheme, there is no concept of threshold cryptography such that
by knowing all keys of captured nodes, an adversary could not guess the keys of
other noncaptured nodes. The advantage of using the threshold cryptography is that
when the number of captured sensor nodes is less than a certain number of nodes, it
is not sufficient for the adversary to know the keys of other nodes. It is possible, if
the key is used to compose to several other keys. In order to compromise the keys
of noncaptured nodes, the number of captured nodes must exceed a threshold. For
details, one can refer to [12, 13].

1.2 Motivation

Random selection of the keys from a key pool has few drawbacks. The drawbacks
of random selection of keys can be overcome up to certain level using the threshold
cryptography concept. That is, we should not use a key, rather the shares of a key
are used. Nodes with different shares of a common key can communicate securely.
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We generate key chain based on two keyed hash chains, where a keyed hash chain is
generated by the help of the repeated hashing (up to some level) on a random secret
information. It has drawback as anybody can compute next hashed value if he/she
knows previous hash value of that key chain. In µTESLA protocol [14], it is shown
that asymmetry is provided by delaying the disclosure of symmetric keys, where key
chain is used to provide authentication. If we restrict the link (here, the link means
the computation of next higher hash values from a known hash value) between a hash
value of a key chain and its all next hash values, it can be used as a key. We know
that the deterministic approaches enhance network scalability with low resiliency,
whereas probabilistic approaches provide high resiliency with low connectivity. By
using key chain with some reasonable chain length, we can achieve high connectivity
along with high resiliency compared to the existing schemes.

1.3 Threat Model

In this paper, we use the Dolev–Yao threat model [2] in which two communicating
parties communicate over an insecure channel. Any adversary (attacker or intruder)
can eavesdrop the transmitted messages over the public insecure channel and he/she
has the ability to modify, delete, or change the contents of the transmitted messages.
We further assume that the sensor nodes are not equipped with tamper-resistant
hardware. If an adversary captures or compromises some sensor nodes from the
unattended target or deployment field of the sensor network, we assume that the
adversary will know all the sensitive information including the keying materials,
data, and codes from the captured sensor nodes’ memory.

1.4 Our Contributions

Our contributions are listed below:

• In this paper, we propose two schemes: Key predistribution using linear key chain,
and key predistribution using multilevel key chain for wireless sensor networks.

• These schemes provide better network connectivity.
• They also provide perfect resilience against node capture attacks.
• Moreover, the proposed schemes support large-scale sensor network, that is, our
schemes are scalable.

• In addition, our schemes are also efficient in terms of computation and communi-
cation overheads required for the resource-constrained sensor nodes.

1.5 Roadmap of the Paper

The rest of the paper is organized as follows: In Sect. 2, we provide some prelimi-
naries on sensor networks and their challenges, which are useful for describing and
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analyzing the proposed schemes. In Sect. 3, we proposed two new key predistribution
schemes. In Sect. 4, we derive the probability for establishing direct keys between
neighbor nodes and then analyze the security against node capture attack. In Sect. 5,
we compare the performance of our proposed schemes with other existing schemes.
Finally, we conclude the paper with some concluding remarks in the last section.

2 Sensor Network Preliminaries and Challenges

Sensor network is build up with hundreds to thousands of sensor nodes. Sensor
nodes are densely deployed over an area or monitoring object such that they can
communicate with each other efficiently. Generally, tiny nodes are distributed from
aircrafts or trucks over an area. After deployment of nodes, they establish their secret
keys. Each node transmits the collected data via other nodes or directs them to base
station node securely. Base node is a gateway to other network or human interface
of a sensor network. Information are gathered here to make a decision.

Sensor networks are challenging to implement due to following reasons.

• Low memory, low computation power and low life time: Sensor nodes are very small in
size with small storage capacity, battery backup, and computation power. Thus
symmetric key cryptography is used where secret key sharing between nodes is a
big issue. Though by using symmetric key cryptography we reduce computation
power and enhance sensor node’s life time, it is still impractical regarding storage
capacity to store a massive number of secret keys for large network.

• No prior knowledge before deployment: Nodes are preinitialized with secret keys and
randomly distributed over an area which implies nodes are uncertain about their
location and also about their neighbors. Due to short communication range of a
sensor node, it will always have less number of neighbors. So the probability to
direct key establishment is less.

• Node capture and replication: Adversary can physically capture sensor nodes and may
know all secret information stored in that node. The adversary can also replicate
that node in the network for his benefit.

• Dynamic nature of network topology: Sensor nodes may change their location as well
as new nodes can be added later.

3 Proposed Schemes

In this section, we propose two schemes which can provide perfect resiliency with
high connectivity between sensor nodes. Hash function is used to establish secret
shared keys.Wegenerate secret key chain using twohash chains and predistribute it to
sensor nodes by offline. Generation of secret key chain of our first scheme(Scheme 1)
is described below.
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3.1 Scheme 1: Key Predistribution Using Linear Key chain

In this section, we describe linear key chain generation and the key predistribution
of our Scheme 1 using this linear key chain in sequel.

Linear Key Chain Generation

Key chain is formed from hash chains where hash function [15] is used repeatedly
on a randomly seed value, which can also be considered as a secret. We generate
a key chain by merging two hash chains of equal length. Suppose two hash chains
are Ch1a and Ch1b, where Ch1a => h1(s1a) −→ h2(s1a) −→ · · · −→ hl(s1a)

such that hl(sia) = h(h...h(sia))︸ ︷︷ ︸
l times

and Ch1b => hl(s1b) ←− hl−1(s1b) ←−

· · · ←− h1(s1b), s1a and s1b are two different seed values for chain Ch1a and
Ch1b, respectively. A key chain Ch1 is produced by merging these two hash
chains, Ch1 => (Ch1

1a‖Ch1
1b) � (Ch2

1a‖Ch2
1b) � · · · � (Chl

1a‖Chl
1b), where

Chi
1a = hi (s1a) and Chi

1b = hl−i+1(s1b) for i = 1, 2, 3, . . . , l. Since hash chain
length is l, so key chain length is also l denoted as Ch1

1,Ch2
1, . . . ,Chl

1 for key chain
Ch1 and we can distribute these l secret keys (Ch1

i ,Ch2
i , ...) to l sensor nodes. In

Fig. 2, we show the keychain formation.
Each key chain is generated by a pair of hash chain of two different seeds. For

each key chain, we use two different seeds randomly. Therefore, for c key chains,
we use 2c random seed values. If two key values are known of a key chain, one
can compute the intermediate keys corresponding to the key chain where the nodes
contain keys from the same key chain. Therefore, one can easily compute secret keys
of other nodes if secret keys of any two nodes are compromised and the secret keys
are generated from the same key chain.

Ch1a => h1(s1a) −→ h2(s1a) −→ ·· · −→ hl(s1a)

Ch1b => hl(s1b) ←− hl−1(s1b) ←− ·· · ←− h1(s1b)

Ch1 => (Ch11a‖Ch11b) � (Ch21a‖Ch21b) � · · · � (Chl
1a‖Chl

1b)

� � � �

Fig. 2 Key chain formation



Key Chain-Based Key Predistribution Protocols for Securing Wireless . . . 141

Ch1a => h1(s1a) −→ h2(s1a) −→ ·· · −→ hl(s1a)

x1 x2 xl

Ch1b => hl(s1b) ←− hl−1(s1b) ←− ·· · ←− h1(s1b)

Ch1 => (Ch11a‖Ch11b) � (Ch21a‖Ch21b) � · · · � (Chl
1a‖Chl

1b)

� � � �

�

�

�

�

. . .

�

�

s1a
�

s1b�

�
�

�
�

Fig. 3 Linear key chain formation using keyed hash function

To remedy the weakness, we can design it in such a way that key chain’s secrecy
not only depends upon the first and last hash values, but also depends upon each
hash value. Then, resiliency against node capture becomes perfectly unconditional.
We achieve this by using keyed hash function. In each hash value, we use different
keys. If we do not know the actual key, we cannot get higher level hash values of a
linear key chain by hashing only. In Fig. 3, we show key generation where each node
stores a secret key along with corresponding secret information which is hashed to
get next higher level secret key(hash value).

Each node in a network consists of some secret information, where the infor-
mation can be a random key of length 64–256 bits and two keyed hash values of
two hash chain. For an example, a node can consists of a triple of information
ki

j = (Chi
ja,Chi

jb, xi ) as secret information, where i(1 ≤ i ≤ l) represents the
number of hashing and j (1 ≤ j ≤ c where c is the number of linear key chain)
can be c, represents the index of key chain. The nodes which contain the first and
last key values of a linear key chain need to store one more secret seed value of
the corresponding hash chain. The generalized hashing technique to form linear key
chain is as:

hi
1a(s1a) = h(hi−1(s1a)‖xi−1), x0 = xl

and

hi
1b(s1b) = h(hi−1(s1b‖xl+2-i mod l),

where ‖ represents concatenation operator.
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Key Predistribution Using Linear Key Chain

In linear key chain, key chain length l depends upon the total number of key chains
(c) and key ring size m. We discuss it briefly in below:

1. Let the total number of secret key chains is c and each secret key chain length is l.
2. Assume that key ring size ism. Nowm distinct linear key chain is chosen randomly

l times from c precomputed linear key chains with replacement. A secret key of
a key ring is taken randomly from each chosen linear key chain of length l with
replacement. Total number of possible key rings is

( c
m

)
. Each linear key chain

is chosen l = ( c−1
m−1

)
times which is very large. Therefore, the linear key chain

length (l) is equal to the number of uses of a linear key chain that is l = ( c−1
m−1

)
.

Remark 1 Each secret key of linear key chains needs to identify uniquely by cal-
culating a offset value of length �log2 c�+�log2 l� in terms of bits. First, �log2 c�
bits identify linear key chain number. Next, �log2 l� bits identify linear key chain’s
repeated hash value number. A sensor node’s key ring is filledwith previously unused
secret keys of length 2|h| + |r | (where, h represents hash length and r represents
length of random number) from each m linear key chain along with offset value used
as identifier to identify each secret key uniquely and a unique node id provided by key
setup server. So each node is stored m secret keys with m identifiers and a unique id.

3.2 Scheme 2: Key Predistribution Using Multilevel Key Chain

In this section, we first discuss about multilevel key chain formation and next, we
discuss predistribution of the keys using multilevel key chain.

Multilevel Key Chain Generation

Using different secret information in each node, we provide perfect security, but
the connectivity of a network pretends to be very poor, if the key chain length is
very long. To overcome the weakness, we propose a design where we generate
multilevel key chain based on the number of secret information stored in a node.
Similar to the previous design, we use keyed hash function. Unlike previous design,
seed information is hashed r times with r different secret information to connect
with r different nodes directly. That means, if a node contains r secret information,
it can communicate to maximum n nodes depending on building block key chain
length (x) which is described below in same level and n × (r −1) nodes in next r −1
levels. Now lengthy hash chain is composed of multilevel interrelated hashed values.
Higher length implies higher number of level, that is, higher number of direct link
from a seed. The number of hashed values which are used as secret keys distinctly
depends upon previous level’s total number of hashed values and the number of secret
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Fig. 4 Multilevel key chain
formation using keyed hash
function and multiple secret
information

C

T

      H

G

             F

E

I

D

B

A

N

o
P

Q

R

S

   M

        L

K

         J

U

information used in that particular level. In Fig. 4, there are three nodes A, B, and C
in first most inner level(circle). Next level consists of six nodes, namely, D, E, F, G,
H, and I and the outermost level consists of 12 nodes, namely J, K, L, M, N, O, P, Q,
R, S, T, and U. There are minimum two secret information in a node, if it is in the
first level. A node contains one secret information if it is in the last level(outer most
level) which is described in Fig. 4.

In Fig. 4, A, B, and C are in a same chain and in same level. Each of them
containing two secret information. Each secret information is used in two different
key chain which are used in same level and immediate next level. By using these
two secret information, they are directly connected to four other nodes. In the first
circle, that is in first level, there are two secret information and in the immediate
next level there are also two secret information. In the last level, there is only one
secret information. Multilevel key chain is composed of small length interrelated key
chains. First level is composed of one key chain with certain length x . This chain
is called the building block key chain of multilevel key chain. Here, we consider
x = 3. All small interrelated key chains’ length is x except last level’s key chain
block length which we discuss in the next Sect. 3.2.2.

Key Predistribution Using Multilevel Key Chain

After multilevel key chain generation discussed in Sect. 3.2.1, we form key ring and
predistribute each secret key to appropriate key ringwithmultiple secret information.
This procedure is done offline by key server. In multilevel key chain formation, key

http://dx.doi.org/10.1007/978-81-322-2452-5_3
http://dx.doi.org/10.1007/978-81-322-2452-5_3
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chain length, lc is calculated exactly to desired key chain length, l = ( c−1
m−1

)
. If not

exact then it is calculated to be very nearer, but less value (lc < l) of desired chain
length by manipulating level number and as well as number of secret information in
each level. Let total number of levels be L and in each level, ri (1 ≤ i ≤ L) secret
information are there. Then always rL = 1 as it is the last level of multilevel key
chain and r1 is greater than one unless first level cannot link next outer levels. Except
Lth level, other inner level’s secret information r1, r2, r3, ...., rL−1, respectively, are
chosen smartly to match with desired chain length l. If lc < l, then we calculate
lr = l − lc. These lr keys belong to last level that is in Lth level with one secret
information, that is, rL = 1 and will be stored in the last level of multilevel nodes.
If multilevel key chain’s building block key chain known as unit of multilevel key
chain, is x then some of last level’s key chain blocks length will be higher than x to
hold total lr keys in last level. lc is calculated as,

lc = x + x[21(r1 − 1) + 22(r1 − 1)(r2 − 1) + 23(r1 − 1)(r2 − 1)(r3 − 1)+
· · · + 2L−1(r1 − 1)(r2 − 1)(r3 − 1) · · · (rL−1 − 1)].

The above expression can be generalized as:

lc = x

[
1 +

r−1∑
i=1

{
2i

i∏
j=1

(r j − 1)

}]
.

when, r = r1 = r2 + 1 = r3 + 2 = · · · = rL−1 + L − 2.

Remark 2 Each key is given a unique id same asRemark 1.After calculation of levels
(L), we can get different number of consecutive keys to different level secret keys(at
least two). These keys are now predistributed as described in earlier subsections.

3.3 Master Shared Secret Key Establishment

In this section, we describe master shared secret key establishment for both Scheme
1 and Scheme 2. After deployment of sensor nodes over an area, first of all each
node detects its neighbor nodes. Suppose a node B is in the communication range
of a node A. They interchange their m identifiers corresponding of m secret keys
which are stored before deployment. To communicate securely, A and B establish
master shared secret key using common identifiers. Of course they establish secret
key if they share the keys from the same secret key chain. But as secret key chain
length varies with network size, for large network a node may have to compute large
number (maximum l − 1) of hashing upon same secret key chain match. To reduce
possibility of huge computation, we establish master shared secret key by fixing up
the number of hashing. We want maximum number of one time hashing on each
matched secret key chain share for each pair of communicating nodes. That means
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to communicate, both nodes not only share same secret key chain, but also have to
share any two consecutive secret keys of same secret key chain. In a secret key chain,
first secret key which is generated by one time hashing on a secret seed has next hash
value known as right consecutive key and similarly last secret key has previous hash
value known as left consecutive key. Except these two positions, all other secret keys
have both side hash value known as right and left consecutive keys. If we store seeds
as described in Fig. 3, the first secret key may have circularly next left secret key and
last secret key may have circularly next right secret key. In the following steps, we
describe how master secret key is shared between two communicating nodes.

Step 1: Both A and B nodes can establish a key, if they share two consecutive
secret keys of same secret key chain. Node A checks whether the first �log2 c�
bits of �log2 c� + �log2 l� bits sent by the node B is appear in the memory. If
it is true, node A then compares matched identifier’s second part log2 l to check
whether they are consecutive or not. If consecutive, it retrieves matched key chain’s
secret key locations(hash position) j , k in node A and node B, respectively, where
j, k ∈ {1, 2, . . . , l}.

Node A may have several matched key chains’s secret key, n(1 ≤ n < m)

which is consecutive with node B’s secret key. For n matched secret key chains,
node A computes secret key chain number(i p) where p ∈ {1, 2, . . . , n} and i p ∈
{1, 2, . . . , c} by comparing identifier’s first part. Node A also computes jp and kp,
the contribution position of secret key chain i p to node A and node B, for each p
where jp, kp ∈ {1, 2, . . . , l} and they are consecutive by comparing i pth secret key
chain identifier’s second part. For each secret key chain i p, node A computes shared

secret key ssk
i p
AB and node B also computes ssk

i p
B A where ssk

i p
AB=ssk

i p
B A. The shared

secret key ssk
i p
AB is calculated as follows.

Case I: if jp < kp, node A computes ssk
i p
AB = hkp− jp (Ch

jp
i pa) ⊕ Ch

li p −( jp−1)
i pb ,

where ⊕ denotes bitwise exclusive OR operation. Node B computes ssk
i p
B A =

Ch
kp
i pa ⊕ hkp− jp (Ch

li p −(kp−1)
i pb ).

Case II: if jp > kp, node A computes ssk
i p
AB = Ch

jp
i pa ⊕ h jp−kp

(Ch
li p − ( jp−1)
i pb ). Node B computes ssk

i p
B A = h jp−kp (Ch

kp
i pa) ⊕ Ch

li p −(kp−1)
i pb .

Now nodeA andB computemaster shared secret key, ssk M
AB = sski1

AB ⊕ sski2
AB ⊕

· · · ⊕ sskin
AB = ssk M

B A. This master shared secret key establishment is called direct
key establishment. After direct key establishment, if network connectivity is still
poor, we then further need to compute indirect key establishment as described in the
next step(Step2).

Step 2: Nodes A and B also can establish direct key even if they do not share con-
secutive secret keys of same secret key chain or they do not have any common secret
key chain. Two cases can be figured out when nodes are establishing master shared
secret key with the help of path key.
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case 1: Suppose nodes A and B hold the keys generated from the same key chains,
but they do not share consecutive keys. In this case, both nodes interchange their
identifier’s ids, nonces. And then they calculate hash value positions j, k of a shared
key chain as described previously. As j and k are not consecutive to each other, so
l − 2 ≥ | j − k| ≥ 2, where l, j, k are the length of key chain, hash value position
in node A, and hash value position in node B. Now nodes A and B both transmit
following identifiers to its immediate neighbors with whom it has direct key. This
transmission is done up to h number of hops. Generally to reduce computational
overhead, h is chosen between 2 and 3.

• For k = 1: If k is the first hash value of the shared secret key chain, then node A
needs (k+1)th and (k+l−1)th contributions of shared secret key chain to establish
a direct key with node B. Node A transmits desired secret key’s identifiers to its
direct neighbors with whom it has direct key. Neighbor nodes again retransmit to
its direct neighbors until at least one identifier gets matched. Transmissions take
place as follows:

Step i: Let a identifier of A is matched with node C via h intermediate nodes
A1, A2, . . . , Ah . So the secret key is found in node C through a path
< A = A0, A1, A2, . . . , Ah+1 = C >. During node to node transmission,
the path is saved which is followed reversely to go back to initial node A
after identifier match. Ai−1 → Ai :(

∑i
j=1 idA j−1‖{list of identifiers}

‖M ACssk M
Ai−1 Ai

(
∑i

j=1 idA j−1‖{list of identifiers}))
for i = 1, 2, 3, . . . , h + 1.

Step ii: Now node C securely transmits secret key to node A after identifiers are
matched. Ai → Ai−1:(

∑i−1
j=1 idA j−1‖Essk M

Ai Ai−1
{secret key from

node C } ‖M ACssk M
Ai Ai−1

(
∑i−1

j=1 idA j−1‖Essk M
Ai Ai−1

{secret key from node C })) for i = h + 1, h, h − 1, . . . , 1. Node A
establishes direct key with node B using currently received secret key
which is right consecutive of kth hash value in node B. Step 1 is followed
to establish direct key.

• For k = l: If k is the last contribution of shared key chain, it needs 1st and (k −1)th
contributions to establish a direct key. The transmissions are same as previous two
steps, Step i and Step ii when k = 1.

• For 1 < k < l: In that case, it searches k + 1th and k − 1th contributions of same
secret key chain and transmissions are same as previous Step i and Step ii.

case 2: Suppose nodes A and B do not hold the keys generated from same key chain.
First, nodes A and B interchange their identifier ids, nonces. After that they calculate
hash value positions j, k to find out a common key chain and then consecutive keys
of that key chain. Nodes A and B both transmit these identifiers to their neighbor
nodes with whom they have direct keys up to h(2–3) number of hops. Unlike case
1, here node A and B both first check desired identifier’s first part, that is, �log2 c�
bits of �log2 c� + �log2 l�. After successful matching of identifer’s first part, second



Key Chain-Based Key Predistribution Protocols for Securing Wireless . . . 147

part of that identifier that is, �log2 l� is checked. Upon successful matching of iden-
tifier’s both parts, transmissions are as Step i and Step ii. In case 2, communication
overhead increases than case 1 and initially nodes prefer not to follow. If, after case
1, probability of connectivity remains poor, only then case 2 is followed.

4 Analysis and Simulation Results

We derive the probability for establishing direct keys between neighbor nodes and
analyze the security issues when nodes are vulnerable to node compromise attack.
We find the connectivity of our two proposed schemes.

4.1 Probability of Establishing Direct Keys in Scheme 1

We calculate the probability, p, that any two nodes can establish direct key. We can
see that two neighbor nodes A and B can establish direct keys when they have secret
keys from the same secret key chain and secret keys are consecutive. As in each key
ring have m keys from m key chains out of total c key chains and m is more than half
of total keychains, c. So we have minimum m − (c − m) common key chains in any
two nodes. Now, we choose m key chains from total c key chains with replacement.
So any two nodes may have maximum m − 1 common key chains.

So we have, p = ∑m−1
i=m−(c−m)(probability of having i common key chain(s)

× (1 − probability of not being consecutive key for each i key chain)). We derive
and calculate the formula as follows : probability of having i common key chain(s)
is derived as if both nodes have i common key chain(s) that is they have (m − i)
uncommon key chain(s). If one node chooses m key chains from c then to have i key
chain(s) ((m − (c − m)) ≤ i < (m − 1)) in common other node will choose i from
c − (m − i) keychains, which is already used key chain(s) by any node previously.
Mathematically,

p =
m−1∑

i=m−(c−m)

[(c−(m−i)
i

)
( c

m

) ×
{
1 −

( l − 3

l

)i
}]

,

where c,m, l are total secret key chains, key ring size, and secret key chain length,
respectively. The above expression can be written as,

p =
m−1∑

i=m−(c−m)

[∏c−m−1
j=0

c−(m−i)−1
c−m− j∏c−m−1

j=0
c− j

c−m− j

×
{
1 −

( l − 3

l

)i
}]

.

We plot the simulation results in Fig. 5.
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Fig. 5 Probability of direct
key establish between any
two nodes using linear-level
key chain
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Here we increase the network size by increasing total number key chains and
key ring size, respectively. We simulate with m = c − 2 in each time to get better
connectivity. From the simulation result, it is clear that if network size increases,
the probability, p, decrease. We also notice that fall of probability depends upon
the network size increase and it is comparatively less than other schemes like basic
scheme [3], EPKDSN scheme [12] and IBPRF [6]. We describe it elaborately in
Sect. 5.

4.2 Probability of Establishing Direct Keys in Scheme 2

We further improve the probability of direct key establishment between any two
nodes using multilevel hierarchical secret key chain. A secret key from a key chain
can communicate directly with other two consecutive secret keys of same key chain.
As key chain length increases, the probability of any two nodes having consecutive
keys of same key chain decreases. But in multilevel key chain, a secret key can link
directly to maximum 2r secret keys and minimum two secret keys, where r is the
number of secret information in that level. We have shown that with key chain length
increase, either total level number (L) will increase or value of r will increase in
particular levels, or both will increase. The number of consecutive secret keys of a
secret key also increases dynamically. So obviously the probability of connectivity
will increase.

Probability of having consecutive keys = 1 − probability of having nonconsecu-
tive keys. Now total number of consecutive keys of a key depends upon the number
of secret information ri in the level Li . If a key has ri secret information then it has
2ri consecutive keys that is l − (2ri + 1) nonconsecutive keys, where l is desired
key chain length. We easily calculate that the probability of having nonconsecutive
keys is l−(2ri +1)

l . This probability of having nonconsecutive keys depends upon the
probability of the key having the secret information ri . Now the probability of having
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ri is calculated as total number of secret keys of that multilevel key chain having ri

over total number of secret keys in that multilevel key chain. Let lci is the number of
secret keys having ri secret information, then the probability of having ri is

lci
l .

So, lci
l × l−(2ri +1)

l is the probability of having nonconsecutive keys of a key if the
key has ri secret information. As ri changes with Li , i ∈ {1, 2, 3, . . . , L} (where L
represents total number of levels of network), the number of nonconsecutive keys,
l − (2ri + 1) also changes. Now total probability (pnc) of having nonconsecutive
keys is calculated as:

pnc =
L∑

i=1

{
lci

l
× l − (2ri + 1)

l

}
,

where L represents total number of levels, ri ∈ {r1, r2, r3, ...., rL } and lci ∈ {lc1,
lc2, lc3, . . . , lcL}. We design the multilevel key chain in such a way that the last
level keys have one secret information that is rL = 1 and lc1 = 3 as we assume
the multilevel key chain building block unit is 3. The lr = l − lc is added with lcL

that is in last level. These lr secret keys have at most two consecutive keys. So the
total probability of establishing direct key between any two nodes, pm , is calculated
as pm = ∑m−1

i=m−(c−m)(probability of having i common secret key chains × (1 −
probability of not being consecutive key for each i key chain)). The formula is after
derivation,

pm =
m−1∑

i=m−(c−m)

[∏c−m−1
j=0

c−(m−i)−1
c−m− j∏c−m−1

j=0
c− j

c−m− j

×
{
1 −

(
pnc

)i
}]

,

where c,m, pnc are total secret key chains, key ring size, and probability of having
nonconsecutive keys, respectively. We plot the simulation results for multilevel key
chain in Fig. 6 and show that multilevel key chain has better connectivity over linear
key chain.During simulation,we assumeparameter values given in followingTable1.

If network still remains disconnected with high probability initially, we can obtain
high network connectivity after applying few hops of LAKES [16]. In LAKES [16],
it is shown that the network becomes connected with high probability if the number
of hops as well as the average number of neighbors of each sensor node are increased.

4.3 Security Analysis

The security of our schemes depend on one-way hash functions and a node’s secret
information stored in nodes. We achieve perfect resiliency by using distinct secret
key in each node unlike basic scheme [3] where a key is used repeatedly in several
nodes. By compromising a node, an adversary can only know the half portion of
previous and next secret key of that secret key chain. Each secret key is formed by
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Fig. 6 Probability, pm of
direct key establish between
any two nodes using
multilevel secret key chain
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Table 1 Simulation parameters

Total key chain (c) Key ring size (m) Level no (L) ri in level 1, 2, . . . , L

5 3 1 1

7 5 2 3, 1

10 8 3 2, 3, 1

15 13 3 4, 3, 1

20 18 3 6, 3, 1

40 38 3 12, 6, 1

60 58 3 18, 9, 1

80 78 3 23, 12, 1

100 98 3 27, 16, 1

101 99 3 29, 15, 1

merging two equal length hash chains reversely. Now it is easy to capture all secret
keys if the adversary compromise two nodes containing first and last hash value of
same key chain. But using keyed hash function, we restrict computations from first
to last hash values of a key chain. Nodes store a secret information which is used as a
key to hash function. Each key is generated by merging two hash over two previous
hash values of two key chains with two secret information stored along with that
hash values in two different nodes. Now the adversary cannot compute any secret
key of a noncompromised node without knowing the two secret information stored
along with immediate after and previous secret key of same secret key chain. The
resiliency is perfect that is adversary cannot compromise links between nodes which
are still noncompromised. We achieve this by merging two hash chains reversely and
restricting the link from each hash value to next higher hash value of a key chain by
hashing each time with a unique secret information which is different to different



Key Chain-Based Key Predistribution Protocols for Securing Wireless . . . 151

nodes. Thus no matter how many sensor nodes are compromised, the direct pairwise
keys between noncompromised nodes remain secure. So our scheme provides perfect
resiliency in this way.

5 Performance Comparison with Existing Related Schemes

We compare our schemes with EG scheme [3], q-composite scheme [4], polynomial
pool-based key scheme [12] andwith IBPRF [6]. It is shown that our schemes provide
better connectivity and resiliency compare to them.

5.1 Security Issues

The EG scheme [3] and the q-composite scheme [4] may reveal a large fraction of
pairwise keys shared between noncompromised nodes even if the number of nodes
capture is small. Polynomial pool-based scheme [12] is unconditionally secure with
t-collusion resistant. For large network t is not dynamic; that is, when network size
increases t can be increased to a certain limit considering huge computation. Our
schemes provide better resiliency than EG and q-composite schemes and for large
network, our schemes are more resilient than polynomial pool-based scheme.

In IBPRF [6] if a master key Mku of a node u is compromised, then all shares
(symmetric keys) with x nodes that is PRFMKu (vi ) (1 ≤ i ≤ x) is compromised.
During key predistribution phase, node u selects m randomly nodes and stores m
symmetric keys corresponding these m nodes. Now MKu is known only when an
adversary captures node u and m symmetric keys is known to adversary. It replies
total (x + m) symmetric keys is known to the adversary by compromising one node
u. But in our scheme, each key of a secret key chain is treated as a share; that is, if
a secret key chain length is l then it has total l shares and this l shares are derived
by l times hashing over previous hash value with unique secret information each
time. So total l secret information is used. Now an adversary needs to know all l
secret information to know all l shares unlike one secret information in IBPRF. In
our schemes by knowing one secret information, an adversary can know only half
portion of two shares, not a full single share, whereas in IBPRF, an adversary knows
all x shares of Mku to x nodes. In our schemes, if a node stores m shares, then an
adversary can know only half portion of 2m different shares (because each key is
composed of two hash values) that is not even a single share. Thoughwe choose these
m shares from m different secret key chains, the adversary knows 2m half shares
from m distinct key chain rather than of one secret key chain. This phenomenon
improves security against node compromise along with better connectivity.
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5.2 Network Connectivity

From EG and q-composite schemes, we can see that the connectivity depends upon
key pool size and key ring size. Polynomial pool-based key predistribution scheme’s
connectivity depends upon polynomial pool size and shares of each polynomial. Our
schemes depend upon secret key chain length(l), total number of key chain(c), and
key ring size, m(= l). Our schemes support large network with better connectivity
than polynomial pool-based scheme shown in Fig. 7.

FromFig. 7,we conclude thatwhen network size is very large our schemes provide
better connectivity with perfect resiliency. Initially, it has less probability comparing
with polynomial pool scheme and IBPRF, but high enough that network model is
remain connected. In our schemes, probability of connectivity falls slowly unlike
polynomial pool scheme. In polynomial pool scheme, for small increases in network
size, probability of connectivity fall comparatively near to double.

In IBPRF, a node u can be picked up by other x nodes randomly during key
predistribution phase and node u also randomly chooses m nodes. The probability of
having common nodes in x and m is calculated as: 1 − probability of having distinct
nodes. Mathematically, it is equal to 1 − (M−m

x

)
/
(M

m

)
, where M is pool of ids of n

sensor nodes. From this formula,we notice that there is very less probability of having
common values when x = m even this probability tends to zero for larger M and m
values, and higher probability of having common values when (x < m).As there is a
tradeoff between network size and values of m, x to get higher network connectivity,
so x is always less than m. It replies, m + x < 2m, that is a node u has direct
connectivity to nodes where the number of nodes is less than 2m. In the proposed
schemes each m secret keys is chosen from m distinct secret key chains and each of
secret key can be used to communicate with two nodes where the nodes contain the
consecutive secret keys from same secret key chain. We compare the connectivity of
our schemes with IBPRF and showed the simulation results in following Fig. 8. From

Fig. 7 Comparison with
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Fig. 8 Comparison with
IBPRF with m = 99. Our
schemes achieve more
probability with m, ranging
in 28 <= m <= 99
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Fig. 8, we conclude that when network size is very large, our schemes provide better
connectivity. Initially, both schemes have less probability of connectivity comparing
with IBPRF [6] and after that, as network size (N) increases our schemes provide
better connectivity.

6 Conclusion

In this paper, we have proposed two protocols which are improvement of bootstrap-
ping protocols with the help of hashchain for direct key establishment. We have
designed a way to restrict the drawbacks of direct use of hash chain. We have shown
our schemes provide better network connectivity for large networks with perfect
resilience against node capture than EG scheme, polynomial pool-based scheme and
IBPRF scheme.Wehave also showndiligently that uses of our secret key chain design
in scheme 2, that is multilevel secret key chain, will support more large networks
with better network connectivity and resiliency.
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Abstract We developed IMSmining, a free software tool combining functions of
intuitive visualization of imaging mass spectrometry (IMS) data with advanced
analysis algorithms in a single package which is easy to operate. Main functions of
IMSmining include data visualization, biomarker selection, and classification using
advanced multivariate analysis methods such as elastic net, sparse PCA, as well as
wavelets. It can be used to study the correlation and distribution of the IMS data by
incorporating the spatial information in the entire image cube and to help finding
the distinction of the possible features caused by the biological structure and the
potential biomarkers. This software package can be downloaded from http://capone.
mtsu.edu/dhong/IMSmining.htm.
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1 Introduction

Mass spectrometry (MS) and imaging mass spectrometry (IMS) are both important
techniques in proteomics. IMS is a novel technology that is able to incorporate spatial
biochemical information in full molecular range [1]. However, there are still many
challenges in data processing due to high dimensionality, huge differences between
the number of predictors and the sample size, and the incorporation of both spectral
and spatial information. All these challenges pose great difficulties inmodel selection
and data processing.

Several software tools are commonly used for IMS/MS data analysis. Biomap and
Tissue View are mainly for data visualization. These software tools lack advanced
data analysis functionality such asmultivariate analysismethods for biomarker selec-
tion and classification. MarkerView and ClinProTools are packages for MS data
analysis. Technically, IMS data after using Biomap or Tissue View based on visual-
ization can be exported and then imported toMarkerView or ClinProTools for further
data analysis. However, this is not feasible for IMS data processing, especially for
those in high resolution. PCA and clustering are most commonly used for IMS data
analysis [2]. LDA and multivariate analysis of variance [3] and PCA combined with
support vector machine (SVM) [4] were used to process IMS data. However, these
methods have their limitations of handling high-dimensional IMS cubes and incor-
porating spatial information.

It is essential to extract the complex/hidden patterns from the IMS data. Modern
statistical methods should be used to complete a series of operations for biomarker
selection and classification in potential application to disease and cancer diagnosis.

IMSmining software package is mainly for IMS data visualization, biomarker
selection, model validation, and classification. Visualization functions include the
spectrum of a single pixel, the average spectrum of an area, and intensity distrib-
ution matrix at a fixed m/z value. The analysis functions include not only PCA,
SVM, and LDAmethods, but also the most recently developed models SPCA [5, 6],
Wavelet4IMS [7], EN4IMS (Elastic Net) [8], and WEN (Weighted Elastic Net) [9]
using the spatial information. The motivation is to provide a convenient and auto-
matic way to analyze and extract useful information from the high-dimensional and
complex IMS data by not only utilizing the spectrum information within individual
pixels, but also studying the correlation and distribution using the spatial information.

The remainder of the paper is organized as follows: In Sect. 2, the main algorithms
such as EN4IMS, WEN, Wavelet4IMS are briefly introduced. In Sect. 3, we give the
detail of the implementation of the software. A summary of the pipeline of this
software is given in Sect. 4. Finally, remarks and a brief discussion are presented in
Sect. 5.
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2 Algorithm Content

2.1 EN4IMS

Let us consider the multiple linear regression model with n observations. Suppose
that x j = (x1 j , . . . , xnj )

T , j = 1, . . . , p are linear independent predictors and
y = (y1, . . . , yn)T is the response vector. If we use X = [x1, . . . , x p] represent the
predictor matrix, the linear regression model can be expressed as

y = Xβ + ε (1)

whereβ = (β1, . . . , βp)
T and the noise term ε ∼ N (0, σ 2 In). The naiveENcriterion

is to minimize the following function [10]:

L(λ1, λ2, β) = ‖y − Xβ‖22 + λ1‖β‖1 + λ2‖β‖22. (2)

There are totally twopenalty parts inEq.2. The �1 termenforces themodel to generate
sparse solution and the quadratic term can achieve the group effect. Zou et al. [10]
mentioned that the naive EN has some weakness that will result in double amount
of shrinkage. Therefore, the EN algorithm modified the naive elastic net as

β̂1 = (1 + λ2)β̂0. (3)

where β1 is named elastic net and β0 is the naive elastic net. Also, the EN estimates
β̂ is given in [10] by

β̂ = argmin
β

βT ((X T X + λ2 I )/(1 + λ2))β − 2yT Xβ + λ1‖β‖1. (4)

In the IMSmining software, we apply EN4IMS based on the above EN algorithm
to estimate the biomarkers. EN4IMS algorithm incorporates a spatial penalty term
into the EN model. IMS information provides huge spatial information located in
each individual pixel. One important fact is that pixels in different locations of the
same disease should have similar ion intensity values, which means the standard
deviation of the intensities at the true biomarkers should be small. Conversely, the
standard deviationwould be very large among the complex tissue structure like bones.

So in EN4IMS, we use a parameter τ to balance two items together. One is the
RSS of the linear model and another is the average of spatial standard deviations of
the selected ion intensities. In detail, we use tenfold CV to minimizing the following
formula:

(1 − τ)‖y − ŷ‖22 + τ

M

M∑
j=1

√∑N
i=1(xi j − μ j )2

N − 1
, 0 < τ < 1. (5)
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where N is the number of all cancer pixel, xi j is the intensity of a fixed j th m/z
value at pixel i , μ j is the average intensity of all cancer pixels at this fixed j th m/z
value, and M is the cardinality of active set as defined in [8].

2.2 WEN

In order to consider more precise biomarker selection, Hong and Zhang [9] proposed
the following model named WEN:

argmin
β

1

2
‖y −

p∑
j=1

x jβ j‖22 + nλ1

p∑
j=1

ω j |β j | + n

2
λ2

p∑
j=1

|ω jβ j |2. (6)

where ω j > 0, j = 1, . . . , p are weighted penalty coefficients. In [9], the LARS-
WEN algorithm is provided to solve the above WEN model. Experiments show that
WEN not only reduces the number of side features but also helps new biomarkers
discovery.

2.3 Wavelet4IMS

To meet challenges in IMS data processing, an effective and efficient algorithm
for IMS data biomarker selection and classification using methods of multiresolu-
tion analysis are proposed. In [7], the authors proposed Wavelet4IMS algorithm.
In addition to apply wavelet transform for IMS data denoising, measurement for
the similarity of wavelet coefficients is introduced, and the idea of wavelet pyramid
method for image matching is applied for biomarker selection and the Naive Bayes
classifier is used for classification in the wavelet coefficient space. Performance of
the algorithm is evaluated with real data and the results of our experiments show that
the multiresolution method has higher accuracy in classification.

3 Software Description

IMSmining allowsusers to visualize IMSdata, to discover biomarkers, and toperform
a pixel level classification for different IMS data sections. This software package is
designed to give users a maximum level of convenience together with high flexibility.
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3.1 Interface

Figure1 shows the interface of the software based onMATLABGUI. The first menu
is for the data-type options. We can import the data from .mat file or .txt folder or
export the biomarker. The next menu contains seven algorithmic options: EN4IMS,
WEN, PCA+SVM/LDA, SPCA+SVM/LDA, and Wavelet4IMS. We can also use
“view menu” to view the spectrum of a single pixel or the average spectrum of
selected area. Toolbar icons can be used to zoom in, zoom out, drag, or rotate the
data cube. There are also four figure windows including training, spectrum, testing,
and result.Wecanuse themouse to drag the squares to select the cancer andnoncancer
area for training and testing.

3.2 Data Visualization

IMSmining provides different methods of visualization for IMS data. Users can see
intensity distribution images of different m/z values by clicking on different m/z

Fig. 1 Interface of GUI
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values on the spectrum image. Users can also see spectrum of different pixels just by
clicking on different pixel positions on the distribution images. Users can enlarge the
spectrum to seewhether them/z value is corresponding to a true peak. The interactive
responses between the intensity images (Left Upper Window) and the spectra (Right
Upper Window) are extremely convenient and provide a better understanding of
the spatial distribution information for a selected m/z peak. Furthermore, users can
directly select an area of pixels from the left upper window to see the mean spectrum
of these selected pixels.

3.3 Biomarker Selection

IMSmining provides a series of algorithms, which include very recently developed
EN4IMS,WENmodels, andWavelet4IMS for IMS data analysis, and other methods
such as PCA, SPCA, and SVM popularly used in IMS community. Here, m/z values
selected by the model are considered as potential biomarkers.

In EN4IMS algorithm, a spatial penalty term is incorporated into the cross val-
idation step of the EN model [10] for IMS data processing [8]. The WEN model
associates the weighted coefficients of EN model with ion intensity spreading infor-
mation, and thus provides a systematic consideration for the spatial information of the
IMSdata for biomarker selection and classification. Bothmodels inherit good proper-
ties from the EN method which produces a sparse model with admirable prediction
accuracy. By taking the spatial information into consideration, these two models
help distinguish the IMS feature peaks caused by biological structure differences
from those truly associated with diseases. In Wavelet4IMS algorithm, IMSmining
transforms each mass spectrometry to wavelet space and select biomarkers based on
multiresolution analysis.

3.4 Classification

IMSmining providesmodel validation and classifies testing samples. Users can select
the training data region directly from the training data figure. After analyzing the
training data sets to create the predictive model, validation of models can be done
on the selected cancer and noncancer square area of the testing data sets. To enhance
the chance of finding the best model, the tuning parameter λ of EN4IMS and WEN
algorithms can be changed accordingly by users. As a result, we can obtain the
classification rates of the selected testing area. Besides implementing EN4IMS or
WEN algorithm, IMSmining has one method named Wavelet4IMS which uses fea-
ture vectors selected from wavelet domain combining with a naive Bayes classifier
for classification. IMSmining can also use PCA or SPCA to reduce the dimension
of the data and then continue to use SVM or LDA for classification.



IMSmining: A Tool for Imaging Mass Spectrometry … 161

Fig. 2 Pipeline of GUI

4 Pipeline

Figure2 shows the pipeline of IMSmining. After importing the data, we can either
view the image of the data or process the data-based variety of algorithms. If you
only want to view the image, you have two choices: point or area. Then you can
import a single pixel or just simply click on the data image. Or you can drag the
mouse to select an area to calculate the major statistical value of this specifical area.
In another branch, you have three steps to complete the model prediction: algorithm
selecting, training image selecting, and testing image selecting. You can stop the
algorithm at each step and start over in another algorithm. And after you select the
images, you need to use the mouse to drag both of the cancer and noncancer area.
After the calculation, IMSmining will show the comparative cancer and noncancer
result.
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5 Discussion

Wedeveloped a software package called IMSminingbasedonalgorithmsofEN4IMS,
WEN, SPCA, andWavelet4IMS.We have applied this software tool to real IMS data
[8, 9]. Compared with other current popular methods, the models of EN4IMS,WEN,
and Wavelet4IMS work more efficiently and effectively for IMS data processing in
terms of confirming newbiomarkers, producing amore accurate feature list including
significant peaks, and providing more accurate classification results.

Acknowledgments The authors would like to thank Shannon Cornett, Sara Frappier, and Richard
M. Caprioli from the VUMSRC for valuable discussions and providing IMS data sets for the study.
DH is grateful for the support from the program of Beijing Overseas High Caliber Talents.

References

1. Trede, D., Kobarg, J. H., Oetjen, J., Thiele, H., Maass, P., Alexandrov, T.: On the importance of
mathematicalmethods for analysis ofmaldi imagingmass spectrometry data. J IntegrBioinform
9(1), 189 (2012)

2. de Plas, R.V.,Ojeda, F.,Dewil,M., Bosch, L.V.D.,Moor, B.D.,Waelkens, E.: Prospective explo-
ration of biochemical tissue composition via imaging mass spectrometry guided by principal
component analysis. In: Pacific Symposium on Biocomputing, World Scientific, pp. 458–469
(2007)

3. Muir, E.R., Ndiour, I., LeGoasduff, N.A.,Moffitt, R., Liu, Y., Sullards,M.C.,Merrill, A., Chen,
Y., Wang, M.: Multivariate analysis of imaging mass spectrometry data. Bioinform. Bioeng.
472–479 (2007)

4. Gerhard, M., Deininger, S.-O., Schleif, F.: Statistical classification and visualization of maldi-
imaging data. Comput. Based Med Syst 403–405 (2007)

5. Zou, H.T., Tibshirani, H.R.: Sparse principal component analysis. J. Comput. Graph. Stat.
15(2), 265–286 (2006)

6. Wang, Y., Wu, Q.: Sparse PCA by iterative elimination algorithm. Adv. Comput. Math. 36(1),
137–151 (2012)

7. Xiong, L., Hong, D.: Multi-resolution analysis method for ims data biomarker selection and
classification. British J. Math. Comp. Sci. 5(1), 64–80 (2015)

8. Zhang, F., Hong, D.: Elastic net based framework for imaging mass spectrometry data bio-
marker selection and classification. Stat. Med. 30, 753–768 (2010)

9. Hong, D., Zhang, F.: Weighted elastic net model for mass spectrometry imaging processing.
Math. Model. Nat. Phenom. 5(3), 115–133 (2010)

10. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. B
67, 301–320 (2005)



Pal Interpolation of Integral Types

Gayatri Ramesh

Abstract In this paper, the author(s) discuss existence and uniqueness results of
three so-called integral types ofPal interpolation schemeswhich are interesting exten-
sions/generalizations of classical Hermite-Fejer Interpolation problem. The results
are of interest to approximation theory.

Keywords Pal interpolation of integral types · Hermite-Fejer interpolation ·
Approximation theory

1 Introduction

Let X := {x1, . . . , xn} contain n distinct nodes x1 < x2 < · · · < xn on the real line.
Then the roots x1, . . . , xn of the polynomial

ωX (x) := (x − x1) · · · (x − xn) (1)

and the roots x∗
1 , . . . , x∗

n−1 of the derivative

ω′
X (x) = n(x − x∗

1 ) · · · (x − x∗
n−1) (2)

have the following interlacing property:

x1 < x∗
1 < x2 < x∗

2 < · · · < x∗
n−1 < xn .

Pál considered the following Hermite-Fejer interpolation problem in [4]: Find a
polynomial P of lowest degree such that

P(xk) = yk for all 1 ≤ k ≤ n and P ′(x∗
l ) = y∗

l for all 1 ≤ l ≤ n − 1 (3)
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for any given interpolation data {yk}n
k=1and {y∗

l }n−1
l=1 .

The above interpolation is now known as Pál interpolation. In [4], Pál established
the following for its existence and uniqueness.

Theorem 1.1 Given any interpolation data {yk}n
k=1 and {y∗

l }n−1
l=1 , there exists a poly-

nomial P of degree 2n − 1 that satisfies (3). Moreover,

P(x) = −
n∑

k=1

yk
ωX (x)

(ω′
X (xk))2

∏
i �=k(xk − xi )

×
∫

ω′
X (x)

(x − xk)2

(
ω′

X (xk) − ω′′
X (xk)(x − xk)

)
dx

+
n−1∑
l=1

y∗
l

ωX (x)

ωX (x∗
l )

∫ ∏
j �=l(x − x∗

j )∏
j �=l(x∗

l − x∗
j )
dx .

For any polynomial P satisfying (3), P(x) + CωX (x) has the same interpolation
property for any constants C . The uniqueness of polynomials satisfying (3) was
discussed in [4] when an additional interpolation condition is imposed.

Theorem 1.2 Let {xk}n
k=1, {x∗

l }n−1
l=1 , {yk}n

k=1 and {y∗
l }n−1

l=1 be as in Theorem (1.1),
and let a �= xk for all k = 1, 2, ..., n. Then the polynomial

R(x) := −
n∑

k=1

yk
ωX (x)

(ω′
X (xk))2

∏
i �=k(xk − xi )

×
x∫

a

ω′
X (t)

(t − xk)2

(
ω′

X (xk) − ω′′
X (xk)(t − xk)

)
dt

+
n−1∑
l=1

y∗
l

ωX (x)

ωX (x∗
l )

x∫

a

∏
j �=l(t − x∗

j )∏
j �=l(x∗

l − x∗
j )
dt for x ∈ (a − δ, a + δ),

is the unique polynomial of degree at most 2n − 1 that satisfies (3) and R(a) = 0,
where δ = min1≤k≤n |xk − a|.

In the last 40 years, various extensions of Pál interpolation have beenmade [1–10].
In this paper, we consider Pál interpolation of integral types.

2 Pál Interpolation of Integral Types I

In this section, we consider the existence and uniqueness of polynomials P(x) of
lowest degree for any given interpolation data {yk}n

k=1 and {y∗
l }n−1

l=1 such that
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P(x∗
l ) = y∗

l , 1 ≤ l ≤ n − 1, and
∫ xk+1

xk

P(x) dx = yk+1, 1 ≤ k ≤ n − 1. (4)

Theorem 2.1 Given interpolation data {yk}n
k=2 and

{
y∗

l

}n−1
l=1 , the polynomial P of

degree 2n − 2 defined by

P(x) := d

dx

{
−

n∑
k=2

zk
ωX (x)

(ω′
X (xk))2

∏
i �=k(xk − xi )

×
∫

ω′
X (x)

(x − xk)2

(
ω′

X (xk) − ω′′
X (xk)(x − xk)

)
dx

+
n−1∑
l=1

y∗
l

ωX (x)

ωX (x∗
l )

∫ ∏
j �=l(x − x∗

j )∏
j �=l(x∗

l − x∗
j )
dx

}
, (5)

satisfies
P(x∗

l ) = y∗
l , 1 ≤ l ≤ n − 1, (6)

and ∫ xk+1

xk

P(x) dx = yk+1, 1 ≤ k ≤ n − 1, (7)

where zk =
k∑

q=2
yq , 2 ≤ k ≤ n.

Theorem 2.2 Given data {yk}n
k=1 and

{
y∗

l

}n−1
l=1 , define a polynomial P of degree

2n − 2 as in (5). Then a polynomial R of degree at most 2n − 1 satisfies (6) and (7)
if and only if

R(x) = P(x) + ω′
X (x)(α + βωX (x))

for some constants α and β.

2.1 Proof of Theorem 2.1

First we construct polynomials Bl(x), 1 ≤ l ≤ n − 1, of degree at most 2n − 1
satisfying

{
(a) Bl(xi ) = 0 for all 1 ≤ l ≤ n − 1 and 1 ≤ i ≤ n
(b) B ′

l (x∗
j ) = δl j for all 1 ≤ l ≤ n − 1 and 1 ≤ j ≤ n − 1. (8)

Here δi j stands for the Kronecker symbol defined by δi j = 1 if i = j and δi j = 0
otherwise. Take 1 ≤ l ≤ n − 1. From the requirement (a) in (8),
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Bl(x) = ωX (x)Vl(x) (9)

for some polynomial Vl(x) of degree at most n − 1. Consequently,

B ′
l (x) = ω′

X (x)Vl(x) + ωX (x)V ′
l (x) = ω′

X (x)

(x − x∗
l )

Wl(x) (10)

for some polynomial Wl(x) of degree at most n, where the last equality follows from
the requirement (b) in (8). Multiplying x − x∗

l at both sides of the above equation
leads to

[ω′
X (x)Vl(x) + ωX (x)V ′

l (x)](x − x∗
l ) = ω′

X (x)Wl(x).

Rearranging above equation yields

ω′
X (x)

(
(x − x∗

l )Vl(x) − Wl(x)
) = −(x − x∗

l )ωX (x)V ′
l (x). (11)

Recall thatωX and its derivativeω′
X do not have common roots. Then it follows from

(11) that
(x − x∗

l )V ′
l (x) = ω′

X (x)Ml(x) (12)

for some polynomial Ml(x). Comparing the degree of both sides of equation (12)
shows that Ml(x) has degree zero, i.e., M(x) = M for some constant M .

Evaluating (10) at x = x∗
l and recalling the requirement (b) in (8) gives

1 = ω′
X (x∗

l )Vl(x∗
l ) + ωX (x∗

l )V ′
l (x∗

l ) = ωX (x∗
l )V ′

l (x∗
l ), (13)

and hence
Vl(x∗

l ) = (ωX (x∗
l ))−1.

Substituting this in (12) and recalling that Ml is a constant function, we obtain,

V ′
l (x) = 1

ωX (x∗
l )

∏
j �=l(x − x∗

j )∏
j �=l(x∗

l − x∗
j )

. (14)

Therefore

Vl(x) =
∫

1

ωX (x∗
l )

∏
j �=l(x − x∗

j )∏
j �=l(x∗

l − x∗
j )
dx . (15)

Substituting the above expression about Vl(x) into (9) yields

Bl(x) = ωX (x)

ωX (x∗
l )

∫ ∏
j �=l(x − x∗

j )∏
j �=l(x∗

l − x∗
j )
dx, 1 ≤ l ≤ n − 1.
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The polynomials Bl , 1 ≤ l ≤ n − 1, just defined have degree at most 2n − 1. It
satisfies the requirement (a) in (8), and also the requirement (b) in (8), because

B ′
l (x) = ω′

X (x)

ωX (x∗
l )

∫ ∏
j �=l(x − x∗

j )∏
j �=l(x∗

l − x∗
j )
dx + ωX (x)

ωX (x∗
l )

∏
j �=l(x − x∗

j )∏
j �=l(x∗

l − x∗
j )

and hence

B ′
l (x∗

j ′) = ωX (x∗
j ′)

ωX (x∗
l )

∏
j �=l(x∗

j ′ − x∗
j )∏

j �=l(x∗
l − x∗

j )
=

{
1 if j ′ = l
0 if j ′ �= l.

Next we find Ak, 2 ≤ k ≤ n, of degree at most 2n − 1 that satisfies

{
(c) Ak(xi ) = δki for all 2 ≤ k ≤ n and 1 ≤ i ≤ n
(d) A′

k(x∗
j ) = 0 for all 2 ≤ k ≤ n and 1 ≤ j ≤ n − 1. (16)

From the requirement (c) in (16), it follows that

Ak(x) = ωX (x)

x − xk
Sk(x), 1 ≤ k ≤ n, (17)

for some polynomial Sk(x) of degree at most n that satisfies

Sk(xk) �= 0.

Taking derivative of both sides of (17) and applying the requirement (d) in (16), we
have

A′
k(x) =

(
ω′

X (x)

(x − xk)
− ωX (x)

(x − xk)2

)
Sk(x) + ωX (x)

(x − xk)
S′

k(x) = ω′
X (x)Tk(x)

for some polynomial Tk(x) of degree at most n − 1. Thus

ω′
X (x)(x − xk)

(
Sk(x) − Tk(x)(x − xk)

) = ωX (x)
(
Sk(x) − (x − xk)S′

k(x)
)
. (18)

Again, recall that ωX (x) and ω′
X (x) do not share any root. Then

Sk(x) − (x − xk)S′
k(x) = ω′

X (x)Uk(x) (19)

and

Sk(x) − (x − xk)Tk(x) = ωX (x)

x − xk
Uk(x) (20)

for some polynomial Uk(x) of degree at most one. Substituting x by xk in (20) and
recalling that Ak(xk) = 1 by the requirement (c) in (16), we obtain
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Uk(xk) = 1

ω′
X (xk)

∏
i �=k(xk − xi )

. (21)

Taking derivative of both sides of (19) yields

(ω′
X (x)Uk(x))′ = −(x − xk)S′′

k (x),

which implies that
ω′′

X (xk)Uk(xk) + ω′
X (xk)U

′
l (xk) = 0. (22)

Thus ω′
X Uk has the following Taylor expansion at x = xk :

ω′
X (x)Uk(x) = ω′

X (xk)Uk(xk) + c2(x − xk)
2 + c3(x − xk)

2 + · · · + cn(x − xk)
n .

(23)

Dividing both sides of (19) by (x − xk)
2 gives

ω′(x)Uk(x)

(x − xk)2
= Sk(x)

(x − xk)2
− S′

k(x)

x − xk
= −

(
Sk(x)

x − xk

)′
.

This together with (23) implies that

Sk(x)

x − xk
= −

∫
ω′

X (x)Uk(x)

(x − xk)2
dx .

Hence

Ak(x) = −ωX (x)

∫
ω′

X (x)Uk(x)

(x − xk)2
dx . (24)

Now it remains to figure out the polynomial Uk of degree at most one. Write

Uk(x) = r0 + r1(x − xk). (25)

Then

r0 = Uk(xk) = 1

ω′
X (xk)

∏
i �=k(xk − xi )

(26)

by (21). From (22) and (25) it follows that

r1 = − ω′′
X (xk)

(ω′
X (xk))2

∏
i �=k(xk − xi )

. (27)
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Therefore

Uk(x) = 1

(ω′
X (xk))2

∏
i �=k(xk − xi )

(
ω′

X (xk) − ω′′
X (xk)(x − xk)

)
.

Substituting this into (24), we obtain that

Ak(x) = − ωX (x)

(ω′
X (xk))2

∏
i �=k(xk − xi )

×
∫

ω′
X (x)

(x − xk)2

(
ω′

X (xk) − ω′′
X (xk)(x − xk)

)
dx, 1 ≤ k ≤ n. (28)

Finally let us verify that the functions Ak, 1 ≤ k ≤ n, satisfy (16). Notice that

A′
k(x) = − ω′

X (x)∏
i �=k(xk − xi )

∫
ω′

X (x)

(x − xk)2

(
1 − ω′′

X (xk)

ω′
X (xk)

(x − xk)
)
dx (29)

− ωX (x)∏
i �=k(xk − xi )

ω′
X (x)

(x − xk)2

(
1 − ω′′

X (xk)

ω′
X (xk)

(x − xk)
)
, (30)

which implies that A′
k(x∗

l ) = 0 for all 1 ≤ l ≤ n −1. On the other hand, Ak(xk′) = 0
for all k′ �= k as ωX (xk′) = 0, and

Ak(xk) = − lim
x→xk

ωX (x)

(ω′
X (xk))2

∏
i �=k(xk − xi )

×
∫

1

(x − xk)2

(
(ω′

X (xk))
2 + Q(x − xk)

)
dx (31)

= lim
x→xk

ωX (x)∏
i �=k(xk − xi )(x − xk)

= 1 (32)

where Q is a polynomial such that Q(0) = 0. This proves that polynomials Ak, 2 ≤
k ≤ n, in (28) satisfies (16).

Finally, we show that the polynomial

P(x) := d

dx

[
n∑

k=2

zk Ak(x) +
n−1∑
l=1

y∗
l Bl(x)

]
(33)

has the interpolation properties (6) and (7). Set z1 = 0. By (8), (16), and (33),

∫ xi+1

xi

P(x)dx =
( n∑

k=2

zk Ak(x) +
n−1∑
l=1

y∗
l Bl(x)

)∣∣∣
xi+1

xi
= zi+1 − zi = yi+1 (34)
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for all 1 ≤ i ≤ n − 1, and

P(x∗
j ) =

n∑
k=2

zk A′
k(x∗

j ) +
n−1∑
l=1

y∗
l B ′

l (x∗
j ) = y∗

j (35)

for all 1 ≤ j ≤ n − 1. This proves that the polynomial P in (33) satisfies the
interpolation requirements (6) and (7).

2.2 Proof of Theorem 2.2

(⇐=) Consider a polynomial P̃ of the following form:

P̃(x) = P(x) + ω′
X (x)(α + βωX (x)) (36)

where α, β ∈ R. Then

xk+1∫

xk

P̃(x)dx =
∫ xk+1

xk

P(x)dx +
xk+1∫

xk

ω′
X (x)(α + βωX (x)) dx

= yk+1 + (
αωX (x) + (β/2)(ωX (x))2

)]xk+1
xk

= yk+1, 1 ≤ k ≤ n − 1.

Also, observe that

P̃(x∗
l ) = P(x∗

l ) + ω′
X (x∗

l )(α + βωX (x∗
l )) = y∗

l , 1 ≤ l ≤ n − 1. (37)

Therefore a polynomial P of the form of (36) satisfies (6) and (7).
(=⇒) Let Q be a polynomial of degree at most 2n − 1 that satisfies (6) and (7).

Then R(x) := Q(x) − P(x) satisfies

R(x∗
l ) = 0, 1 ≤ l ≤ n − 1, and

∫ xk+1

xk

R(x)dx = 0, 1 ≤ k ≤ n − 1. (38)

From the above requirement, the antiderivative of the polynomial

∫
R(x)dx = c + ωX (x)S(x) (39)

for some polynomial S of degree at most n, and

R(x) = ω′
X (x)M(x) (40)
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for some polynomial M of degree at most n. Therefore

ω′
X (x)S(x) + ωX (x)S′(x) = ω′

X (x)M(x). (41)

Rearranging the above equation gives

ω′
X (x)(S(x) − M(x)) = −ωX (x)S′(x). (42)

Recall that ωX (x) and ω′
X (x) do not have common roots, and that S′(x) has degree

at most n − 1. Therefore S′(x) = β
2ω′

X (x) for some constants β. This implies that

M(x) = α + βωX (x),

or equivalently the desired conclusion that R(x) = P(x) + ω′
X (x)(a + βωX (x)) for

some constant α, β.

3 Pál Interpolation of Integral Types II

Let a, b, and c be real numbers and let x∗
k , k = 1, 2, ..., n∗, be the real roots of

ω̃X (x) := aωX (x)+ (bx +c)ω′
X (x). Szabó and Joó [6] and Szabó [7–9] generalized

Pál interpolation problem to the following:Let a, b, c be real numbers, and let x∗
l , l =

1, 2, ..., n∗ be the real roots of ω̃X (x) := aωX (x) + (bx + c)ω′
X (x). Determine a

polynomial R(x) of the lowest possible degree that has the properties R(xk) =
yk, 1 ≤ k ≤ n, and R′(x∗

l ) = y∗
l , 1 ≤ l ≤ n∗. They found general polynomials for

the following cases: (1) b = 0; and (2) a < 0, b = 1. If a = b = 0 and c = 1, the
above interpolation becomes Pál interpolation. In this section, we modify the work
done by Szabó and Joó [6] to fit the following conditions:

R(x∗
l ) = y∗

l , 1 ≤ l ≤ n, and
∫ xk+1

xk

R(x) dx = yk+1, 1 ≤ k ≤ n − 1. (43)

under the assumption that a �= 0 and b = 0. In this case n∗ = n. Moreover, ωX (x)

and ω̃X (x) have the following interlacing property:

x1 < x∗
1 < x2 < · · · < xn < x∗

n if a/c < 0; (44)

and
x∗
1 < x1 < x∗

2 < · · · < x∗
n < xn if a/c > 0. (45)

Theorem 3.1 Let a, c �= 0, X := {x1, . . . , xn} contain n distinct nodes on the real
line ordered by x1 < x2 < · · · < xn, and denote by X∗ := {x∗

1 , x∗
2 , . . . , x∗

n } the set
of the real roots of the polynomial ω̃X (x) := aωX (x) + cω′

X (x), and let
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Ω(x∗
l ) = aωX (x) + cω′

X (x)

x − x∗
l

∣∣∣
x=x∗

l

. (46)

Given the interpolation data {yk}n
k=2 and

{
y∗

l

}n
l=1, set zk =

k∑
q=2

yq , 2 ≤ k ≤ n, and

define the polynomial R(x) of degree 2n − 2 by

R(x) := d

dx

[ n∑
k=2

zk
ωX (x)

cω′
X (xk)

∏
i �=k(xk − xi )

e
a
c x

×
∞∫

x

aωX (t) + cω′
X (t)

(t − xk)2

(
1 − ω′′

X (xk)

ω′
X (xk)

(t − xk)
)
e− a

c tdt

−
n∑

l=1

y∗
l

ωX (x)e
a
c x

ωX (x∗
l )Ω(x∗

l )

∞∫

x

aωX (t) + cω′
X (t)

(t − x∗
l )

e− a
c tdt

]
, x > xn (47)

if a
c > 0, and

R(x) := d

dx

[
−

n∑
k=2

zk
ωX (x)

cω′
X (xk)

∏
i �=k(xk − xi )

e
a
c x

×
x∫

−∞

aωX (t) + cω′
X (t)

(t − xk)2

(
1 − ω′′

X (xk)

ω′
X (xk)

(t − xk)
)
e− a

c tdt

+
n−1∑
l=1

y∗
l

ωX (x)e
a
c x

ωX (x∗
l )Ω(x∗

l )

x∫

−∞

aωX (t) + cω′
X (t)

(t − x∗
l )

e− a
c tdt

]
for x < x1 (48)

if a
c < 0. Then R(x) satisfies (43).

Proof We start by decomposing R(x) into a sum of two functions, as in the previous
section, where

R(x) = d

dx

[
n∑

k=2

zk Ak(x) +
n∑

l=1

y∗
l Bl(x)

]
, (49)

and polynomials {Ak(x)}n
k=2 and {Bl(x)}n

l=1 of degree at most 2n − 1 satisfy

{
(a) Ak(xi ) = δki for all 2 ≤ k ≤ n and 1 ≤ i ≤ n
(b) A′

k(x∗
j ) = 0 for all 2 ≤ k ≤ n and 1 ≤ j ≤ n,

(50)

and {
(c) Bl(xi ) = 0 for all 1 ≤ l ≤ n and 1 ≤ i ≤ n
(d) B ′

l (x∗
j ) = δl j for all 1 ≤ l ≤ n and 1 ≤ j ≤ n.

(51)
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Similar to the previous section let us first construct the polynomials Bl(x), 1 ≤
l ≤ n. From the requirement (c) in (51), we know that

Bl(x) = ωX (x)Vl(x) (52)

for a polynomial Vl(x) of degree at most n−1.Recall that roots of aωX (x)+cω′
X (x)

are real and have a multiplicity of one. Consequently,

B ′
l (x) = ω′

X (x)Vl(x) + ωX (x)V ′
l (x) = aωX (x) + cω′

X (x)

(x − x∗
l )

Wl(x) (53)

for some polynomial Wl(x) of degree at most n − 1, where the last equality follows
from the requirement (d) in (51). Multiplying x − x∗

l at both sides of the above
equation leads to

ω′
X (x)[(x − x∗

l )Vl(x) − cWl(x)] = ωX (x)[−(x − x∗
l )V ′

l (x) + aWl(x)].

Recall that ωX and its derivative ω′
X do not have common roots. Then

Mω′
X (x) = −(x − x∗

l )V ′
l (x) + aWl(x) (54)

and
MωX (x) = (x − x∗

l )Vl(x) − cWl(x) (55)

for a constant M. Multiplying (54) with c and (55) with a, and then adding them
together, we obtain

(x − x∗
l )[aVl(x) − cV ′

l (x)] = M[aωX (x) + cω′
X (x)]. (56)

Multiplying both sides by − e− a
c x

c(x−x∗
l )

gives

d

dx

(
e− a

c x V ′
l (x)

) = − Me− a
c x

c

aωX (x) + cω′
X (x)

(x − x∗
l )

. (57)

Integrating both sides leads to

Vl(x) = Me
a
c x

c

∞∫

x

aωX (t) + cω′
X (t)

(t − x∗
l )

e− a
c tdt if

a

c
> 0, (58)

and

Vl(x) = − Me
a
c x

c

x∫

−∞

aωX (t) + cω′
X (t)

(t − x∗
l )

e− a
c tdt if

a

c
< 0. (59)
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The next step is to determine the constant M. Note from (53) and the condition (d)
in (51) that

B ′
l (x∗

l ) = ωX (x∗
l )V ′

l (x∗
l ) + Vl(x∗

l )ω′
X (x∗

l ) = 1. (60)

Multiplying both sides of (56) by −c and replacing x with x∗
l gives

− cV ′
l (x∗

l ) + aVl(x∗
l ) = aωX (x) + cω′

X (x)

x − x∗
l

∣∣∣
x=x∗

l

M. (61)

Note that the right-hand side of the above equation is nonzero because x∗
l is a simple

root of the polynomial aωX (x)+cω′
X (x).Multiplying both sides of (60) by− c

ωX (x∗
l )

and recalling that aωX (x∗
l ) + cω′

X (x∗
l ) = 0, we get

− c

ωX (x∗
l )

= −cV ′
l (x∗

l ) + aVl(x∗
l ). (62)

Let Ω(x∗
l ) = aωX (x)+cω′

X (x)

x−x∗
l

∣∣∣
x=x∗

l

. Thus combining (61) and (62) determines the

constant
M = −c

ωX (x∗
l )Ω(x∗

l )
. (63)

Therefore,

Bl(x) = − ωX (x)e
a
c x

ωX (x∗
l )Ω(x∗

l )

∞∫

x

aωX (t) + cω′
X (t)

(t − x∗
l )

e− a
c tdx if

a

c
> 0 (64)

and

Bl(x) = ωX (x)e
a
c x

ωX (x∗
l )Ω(x∗

l )

x∫

−∞

aωX (t) + cω′
X (t)

(t − x∗
l )

e− a
c tdt if

a

c
< 0. (65)

The polynomials Bl , 1 ≤ l ≤ n, just defined have degree at most 2n − 1, satisfy the
requirement (c) in (51) as they have the factor ωX , and also the requirement (d) in
(51) as

B ′
l (x) = ωX (x)e

a
c x

ωX (x∗
l )Ω(x∗

l )

aωX (x) + cω′
X (x)

x − x∗
l

e− a
c x

− e
a
c x (aωX (x) + cω′

X (x))

cωX (x∗
l )Ω(x∗

l )

∞∫

x

aωX (t) + cω′
X (t)

(t − x∗
l )

e− a
c tdt if

a

c
> 0



Pal Interpolation of Integral Types 175

and

B ′
l (x) = ωX (x)e

a
c x

ωX (x∗
l )Ω(x∗

l )

aωX (x) + cω′
X (x)

x − x∗
l

e− a
c x

+ e
a
c x (aωX (x) + cω′

X (x))

cωX (x∗
l )Ω(x∗

l )

x∫

−∞

aωX (t) + cω′
X (t)

(t − x∗
l )

e− a
c tdt if

a

c
< 0.

Thus

B ′
l (x∗

j ′) = ωX (x∗
j ′)

ωX (x∗
l )

Ω(x∗
j ′)

Ω(x∗
l )

=
{
1 if j ′ = l
0 if j ′ �= l.

This completes the construction of polynomials Bl , 1 ≤ l ≤ n, of degree at most
2n − 1 satisfying (51).

Polynomial Ak(x), 1 ≤ k ≤ n, that satisfies (50) can be constructed in a similar
way. Condition (a) implies that

Ak(x) = ωX (x)

x − xk
S(x), (66)

where S(x) is a nonzero polynomial of degree at most n. Taking derivative on both
sides of (66) gives

A′
k(x) = ωX (x)

x − xk
S′(x) +

[
ω′

X (x)

x − xk
− ωX (x)

(x − xk)2

]
S(x). (67)

Recall that aωX (x) + cω′
X (x) has all roots being real and simple, and we obtained

from Condition (b) that A′
k(x) = (aωX (x) + cω′

X (x))T (x) for some polynomial T
of degree at most n − 2. Thus

(aωX (x) + cω′
X (x))T (x) = ωX (x)

x − xk
S′(x) +

[
ω′

X (x)

x − xk
− ωX (x)

(x − xk)2

]
S(x). (68)

Multiplying both sides by (x − xk)
2 and then moving all terms with the factor ωX (x)

to the right-hand side, we obtain

ω′
X (x)(x − xk)

[
S(x) − c(x − xk)T (x)

]

= ωX (x)
[
S(x) − (x − xk)S′(x) + a(x − xk)

2T (x)
]
. (69)

Since ωX and ω′
X are relatively prime (i.e., they do not have any zeros in common),

ω′
X (x)Uk(x) = S(x) − (x − xk)S′(x) + a(x − xk)

2T (x) (70)
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and
ωX (x)

x − xk
Uk(x) = S(x) − c(x − xk)T (x) (71)

for a polynomial Uk(x) of degree at most 1. From (70) and (71), we have that

ω′
X (x)Uk(x)

(x − xk)2
= S(x)

(x − xk)2
− S′(x)

x − xk
+ aT (x) = −

(
S(x)

x − xk

)′
+ aT (x). (72)

and
ωX (x)Uk(x)

(x − xk)2
= S(x)

x − xk
− cT (x). (73)

Multiplying (73) with a/c, and then adding it with (72) gives

−
(

S(x)

x − xk

)′
+ a

c

S(x)

x − xk
= 1

c

aωX (x) + cω′
X (x)

(x − xk)2
Uk(x). (74)

Multiplying both sides with e− a
c x gives

d

dx

(
e− a

c x S(x)

x − xk

)
= −e− a

c x

c

aωX (x) + cω′
X (x)

(x − xk)2
Uk(x). (75)

Integrating both sides leads to

S(x)

x − xk
= −e

a
c x

c

∫
aωX (x) + cω′

X (x)

(x − xk)2
Uk(x)e− a

c xdx . (76)

The above equation combined with equation (66) gives us

Ak(x) = −1

c
e

a
c xωX (x)

∫
aωX (x) + cω′

X (x)

(x − xk)2
Uk(x)e− a

c xdx . (77)

Now it remains to figure out the polynomial Uk of degree at most one. Write

Uk(x) = r0 + r1(x − xk). (78)

Then by (21)

r0 = Uk(xk) = 1

ω′
X (xk)

∏
i �=k(xk − xi )

, (79)

and by (70),
ω′′

X (xk)Uk(xk) + ω′
X (xk)U

′
k(xk) = 0. (80)
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The above equation implies that

r1 = − ω′′
X (xk)

(ω′
X (xk))2

∏
i �=k(xk − xi )

. (81)

Therefore

Uk(x) = 1

(ω′
X (xk))2

∏
i �=k(xk − xi )

(
ω′

X (xk) − ω′′
X (xk)(x − xk)

)
.

Substituting this into (77), we obtain that

Ak(x) = 1

cω′
X (xk)

∏
i �=k(xk − xi )

e
a
c xωX (x)

×
∞∫

x

aωX (t) + cω′
X (t)

(t − xk)2

(
1 − ω′′

X (xk)

ω′
X (xk)

(t − xk)
)
e− a

c tdt for x > xk, (82)

if a
c > 0, and

Ak(x) = − 1

cω′
X (xk)

∏
i �=k(xk − xi )

e
a
c xωX (x)

x∫

−∞

aωX (t) + cω′
X (t)

(t − xk)2

(
1 − ω′′

X (xk)

ω′
X (xk)

(t − xk)
)
e− a

c tdt for x < xk, (83)

if a
c < 0. Note that Ak(x) satisfies condition (b) because

A′
k(x) = − e

a
c xωX (x)

cω′
X (xk)

∏
i �=k(xk − xi )

aωX (x) + cω′
X (x)

(x − xk)2

×
(
1 − ω′′

X (xk)

ω′
X (xk)

(x − xk)
)

e− a
c x − 1

c2
e

a
c x (aωX (x) + cω′

X (x))

×
∫

aωX (x) + cω′
X (x)

ω′
X (xk)(x − xk)2

∏
i �=k(xk − xi )

(
1 − ω′′

X (xk)

ω′
X (xk)

(x − xk)
)
e− a

c xdx .

(84)

Thus A′
k(x∗

j ) = 0 because both terms have the factor aωX (x)+ cω′
X (x) which takes

zero value when x replaced by x∗
j . Note that
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(aωX (x) + cω′
X (x))Uk(x)

= (aωX (xk) + cω′
X (xk))Uk(xk) + ((aωX (x) + cω′

X (x)Uk(x))′|x=xk (x − xk)

+ c2(x − xk)
2 + · · · + cN (x − xk)

N

= c∏
i �=k

(xk − xi )
− a∏

i �=k
(xk − xi )

(x − xk) + c2(x − xk)
2 + · · · + cN (x − xk)

N ,

by (79) and (81). Therefore,

∫
aωX (x) + cω′

X (x)

(x − xk)2
Uk(x)e− a

c xdx = − ce− a
c x

∏
i �= j

(xk − x j )

1

x − xk
+ Q(x)e− a

c x (85)

for some polynomial Q of degree at most n. Therefore Ak is a polynomial of degree
at most 2n − 1 and

Ak(x j ) = 0 for all j �= k (86)

and

Ak(xk) = −1

c
e

a
c xk lim

x→xk

−ce− a
c x

∏
i �= j

(xk − x j )

ωX (x)

x − xk
= 1. (87)

This completes the proof.

4 Pál Interpolation of Integral Type III

In this section, we consider Pál interpolation associated with ω̃X (x) := aωX (x) +
(bx + c)ω′

X (x) with a < 0 and b = 1.

Theorem 4.1 Let X := {x1, . . . , xn} contain n distinct nodes on the real line ordered
by x1 < x2 < · · · < xn, 0 > a �∈ {−1,−n} and 0 �= c �∈ −X. Assume that the
polynomial ω̃X (x) := aωX (x) + (x + c)ω′

X (x) has n simple roots, which is denoted
by X∗ := {x∗

1 , x∗
2 , . . . , x∗

n }. Then the polynomial R(x) of degree 2n − 2 defined by

R(x) := d

dx

[
−

n∑
k=2

zk
ωX (x)

|x + c|−a

x∫

−c

|t + c|−a

t + c
(1 − αk(t))

ω̃X (t)

ω′
X (xk)(t − xk)2

∏
i �=k

(xk − xi )
dt +

n−1∑
l=1

y∗
l

βl

Ω(x∗
l )

ωX (x)

×
x∫

−c

∣∣∣∣
t + c

x + c

∣∣∣∣
−a 1

t + c

ω̃X (t)

t − x∗
l
dt

]
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satisfies

R(x∗
l ) = y∗

l , 1 ≤ l ≤ n, and
∫ xk+1

xk

R(x) dx = yk+1, 1 ≤ k ≤ n − 1,

where

zk =
k∑

q=2

yq , αk(t) = ω′′
X (xk)

ω′
X (xk)

(t − xk), 2 ≤ k ≤ n,

and

βl = x∗
l + c

ωX (x∗
l )

, Ω(x∗
l ) = ω̃X (x)

x − x∗
l

∣∣∣
x=x∗

l

, 1 ≤ l ≤ n − 1.

Proof We begin the proof the same way as in the previous sections, by decomposing
R(x) into a sum of polynomials Ak(x) and Bl(x) which satisfy the conditions:

{
(a) Ak(xi ) = δki for all 2 ≤ k ≤ n and 1 ≤ i ≤ n
(b) A′

k(x∗
j ) = 0 for all 2 ≤ k ≤ n and 1 ≤ j ≤ n,

(88)

and {
(c) Bl(xi ) = 0 for all 1 ≤ l ≤ n and 1 ≤ i ≤ n
(d) B ′

l (x∗
j ) = δl j for all 1 ≤ l ≤ n and 1 ≤ j ≤ n.

(89)

Again, we start by obtaining the polynomial Bl(x), 1 ≤ l ≤ n first. By (89),

Bl(x) = ωX (x)Vl(x) (90)

where Vl(x) is a polynomial of degree at most n − 1. Taking derivative of the above
equality leads to

B ′
l (x) = ωX (x)V ′

l (x) + ω′
X (x)V ′

l (x) = aωX (x) + (x + c)ω′
X (x)

x − x∗
l

Wl(x) (91)

whereWl(x) is a polynomial of degree atmost n−1.Note that in the above expression
equality holds by (89) and the assumption that all roots of aωX (x) + (x + c)ω′

X (x)

are real and simple. Recall that ωX and ω′
X have no common roots. Hence we obtain

from (91) that
− (x − x∗

l )V ′
l (x) + aWl(x) = Mω′

X (x) (92)

and
(x − x∗

l )Vl(x) − (x + c)Wl(x) = MωX (x) (93)
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for some constant M . Dividing (92) by x − x∗
l , (93) by (x + c)(x − x∗

l )/a, and then
taking their sum, we have

V ′
l (x) − a

x + c
Vl(x) = − M

x + c

aωX (x) + (x + c)ω′
X (x)

x − x∗
l

. (94)

Multiplying both sides by |x + c|−a and then integrating both sides yields

Vl(x) = −M |x + c|a
x∫

−c

|t + c|−a aωX (t) + (t + c)ω′
X (t)

(t − x∗
l )(t + c)

dt. (95)

To find the constant M , we note that from condition (d) and (91)

B ′
l (x∗

k ) = 1 = ωX (x∗
l )V ′

l (x∗
l ) + ω′

X (x∗
l )Vl(x∗

l ). (96)

Replacing x with x∗
l in (94) we get

− (x∗
l + c)V ′

l (x∗
l ) + aVl(x∗

l ) = M
aωX (x) + (x + c)ω′

X (x)

x − x∗
l

∣∣∣
x=x∗

l

=: MΩ(x∗
l ).

(97)
We remark that Ω(x∗

l ) is nonzero because roots of aωX (x) + (x + c)ω′
X (x) are

simple. Multiplying both sides of (96) with x∗
l + c gives

x∗
l + c = (x∗

l + c)ω′
X (x∗

l )Vl(x∗
l ) + (x∗

l + c)V ′
l (x∗

l )ωX (x∗
l ). (98)

Recalling that x∗
l is a root of the polynomial aωX (x) + (x + c)ω′

X (x), i.e.,

aωX (x∗
l ) + (x∗

l + c)ω′
X (x∗

l ) = 0. (99)

This together with (96) implies that

x∗
l + c = −aωX (x∗

l )Vl(x∗
l ) + (x∗

l + c)ωX (x∗
l )V ′

l (x∗
l ). (100)

Observe that ωX (x∗
l ) �= 0, as otherwise (x∗

l + c)ω′
X (x∗

l ) = 0, which contradicts to
the assumptions on c and the simple root property for ωX (x). Therefore,

− x∗
l + c

ω(x∗
l )

= −V ′
l (x∗

l )(x∗
l + c) + aVl(x∗

l ). (101)

Thus

M = − x∗
l + c

ωX (x∗
l )Ω(x∗

l )
, (102)
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from which we conclude that

Bl(x) = x∗
l + c

ωX (x∗
l )Ω(x∗

l )
ωX (x)

x∫

−c

∣∣∣∣
t + c

x + c

∣∣∣∣
−a 1

t + c

aωX (t) + (t + c)ω′
X (t)

t − x∗
l

dt.

(103)

The polynomials Bl , 1 ≤ l ≤ n − 1, satisfy the requirement (c) in (89) as they
have the factor ωX by (90), and also the requirement (d) in (89) as

B ′
l (x) = MωX (x)

1

x + c

aωX (x) + (x + c)ω′
X (x)

x − x∗
l

+ M(ωX (x)(x + c)a)′
∫ x

−c
|t + c|−a aωX (t) + (t + c)ω′

X (t)

(t + c)(t − x∗
l )

dt

and hence

B ′
l (x∗

j ′) =
{
1 if j ′ = l
0 if j ′ �= l.

This completes the construction of polynomials Bl , 1 ≤ l ≤ n − 1.
We finish this section by the construction of polynomials Ak, 2 ≤ k ≤ n that

satisfies (88). Condition (a) in (88) implies that

Ak(x) = ωX (x)

x − xk
S(x) (104)

where S(x) is a nonzero polynomial of degree at most n. The above equation (104)
together with condition (b) in (88) implies that

A′
k(x) =

( (x − xk)ω
′
X (x) − ωX (x)

(x − xk)2

)
S(x) + ωX (x)

x − xk
S′(x)

= (
aωX (x) + (x + c)ω′

X (x)
)
T (x) (105)

for a polynomial T (x) of degree at most n − 2. Multiplying (105) with (x − xk)
2

and rearranging the equation yields

ω′
X (x)(x − xk)

[
S(x) − (x + c)(x − xk)T (x)

]

= ωX (x)
[
S(x) − (x − xk)S′(x) + a(x − xk)T (x)

]
.

Recalling that ωX (x) and ω′
X (x) have no roots in common, we have

ω′
X (x)Uk(x) = S(x) − (x − xk)S′(x) + a(x − xk)

2T (x) (106)
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and
ωX (x)

x − xk
Uk(x) = S(x) − (x + c)(x − xk)T (x) (107)

for some polynomial Uk of degree at most one. Rearranging equations (106) and
(107) yields

−
( S(x)

x − xk

)′ + aT (x) = ω′
X (x)Uk(x)

(x − xk)2
(108)

and
S(x)

x − xk
− (x + c)T (x) = ωX (x)Uk(x)

(x − xk)2
. (109)

Multiplying (109) by a/(x + c) and adding it to (108) gives

−
( S(x)

x − xk

)′ + a

x + c

( S(x)

x − xk

)
= −Uk(x)

x + c

aωX (x) + (x + c)ω′
X (x)

(x − xk)2
. (110)

Multiplying both sides of the above equation by |x + c|−a leads to

d

dx

(
|x + c|−a S(x)

x − xk

)
= −Uk(x)

x + c
|x + c|−a(

aωX (x) + (x + c)ω′
X (x)

)
. (111)

Hence

S(x)

x − xk
= −|x + c|a

∫ |x + c|−a

x + c

aωX (x) + (x + c)ω′
X (x)

(x − xk)2
Uk(x)dx . (112)

Comparing (112) to (104) yields

Ak(x) = −ωX (x)|x + c|a
∫ |x + c|−a

x + c

aωX (x) + (x + c)ω′
X (x)

(x − xk)2
Uk(x)dx . (113)

From (106)
S(xk) = ω′

X (xk)Uk(xk), (114)

and from (104) and condition (a) it follows that

Ak(xk) = ω′
X (xk)S(xk) = 1. (115)

Therefore,

S(xk) = 1

ω′
X (xk)

(116)
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and

Uk(xk) = S(xk)

ω′
X (x)

= 1(
ω′

X (xk)
)2 . (117)

Multiplying (106) by x + c and (107) by a and adding the two gives

(aωX (x) + (x + c)ω′
X (x))Uk(x) = S(x)[(x + c) + a(x − xk)] − (x + c)(x − xk)S′(x).

(118)

Replacing x with xk yields

ω̃(x)Uk(x)|x=xk = (x + c)S(x)|x=xk = x + c

ω′
X (x)

∣∣∣
x=xk

. (119)

Now taking the derivative on both sides of (118) yields

(
(aωX (x) + (x + c)ω′

X (x))Uk(x)
)′ (120)

= −S′′(x)(x + c)(x − xk) + S′(x)(x − xk)(a − 1) + (a + 1)S(x). (121)

Replacing x with xk in the above equation and then applying (116) gives

(
(aωX (x) + (x + c)ω′

X (x))Uk(x)
)′|x=xk = a + 1

ω′
X (xk)

. (122)

Therefore, the Taylor series expansion of ω̃(x)Uk(x) about the point xk is

(aωX (x) + (x + c)ω′
X (x))Uk(x) = xk + c

ω′
X (xk)

+ a + 1

ω′
X (xk)

(x − xk)

+ C2(x − xk)
2 + · · · + CN (x − xk)

N (123)

for some constants ci , 2 ≤ i ≤ N , where N = n + degUk ≤ n + 1. Hence by (113)

Ak(x) = − ωX (x)

|x + c|−a

∫ |x + c|−a

x + c( xk + c

ω′
X (xk)

· 1

(x − xk)2
+ a + 1

ω′
X (xk)

· 1

x − xk

+ C2 + · · · + CN (x − xk)
N−2

)
dx . (124)

Note that

∫
(x + c)−a−1

(x − xk)2
dx = − (x + c)−a−1

x − xk
− (a + 1)

∫
(x + c)−a−2

x − xk
dx . (125)
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Therefore for x > c, we have

∫ |x + c|−a

x + c

( xk + c

ω′
X (xk)

· 1

(x − xk)2
+ a + 1

ω′
X (xk)

· 1

x − xk

)
dx

= − xk + c

ω′
X (xk)

(x + c)−a−1

x − xk
− (a + 1)(xk + c)

ω′
X (xk)

∫
(x + c)−a−2

x − xk
dx

+ a + 1

ω′
X (xk)

∫
(x + c)−a−1

x − xk
dx

= − xk + c

ω′
X (xk)

(x + c)−a−1

x − xk
− 1

ω′
X (xk)

(x + c)−a−1 + C

= − (x + c)−a

ω′
X (xk)(x − xk)

+ C. (126)

By (113), (124) and (126), we then obtain

Ak(x) = ωX (x)

ω′
X (xk)(x − xk)

− ωX (x)|x + c|a

×
∫

(x + c)−a−1(C2 + · · · + CN (x − xk)
N−2)dx .

which implies that Ak(x) is a polynomial and

Ak(x) = −ωX (x)|x + c|a
x∫

−c

|t + c|−a

t + c

ω̃(x)

ω′
X (xk)(t − xk)2

∏
i �=k

(xk − xi )
Uk(x)dx .

(127)
Recall that Uk(x) is a linear function, and so we may write

Uk(x) = r0 + r1(x − xk). (128)

From (122) and (117),

(
(aωX (x) + (x + c)ω′

X (x)Uk(x)
)′|x=xk = a + 1

ω′
X (xk)

+ (xk + c)ω′′
X (xk)(

ω′
X (xk)

)2 (129)

+ (xk + c)r1ω
′
X (xk) = a + 1

ω′
X (xk)

. (130)

This together with (117) implies that

r0 = 1

(ω′
X (xk))2

and r1 = − ω′′(xk)(
ω′

X (xk)
)3 . (131)
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Finally,

Ak(x) = − ωX (x)

|x + c|−a

x∫

−c

|t + c|−a

t + c

aωX (t) + (t + c)ω′
X (t)

ω′
X (xk)(t − xk)2

∏
i �=k

(xk − xi )

×
(
1 − ω′′

X (xk)

ω′
X (xk)

(t − xk)

)
dt. (132)

Using (124) and (126), we can verify that Ak, 2 ≤ k ≤ n, just defined satisfy the
requirement (a) and (b) in (88).
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Positivity Preserving Rational
Cubic Trigonometric Fractal
Interpolation Functions

A.K.B. Chand and K.R. Tyada

Abstract In this paper, we propose a family of C 1-rational cubic trigonometric
fractal interpolation function (RCTFIF) to preserve positivity inherent in a set of data.
The proposed RCTFIF is a generalized fractal version of the classical rational cubic
trigonometric polynomial spline of the form pi (θ)

qi (θ)
, where pi (θ) and qi (θ) are cubic

trigonometric polynomials. The RCTFIF involves a scaling factor and four shape
parameters in each subinterval. The convergence of the RCTFIF towards the original
function is studied. We deduce the simple data dependent sufficient conditions on
the scaling factors and shape parameters associated with the C 1-RCTFIF so that the
proposed RCTFIF preserves the positivity property of the given positive data set.
The first derivative of the proposed RCTFIF is irregular in a finite or dense subset
of the interpolation interval, and matches with the first derivative of the classical
rational trigonometric cubic interpolation function whenever all scaling factors are
zero. The effects of the scaling factors and shape parameters on the RCTFIF and its
first derivative are illustrated graphically.

Keywords Iterated function systems ·Fractal interpolation ·Rational cubic trigono-
metric interpolation · Positivity
Mathematics Subject Classification (2000): 28A80 · 41A30 · 42A15 · 41A55 ·
37C25

1 Introduction

The development of interpolating schemes for shape preservation of discrete data
has a great deal of significance in applied mathematics, industry and engineering.
Particularly, when the data is obtained from some complex natural and scientific
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phenomena, it becomes vital to incorporate the inherited geometric features of given
data. In general a user demands an interpolant which preserves the hidden geomet-
ric properties of the given data. In the literature a wide range of shape preserving
classical spline interpolation techniques (see [2, 5, 11, 14, 15, 18–20]) have been
discussed. The classical splines interpolate the data smoothly but, certain deriva-
tives of the classical interpolants are either piecewise smooth or globally smooth in
nature. Therefore the classical interpolants are not suitable to approximate functions
that have irregular nature or fractality in their first order derivatives. On the other
hand fractal interpolation can be applied in such scenario as well.

Fractal interpolation is a better technique to analyze various scientific data. Barns-
ley [3] introduced the concept of fractal interpolation functions (FIFs) based on the
structure of iterated functions system (IFS). An IFS provides the attractor which
is the graph of an approximated function that interpolates given data points. FIFs
are the fixed points of Read-Bajraktaverić operator [4], which is defined on suitable
function spaces. The functional relation involved in the definition of a FIF gives self
similarity on small scales. Barnsley and Harrington [4] introduced the construction
of k-times differentiable spline FIF with a fixed type of boundary conditions. The
spline FIF with general boundary conditions is studied in a constructive manner in
[6, 10]. The α-fractal polynomial spline with general Hermite boundary conditions
is studied by Chand and Navascués [7]. A specific feature of spline FIF is that its
certain derivative can be used to capture the irregularity associated with interpolation
data. The graph of the derivative of a spline FIF possesses a fractal dimension which
provides a geometric characterization of the measured variable.

Since the classical polynomial spline interpolant representation available in the
literature is unique for given data, and it simply depends on the data points, it is
difficult to preserve all the hidden shape properties of the given data, for example
data over a straight line, positivity, monotonicity or convexity. For this reason the
user need a capable smooth curve representation of shape preserving interpolating
schemeswhich preserve the shape of the data. In this case, rational interpolation func-
tions provide the proficient shape preserving interpolating techniques. Splines cannot
represent the transcendental curves like circular arc, elliptical arc, cylinder, sphere,
hyperbola, etc. To overcome this issue, many bases are presented using trigonometric
functions or the blending of polynomial and trigonometric functions.

A data set obtained by scientific phenomena or by a complex function can be
categorized as positive, monotonic or convex based on its distribution. Out of all
the geometric properties, positivity plays important role at several places. There are
many physical circumstances where the variables have meaning only when they are
non negative. For example, in a probability distribution, the presentation is always
positive. Similarly, when dealingwith the samples of populations, the data are always
in positive figures. Another area of application is in the observation of gas discharge
when certain chemical experiments are in process. Therefore, it is important to discuss
positive interpolation to provide a computationally economical and visually pleasing
solution to the problems of different scientific phenomena.

A considerable amount of research is available in the literature on positive data
interpolation (see [2, 5, 14, 15, 18–20]). Abbas [2] constructed a C 2 piecewise
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rational cubic interpolation scheme that preserves the shape of the positive data. Butt
[5] and Schmidt [20] generated algorithms through C 1 cubic Hermite interpolant for
positivity preservation.Hussain andSarfraz developed aC 1 rational cubic interpolant
to preserve positivity [14] including other shape preserving properties in [15, 18].

Abbas [1] developed a C 1 cubic trigonometric spline with four shape parameters
for the data visualizations of positive data. Han developed a new kind of C 1 ratio-
nal quadratic [12] and cubic [13] rational trigonometric interpolation functions to
preserve the shape of positive data. Hussain [16] used the quadratic trigonometric
polynomial interpolation functions for shape preserving data visualization. Ibraheem
[17] proposed a rational cubic trigonometric interpolant to preserve 2D and 3D pos-
itive data. Bashir [21] developed the rational quadratic trigonometric interpolation
scheme to visualize positive, monotonic and convex data.

The shape preservation of scientific data through different types of smooth rational
FIF are studied in [8–10, 22, 23]. In this paper, we have presented the smooth rational
cubic trigonometric fractal interpolation function for the first time in the literature.
Since our proposed RCTFIF contains scaling factors and four shape parameters, it
is more efficient for preserving the shape of the data. In order to study the shape
preserving aspects by the RCTFIF, we have studied the positive interpolation. In
particular, when the interpolation data set is positive, the parameters of the proposed
RCTFIF are restricted so that the corresponding fractal trigonometric FIF itself is
positive.

The paper is organized as follows: In Sect. 2, the general frame work of FIF
based on the IFS theory is reviewed. The construction of C 1 RCTFIFs passing
through a set of data points is discussed in Sect. 3. In Sect. 4, the error estimation
of the RCTFIF to an original function is proven. Section5 establishes the theory of
rational cubic trigonometric fractal interpolation functions. Sufficient conditions for
positivity preserving interpolation by the RCTFIF is developed for which the range
of scaling factors and shape parameters are restricted in Sect. 5.1 and the examples
of positive RCTFIF are given in Sect. 5.2 followed by conclusions in Sect. 6.

2 Review of Fractal Interpolation Functions

Let (X, dX ) be a complete metric space. For Λ := {1, 2, . . . , n − 1}, let ωi : X →
X, i ∈ Λ be continuous functions. Then the set I = {X;ωi , i ∈ Λ} is called an
IFS. If each ωi , i ∈ Λ is contraction with contractive factor si thenI is known as a
hyperbolic IFS. LetH (X) be the set of all non empty compact subsets of X . Then
there exists a natural metric called Hausdorff metric which completes H (X). The
HausdorffmetricH (X) is definedbydH (X)(A, B) = max{DB(A),DA(B)},where
DB(A) = maxa∈A minb∈B dX (a, b). Associated with the IFSI , there is a set valued
Hutchinson map W onH (X) defined by W (A) = ⋃n−1

i=1 ωi (A) for all A ∈ H (X).

If IFS I is hyperbolic, then it is easy to verify that W is a contraction map on
H (X) with the contractive factor s = max{si : i = 1, 2, . . . , n − 1}. Then by the
Banach fixed point theorem, W has a unique fixed point (say) G such that for any
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initiator A ∈ H (X), limm→∞ W o(m)(A) = G, and the limit is taken with respect
to the Hausdorff metric. The fixed point G is called the attractor or deterministic
fractal corresponding to the IFS I .

Let P : {t1, t2, . . . , tn} be a partition of the real compact interval I = [t1, tn],
where t1 < t2 < · · · < tn . ForΛ∗ := {1, 2, . . . , n}, let a set of data points {(t j , f j ) ∈
I × K : j ∈ Λ∗} be given, where K is a compact set in R. Let Ii = [ti , ti+1] and
Li : I → Ii , i ∈ Λ be contractive homeomorphisms such that

Li (t1) = ti , Li (tn) = ti+1 for i ∈ Λ. (1)

|Li (t) − Li (t
∗)| ≤ li |t − t∗| ∀ t, t∗ ∈ I for some 0 < li < 1.

Let C = I × K, and consider n − 1 continuous mappings Fi : C → K satisfying

Fi (t1, f1) = fi , Fi (tn, fn) = fi+1, i ∈ Λ, (2)

|Fi (t, x) − Fi (t, y)| ≤ |λi ||x − y| ∀ t ∈ I, ∀ x, y ∈ K and for some 0 ≤ |λi | < 1.
(3)

Now, define functions ωi : C → Ii × K such that ωi (t, f ) = (Li (t), Fi (t, f ))

∀ i ∈ Λ.

Proposition 1 (Barnsley [3]) The IFS {C; ωi , i = 1, 2, . . . , n − 1} defined above
admits a unique attractor G such that G is the graph of a continuous function
f ∗ : I → K which obeys f ∗(t j ) = f j for j ∈ Λ∗.

The above function f ∗ is called a FIF corresponding to the IFS {I × K;ωi (t, f ) =
(Li (t), Fi (t, f )), i = 1, . . . , n − 1}. The functional representation of f ∗, which is
the fixed point of the Read-Bajraktarević operator is based on the following results:
Let G = {g : I → R | g is continuous, g(t1) = f1 and g(tn) = fn}. Then (G , dv)

is a complete metric space, where the metric dv is induced from the supremum norm
on C (I ). Define the Read-Bajraktarević operator T on (G , dv) as

T g(t) = Fi (L−1
i (t), g(L−1

i (t))), t ∈ Ii , i ∈ Λ. (4)

According to (1) and (2), T g is continuous on Ii = [ti , ti+1], i ∈ Λ and at each
of the internal grids t2, . . . , tn−1. Further, T is a contraction map on the complete
metric space (G , dν), i.e.,

dv(T f, T g) = ‖T f − T g‖∞ ≤ |λ|∞‖ f − g‖∞, (5)

where |λ|∞ = max{|λi | : i ∈ Λ}. By the Banach fixed point theorem T possesses a
unique fixed point (say) f ∗ on G , i.e., f ∗ ∈ G such that (T f ∗)(t) = f ∗(t) ∀ t ∈ I .
According to (4), the FIF f ∗ satisfies the following functional equation:
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f ∗(t) = Fi (L−1
i (t), f ∗ ◦ L−1

i (t)), t ∈ Ii , i ∈ Λ. (6)

The following IFS is popular in FIF theory:

{C;ωi (t, f ) = (Li (t), Fi (t, f )), i = 1, 2, . . . , n − 1}, (7)

where Li (t) = ai t + bi , Fi (t, f ) = λi f + Mi (t) with Mi : I → R are suitable
continuous functions such that (2–3) are satisfied. Themultiplier λi is called a scaling
factor of the transformation ωi , and λ = (λ1, λ2, . . . , λn−1) is the scale vector
associated with the IFS. The scaling factors give an additional degree of freedom
to FIFs over its counter parts in classical interpolation and allow us to modify its
geometric properties. In this paper, we take Mi (t) as a rational function, whose
numerator and denominators are cubic trigonometric polynomials involving four
shape parameters. The existence of a spline FIF is given by Barnsley and Harrington
[4] and that result has been extended for the existence of rational spline FIF in the
following theorem [8].

Theorem 1 Let {(t j , f j ) : j ∈ Λ∗} be the given data set such that t1 < t2 < · · · <

tn. Suppose that Li (t) = ai t +bi , where ai = ti+1−ti
tn−t1

, bi = tn ti −t1ti+1
tn−t1

and Fi (t, f ) =
αi f + Mi (t), Mi (t) = pi (t)

qi (t)
, pi (t) and qi (t) are chosen polynomials of degree r

and s respectively, and qi (t) 
= 0 ∀ t ∈ [t1, tn] for i ∈ Λ. Suppose for some integer

p ≥ 0, |αi | < a p
i , i ∈ Λ. Let Fi,m(t, f ) = λi f +M(m)

i (t)
am

i
, f1,m = M(m)

1 (t1)
am
1 −λ1

, fn,m =
M(m)

n−1(tn)

am
n−1−λn−1

, m = 1, 2, . . . , p, where M (m)
i (t) represents the mth derivative of Mi (t)

with respect to t . If Fi,m(tn, fn,m) = Fi+1,m(t1, f1,m), i = 1, 2, . . . , n − 2, m =
1, 2, . . . , p, then the IFS {I ×K; ωi (t, f ) = (Li (t), Fi (t, f )), i = 1, 2, . . . , n −1}
determines a rational FIF φ ∈ C p[t1, tn] such that φ(Li (t)) = αiφ(t) + Mi (t),
and φ(m) is the FIF determined by {I × K;wi,m(t, f ) = (Li (t), Fi,m(t, f )) ,i =
1, . . . , n − 1} for m = 1, 2, . . . , p.

Remark 1 The above theorem not only valid for algebraic polynomials but also
works even if the algebraic polynomials pi (t) and qi (t) are replaced with trigono-
metric polynomials.

3 Construction of Rational Cubic Trigonometric Fractal
Interpolation Functions

In this section, we construct the RCTFIF φ with four shape parameters in each
subinterval with the help of Theorem 1. Let {(t j , f j ), j ∈ Λ∗} be a given set of
interpolation data for an original function ψ such that t1 < t2 < · · · < tn . Consider
the IFS {I × K;ωi (t, f ) = (Li (t), Fi (t, f )), i ∈ Λ}, where Li (t) = ai t + bi

and Fi (t, f ) = λi f (t) + Mi (t), Mi (t) = pi (t)
qi (t)

, where pi (t) and qi (t) are cubic
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trigonometric polynomials, qi (t) 
= 0 ∀ t ∈ [t1, tn], and |λi | < ai , i ∈ Λ. Let

F (1)
i (t, d) = λi d+M(1)

i (t)
ai

, where M (1)
i (t) is the first order derivative of Mi (t), t ∈

[t1, tn], i ∈ Λ. Fi (t, f ) satisfying the following C 1-interpolatory conditions:

Fi (t1, f1) = fi , Fi (tn, fn) = fi+1, F (1)
i (t1, d1) = di , F (1)

i (tn, dn) = di+1, (8)

where di denote the first order derivative ofψ with respect to t at knot ti .The attractor
of the above IFS will be the graph of a C 1-rational cubic trigonometric FIF. From
(7) one can observe that our RCTFIF φ can be written as:

φ(Li (t)) = λiφ(t) + Mi (t), (9)

where Mi (t) = pi (θ)
qi (θ)

with pi (θ) = (1− sin θ)3Ui + sin θ(1− sin θ)2Vi + cos θ(1−
cos θ)2Wi +(1−cos θ)3Xi , qi (θ) = (1−sin θ)3αi +sin θ(1−sin θ)2βi +cos θ(1−
cos θ)2γi + (1 − cos θ)3δi , and θ = π

2 ( t−t1
l ), l = tn − t1, t ∈ I and αi , βi , γi and

δi are positive real shape parameters. To ensure that the rational cubic trigonometric
FIF is C 1-continuous, the following interpolation properties are imposed:

φ(Li (t1)) = fi , φ(Li (tn)) = fi+1, φ
′(Li (t1)) = di , φ

′(Li (tn)) = di+1, i ∈ Λ.

(10)
From (9), at t = tn , we observe that φ(Li (t1)) = fi =⇒ λi f1 + Ui/αi = fi with
f ∗
i := fi − λi f1 yields Ui = αi ( fi − λi f1) = αi f ∗

i .

Similarly, at t = t1, it is clear that φ(Li (tn)) = fi+1 with f ∗
i+1 := fi+1 − λi fn

provides us fi+1 = λi fn + Xi/δi =⇒ Xi = δi ( fi+1 − λi fn) = δi f ∗
i+1.

Again φ′(Li (t1)) = di with d∗
i := ai di − λi d1 gives us

Vi = βi ( fi − λi f1) + 2lαi (ai di − λi d1)

π
= βi f ∗

i + 2lαi d∗
i

π
.

Similarly, φ′(Li (tn)) = di+1 with d∗
i+1 := ai di+1 − λi dn provides

Wi = γi ( fi+1 − λi fn) − 2lδi (ai di+1 − λi dn)

π
= γi f ∗

i+1 − 2lδi d∗
i+1

π
.

Substituting the values of Ui , Vi , Wi and Xi in (9), we get the required C 1-RCTFIF
with the numerator,

pi (θ) = αi f ∗
i (1 − sin θ)3 +

{
βi f ∗

i + 2�αi d∗
i

π

}
sin θ(1 − sin θ)2

+
{
γi f ∗

i+1 − 2�δi d∗
i+1

π

}
cos θ(1 − cos θ)2 + δi f ∗

i+1(1 − cos θ)3.

In most applications, the derivatives d j ( j ∈ Λ∗) are not given, and hence must
be calculated either from the given data or by some numerical methods. In this
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paper we have calculated d j , j ∈ Λ∗ from the given data using the arithmetic mean
method [11].

Remark 2 If λi = 0 for all i ∈ Λ, the RCTFIF ‘φ’ becomes the classical rational
cubic trigonometric interpolation function P(t)(say) that is defined in [17] on each
sub interval [ti , ti+1] as

P(t) = pi (z)/qi (z), (11)

where

pi (z) = (1 − sinz)3Ui + sinz(1 − sinz)2V i + cosz(1 − cosz)2W i + (1 − cosz)3Xi ,

qi (z) = (1 − sin z)3αi + sinz(1 − sinz)2βi + cosz(1 − cosz)2γi + (1 − cosz)3δi , t ∈ [ti , ti+1]

with z = π
2

( t−ti
hi

)
, hi = ti+1 − ti and Ui = αi fi , V i = βi fi + 2hi αi di

π
, W i =

γi fi+1 − 2hi δi di+1
π

, Xi = δi fi+1.

4 Convergence Analysis

In order to show that the convergenceof theC 1-RCTFIF ‘φ’ towards a data generating
function ψ ∈ C 3[t1, tn], we need an upper bound for the uniform distance between
them. Since ‘φ’ has an implicit expression, it is difficult to compute the uniform
error ‖φ − ψ‖∞ by using any standard technique in numerical analysis. Hence we
derive an upper bound of the error by using the classical counterpart P of ‘φ’ with
the help of

‖φ − ψ‖∞ ≤ ‖φ − P‖∞ + ‖P − ψ‖∞, (12)

where P is given by (11).
Now the error estimation between the original functionψ and the classical rational

cubic trigonometric function P in an arbitrary subinterval Ii = [ti , ti+1] can be found
by using the Peano-Kernel theorem since P is exact for any quadratic polynomial
and the details are given in [17].

Proposition 2 The error between the classical rational cubic trigonometric function
defined in (11) and the original function ψ ∈ C3[t1, tn] is

|ψ(t) − P(t)| ≤ 1

2
‖ψ(3)‖h3

i ci , t ∈ [ti , ti+1], (13)

ci = max0≤z≤1 Θ(αi , βi , γi , δi , z),
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Θ(αi , βi , γi , δi , z) =
⎧⎨
⎩
maxΘ1(αi , βi , γi , δi , z) for 0 ≤ γi ≤ 1, 0 ≤ z ≤ 1,
maxΘ2(αi , βi , γi , δi , z) for γi > 1 + 2δi

π
, 0 ≤ z ≤ z∗,

maxΘ3(αi , βi , γi , δi , z) for z∗ ≤ z ≤ 1

where z∗ = 1− 2δi
π(γi −δi )

and Θ1(αi , βi , γi , δi , z), Θ2(αi , βi , γi , δi , z) and Θ3(αi , βi ,

γi , δi , z) are obtained from the proof of Theorem 3.1 in [17].

Theorem 2 Let ‘φ’ is the C 1 continuous RCTFIF and ψ ∈ C3[t1, tn] is the data
generating function with respect to the given data {(t j , f j ), j ∈ Λ∗}. Let d j , j ∈ Λ∗
be the bounded first order derivative at the knot t j . Let |λ|∞ = max{|λi |, i ∈ Λ}
and the shape parameters αi , βi , γi and δi for i ∈ Λ are non negative and βi ≥
αi , γi ≥ δi . Then

‖ψ − φ‖∞ ≤ 1

2
‖ψ(3)‖∞h3c + |λ|∞

1 − |λ|∞ (E(h) + E∗(h)), (14)

where E(h) = ‖ψ‖∞ + 4h
π

E1, E∗(h) = F + 4h
π

E2, E1 = max1≤ j≤n−1{|d j |},
F = max{| f1|, | fn|}, E2 = max{|d1|, |dn|}, and c is defined as in Proposition 2.

Proof We have φ(t) = λiφ(L−1
i (t)) + P(L−1

i (t), λi ) ∀ i = 1, 2, . . . , n − 1. From
(7), the Read-Bajraktarević operator (T = T ∗

λ ) with respect to the scaling vector
λ 
= 0 on G can be written as:

T ∗
λ f ∗(t) = λi f ∗(L−1

i (t)) + Mi (L−1
i (t), λi ) for t ∈ Ii , i ∈ Λ. (15)

It is clear that RCTFIF ‘φ’ is the fixed point of T ∗
λ and the classical rational cubic

trigonometric function is the fixed point of T ∗
0 . For λ 
= 0, T ∗

λ is a contraction map
with contraction factor |λ|∞. Thus

‖T ∗
λ φ − T ∗

λ P‖∞ ≤ |λ|∞‖φ − P‖∞. (16)

Also

|T ∗
λ P(t) − T ∗

0 P(t)| = |λi P(L−1
i (t)) + Mi (L−1

i (t), λi ) − Mi (L−1
i (t), 0)|,

=
∣∣∣∣∣λi P(L−1

i (t)) + pi (L−1
i (t), λi )

qi (L−1
i (t))

− pi (L−1
i (t), 0)

qi (L−1
i (t))

∣∣∣∣∣ ,

≤ |λ|∞

⎛
⎜⎜⎝‖P‖∞ +

∣∣∣∣∣∣∣∣

∂

{
pi (L−1

i (t),τi )

qi (L−1
i (t))

}

∂λi

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠ , |τi | ∈ (0, λi ). (17)

Now we wish to find out the error bounds of the terms on the right-hand side of (12).
From the classical rational cubic trigonometric function (11), it is easy to observe
that
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P(t) = σ1(αi , βi , γi , δi , z) fi + σ2(αi , βi , γi , δi , z) fi+1 + σ3(αi , βi , γi , δi , z)di

− σ4(αi , βi , γi , δi , z)di+1, (18)

where

σ1(αi , βi , γi , δi , z) = 1

qi (z)
{αi (1 − sinz)3 + βi sinz(1 − sinz)2} ≥ 0,

σ2(αi , βi , γi , δi , z) = 1

qi (z)
{γicosz(1 − cosz)3 + δi (1 − cosz)2} ≥ 0,

σ3(αi , βi , γi , δi , z) = 2hi

πqi (z)
{αi sinz(1 − sinz)2} ≥ 0,

σ4(αi , βi , γi , δi , z) = 2hi

πqi (z)
{δicosz(1 − cosz)3} ≥ 0.

It is easy to observe that σ1(αi , βi , γi , δi , z) + σ2(αi , βi , γi , δi , z) = 1.
Also, for αi > 0, βi , γi > 0 and δi > 0 and choosing βi ≥ αi and γi ≥ δi we
obtain the following inequality,

σ3(αi , βi , γi , δi , z) + σ4(αi , βi , γi , δi , z)

= 2hi

πqi (z)
{αi sinz(1 − sinz)2 + δicosz(1 − cosz)2},

≤ 2hi

π

{
αi sinz(1 − sinz)2

βi sinz(1 − sinz)2
+ δicosz(1 − cosz)2

γicosz(1 − cosz)2

}
,

= 2hi

π

{
αi

βi
+ δi

γi

}
≤ 4hi

π
.

Thus, |P(t)| ≤ max j=i,i+1{| f j |} + 4hi
π

max j=i,i+1{|d j |} ≤ ‖ψ‖∞ + 4hi
π

E1. Since
the above estimation is true for i ∈ Λ, we get the following estimation:

‖P‖∞ ≤ E(h) := ‖ψ‖∞ + 4hi

π
E1, (19)

Since qi (t) is independent of λi , from the first term in the right side of (17),

∂

{
pi (L−1

i (t),τi )

qi (L−1
i (t))

}

∂αi
= σ1(αi , βi , γi , δi , z) f1 + σ2(αi , βi , γi , δi , z) fn + σ3(αi , βi , γi , δi , z)d1

− σ4(αi , βi , γi , δi , z)dn .

Now by applying a similar argument, the following estimate can be obtained:
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∣∣∣∣∣∣∣∣

∂

{
pi (L−1

i (t),τi )

qi (L−1
i (t))

}

∂λi

∣∣∣∣∣∣∣∣
≤ E∗(h) := F + 4hi

π
E2. (20)

Substituting (19) and (20) in (17) , we have

|T ∗
λ P(t) − T ∗

0 P(t)| ≤ |λ|∞(E(h) + E∗(h)), t ∈ [ti , ti+1].

Consequently, we obtain

‖T ∗
λ P − T ∗

0 P‖∞ ≤ |λ|∞(E(h) + E∗(h)). (21)

Using (16) and (21)

‖φ − P‖∞ = ‖T ∗
λ φ − T ∗

0 P‖∞ ≤ ‖T ∗
λ φ − T ∗

λ P‖∞ + ‖T ∗
λ P − T ∗

0 P‖∞,

≤ |λ|∞‖φ − P‖∞ + |λ|∞(E(h) + E∗(h)),

⇒ ‖φ − P‖∞ ≤ |λ|∞(E(h) + E∗(h))

1 − |λ|∞ . (22)

From Theorem 2, we have |ψ(t) − P(t)| ≤ 1
2‖ψ(3)‖∞h3c. Using this inequality

with (22) in (12), we obtain the desired upper bound in (14). �

Convergence Result Assume thatmax1≤ j≤n{|d j |} are bounded for every partition of
the domain I . Since |λi | < ai , i ∈ Λ ⇒ |λ|∞ < h

�
, and hence ‖ψ −φ‖∞ = O(h2).

Therefore Theorem2proves that the rational cubic trigonometric fractal interpolation
function φ converges uniformly to the original function ψ as h → 0. Further, if we

select scaling factors such that |λi | < a3
i = h3i

�3
, then we get ‖ψ − φ‖∞ = O(h3).

5 Theory of Positivity Preserving Rational Cubic
Trigonometric Interpolation

In this section, we discuss the theory and construction of positive rational cubic
trigonometric interpolation functions. Section5.1 illustrates the construction of pos-
itive RCTFIF and deriving suitable restrictions on the scaling factors and shape
parameters such that the RCTFIF is positive. The positive nature of the RCTFIF is
demonstrated visually through an example in Sect. 5.2.
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5.1 Positivity Preserving RCTFIF

The classical polynomial spline interpolation methods usually do not guarantee the
shape preservation of the given data and interactive adjustment to the shape. But
rational spline FIFs with shape parameters can be used to preserve the shape of the
data effectively over the classical interpolants due to presence of scaling factors and
shape parameters in its structure.

In this section, we discuss about the construction of a positive RCTFIF whose
graphpreserve thepositivity nature of thedata. In general, aRCTFIFmaynot preserve
positivity with arbitrary choice of IFS parameters. In order to avoid this, it is required
to deduce sufficient data dependent restrictions on the scaling factor λi and on the
shape parameters αi , βi , γi and δi so that the RCTFIF preserves the shape of the
positive data.

Theorem 3 Let φ be the RCTFIF (9) defined over the interval [t1, tn] for given data
{(t j , f j ); j ∈ Λ∗}. Assume that the data points are positive, i.e., f j > 0 for all
j ∈ Λ∗. Then the RCTFIF φ preserves the positive nature of the data if the following
conditions are satisfied for all i ∈ Λ:

(i) the scaling factors are chosen such that:

0 ≤ λi < min

{
ai ,

fi

f1
,

fi+1

fn

}
, (23)

(ii) the shape parameters are chosen such that:
αi > 0 and δi > 0 and

βi > max

{
0,

−2�αi d∗
i

π f ∗
i

}
, and (24)

γi > max

{
0,

2�δi d∗
i+1

π f ∗
i+1

}
, (25)

where f ∗
i = fi − λi f1, f ∗

i+1 = fi+1 − λi fn, d∗
i = ai di − λi d1, and d∗

i+1 =
ai di+1 − λi dn .

Proof Let {(t j , f j ); j ∈ Λ∗} be the given set of positive data points i.e., f j >

0 ∀ j ∈ Λ∗. Thus the curve is positive if the C 1-RCTFIF ‘φ’ satisfies the following
condition:

φ(Li (t)) > 0 ∀ t ∈ [t1, tn], i ∈ Λ. (26)

It is clear that (26) is true at all node points. From (9), the above relation can be
expressed as
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αiφ(t) + pi (θ)

qi (θ)
> 0, (27)

where pi (θ) and qi (θ) are defined Sect. 3.
In order to show that (27) holds for all t ∈ [t1, tn] and to deduce the sufficient data

dependent conditions for the strictly positiveRCTFIF,we assume thatλi ≥ 0∀i ∈ Λ.

As per our assumptions φ(t j ) = f j ≥ 0 ∀ j ∈ Λ∗. In order to show that the RCTFIF

is strictly positive over [t1, tn], it is sufficient to verify that pi (θ)
qi (θ)

> 0, i ∈ Λ, t ∈
[t1, tn]. The shape parameters αi > 0, βi > 0, γi > 0 and δi > 0, guarantee
that the denominator qi (θ) is strictly positive. Hence the positivity of the RCTFIF
depends upon the positivity of the cubic trigonometric polynomial pi (θ). It is clear
that pi (θ) > 0 if each of the terms Ui > 0, Vi > 0, Wi > 0, and Xi > 0 holds for
all i ∈ Λ.

Since Ui = αi f ∗
i = αi ( fi − λi f1), it is clear that Ui > 0 if λi <

fi
f1
.

Similarly, Xi = δi f ∗
i+1 = δi ( fi+1 − λi fn) > 0 if λi <

fi+1
fn

. Thus, we obtain that
(23) is true in this case.

Now consider Vi = βi f ∗
i + 2�αi d∗

i
π

= βi ( fi − λi f1) + 2�αi d∗
i

π
.

If d∗
i ≥ 0, then arbitrary αi ≥ 0, βi > 0 and ( fi − λi f1) > 0 for i ∈ Λ provides

Vi > 0, i.e., we need λi <
fi
f1
for i ∈ Λ. Otherwise we can choose βi >

−2�αi d∗
i

π( fi −λi f1)
,

for ensuring Vi > 0 as (23) gives ( fi − λi f1) ≥ 0. Hence we choose βi according
to (24).

At the end, we have Wi = δi f ∗
i+1 − 2�δi d∗

i+1
π

= δi ( fi+1 − λi fn) − 2�δi d∗
i+1

π
.

If d∗
i+1 < 0 then arbitrary δi ≥ 0, γi > 0 and ( fi+1 − λi fn) > 0 for i ∈ Λ

provides Wi > 0, i.e., we need λi <
fi+1
fn

for i ∈ Λ. Otherwise we can choose

γi >
2�δi d∗

i+1
π( fi+1−λi fn)

, so that Yi > 0 as (23) gives ( fi+1 −λi fn) > 0. Hence we choose
γi according to (25). �

5.2 Numerical Example

In this section we illustrate the numerical demonstration of the positivity preserving
aspect of the given positive data by the proposed RCTFIF. We consider the positive
data set as in Table1. Figure1h represents the graph of the classical rational cubic
trigonometric interpolant. Since the classical interpolant is unique for the predefined
shape parameters, rational trigonometric fractal interpolation functions are more

Table 1 2D data set

t 1 3 8 10 11 12 16

f 14 2 0.8 0.65 0.75 0.7 0.69
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Fig. 1 Positive RTCFIF curves and their first order derivatives curves (inset figures) with respect
to the free parameters in the Table2. a Non positive RCTFIF, b standard positive RCTFIF φ1, c φ2
effect of λ2 and β2 on φ1, d φ3 effect of β3 and γ3 on φ2, e φ4 effect of β4, γ4, β5 and γ5 on φ3,
f φ5 effect of λ6 and β6 on φ1, g φ6 effect of β4, γ4, β5 and γ5 on φ3, h Positive classical interpolant
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Table 2 Scaling factors and shape parameters used in the construction of positive RCTFIFs (Fig. 1)

Figure Scaling factors Shape parameters

Figure1a λ =
(0.1323, 0.2419, 0.0561,

β = (0.5028, 1.1853, 0.5, 0.5, 0.5, 3.9649),

0.0454, 0.0526, 0.149) γ = (0.5, 0.5, 0.5868, 0.5221, 0.5, 0.5)

Figure1b λ =
(0.1323, 0.1419, 0.0561,

β = (0.5028, 172.6956, 0.5, 0.5, 0.5, 0.5),

0.0454, 0.0526, 0.049) γ = (0.5, 0.5, 0.5868, 0.5221, 0.5, 0.5)

Figure1c λ =
(0.1323, 0.001, 0.0561,

β = (0.5028, 3.9731, 0.5, 0.5, 0.5, 0.5),

0.0454, 0.0526, 0.049) γ = (0.5, 0.5, 0.5868, 0.5221, 0.5, 0.5)

Figure1d λ =
(0.1323, 0.001, 0.0561,

β = (0.5028, 3.9731, 2.575, 0.5, 0.5, 0.5),

0.0454, 0.0526, 0.049) γ = (0.5, 0.5, 2.817, 0.5221, 0.5, 0.5)

Figure1e λ =
(0.1323, 0.001, 0.0561,

β = (0.5028, 3.9731, 2.575, 2.124, 2.515, 0.5),

0.0454, 0.0526, 0.049) γ = (0.5, 0.5, 2.817, 2.868, 2.221, 0.5)

Figure1f λ =
(0.1323, 0.2419, 0.0561,

β = (0.5028, 172.6956, 0.5, 0.5, 0.5, 0.5277),

0.0454, 0.0526, 0.001) γ = (0.5, 0.5, 0.5868, 0.5221, 0.5, 0.5)

Figure1g λ =
(0.1323, 0.2419, 0.0561,

β = (0.5028, 172.6956, 2.575, 2.124, 2.515, 0.5277),

0.0454, 0.0526, 0.001) γ = (0.5, 0.5, 0.5817, 2.868, 2.221, 0.5)

Figure1h λ = (0, 0, 0, 0, 0, 0) β = (0.8103, 3.9650, 0.5972, 0.5, 0.5, 0.5737),

γ = (0.5, 0.5, 0.5816, 0.5212, 0.5, 0.5)

Here α = 0.5 and δ = 1

convenient due to the presence scaling factors and shape parameters. With a random
choice of scaling factors and shape parameters we obtain Fig. 1a illustrates that the
proposedRCTFIFmaynot preserve the shape of the data for the randomchoice of free
parameters. Therefore for positivity preserving RCTFIF, we choose scaling factors
and shape parameters according to the Theorem 3. The deduced scaling factors and
shape parameters used in our construction are shown in Table2. Due to availability
the free parameters we get different positivity preserving RCTFIFs and we denote
them by φ j , j = 1, 2, . . . , 6., see Fig. 1. Out of the four shape parameters involved
in the RCTFIF, two of them, αi = 0.5 and δi = 1, i ∈ Λ, are fixed while the rest
will participate in interactive curve design. The derivative values (d j , j ∈ Λ∗) are
calculated by arithmetic mean method. The scaling factors are restricted as λ1 ∈
[0, 0.1333], λ2 ∈ [0, 0.1429], λ3 ∈ [0, 0.0571], λ4 ∈ [0, 0.0464], λ5 ∈ [0, 0.0536],
and λ6 ∈ [0, 0.05] to preserve the positivity feature of the given positive data.

The positivity preservingRCTFIF curvesφ2−φ6 are generated using themodified
free parameters from the Table2 and are shown in Fig. 1. Themodified scaling factors
and shape parameters are shown in bold in the Table2. The graphs of the first deriv-
ative of the positive RCTFIFs are also inserted as inset figures of the corresponding
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positive RCTFIFs respectively. Figure1b illustrates the positivity preserving RCT-
FIFφ1 and its first derivative and is generated by the suitable restricted scaling factors
and the shape parameters. We take Fig. 1b as the reference positive RCTFIF curve.
The perturbation in the scaling factor λ2 and shape parameter β2 effects the shape
of φ2 and its first order derivative in the subinterval [t2, t3] and variations in the
remaining intervals are negligible, see Fig. 1c. Figure1d is generated by changing
the shape parameters β3, γ3 in Fig. 1c, it is clear that the shape parameters effects
the shape of φ3 in the subinterval [t3, t4]. By perturbing shape parameters β4, γ4 and
β5, γ5, we generate Fig. 1e and modify the shape of φ4 in the subintervals [t4, t5]
and [t5, t6] respectively. A small disruption in the scaling factor λ6 and the shape
parameters β6 generate Fig. 1f and modifies the shape of φ5 and its first derivative in
the subinterval [t6, t7]. Similarly the perturbed shape parameters β4, γ4 and β5, γ5
provide Fig. 1g and modify the shape of φ6 and their derivative in the subinterval
[t4, t5] and [t5, t6] respectively. Finally a positive classical rational trigonometric
interpolant, see Fig. 1h, can be extracted by setting all the scaling factors to zero in
(9). One can observe that all the scaling factors and shape parameters used in this
example produces local effects. The optimal scaling factors and shape parameters can
be determined by the genetic algorithm to obtain desired accuracy with the original
function.

6 Conclusions

In this paper, a smooth rational cubic trigonometric fractal interpolation function is
introduced for the first time in the literature.With a zero scaling vector, the developed
RCTFIF reduces to the classical rational cubic trigonometric interpolant with four
shape parameters. A uniform error bound has been determined between the original
function and RCTFIF. The developed RCTFIF converges uniformly to the original
function as h → 0. We have deduced the range of the scaling factors and shape
parameters so that theRCTFIF preserves the positive aspect of the given positive data.
The effects of the rational IFS parameters on the shape of the curves are illustrated.
The irregularity nature of the first order RCTFIF curves is studied and demonstrated
through suitable example. The developed RCTFIF can be used for the visualization
of both data with the slopes and the data without slopes at the knots. Applications of
the proposed RCTFIF in geometric modeling problems are under investigation.
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A Monotonic Rational Fractal Interpolation
Surface and Its Analytical Properties

A.K.B. Chand and N. Vijender

Abstract A C 1-continuous rational cubic fractal interpolation function was intro-
duced and its monotonicity aspect was investigated in [Adv. Difference Eq. (30)
2014]. Using this univariate interpolant and a blending technique, in this article, we
develop a monotonic rational fractal interpolation surface (FIS) for given monotonic
surface data arranged on the rectangular grid. The analytical properties like con-
vergence and stability of the rational cubic FIS are studied. Under some suitable
hypotheses on the original function, the convergence of the rational cubic FIS is
studied by calculating an upper bound for the uniform error of the surface inter-
polation. The stability results are studied when there is a small perturbation in the
corresponding scaling factors. We also provide numerical examples to corroborate
our theoretical results.

Keywords Fractals · Fractal interpolation functions · Fractal interpolation sur-
faces · Monotonicity · Blending functions

1 Introduction

Fractal interpolation is a modern interpolation technique developed to represent a
prescribed data set with a smooth or nonsmooth continuous function. This is in
contrast to the classical interpolants like polynomial splines, exponential splines,
trigonometric splines, etc., which produce functions that are differentiable infinite
number of times except perhaps at a finite number of points in the interpolation
interval. Barnsley [1] proposed the concept of a fractal interpolation function (FIF)
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based on the theory of an iterated function system (IFS). Later a good number of
fractal polynomial splines [2–7] dealing with univariate fractal interpolation have
been developed by various authors. These spline FIFs cannot actually be fractals.
However, the name fractal interpolation function is retained because of the flavor
of the scaling in its definition and because of the fact that certain derivative of this
function is typically a fractal. Further, the graph of a fractal spline is a union of its
transformed copies, and hence possesses self-similarity, a characteristic feature of
the fractal sets.

In general, both the classical polynomial spline interpolation and the fractal poly-
nomial spline interpolation may ignore the intrinsic form implied by the given data
points. Consequently, interpolants produced by these methods may have undesirable
inflections or oscillations. To obtain a valid physical interpretation of the underlying
process, it is important to develop interpolation schemes that honor the properties
inherent in the data, particularly when the data is produced by some scientific phe-
nomena. The problem of searching a sufficiently smooth function that preserves qual-
itative shape properties inherent in the input data is generally called a shape preserv-
ing interpolation problem. Various shape properties are mathematically expressed
in terms of conditions such as positivity, monotonicity, and convexity. Owing to the
difficulties to develop shape preserving interpolation with polynomial FIFs, recently
our group has introduced rational fractal splines for shape preserving interpolation
[8–12].

In a natural way, different univariate fractal interpolation functions have been
extended to suitable fractal bivariate interpolation functions [13–17] tomodel natural
surfaces such as rocks, metals, planets, terrains, and so on. Among the existing FIS
schemes,many are developed by imposing suitable restriction on choice of the scaling
factors, surface data, or interpolation domain. For instance, the continuity of the
fractal interpolation surface is achieved in [18] with the assumption that interpolation
points on the boundary are collinear. The aforementioned fractal surface schemes
give self-similar, self-affine, or more generally self-referential fractal interpolation
surfaces. To generate self-referential and nonself-referential surfaces simultaneously,
Chand and Kapoor [19–21] developed the notion of coalescence hidden variable
fractal interpolation surfaces. Including the aforementioned FISs, all the existing
spline FISs lack most important shape preserving aspects of given surface data.
Also from the existing FIS schemes, it is observed that (i) attractor of a bivariate
IFS (ii) tensor product of FIFs may not be suitable for the construction of shape
preserving FISs. Owing to these reasons, using a blending surface technique, the
monotonicity preserving rational FIS is developed in the present work. In addition to
havingmonotonicity preserving capabilities, an interpolant should also possess some
other important analytical properties such as stability and convergence. To facilitate
such investigations for the developed rational FIS, we have studied its stability and
convergence properties.
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In Sect. 2, we shall revisit the construction of C p-univariate rational cubic FIF
detailed in [12]. In Sect. 3, for the given surface data arranged on a rectangular grid,
we construct a rational cubic FIS as blending of the rational cubic FIFs defined along
the grid lines of rectangular domain. Analytical properties of the rational cubic FIS
are studied in Sect. 4. Monotonicity aspects of the rational cubic FIS is studied in
Sect. 5. Some numerical results are provided in Sect. 6 to verify our monotonicity
results.

2 Fractal Interpolation Functions

In this section, we briefly recall the fractal interpolation and rational fractal inter-
polation from [1, 12]. Let x1 < x2 < · · · < xm−1 < xm(m > 2) be a parti-
tion of the closed interval I = [x1, xm], and f1, f2, . . . , fm , be a collection of
real numbers. Let θi , i = 1, 2, . . . , m − 1, be a set of homeomorphism map-
pings from I to Ii = [xi , xi+1] satisfying θi (x1) = xi , θi (xm) = xi+1, and
K be a compact subset of R such that fi ∈ K , i = 1, 2, . . . , m. Again, let
Fi (x, f ) = ai [ξi f + ri (x)], |ξi | < κ < 1, be a continuous function from I × K
to K such that Fi (x1, f1) = fi , Fi (xm, fm) = fi+1, i = 1, 2, . . . , m − 1. Fur-
thermore, ri (x) is a suitable continuous real-valued function on I . Define a set of
maps wi : I × K → Ii × K as wi (x, f ) = (θi (x), Fi (x, f )), (x, f ) ∈ I × K ,
i = 1, 2, . . . , m − 1. Then I = {I × K ; wi (x, f ), i = 1, 2, . . . , m − 1} is called
an IFS related to a given interpolation data {(xi , fi ), i = 1, 2, . . . , m}. According to
[1], the IFS I has a unique attractor G which is the graph of a continuous function
Φ : I → R, Φ(xi ) = fi , i = 1, 2, . . . , m. The function Φ is called a FIF generated
by the IFSI , and it takes the form: Φ(Li (x)) = ξiΦ(x) + ri (x), x ∈ I. The differ-
entiable spline FIF was introduced in [2]. This result was extended to C p-rational
spline fractal functions in the following proposition [12].

Proposition 2.1 Let {(xi , fi ), i = 1, 2, . . . , m} be given data set, where d(k)
i (i =

1, 2, . . . , m, k = 1, 2, . . . , p) are the kth derivative values at knots. Consider the
rational IFS I ∗ ≡ {I × K ; wi (x, f ) = (θi (x), Fi (x, f )), i = 1, 2, . . . , m −
1}, where θi (x) = ai x + bi satisfies θi (x1) = xi , θi (xm) = xi+1, Fi (x, f ) =
a p

i

(
ξi f +ri (x)

)
, ri (x) = Ωi,1(x)

Ωi,2(x)
,Ωi,1(x) is a polynomial containing 2p+2 arbitrary

constants, and Ωi,2(x) is a nonvanishing quadratic polynomial with three shape

parameters defined on I , and |ξi | < κ < 1, i = 1, 2, . . . , m − 1. Let F (k)
i (x, f ) =

a p−k
i

(
ξi f +r (k)

i (x)
)
, where r (k)

i (x) represents the kth derivative of ri (x) with respect

to x. With the setting fi = d(0)
i , i = 1, 2, . . . , m, if

F (k)
i (x1, d(k)

1 ) = d(k)
i , F (k)

i (xm, d(k)
m ) = d(k)

i+1, i = 1, 2, . . . , m−1, k = 0, 1, . . . , p,

(1)
then the fixed point of the rational IFS I ∗ is the graph of a C p- rational FIF.
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3 Rational Cubic Fractal Interpolation Surfaces

Based on Proposition2.1, the rational fractal boundary curves along the grid lines in
the domain of surface interpolation are constructed in Sect. 3.1. TheC 1-rational cubic
fractal interpolation surface is constructed as a combination of blending functions
and these fractal boundary curves in Sect. 3.2.

3.1 Construction of C 1-Rational Cubic FIFs
(Fractal Boundary Curves)

Consider the surface data � = {(xi , y j , zi, j , zx
i, j , zy

i, j ) : i = 1, 2, . . . , m, j =
1, 2, . . . , n}, where zx

i, j and zy
i, j be the x-partials and y-partials at the point (xi , y j ).

Let x1 < x2 < · · · < xm−1 < xm, y1 < y2 < · · · < yn−1 < yn, be the grids on
D = I × J , I = [x1, xm], J = [y1, yn]. Suppose Di, j = Ii × J j , i = 1, 2, . . . , m−1,
j = 1, 2, . . . , n − 1, forms a rectangular partition of D, where Ii = [xi , xi+1],
J j = [y j , y j+1]. Now Tj = {(xi , zi, j , zx

i, j ) : i = 1, 2, . . . , m} is the interpolation
data along the j th grid line parallel to the x-axis, j = 1, 2, . . . , n. Similarly, T †

i =
{(y j , zi, j , zy

i, j ) : j = 1, 2, . . . , n} is the interpolation data along the i th grid line
parallel to the y-axis, i = 1, 2, . . . , m. In order to construct a rational cubic FIF
(fractal boundary curve) which interpolates the interpolation data set Tj for j =
1, 2, . . . , n, consider Proposition2.1with p = 1, interpolation data Tj , and ri, j (x) =
pi, j (θ)

qi, j (θ)
, i = 1, 2, . . . , m−1, pi, j (θ) = Ai, j (1−θ)3+Ci, jθ(1−θ)2+Di, jθ

2(1−θ)+
Bi, jθ

3, qi, j (θ) = αi, j (1− θ)2 + γi, jθ(1− θ) + βi, j (1− θ)2, where θ = θ−1
i (x)−x1
xm−x1

,
x ∈ Ii , Ai, j , Bi, j , Ci, j , Di, j are arbitrary constants, αi, j > 0, βi, j > 0, and γi, j > 0
are the shape parameters. Then we obtain the following functional equations for
j = 1, 2, . . . , n:

S(x, y j ) = ai [ξi, j S(θ−1
i (x), y j ) + ri, j (x)], x ∈ Ii , (2)

where |ξi, j | < κ < 1, i = 1, 2, . . . , m −1. Constants Ai, j , Bi, j , Ci, j , Di, j in ri, j are
evaluatedusing the following interpolatory conditions, respectively: S(xi , y j ) = zi, j ,
S(xi+1, y j ) = zi+1, j , S(1)(xi , y j ) = zx

i, j , S(1)(xi+1, y j ) = zx
i+1, j . Thus, the desired

rational cubic FIF (fractal boundary curve) interpolating the data set Tj is

S(x, y j ) = aiξi, j S(θ−1
i (x), y j ) + pi, j (θ)

qi, j (θ)
, x ∈ Ii , (3)
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pi, j (θ) = αi, j
[
zi, j − ξi, j z1, j ai

]
(1 − θ)3 + [zi, j (γi, j + αi, j ) + zx

i, jαi, j hi

− ξi, j {αi, j hi z
x
1, j + z1, j ai (γi, j + αi, j )}

]
θ(1 − θ)2 + [zi+1, j (γi, j + βi, j )

− zx
i+1, jβi, j hi + ξi, j {βi, j hi z

x
m, j − zm, j ai (γi, j + βi, j )}

]
θ2(1 − θ)

+ βi, j
[
zi+1, j − ξi, j zm, j ai

]
θ3,

qi, j (θ) = αi, j (1 − θ)2 + γi, jθ(1 − θ) + βi, jθ
2, x ∈ Ii , i = 1, 2, . . . , m − 1.

Thus we have exactly n different x-direction fractal boundary curves. The para-
meters ξi, j , αi, j , βi, j , and γi, j , i = 1, 2, . . . , m − 1, j = 1, 2, . . . , n, involved
in the x-direction fractal boundary curves are arranged in the matrix form as
ξ = [ξi, j ](m−1)×n, α = [αi, j ](m−1)×n,β = [βi, j ](m−1)×n, and γ = [γi, j ](m−1)×n .

By reiterating the above procedure, the fractal boundary curve S†(xi , y) interpo-
lating the data set T †

i = {(y j , zi, j , zy
i, j ); j = 1, 2, . . . , n

}
is given by

S†(xi , y) = c jξ
†
i, j S†(xi , φ

−1
j (y)) + p†i, j (φ)

q†
i, j (φ)

, y ∈ J j , (4)

p†i, j (φ) = α
†
i, j

[
zi, j − ξ

†
i, j zi,1c j

]
(1 − φ)3 + [zi, j (γ

†
i, j + α

†
i, j ) + zy

i, jα
†
i, j h

†
j

− ξ
†
i, j {α†

i, j h
†
j z

y
i,1 + zi,1c j (γ

†
i, j + α

†
i, j )}

]
φ(1 − φ)2 + [zi, j+1(γ

†
i, j + β

†
i, j )

− zy
i, j+1β

†
i, j h

†
j + ξ

†
i, j {β†

i, j h
†
j z

y
i,n − zi,nc j (γ

†
i, j + β

†
i, j )}

]
φ2(1 − φ)

+ β
†
i, j

[
zi, j+1 − ξ

†
i, j zi,nc j

]
φ3,

q†
i, j (φ) = α

†
i, j (1 − φ)2 + γ

†
i, jφ(1 − φ) + β

†
i, jφ

2, φ = φ−1
j (y) − y1

yn − y1
, y ∈ J j ,

h†
j = y j+1 − y j , ξ

†
i, j is the scaling factor in the y-direction satisfies |ξ†i, j | < κ < 1,

α
†
i, j > 0, β

†
i, j > 0, and γ

†
i, j ≥ 0 are the shape parameters for i = 1, 2, . . . , m,

φ j (y) = c j y + d j = (y j+1−y j )y
yn−y1

+ yn y j −y1y j+1
yn−y1

: J → J j is a homeomorphism such
that φ j (y1) = y j , φ j (yn) = y j+1, j = 1, 2, . . . , n − 1.

From (4), we have exactly m different y-direction fractal boundary curves. The
parameters ξ

†
i, j ,α

†
i, j ,β

†
i, j , and γ

†
i, j , i = 1, 2, . . . , m, j = 1, 2, . . . , n−1 seeded in the

y-direction fractal boundary curves are put in the matrix form as ξ† = [ξ†i, j ]m×(n−1),

α† = [α†
i, j ]m×(n−1), β† = [β†

i, j ]m×(n−1), and γ † = [γ †
i, j ]m×(n−1).
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3.2 C 1-Rational Cubic Fractal Interpolation Surface

The union of the four straight lines Ii × y j , Ii × y j+1, xi × J j , and xi+1 × J j forms
the boundary of sub-rectangle Di, j . Utilizing the above fractal boundary curves (3)
and (4), we define the rational cubic fractal surface patch over the sub-rectangle Di, j ,
i = 1, 2, . . . , m − 1, j = 1, 2, . . . , n − 1, as

Θ(x, y) = −AΠ(x, y)BT , (x, y) ∈ Di, j , (5)

where Π(x, y) =
⎡
⎣

0 S(x, y j ) S(x, y j+1)

S†(xi , y) zi, j zi, j+1

S†(xi+1, y) zi+1, j zi+1, j+1

⎤
⎦ ,

A = [−1 ax,0(θ) ax,1(θ)], ax,0(θ) = (1 − θ)2(1 + 2θ), ax,1(θ) = θ2(3 − 2θ),

θ = θ−1
i (x) − x1
xm − x1

, B = [−1 by,0(φ) by,1(φ)], by,0(φ) = (1 − φ)2(1 + 2φ),

by,1(φ) = φ2(3 − 2φ), φ = φ−1
j (y) − y1

yn − y1
.

The functions ax,0, ax,1, by,0, and by,1 are called the blending functions. The
fractal boundary curves S(x, y j+1), j = 1, 2, . . . , n − 1,, and S†(xi+1, y), i =
1, 2, . . . , m − 1, are defined from (3) and (4) by replacing j by j + 1 and i by i + 1,
respectively.

Theorem 3.1 The surface Θ in (5) interpolates the surface data �, and possesses
C 1-continuity.

Proof Using interpolationproperties of the fractal boundary curves and theproperties
of the blending functions, it is straightforward to prove that Θ satisfies the Hermite
type interpolation conditions Θ(xi , y j ) = zi, j , ∂Θ

∂x (xi , y j ) = zx
i, j , and

∂Θ
∂y (xi , y j ) =

zy
i, j for i = 1, 2, . . . , m, j = 1, 2, . . . , n. Since the fractal boundary curves and

blending functions are C 1-continuous, we observe that Θ is C 1-continuous in the
interior of Di, j , that is over (xi , xi+1) × (y j , y j+1). If (x, y) is on the boundary
∂(Ii × J j ) of Ii × J j , then one of the following holds:

(i) (x, y) ∈ ∂(Ii × J j ) ∩ ∂(Ii × J j−1),

(i i) (x, y) ∈ ∂(Ii × J j ) ∩ ∂(Ii+1 × J j ),

(i i i) (x, y) ∈ ∂(Ii × J j ) ∩ ∂(Ii × J j+1),

(iv) (x, y) ∈ ∂(Ii × J j ) ∩ ∂(Ii−1 × J j ).
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Considering the first case, we have to prove that each of the expressions Θ(x, y),
∂Θ
∂x (x, y), and ∂Θ

∂y (x, y) has the same value irrespective of whether (x, y) is consid-
ered as a point in Ii × J j or as a point in Ii × J j−1. Similarly for the other cases.
This is possible with help of general calculations via the following properties of the
blending functions:

ax,0(0) = 1, ax,1(0) = 0, ax,0(1) = 0, ax,1(1) = 1,

a(1)
x,0(0) = 0, a(1)

x,1(0) = 0, a(1)
x,0(1) = 0, a(1)

x,1(1) = 0,

by,0(0) = 1, by,1(0) = 0, by,0(1) = 0, by,1(1) = 1,

b(1)
y,0(0) = 0, b(1)

y,1(0) = 0, b(1)
y,0(1) = 0, b(1)

y,1(1) = 0.

This proves the continuity of Θ and its partial derivatives on D, which in turn
gives Θ ∈ C 1(D), it completes the proof.

Definition 3.1 Since Θ is blending of rational cubic FIFs (fractal boundary curves)
and C 1-continuous over D, we call Θ as C 1-rational cubic FIS.

Remark 3.1 If ξ = [0](m−1)×n and ξ† = [0]m×(n−1), then we get the classical
rational cubic surface interpolant C as

C(x, y) = by,0(φ)C(x, y j ) + by,1(φ)C(x, y j+1) + ax,0(θ)C†(xi , y)

+ ax,1(θ)C†(xi+1, y) − ax,0(θ)by,0(φ)zi, j − ax,0(θ)by,1(φ)zi, j+1
− ax,1(θ)by,0(φ)zi+1, j − ax,1(θ)by,1(φ)zi+1, j+1,

⎫⎬
⎭
(6)

where C(x, y j ), j = 1, 2, . . . , n and C†(xi , y), i = 1, 2, . . . , m are the classical
rational cubic interpolants obtained in [22].

4 Analytical Properties of Rational FIS

We discuss analytical properties like convergence and stability in the following
Theorems4.1 and 4.2, respectively. In this section, we use the following notation:
a∞ = max

1≤i≤m−1
ai , c∞ = max

1≤ j≤n−1
c j , h = max

1≤i≤m−1
hi , h† = max

1≤ j≤n−1
h†

j .

Theorem 4.1 Let Θ be the rational cubic FIS with respect to the surface data
{(xi , y j , zi, j ), i = 1, 2, . . . , m, j = 1, 2, . . . , n} generated from the original func-
tion F ∈ C 4(D). Then



210 A.K.B. Chand and N. Vijender

∥∥F − Θ
∥∥∞ ≤ κa∞(Hx,1(h) + Hx,2(h))

1 − κa∞
+ κc∞(Hy,1(h

†) + Hy,2(h
†))

1 − κc∞

+ h
(∥∥∥∂ F

∂x

∥∥∥∞ + KC

)
+ h† max

1≤i≤n

[
max

1≤ j≤m−1

{ ωi, j hi

2νi, j τi, j

(
ζ∗

i, j +
E†

i, j (F)

96

)}]
,

(7)

where

Hx,1(h) = max
1≤ j≤n

Hx,1, j (h), Hx,1, j (h) = max
1≤i≤m−1

{3(|zi, j | + |zi+1, j |) + hi (|zx
i, j | + |zx

i+1, j |)},

Hx,2(h) = max
1≤ j≤n

Hx,2, j (h), Hx,2, j (h) = max
1≤i≤m−1

{3ai (|z1, j | + |zm, j |) + hi (|zx
1, j | + |zx

m, j |)},

Hy,1(h
†) = max

1≤i≤m
Hy,1,i (h

†), Hy,1,i (h
†) = max

1≤ j≤n−1
{3(|zi, j | + |zi, j+1|) + h†j (|zy

i, j | + |zy
i, j+1|)},

Hy,2(h
†) = max

1≤i≤m
Hy,2,i (h

†), Hy,2,i (h
†) = max

1≤ j≤n−1
{3c j (|zi,1| + |zi,n |) + h†j (|zy

i,1| + |zy
i,n |)},

E†
i, j (F) = h†3j

∣∣∣
∣∣∣ ∂

4F(xi , y)

∂4y

∣∣∣
∣∣∣∞ Ai, j (F) + 16ζi, j h†2j

∣∣∣
∣∣∣ ∂

3F(xi , y)

∂3y

∣∣∣
∣∣∣∞ + 24ζi, j h†2j

∣∣∣
∣∣∣ ∂

2F(xi , y)

∂2y

∣∣∣
∣∣∣∞,

Ai, j (F) =
∣∣∣
∣∣∣ ∂ F(xi , y)

∂y

∣∣∣
∣∣∣∞ + ζi, j

2
, ζi, j = max

{∣∣∣ ∂ F(xi , y j )

∂y
− zy

i, j

∣∣∣,
∣∣∣ ∂ F(xi , y j+1)

∂y
− zy

i, j+1

∣∣∣
}

,

νi, j = min
y j ≤y≤y j+1

∣∣∣ ∂ F(xi , y)

∂y

∣∣∣, ωi, j = max{αi, j , βi, j }, τi, j = min{αi, j , βi, j }.

Proof SinceΘ andC , respectively, are the rational cubicFIS and the classical rational
cubic surface interpolant for the surface data {(xi , y j , zi, j ), i = 1, 2, . . . , m, j =
1, 2, . . . , n}, from (5) and Remark 3.1, we have

|Θ(x, y) − C(x, y)| ≤ by,0(φ)|S(x, y j ) − C(x, y j )|
+ by,1(φ)|S(x, y j+1) − C(x, y j+1)|
+ ax,0(θ)|S†(xi , y) − C†(xi , y)|
+ ax,1(θ)|S†(xi+1, y) − C†(xi+1, y)|.

⎫⎪⎪⎬
⎪⎪⎭

(8)

Using Eq. (24) in Theorem 2 of [12], we obtain

|S(x, y j ) − C(x, y j )| ≤ |ξ j |∞
1−|ξ j |∞ Hx,1, j (h), j = 1, 2, . . . , n,

|S†(xi , y) − C(xi , y)| ≤ |ξ†i |∞
1−|ξ†i |∞ Hy,1,i (h†), i = 1, 2, . . . , m.

⎫⎬
⎭ (9)

Also it follows that

ax,0(θ) ≤ 1, ax,1(θ) ≤ 1, θ ∈ [0, 1], by,0(φ) ≤ 1, by,1(φ) ≤ 1, φ ∈ [0, 1]. (10)
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Using (9)–(10) in (8), it is estimated that

|Θ(x, y) − C(x, y)| ≤ |ξ j |∞
1 − |ξ j |∞ Hx,1, j (h) + |ξ j+1|∞

1 − |ξ j+1|∞ Hx,1, j+1(h)

+ |ξ†i |∞
1 − |ξ†i |∞

Hy,1,i (h
†) + |ξ†j+1|∞

1 − |ξ†j+1|∞
Hy,1,i+1(h

†),

≤ |ξ |∞
1 − |ξ |∞ Hx,1(h) + |ξ†|∞

1 − |ξ†|∞ Hy,1(h
†).

Since the above inequality is true for every (x, y) ∈ Di, j , i = 1, 2, . . . , m − 1,
j = 1, 2, . . . , n − 1, the following estimation is obtained:

‖Θ − C‖∞ ≤ |ξ |∞
1 − |ξ |∞ Hx,1(h) + |ξ†|∞

1 − |ξ†|∞ Hy,1(h
†). (11)

Expanding the function F using Taylor formula at the point (xi , y) ∈ Di, j , we
have

F(x, y) = F(xi , y) + (x − xi )
∂ F(ξ, y)

∂x
, (ξ, y) ∈ Di, j .

This implies

|F(x, y) − F(xi , y)| ≤ h
∥∥∥∂ F

∂x

∥∥∥∞. (12)

Similarly by applying the above procedure to the classical rational cubic surface
C , we have

|C(x, y) − C(xi , y)| ≤ h
∥∥∥∂C

∂x

∥∥∥∞. (13)

It is observed that

|F(x, y) − C(x, y)| ≤ |F(x, y) − F(xi , y)| + |F(xi , y) − C(xi , y)| + |C(xi , y) − C(x, y)|.

Now using (12)–(13) in the above inequality, we obtain

|F(x, y) − C(x, y)| ≤ h
(∥∥∥∂ F

∂x

∥∥∥∞ +
∥∥∥∂C

∂x

∥∥∥∞

)
+ |F(xi , y) − C(xi , y)|. (14)

From [22], it is known that

|F(xi , y) − C(xi , y)| ≤ max
1≤ j≤m−1

{ ωi, j hi

2νi, jτi, j

(
ζ ∗

i, j + E†
i, j (F)

96

)}
. (15)
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Substituting (15) in (14) yields

|F(x, y) − C(x, y)| ≤h
(∥∥∥∂ F

∂x

∥∥∥∞ +
∥∥∥∂C

∂x

∥∥∥∞

)

+ h† max
1≤i≤n

[
max

1≤ j≤m−1

{ ωi, j hi

2νi, jτi, j

(
ζ ∗

i, j + E†
i, j (F)

96

)}]
. (16)

Since (16) is true for every (x, y) ∈ Di, j , i = 1, 2, . . . , m−1, j = 1, 2, . . . , n−1,
the uniform error bound between F and C is given by

‖F − C‖∞ ≤ h
(∥∥∥∂ F

∂x

∥∥∥∞ +
∥∥∥∂C

∂x

∥∥∥∞

)
+ h† max

1≤i≤n

[
max

1≤ j≤m−1

{ ωi, j hi

2νi, jτi, j

(
ζ ∗

i, j + E†
i, j (F)

96

)}]
.

(17)

Since ∂C
∂x ∈ C 1(D), there exists a positive constant KC such that

∥∥∥∂C

∂x

∥∥∥∞ ≤ KC . (18)

Using (11) and (17)–(18) together with inequality

‖Θ − F‖∞ ≤ ‖Θ − C‖∞ + ‖C − F‖∞,

the desired bound for ‖Θ − F‖∞ is obtained.

Convergence result: Since a∞ = h
xm−x1

and c∞ = h†
yn−y1

, Theorem 4.1 gives that

the rational cubic FIS Θ uniformly converges to the original function F as h → 0+
and h† → 0+.

Theorem 4.2 Suppose Θε,ε† is the perturbed rational cubic FIS when the corre-

sponding scaling factors of Θ are perturbed as ξi, j + εi, j and ξ
†
i, j + ε

†
i, j , where

εi, j and ε
†
i, j are real numbers such that 0 < |ξ j |∞ + |ε j |∞ < 1, j = 1, 2, . . . , n

and 0 < |ξ†i |∞ + |ε†i |∞ < 1, i = 1, 2, . . . , m, |ξ j |∞ = max
1≤i≤m−1

|ξi, j |, |ε j |∞ =
max

1≤i≤m−1
|εi, j |, |ξ†i |∞ = max

1≤ j≤n−1
|ξ†i, j |, and |ε†i |∞ = max

1≤ j≤n−1
|ε†i, j |. Then

||Θ − Θε,ε† ||∞ ≤ 2

[
max
1≤ j≤n

M j,ξ,ε + max
1≤i≤m

Mi,ξ†,ε†

]
,

where

M j,ξ,ε =
4a∞|ε j |∞(12 + 4[xm − x1]) max

1≤i≤m
{|zi, j |, |zx

i, j |}
(1 − a∞|ξ j |∞)(1 − a∞[|ξ j |∞ + |ε j |∞]) ,
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Mi,ξ†,ε† =
4|ε†i |∞(12 + 4[yn − y1]) max

1≤ j≤n
{|zi, j |, |zy

i, j |}
(1 − c∞|ξ†i |∞)(1 − c∞[|ξ†i |∞ + |ε†i |∞]) .

Proof Since Θε,ε† is the perturbation of Θ with respect to the scaling factors, using
the functional equation of Θ (cf. (5)) we write the functional equation of Θε,ε† as

Θε,ε†(x, y) = by,0(φ)S̃ε(x, y j ) + by,1(φ)S̃ε(x, y j+1) + ax,0(θ)S̃†
ε†

(xi , y)

+ ax,1(θ)S†
ε†

(xi+1, y) − ax,0(θ)by,0(φ)zi+1, j − ax,0(θ)by,1(φ)zi+1, j+1
− ax,1(θ)by,0(φ)zi+1, j − ax,1(θ)by,1(φ)zi+1, j+1,

⎫
⎪⎬
⎪⎭

(19)

where S̃ε(x, y j ) and S̃†
ε†

(xi , y) are perturbed rational cubic FIFs of S(x, y j ) and

S†(xi , y), respectively, with respect to the perturbed scaling factors, and they satisfy

S̃ε(x, y j ) = ai (ξi, j + εi, j )S̃ε(θ
−1
i (x), y j ) + p̃ε,i, j (θ)

qi, j (θ)
, (20)

p̃ε,i, j (θ) = αi, j
[
zi, j − (ξi, j + εi, j )z1, j ai

]
(1 − θ)3 + [zi, j (γi, j + αi, j ) + zx

i, jαi, j hi

− (ξi, j + εi, j ){αi, j hi z
x
1, j + z1, j ai (γi, j + αi, j )}

]
θ(1 − θ)2

+ [zi+1, j (γi, j + βi, j ) − zx
i+1, jβi, j hi + (ξi, j + εi, j ){βi, j hi z

x
m, j

− zm, j ai (γi, j + βi, j )}
]
θ2(1 − θ) + βi, j

[
zi+1, j − (ξi, j + εi, j )zm, j ai

]
θ3,

S̃†
ε†

(xi , y) = c j (ξ
†
i, j + ε

†
i, j )S̃†

ε†
(xi , φ

−1
j (y)) +

p̃†
ε†,i, j

(φ)

q†
i, j (φ)

, (21)

p†
ε†,i, j

(φ) = α
†
i, j

[
zi, j − (ξ

†
i, j + ε

†
i, j )zi,1c j

]
(1 − φ)3 + [zi, j (γ

†
i, j + α

†
i, j ) + zy

i, j α
†
i, j h

†
j

− (ξ
†
i, j + ε

†
i, j ){α†

i, j h
†
j z

y
i,1 + zi,1c j (γ

†
i, j + α

†
i, j )}

]
φ(1 − φ)2 + [zi, j+1(γ

†
i, j + β

†
i, j )

− zy
i, j+1β

†
i, j h

†
j + (ξ

†
i, j + ε

†
i, j ){β†

i, j h
†
j z

y
i,n − zi,nc j (γ

†
i, j + β

†
i, j )}

]
φ2(1 − φ)

+ β
†
i, j

[
zi, j+1 − (ξ

†
i, j + ε

†
i, j )zi,nc j

]
φ3,

From (5) and (19), we have
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|Θ(x, y) − Θε,ε†(x, y)| ≤ by,0(φ)|S(x, y j ) − S̃ε(x, y j )|
+ by,1(φ)|S(x, y j+1) − S̃ε(x, y j+1)|
+ ax,0(θ)|S†(xi , y) − S̃†

ε†
(xi , y)|

+ ax,1(θ)|S†(xi+1, y) − S̃†
ε†

(xi+1, y)|.

Since ax,k(θ) ≤ 1 and by,k(φ) ≤ 1 for k = 0, 1, the above inequality reduces to

|Θ(x, y) − Θε,ε†(x, y)| ≤ |S(x, y j ) − S̃ε(x, y j )| + |S(x, y j+1) − S̃ε(x, y j+1)|
+|S†(xi , y) − S̃†

ε†
(xi , y)| + |S†(xi+1, y) − S̃†

ε†
(xi+1, y)|.

}

(22)

To study the sensitivity of the rational cubic FIS Θ with respect to a slight per-
turbation in the scaling factors, it is necessary to find an upper bound for each term
in the right-hand side of (22). From (20), S̃ε(x, y j ) is rewritten as

S̃ε(x, y j ) = aiξi, j S̃ε(θ
−1
i (x), y j ) + aiεi, j S̃ε(θ

−1
i (x), y j ) + g j (θ

−1
i (x))

− ai (ξi, j + εi, j )b̄ j (θ
−1
i (x)), (23)

where g j (θ
−1
i (x)) = p̃1ε,i, j (θ)

qi, j (θ)
, b̄ j (θ

−1
i (x)) = p̃2ε,i, j (θ)

qi, j (θ)
,

p̃1ε,i, j (θ) = αi, j zi, j (1 − θ)3 + [zi, j (γi, j + αi, j ) + zx
i, jαi, j hi

]
θ(1 − θ)2

+ [zi+1, j (γi, j + βi, j ) − zx
i+1, jβi, j hi

]
θ2(1 − θ) + βi, j zi+1, jθ

3,

p̃2ε,i, j (θ) = αi, j z1, j (1 − θ)3 + [αi, j (xm − x1)z
x
1, j + z1, j (γi, j + αi, j )

]
θ(1 − θ)2

− [βi, j (xm − x1)z
x
m, j − zm, j ai (γi, j + βi, j )

]
θ2(1 − θ) + βi, j zm, jθ

3.

From (3) and (23), we obtain

|S(x, y j ) − S̃ε(x, y j )| ≤ a∞|ξ j |∞|S(θ−1
i (x), y j ) − S̃ε(θ

−1
i (x), y j )|

+ a∞|ε j |∞|S̃ε(θ
−1
i (x), y j ) − b̄ j (θ

−1
i (x))|,

≤ a∞|ξ j |∞||S(., y j ) − S̃ε(., y j )||∞ + a∞|ε j |∞||S̃ε(., y j ) − b̄ j ||∞.

Since the above inequality is valid for all x ∈ Ii , i = 1, 2, . . . , m − 1, we have

||S(., y j )− S̃ε(., y j )||∞ ≤ a∞|ξ j |∞||S(., y j )− S̃ε(., y j )||∞+a∞|ε j |∞||S̃ε(., y j )−b̄ j ||∞,
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⇒ ||S(., y j ) − S̃ε(., y j )||∞ ≤ a∞|ε j |∞
1 − a∞|ξ j |∞ ||S̃ε(., y j ) − b̄ j ||∞.

Consequently, we can write

||S(., y j )− S̃ε(., y j )||∞ ≤ a∞|ε j |∞
1 − a∞|ξ j |∞ [||S̃ε(., y j )−g j ||∞ +||g j − b̄ j ||∞]. (24)

(23) asserts that

|S̃ε(x, y j ) − g j (θ
−1
i (x)| ≤ a∞[|ξ j |∞ + |ε j |∞]|S̃ε(θ

−1
i (x), y j ) − b̄ j (θ

−1
i (x))|,

≤ a∞[|ξ j |∞ + |ε j |∞]||S̃ε(., y j ) − b̄ j ||∞.

Since the above inequality is valid for x ∈ Ii , i = 1, 2, . . . , m − 1, we obtain

||S̃ε(., y j ) − g j ||∞ ≤ a∞[|ξ j |∞ + |ε j |∞]||S̃ε(., y j ) − b̄ j ||∞,

≤ a∞[|ξ j |∞ + |ε j |∞][||S̃ε(., y j ) − g j ||∞ + ||g j − b̄ j ||∞],

which implies

||S̃ε(., y j ) − g j ||∞ ≤ a∞[|ξ j |∞ + |ε j |∞]||g j − b̄ j ||∞
1 − a∞[|ξ j |∞ + |ε j |∞] . (25)

Substituting (25) in (24), we get

||S(., y j ) − S̃ε(., y j )||∞ ≤ a∞|ε j |∞||g j − b̄ j ||∞
(1 − a∞|ξ j |∞)(1 − a∞[|ξ j |∞ − |ε j |∞]) . (26)

Using the expression for g j and b̄ j (cf. (23)),

|g j (L−1
i (x)) − b̄ j (L−1

i (x))| ≤ |g j (L−1
i (x))| + |b̄ j (L−1

i (x))|. (27)

Next, from (23), it is calculated that

|g j (L−1
i (x))| ≤ αi, j |zi, j |(1 − θ)3

αi, j (1 − θ)2
+
[∣∣zi, j

∣∣
(

γi, j

γi, jθ(1 − θ)
+ αi, j

αi, j (1 − θ)2

)

+|zx
i, j |

αi, j

αi, j (1 − θ)2
hi

]
θ(1 − θ)2 +

[∣∣zi+1, j
∣∣
(

γi, j

γi, jθ(1 − θ)
+ βi, j

βi, jθ2

)

+|zx
i+1, j |

βi, j

βi, jθ2
hi

]
θ2(1 − θ) + βi, j

βi, jθ2
|zi+1, j |θ3,

≤ (6 + 2h) max
1≤i≤m

{|zi, j |, |zx
i, j |}.
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Similarly, we can show that

|b̄ j (L−1
i (x))| ≤ (6 + 2[xm − x1]) max

1≤i≤m
{|zi, j |, |zx

i, j |}.

Substituting the upper bounds of |g j (L−1
i (x))| and |b̄ j (L−1

i (x))| in (27), we get

|g j (L−1
i (x)) − b̄ j (L−1

i (x))| ≤ (12 + 4[xm − x1]) max
1≤i≤m

{|zi, j |, |zx
i, j |}.

Since the above inequality is valid for x ∈ Ii , i = 1, 2, . . . , m − 1, we get

||g j − b̄ j ||∞ ≤ (12 + 4[xm − x1]) max
1≤i≤m

{|zi, j |, |zx
i, j |}. (28)

Using (28) in (26), we get

||S(., y j ) − S̃ε(., y j )||∞ ≤ M j,ξ,ε. (29)

By reiterating the above procedure for S†(xi , y), we obtain

||S†(xi , .) − S̃†
ε†

(xi , .)||∞ ≤ Mi,ξ†,ε† . (30)

Substituting (29)–(30) in (22), it follows that

|Θ(x, y) − Θε,ε†(x, y)| ≤ M j,ξ,ε + M j+1,ξ,ε + Mi,ξ†,ε† + Mi+1,ξ†,ε† . (31)

Since the above inequality is valid for (x, y) ∈ Di, j , i = 1, 2, . . . , m − 1, j =
1, 2, . . . , n − 1, we get the required bound for ||Θ − Θε,ε† ||∞ in Theorem 4.2 .

Remark 4.1 When the perturbations in the scaling matrices are very small (i.e.,
|ε j |∞ → 0, |ε†i |∞ → 0), it can be verified that both M j,ξ,ε → 0 and Mi,ξ†,ε† → 0.
Consequently, from Theorem 4.2, it follows thatΘε,ε† → Θ . Thus the rational cubic
FIS Θ is stable with respect to perturbations in the scaling matrices.

5 Monotonic Rational Cubic FIS

Here we shall offer the final objective of this article wherein we wish to constrain the
scaling factors and shape parameters of rational cubic FIS Θ so that it is monotonic
in nature whenever given surface data � is monotonic. Let � be a monotonic inter-
polation data, i.e., either
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zi+1, j ≥ zi, j , i = 1, 2, . . . , m − 1, for every fixed j ∈ {1, 2, . . . , n},
zi, j+1 ≥ zi, j , j = 1, 2, . . . , n − 1, for every fixed i ∈ {1, 2, . . . , m},

}
(32)

or

zi+1, j ≤ zi, j , i = 1, 2, . . . , m − 1, for every fixed j ∈ {1, 2, . . . , n},
zi, j+1 ≤ zi, j , j = 1, 2, . . . , n − 1, for every fixed i ∈ {1, 2, . . . , m},

}
(33)

with sgn(zx
i, j ) = sgn(�i, j ), �i, j = zi+1, j −zi, j

xi+1−xi
, and sgn(zy

i, j ) = sgn(�†
i, j ), �†

i, j =
zi, j+1−zi, j

y j+1−y j
. We wish to furnish conditions so as to ensure that the rational cubic

FIS Θ is monotonic over D, that is, for all (x∗, y∗), (x∗∗, y∗∗) ∈ R
2 with x∗ ≥

x∗∗ and y∗ ≥ y∗∗,

Θ(x∗, y∗) ≥ Θ(x∗∗, y∗∗)(increasing) or Θ(x∗, y∗) ≤ Θ(x∗∗, y∗∗)(decreasing).

We shall recall that the surface generated by the rational cubic FIS Θ monotonic
if the fractal boundary curves S(x, y j ) for all j = 1, 2, . . . , n and S∗(xi , y) for all
i = 1, 2, . . . , m are monotonic [23]. By using the Theorem 4 of [12], we can see that
the fractal boundary curve S(x, y j ) is monotonic if scaling factors |ξ†i, j | < κ < 1
and the shape parameters αi, j > 0, βi, j > 0, and γi, j > 0 are selected according to
the conditions:

ξi, j ∈

⎧
⎪⎪⎨
⎪⎪⎩

[
0,min

{
zx

i+1, j
zx

m, j
,

zx
i, j

zx
1, j

}]
, if min

{
zx

i+1, j
zx

m, j
,

zx
i, j

zx
1, j

}
< min

{�i, j (xm−x1)
zm, j −z1, j

, κ
}

,

[
0,min

{�i, j (xm−x1)
zm, j −z1, j

, κ
})

, if min

{
zx

i+1, j
zx

m, j
,

zx
i, j

zx
1, j

}
≥ min

{�i, j (xm−x1)
zm, j −z1, j

, κ
}

,

(34)

sgn(αi, j ) = sgn(βi, j ), and γi, j =
αi, j (z

x
i, j − ξi, j zx

1, j ) + βi, j (z
x
i+1, j − ξi, j zx

m, j )

�i, j − ξi, j
zm, j −z1, j

xm−x1

. (35)

Again using the Theorem 4 of [12], we can see that the fractal boundary curve
S†(xi , y) is monotonic if the scaling factors |ξ†i, j | < κ < 1 and the shape parameters

α
†
i, j > 0, β†

i, j > 0, and γ
†
i, j > 0 are selected according to the conditions:

ξ
†
i, j ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
0,min

{
zy

i, j+1

zy
i,n

,
zy

i, j

z y
i,1

}]
, if min

{
zy

i, j+1

zy
i,n

,
zy

i, j

z y
i,1

}
< min

{
�†

i, j (yn−y1)
zi,n−zi,1

, κ

}
,

[
0,min

{
�†

i, j (yn−y1)
zi,n−zi,1

, κ

})
, if min

{
zy

i, j+1

zy
i,n

,
zy

i, j

z y
i,1

}
≥ min

{
�i, j

†(yn−y1)
zi,n−zi,1

, κ

}
,

(36)
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sgn(α
†
i, j ) = sgn(β

†
i, j ), and γ

†
i, j =

α
†
i, j (z

y
i, j − ξ

†
i, j zy

i,1) + β
†
i, j (z

y
i, j+1 − ξ

†
i, j zy

i,n)

�†
i, j − ξ

†
i, j

zi,n−zi,1
yn−y1

. (37)

For a quick reference, the entire discussion can be put in the form of following
theorem.

Theorem 5.1 Let � be a monotonic data. Then the rational cubic FIS Θ corresponding
to surface data � is monotonic provided the (horizontal) scaling parameters ξi, j for i =
1, 2, . . . , m − 1, j = 1, 2, . . . , n, the (vertical) scaling parameters ξ

†
i, j for i = 1, 2, . . . , n,

j = 1, 2, . . . , n − 1, the (horizontal) shape parameters αi, j > 0, βi, j > 0, and γi, j > 0 for

i = 1, 2, . . . , m −1, j = 1, 2, . . . , n, and the (vertical) shape parameters α
†
i, j > 0, β†

i, j > 0,

and γ
†
i, j > 0 for i = 1, 2, . . . , n, j = 1, 2, . . . , n − 1, satisfy the conditions prescribed in

(34)–(37).

6 Some Graphical Examples

For the validation of the proposed fractal surface scheme for the construction of
monotonic surfaces, consider themonotonically increasing surface interpolation data
(Table1) with 16 points. For the given surface data, the horizontal and vertical home-
omorphisms, respectively, are θ1(x) = 0.1429x + 0.0857, θ2(x) = 0.1429x + 0.1857,
θ3(x) = 0.7143x + 0.2286, x ∈ [0.1, 0.8] and φ1(y) = 0.33y + 0.6667, φ2(y) =
0.33y+1.6667, φ3(y) = 0.33y+2.6667, y ∈ [1, 4]. Utilizing the prescription given The-
orem 5.1, we have calculated the suitable scaling factors and shape parameters (see
Table2) to obtain fractal surfaces (see Fig. 1a–c). By observing the fractal surfaces
in Fig. 1a–c, one can notice the influence of the scaling factors and shape parameters
in shape of the fractal surface. To verify stability results in Theorem 4.2, perturbed
rational cubic FIS Θε,ε† is generated in Fig. 1d by taking small perturbation in the
scaling factors of rational cubic FIS Θ in Fig. 1a. Furthermore, it is calculated that
||Θε,ε† −Θ||∞ = 0.78. It demonstrates that the monotonic rational cubic FIS is stable
with respect to any small perturbation in the corresponding scaling factors.

Table 1 Monotonically increasing surface data

↓ x/y → 1 2 3 8

0.1 (1, 1, 2.4) (2, 3, 8.5) (29, 7, 13.6) (37, 8, 11.5)

0.2 (4, 9, 4) (6, 8, 7) (41, 12, 9) (52, 7.7, 1)

0.3 (18, 16.8, 9.8) (31, 11.3, 8.2) (149, 18.2, 7.1) (178, 0.1, 11)

0.8 (22, 1.1, 1.4) (38, 9.5, 1.7) (167, 12.7, 1.8) (189, 11.8, 9)
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Table 2 Matrices of the scaling factors and shape parameters used in the construction of rational
cubic FISs in Fig. 1a–d

Figure Scaling and shape matrices

Fig. 1a ξ =
⎡
⎢⎣
0.12 0.12 0.12 0.12

0.12 0.12 0.12 0.12

0.2 0.2 0.2 0.2

⎤
⎥⎦, ξ† =

⎡
⎢⎢⎢⎣

0.15 0.2 0.2

0.2 0.2 0.2

0.2 0.2 0.2

0.2 0.2 0.15

⎤
⎥⎥⎥⎦, α = 5∗ [1]3×4, β = 5∗ [1]3×4,

γ =
⎡
⎢⎣
22.56 18.55 12.83 7.46

9.7 3.77 1.35 0.22

33.61 19.89 15.31 45.8

⎤
⎥⎦, α† = 5 ∗ [1]4×3, β† = 5 ∗ [1]4×3,

γ † =

⎡
⎢⎢⎢⎣

19.28 0.37 19.53

7.95 0.22 5.43

0.82 0.04 5.67

0.04 0.005 5.62

⎤
⎥⎥⎥⎦

Fig. 1b ξ =
⎡
⎢⎣
0.12 0.12 0.12 0.12

0.12 0.12 0.12 0.12

0.01 0.01 0.01 0.01

⎤
⎥⎦, ξ† =

⎡
⎢⎢⎢⎣

0.15 0.2 0.2

0.2 0.2 0.2

0.2 0.2 0.2

0.2 0.2 0.15

⎤
⎥⎥⎥⎦, α = 5∗ [1]3×4, β = 5∗ [1]3×4,

γ =
⎡
⎢⎣
22.56 18.55 12.83 7.46

9.7 3.77 1.35 0.22

22.74 15.02 8.75 5.57

⎤
⎥⎦, α† = 5 ∗ [1]4×3, β† = 5 ∗ [1]4×3,

γ † =

⎡
⎢⎢⎢⎣

19.28 0.37 19.53

7.95 0.22 5.43

0.82 0.04 5.67

0.04 0.005 5.62

⎤
⎥⎥⎥⎦

Fig. 1c ξ =
⎡
⎢⎣
0.12 0.12 0.12 0.12

0.12 0.12 0.12 0.12

0.2 0.2 0.2 0.2

⎤
⎥⎦, ξ† =

⎡
⎢⎢⎢⎣

0.15 0.2 0.2

0.2 0.2 0.2

0.2 0.2 0.2

0.2 0.2 0.15

⎤
⎥⎥⎥⎦, α = 5∗ [1]3×4, β = 5∗ [1]3×4,

γ =
⎡
⎢⎣
22.56 18.55 12.83 7.46

9.7 3.77 1.35 0.22

33.61 19.89 15.31 45.8

⎤
⎥⎦, α† = 100 ∗ [1]4×3, β† = 5 ∗ [1]4×3,

γ † =

⎡
⎢⎢⎢⎣

104.07 3.3 237.65

56.31 1.97 99.44

9.65 0.57 45.41

0.99 0.005 5.62

⎤
⎥⎥⎥⎦

Fig. 1d ξ =
⎡
⎢⎣
0.13 0.13 0.13 0.13

0.13 0.12 0.12 0.13

0.2 0.2 0.2 0.2

⎤
⎥⎦, ξ† =

⎡
⎢⎢⎢⎣

0.15 0.2 0.2

0.2 0.2 0.2

0.2 0.2 0.2

0.2 0.2 0.15

⎤
⎥⎥⎥⎦, α = 5∗ [1]3×4, β = 5∗ [1]3×4,

(continued)
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Table 2 (continued)

Figure Scaling and shape matrices

γ =
⎡
⎢⎣
23.27 19.21 13.65 7.8

9.7 3.77 1.35 0.22

33.61 19.89 15.31 45.8

⎤
⎥⎦, α† = 5 ∗ [1]4×3, β† = 5 ∗ [1]4×3,

γ † =

⎡
⎢⎢⎢⎣

19.28 0.37 19.53

7.95 0.22 5.43

0.82 0.04 5.67

0.04 0.005 5.62

⎤
⎥⎥⎥⎦
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Fig. 1 Rational cubic FISs. a Rational cubic FIS. b Effects in surface Fig. 1a due to the changes
in the scaling matrix ξ . c Effects in surface Fig. 1a due to the changes in the shape matrix α†. d
Rational cubic FIS with respect to perturbed scaling factors
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7 Conclusion

In this paper, a new kind of fractal surface construction is developed over a rectan-
gular grid. The proposed rational fractal surface interpolant not only stitch the data
points arranged over the rectangular grid in a smooth way but also preserve the inher-
ent shape feature, namely the monotonicity of the surface data. An upper bound of
the interpolation error have been calculated. From this it is observed that the rational
cubic FIS has linear convergence with the original function. An upper bound for the
error in fractal surface interpolation is obtained when there is a slight perturbation in
the corresponding scaling factors. From this it is observed that the rational cubic FIS
is stable with respect to the small perturbations in the corresponding scaling factors.
Data-dependent constraints on the scaling factors and shape parameters have been
derived for achieving monotonic rational cubic FIS.
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Toward a Unified Methodology
for Fractal Extension of Various Shape
Preserving Spline Interpolants

S.K. Katiyar and A.K.B. Chand

Abstract Fractal interpolation, one in the long tradition of those involving the inter-
polatary theory of functions, is concerned with interpolation of a data set with a
function whose graph is a fractal or a self-referential set. The novelty of fractal inter-
polants lies in their ability to model a data set with either a smooth or a nonsmooth
function depending on the problem at hand. To broaden their horizons, some spe-
cial class of fractal interpolants are introduced and their shape preserving aspects
are investigated recently in the literature. In the current article, we provide a unified
approach for the fractal generalization of various traditional nonrecursive polyno-
mial and rational splines. To this end, first we shall view polynomial/rational FIFs as
α-fractal functions corresponding to the traditional nonrecursive splines. The ele-
ments of the iterated function system are identified befittingly so that the class of
α-fractal function f α incorporates thegeometric features such as positivity,monotonic-
ity, and convexity in addition to the regularity inherent in the generating function f .
This general theory in conjuction with shape preserving aspects of the traditional
splines provides algorithms for the construction of shape preserving fractal interpo-
lation functions. Even though the results obtained in this article are generally enough,
we wish to apply it on a specific rational cubic spline with two free shape parameters.
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1 Introduction

The problem of classical interpolation is to find a continuous or a differentiable
function such that the graph of the function contains a given set of data points. In
most of the cases, classical interpolants are about constructing a very smooth function
passing through the given data. However, in several physical experiments, the data
arises from highly irregular curves and surfaces found in nature and may not be
generated from smooth functions. To model such a data set, Barnsley [1] introduced
the notion of Fractal Interpolation Function (FIF) based on the theory of Iterated
Function System (IFS). A FIF is obtained as a fixed point of a suitable map defined
on a space of continuous functions. FIFs are used to approximate naturally occurring
functions which show some kind of self-similarity on magnification and the fractal
dimensions of their graph are nonintegers.

FIFs provide a basis for the constructive approximation theory of nondifferentiable
functions. Further, differentiable FIFs [2] constitute an alternative to the traditional
nonrecursive interpolation and approximation methods (see, for instance, [3, 5,
12]). In this way, the fractal methodology provides more flexibility and versatility
on the choice of an interpolant. Consequently, this function class can be useful
for mathematical and engineering problems where the classical spline interpolation
approach may not work satisfactorily.

By using suitable IFS, Barnsley and Navascués have provided a method to perturb
a continuous function f ∈ C (I ) so as to yield a class of continuous functions
f α ∈ C (I ), where α is a free parameter, called scale vector. For suitable values of the
scale vector α, the fractal functions f α simultaneously interpolate and approximate
f . By this method, one can define fractal analogues of any continuous function. This
function f α retains some properties such as continuity and integrability of f , but in
general does not posses differentiability. However, if the problem is of differentiable
type, the parameters can be chosen in a specific way and f α can be made to share
the regularity of f . Thus, the parameter α can be used to modify or preserve the
properties of f .

The problem of searching a sufficiently smooth function that preserves the qual-
itative shape property inherent in the data is generally referred to as shape preserv-
ing interpolation/approximation, which is important in practical ground. The shape
properties are mathematically expressed in terms of conditions such as positivity,
monotony, and convexity. As a submissive contribution to this goal, Chand and
group have initiated the study on shape preserving fractal interpolation and approx-
imation using various families of polynomial and rational IFSs (see, for instance,
[5–7, 20]). These shape preserving fractal interpolation schemes possess the novelty
that the interpolants inherit the shape property in question and at the same time the
suitable derivatives of these interpolants own irregularity in finite or dense subsets
of the interpolation interval. This attribute of shape preserving FIFs finds potential
applications in various nonlinear phenomena.

Current article intends to provide a uniform approach to define fractal analogues
of various polynomial/rational splines widely used in the field of shape preserving
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interpolation. Toward this goal, first we recognize a FIF as an α-fractal function
corresponding to a traditional spline, where the IFS involves a family of base func-
tions. Next, we propose a theorem that enables one to choose elements of the IFS
appropriately so that the corresponding fractal functions f α retain the order of the
continuity and the important geometric features, namely positivity, monotonicity,
and convexity of the germ f . Conditions for shape preservation of traditional spline
f when coupled with this theorem provide restraints that ensure shape preservation
of FIFs. For an illustrative purpose, we discuss fractal analogue of rational spline
introduced in [18] and establish its positivity property. To illustrate that the proposed
method indeed provides a single platform for generalizing polynomial/rational frac-
tal splines, various shape preserving FIFs studied so far in the literature are reported,
however within the current conceptual framework.

2 Basic Facts

It has not proved possible, and would perhaps not be appropriate to provide a detailed
exposition of fractal interpolation theory. Neverthless, to ease the acess for the non-
expert the essentials of fractal interpolation that form background for our study have
been collected in this section. For a detailed study, the reader may consult [1, 2, 15].

2.1 IFS for Fractal Functions

For r ∈ N, let Nr denote the subset {1, 2, . . . , r} of N. Let a set of data points
D = {(xi , yi ) ∈ R

2 : i ∈ NN } satisfying x1 < x2 < · · · < xN , N > 2, be given.
Set I = [x1, xN ], Ii = [xi , xi+1] for i ∈ NN−1. Suppose Li : I → Ii , i ∈ NN−1 be
contraction homeomorphisms such that

Li (x1) = xi , Li (xN ) = xi+1. (1)

Let 0 < ri < 1, i ∈ NN−1, and X := I × R. Let N − 1 continuous mappings
Fi : X → R be given satisfying:

Fi (x1, y1) = yi , Fi (xN , yN ) = yi+1, |Fi (x, y) − Fi (x, y∗)| ≤ ri |y − y∗|, (2)

where (x, y), (x, y∗) ∈ X . Define wi : X → Ii × R ⊆ X , wi (x, y) =(
Li (x), Fi (x, y)

) ∀ i ∈ NN−1. It is known [1] that there exists a metric on R
2,

equivalent to the Euclidean metric, with respect to which wi , i ∈ NN−1, are con-
tractions. The collection I = {X; wi : i ∈ NN−1} is called an iterated function
system (IFS). Associated with the IFS I , there is a set valued Hutchinson map

W : H(X) → H(X) defined by W (B) = N−1∪
i=1

wi (B) for B ∈ H(X), where H(X)
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is the set of all nonempty compact subsets of X endowed with the Hausdorff metric
hd . The Hausdorff metric hd completes H(X). Further, W is a contraction map on
the complete metric space (H(X), hd). By the Banach Fixed Point Theorem, there
exists a unique set G ∈ H(X) such that W (G) = G. This set G is called the attractor
or deterministic fractal corresponding to the IFS I . For any choices of Li and Fi

satisfying the conditions prescribed in (1–2), the following result holds.

Proposition 1 (Barnsley [1]) The IFS {X; wi : i ∈ NN−1} defined above admits a
unique attractor G, and G is the graph of a continuous function g : I → R which
obeys g(xi ) = yi for i ∈ NN .

Definition 1 The aforementioned function g whose graph is the attractor of an IFS
is called a Fractal Interpolation Function (FIF) or a self-referential function
corresponding to the IFS {X; wi : i ∈ NN−1}.

The above fractal interpolation function g is obtained as the fixed point of the
Read-Bajraktarević (RB) operator T defined on a complete metric space (G , ρ):

(T h∗)(x) = Fi

(
L−1

i (x), h∗ ◦ L−1
i (x)

)
∀ x ∈ Ii , i ∈ NN−1.

where G := {h∗ : I → R : h∗ is continuous on I, h∗(x1) = y1, h∗(xN ) = yN }
is equipped with the uniform metric. It can be seen that T is a contraction mapping
on (G , ρ) with a contraction factor r∗ := max{ri : i ∈ NN−1} < 1. The fixed point
of T is the FIF g corresponding to the IFS I . Therefore, g satisfies the functional
equation:

g(x) = Fi

(
L−1

i (x), g ◦ L−1
i (x)

)
, x ∈ Ii , i ∈ NN−1, (3)

The most popular IFS for fractal interpolants are defined by the maps:

Li (x) = ai x + bi , Fi (x, y) = αi y + qi (x), i ∈ NN−1. (4)

Here −1 < αi < 1 and qi : I → R are suitable continuous functions satisfying
(2). The parameter αi is called a scaling factor of the transformation wi , and α =
(α1, α2, . . . , αN−1) is the scale vector corresponding to the IFS. The properties such
as approximationorder, smoothness, differentiability, stability, senstivitywith respect
to perturbation in parameters, and fractal dimension of FIFs are well-studied and
reported in many places in the literature (see, for instance, [8, 13, 22]).

2.2 α-fractal Function

Let f ∈ C (I ) be a continuous function and consider the case.

qi (x) = f ◦ Li (x) − αi b(x). (5)
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Here b : I → R is a continuous map that fulfills the conditions b(x1) = f (x1),
b(xN ) = f (xN ), and b 
= f . This case is proposed by Barnsley [1] and Navascués
[11] as generalization of any continuous function. Here the interpolation data are
{(xi , f (xi )) : i ∈ NN }. We define the α-fractal function corresponding to f in the
following:

Definition 2 The continuous function f α : I → R whose graph is the attractor of
the IFS defined by (4–5) is referred to as α-fractal function associated with f, with
respect to “base function”b, scale vector α, and the partition D .

According to (3), f α satisfies the functional equation:

f α(x) = f (x) + αi [( f α − b) ◦ L−1
i (x)] ∀x ∈ Ii , i ∈ NN−1. (6)

Recently, it is observed that (see [21]) the α-fractal function f α obtained by per-
turbing a given continuous function f ∈ C (I ) with the help of a finite sequence
of base functions B := {bi ∈ C (I ), bi (x1) = f (x1), bi (xN ) = f (xN ), bi 
= f }
instead of a single base function is more advantageous. For instance, in generalizing
rational splines with different shape parameters in different subintervals determined
by interpolation points. That is, consider

qi (x) = f ◦ Li (x) − αi bi (x). (7)

According to (3) , f α satisfies the functional equation:

f α(x) = f (x) + αi [( f α − bi ) ◦ L−1
i (x)] ∀x ∈ Ii , i ∈ NN−1. (8)

Note that for α = 0, f α = f . Thus aforementioned equation may be treated as an
entire family of functions f α with f as its germ. By this method, one can define
fractal analogues of any continuous function.

2.3 Differentiable FIFs (Fractal Splines)

For a prescribed data set, a FIF with C r -continuity is obtained as the fixed point of
IFS (4), where the scaling factors αi and the functions qi are chosen according to the
following proposition.

Proposition 2 (Barnsley and Harrington [2]) Let {(xi , yi ) : i ∈ NN } be given
interpolation data with strictly increasing abscissae. Let Li (x) = ai x + bi , i ∈
NN−1, satisfy (1) and Fi (x, y) = αi y + qi (x), i ∈ NN−1, satisfy (2). Suppose that
for some integer r ≥ 0, |αi | ≤ κar

i , 0 < κ < 1, and qi ∈ C r (I ), i ∈ NN−1. Let

Fi,k(x, y) = αi y+q(k)
i (x)

ak
i

, y1,k = q(k)
1 (x1)

ak
1−α1

, yN ,k = q(k)
N−1(xN )

ak
N−1−αN−1

, k = 1, 2, . . . , r.
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If Fi−1,k(xN , yN ,k) = Fi,k(x1, y1,k) for i = 2, 3, . . . , N − 1 and k = 1, 2, . . . , r ,
then the IFS

{
X; (

Li (x), Fi (x, y)
) : i ∈ NN−1

}
determines a FIF g ∈ C r [x1, xN ],

and g(k) is the FIF determined by the IFS
{

X; (
Li (x), Fi,k(x, y)

) : i ∈ NN−1
}

for
k = 1, 2, . . . , r .

2.4 Smooth α-fractal Functions

In general, it may be difficult to obtain IFS satisfying the hypotheses of Barnsley and
Harrington theorem. The equality proposed in the above proposition demands the
resolution of systems of equations. Sometimes the system has no solution, mainly
whenever some boundary conditions are imposed on the function (see [2]). However,
for the special class of IFS define through (4–7) used to construct α-fractal function
f α , the procedure can be easily carried out, which is the content of the following
proposition. Details may be consulted in [14, 20, 21].

Proposition 3 Let f ∈ C r (I ). Suppose D = {x1, x2, . . . , xN } be an arbitrary
partition on I satisfying x1 < x2 < · · · < xN . Let |αi | < ar

i for all i ∈ NN−1.

Further suppose that B = {bi ∈ C r (I ) : i ∈ NN−1} fulfills b(k)
i (x1) = f (k)(x1),

b(k)
i (xN ) = f (k)(xN ) for k = 0, 1, . . . , r . Then the corresponding fractal function

f α is r-smooth, and ( f α)(k)(xi ) = f (k)(xi ) for i ∈ NN and k = 0, 1, . . . , r .

This completes our preparations for the current study, and we are now ready for our
main section.

3 α-fractal Rational Cubic Spline Preserving Positivity

In this section, first we shall find the strip condition for the r th derivative of
α-fractal function then we construct a FIF as an α-fractal function corresponding
to a traditional spline obtained through a family of base functions. We apply the
present formalism to study positivity of a special class of rational FIFs.

3.1 Strip Condition for rth Derivative of α-fractal Function

In this subsection, we shall provide conditions on the parameters so as to ensure
the r th derivative of a C r -continuous fractal function lies in a rectangle whenever
its classical counterpart f has similar property. Our proof is patterned after [20].
However, we work with a slightly more general obstacle for the r th derivative, where
r ∈ N ∪ {0} is arbitrary and we consider a finite sequence of base functions B =
{bi ∈ C r (I ), bi (x1) = f (x1), bi (xN ) = fi (xN ), bi 
= f }, perhaps with some
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more additional conditions. This is contrast to the analysis in [20] which deals with
constraining graph of f α (constructed with a single base function) and its first two
derivatives within a rectangle I ×[0, M]. For a brief presentation of the theorem, let
us introduce the following notation for a continuous function g defined on a compact
interval J :

m(g; J ) = min {g(x) : x ∈ J }, M(g; J ) = max {g(x) : x ∈ J }.

Theorem 1 Let f ∈ C r (I ) be such that M1 ≤ f (r)(x) ≤ M2 for all x ∈ I and for
some suitable constant M1 and M2. The α-fractal function f α (cf. (6)) corresponding
to f satisfies M1 ≤ ( f α)(r)(x) ≤ M2 for all x ∈ I , provided the finite sequence
of base functions satisfying B = {bi ∈ C r (I ), b(k)

i (x1) = f (k)(x1), b(k)
i (xN ) =

f (k)
i (xN ), bi 
= f, k = 0, 1, . . . , r} and the scaling factors |αi | < ar

i for all i ∈
NN−1 obeying the following additional conditions are selected.

max

{
ar

i [M1 − m( f (r); Ii )]
M2 − m(b(r)

i ; I )
,
−ar

i [M2 − M( f (r); Ii )]
M(b(r)

i ; I ) − M1

}
≤ αi

≤ min

{
ar

i [m( f (r); Ii ) − M1]
M(b(r)

i ; I ) − M1

,
ar

i [M2 − M( f (r); Ii )]
M2 − m(b(r)

i ; I )

}

Proof With the stated conditions on the scale factors and the function bi , we can
ensure from Proposition 3 that corresponding fractal function f α is r -smooth. Note
that ( f α)(r) is a fractal function corresponding to the IFS {X; (Li (x), Fi,r (x, y)) :
i ∈ NN−1} (see Proposition 3), ( f α)(r)(xi ) = f (r)(xi ) and ( f α)(r) is constructed
iteratively using the following functional equation:

( f α)(r)(Li (x)) = Fi,r (x, ( f α)(r)(x)) = f (r)(Li (x)) + αi

ar
i

{
( f α)(r) − b(r)

i

}
(x).

Therefore to prove M1 ≤ ( f α)(r)(x) ≤ M2 for all x ∈ I , by the property of
the attractor of the IFS, it is enough to prove that M1 ≤ y ≤ M2 implies M1 ≤
Fi,r (x, y) ≤ M2 ∀i ∈ NN−1.

Firstly, let 0 ≤ αi < ar
i . We note that M1 ≤ y ≤ M2 implies αi

ar
i

M1 +
f (r)(Li (x))− αi

ar
i
b(r)

i (x) ≤ αi
ar

i
y + f (r)(Li (x))− αi

ar
i
b(r)

i (x) ≤ αi
ar

i
M2+ f (r)(Li (x))−

αi
ar

i
b(r)

i (x). Therefore our target M1 ≤ αi
ar

i
y + f (r)(Li (x)) − αi

ar
i
b(r)

i (x) ≤ M2 is

achieved if M1(1 − αi
ar

i
) ≤ f (r)(Li (x)) − αi

ar
i
b(r)

i (x) ≤ M2(1 − αi
ar

i
).

Note that f (r)(Li (x)) ≥ m( f (r); Ii ) and b(r)
i (x) ≤ M(b(r)

i ; I ) is true for all

x ∈ I . Therefore, M1(1 − αi
ar

i
) ≤ f (r)(Li (x)) − αi

ar
i
b(r)

i (x) holds if M1(1 −
αi
ar

i
) ≤ m( f (r); Ii ) − αi

ar
i

M(b(r)
i ; I ), i.e., if αi ≤ ar

i [m( f (r); Ii ) − M1]
M(b(r)

i ; I ) − M1

. Similarly,
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f (r)(Li (x)) ≤ M( f (r); Ii ) and b(r)
i (x) ≥ m(b(r)

i ; I ) is true for all x ∈ I . There-

fore, f (r)(Li (x)) − αi
ar

i
b(r)

i (x) ≤ M2(1− αi
ar

i
) holds if M( f (r); Ii ) − αi

ar
i
m(b(r)

i ; I ) ≤
M2(1 − αi

ar
i
), which in turn holds if

αi ≤ ar
i [M2 − M( f (r); Ii )]

M2 − m(b(r)
i ; I )

.

Now assume −ar
i < αi ≤ 0. In this case, M1 ≤ y ≤ M2 implies that

αi
ar

i
M2 + f (r)(Li (x)) − αi

ar
i
b(r)

i (x) ≤ αi
ar

i
y + f (r)(Li (x)) − αi

ar
i
b(r)

i (x) ≤ αi
ar

i
M1 +

f (r)(Li (x))− αi
ar

i
b(r)

i (x). Consequently, for M1 ≤ Fi,r (x, y) ≤ M2, it is sufficient to

verify M1− αi
ar

i
M2 ≤ f (r)(Li (x))− αi

ar
i
b(r)

i (x) ≤ M2− αi
ar

i
M1. By appropriately using

the definition of m(b(r)
i ; I ), M(b(r)

i ; I ), m( f (r); Ii ), M( f (r); Ii ) on lines similar to
the first part, we get

αi ≥ ar
i [M1 − m( f (r); Ii )]

M2 − m(b(r)
i ; I )

and αi ≥ −ar
i [M2 − M( f (r); Ii )]
M(b(r)

i ; I ) − M1

. Combination of the

obtained conditions on the scale factors completes the proof. �

Remark 1 A persual of the foregoing theorem reveals that if f : I = [a, b] → R is
C r -continuous r -convex function (i.e., f (r) ≥ 0), then we can select a scale vector
α such that f α ∈ C r (I ) and f α preserves r -convexity of f . Note that for r = 0, 1,
and 2 r -convexity reduces to positivity, monotonicity, and convexity, respectively.

Remark 2 Let us confine to the positivity case (i.e., r = 0 and M1 = 0). Then the
condition for 0 ≤ f α ≤ M2 can be obtained as |αi | < 1 and

max

{
− m( f ; Ii )

M2 − m(bi ; I )
,

M( f ; Ii ) − M2

M(bi ; I )

}
≤ αi ≤ min

{
m( f ; Ii ) − M1

M(bi ; I )
,

M2 − M( f ; Ii )

M2 − m(bi ; I )

}
.

If it is enough to consider the nonnegative scale factors, then the following condition
on the scale factors ensure the nonnegativity of f α: 0 ≤ αi ≤ m( f ;Ii )

M(bi ;I ) , where |αi | < 1
is assumed.

Remark 3 f ∈ C r (I ) be such that f (r)(x) ≤ 0 for all x ∈ I , then we may construct
f α satisfying ( f α)(r)(x) ≤ 0 for all x ∈ I by employing Theorem 1. Taking M2 = 0
then the condition for M1 ≤ f α ≤ 0 can be obtained as: |αi | < 1 and

max

{
−ar

i [M1 − m( f (r); Ii )]
m(b(r)

i ; I )
,

−ar
i M( f (r); Ii )

M1 − M(b(r)
i ; I )

}
≤ αi

≤ min

{
ar

i [M1 − m( f (r); Ii )]
M1 − M(b(r)

i ; I )
,

ar
i [M( f (r); Ii )]

m(b(r)
i ; I )

}
.
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3.2 Construction of Rational Cubic Spline FIF
with Shape Parameters

Consider a set of data pointsD = {(xi , yi , di ) : i ∈ NN }where x1 < x2 < · · · < xN .
Here yi denote the function value and di denote the first derivative at the knot point
xi for each i ∈ NN−1. For the data set D , a traditional nonrecursive rational cubic
spline f ∈ C 1(I ) is defined in a piecewise manner as follows (see [18] for details).
For θ := x−x1

xN −x1
and hi = xi+1 − xi , x ∈ I ,

f
(
Li (x)

) = Ai (1 − θ)3 + Biθ(1 − θ)2 + Ciθ
2(1 − θ) + Diθ

3

ui (1 − θ)2 + 2θ(1 − θ) + viθ2
, (9)

where Ai = ui yi , Bi = ui yi + hi ui di , Ci = vi yi+1 − hi vi di+1, Di = vi yi+1,
and ui > 0, vi > 0 are free shape (tension) parameters. The rational interpolant f
satisfies the Hermite interpolation conditions, f (xi ) = yi and f (1)(xi ) = di , for
i ∈ NN . To develop the α-fractal rational cubic spline corresponding to f , assume
|αi | ≤ ai , and select a family B = {bi ∈ C 1(I ) : i ∈ NN } satisfying the conditions
bi (x1) = f (x1) = y1, bi (xN ) = f (xN ) = yN , b(1)

i (x1) = f (1)(x1) = d1, and

b(1)
i (xN ) = f (1)(xN ) = dN (cf. Section2). There are variety of choices for B. For
our convenience, we take bi to be a rational function of similar form as that of the
classical interpolant f . For x ∈ I = [x1, xN ] and θ := x−x1

xN −x1
, our choice for bi is

bi (x) = A∗
i (1 − θ)3 + B∗

i θ(1 − θ)2 + C∗
i θ2(1 − θ) + D∗

i θ3

ui (1 − θ)2 + 2θ(1 − θ) + viθ2
, i ∈ NN−1, (10)

where the coefficients A∗
i , B∗

i , C∗
i , and D∗

i are determined through the conditions

bi (x1) = y1, bi (xN ) = yN , b(1)
i (x1) = d1, b(1)

i (xN ) = dN . After applying these
conditions on bi , we can easily get A∗

i = ui y1, B∗
i = ui y1+(xN −x1)ui d1, C∗

i =
vi yN − (xN − x1)vi dN , D∗

i = vi yN .

Consider the α-fractal rational cubic spline corresponding to f as (see (8))

f α
(
Li (x)

) = αi f α(x) + f
(
Li (x)

) − αi bi (x), x ∈ I, i ∈ NN−1. (11)

In view of (9) and (10), we have

f α
(
Li (x)

) = αi f α(x) + Pi (x)

Qi (x)
, (12)

Pi (x) ={yi − αi y1}ui (1 − θ)3 + {
(2 + ui )yi + hi ui di − αi [(2 + ui )y1 + ui (xN − x1)d1]

}

θ(1 − θ)2 + {
(2 + vi )yi+1 − hi vi di+1 − αi [(2 + vi )yN − vi (xN − x1)dN ]}

θ2(1 − θ) + {yi+1 − αi yN }viθ
3,



232 S.K. Katiyar and A.K.B. Chand

Qi (x) = ui (1 − θ)2 + 2θ(1 − θ) + vi θ
2, i ∈ NN−1, θ = x − x1

xN − x1
.

Note that the function f α : I → R enjoys the interpolation conditions f α(xi ) = yi ,
( f α)(1)(xi ) = di .

Remark 4 When αi = 0 for all i ∈ NN−1 and for x ∈ [xi , xi+1], using L−1
i (x)−x1
xN −x1

=
x−xi

xi+1−xi
, one can see that the above expression coincides with the classical rational

cubic interpolant constructed by Sarfraz. et al. [18].

Remark 5 If ui = vi = 1 for all i ∈ NN−1, then the α-fractal rational cubic spline
reduces to the standard C 1-cubic Hermite FIF. For αi = 0 and ui = vi = 1 for all
i ∈ NN−1, the α-fractal rational cubic spline recovers the classical cubic Hermite
interpolant.

3.3 Positivity Preserving Rational Cubic FIF

Given a set of Hermite data D = {
(xi , yi , di ) : i ∈ NN

}
, where yi > 0, we would

like to constraint the parameters so that the proposed rational cubic FIF itself is
nonnegative.
Method 1: In view of functional equation in (12), the reader will undoubtedly discern
with the fact that the positivity of f α depends on positivity of cubic, once we assume
αi ≥ 0 ∀ i ∈ NN−1. Now for positivity of cubic, we shall proceed on lines similar
to the traditional rational cubic, given in [18].

{yi − αi y1}ui > 0, {yi+1 − αi yN }vi > 0,

(2 + ui )yi + hi ui di − αi [(2 + ui )y1 + ui (xN − x1)d1] > 0, (13)

(2 + vi )yi+1 − hi vi di+1 − αi [(2 + vi )yN − vi (xN − x1)dN ] > 0.

The first two inequalities are satisfied if αi <
yi
y1

and αi <
yi+1
yN

, respectively.
Consequently, for f α to be positive, we take the scaling factors according to 0 ≤
αi < min{ yi

y1
,

yi+1
yN

}. The inequalities third and fourth in (13) can be rewritten as

ui {(yi − αi y1) + hi di − αi (xN − x1)d1} > −2(yi − αi y1). (14)

vi {(yi+1 − αi yN ) + hi di+1 + αi (xN − x1)dN } > −2(yi+1 − αi yN ). (15)

First, we select αi according to 0 ≤ αi < min{ yi
y1

,
yi+1
yN

, ai }, i ∈ NN−1. Conse-
quently, the right-hand side expressions in the inequalities (14–15) are negative.
Having selected αi , the parameter ui and vi can be selected as
0 < ui <

−2(yi −αi y1)
(yi −αi y1)+hi di −αi (xN −x1)d1

, 0 < vi <
−2(yi+1−αi yN )

(yi+1−αi yN )+hi di+1+αi (xN −x1)dN
.
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Remark 6 Whenαi = 0 for all i ∈ NN−1, the conditions on IFS parameters obtained
in the analysis reduce to ui {yi + hi di } > −2yi and vi {yi+1 + hi di+1} > −2yi+1.
Thus the positivity preserving conditions developed here corrects and generalizes
the positivity preserving conditions of classical rational spline studied by Sarfraz.
et al. [18].

Method 2: In this method, we shall explore the idea of viewing the rational cubic
FIF as a α-fractal function corresponding to rational cubic spline to obtain desired
positivity of f α , using Theorem 1. That is, we identify suitable elements of the IFS
so that the fractal function f α is positive whenever f is positive.
Step 1: Given a data set D = {(xi , yi ) : i ∈ NN } wherein yi ≥ 0, construct the
positive cubic spline f by selecting ui and vi according to Remark 6.
Step 2 Choose bi as in (10) using ui and vi values in Step 1.
Step 3: For the f ,bi obtained inStep1 andStep2, respectively, compute the constants
m(b; I ) = min

x∈I
b(x), M(b; I ) = max

x∈I
b(x), m( f ; Ii ) = min

x∈Ii
f (x), M( f ; Ii ) =

max
x∈Ii

f (x). Choose |αi | < ai and

max

{
− m( f ; Ii )

M2 − m(bi ; I )
,

M( f ; Ii ) − M2

M(bi ; I )

}
≤ αi ≤ min

{
m( f ; Ii ) − M1]

M(bi ; I )
,

M2 − M( f ; Ii )

M2 − m(bi ; I )

}
.

for positivity as Remark 2.
Step 4: Input the scaling parameters as prescribed by Step 3 in the functional equation
represented by (12) whereupon the points of the graph of f α are computed.

Remark 7 The reader is bound to have noticed that in proving Theorem 1, to avoid
dependence of condition on point x , we have worked with minimum and maximum
of f, b. In some sense this provides a “worst case scenario”. As a consequence,
we conjecture that in most of the numerical examples, Method 1 may provide a
wider range for the scaling factors in comparison with Method 2, if we are intrested
in nonnegative scaling. However, Method 2 has advantage that it allows negative
values of scaling for preserving positivity (see Sect. 4).

Remark 8 One more advantage of viewing the cubic rational FIF as α-fractal func-
tion corresponding to the traditional rational spline rests in the study of its conver-
gence analysis. Let us skim through this in the following. Note that from (8), with a

little algebra one can show that ‖ f α − f ‖∞ ≤ |α|∞
1 − |α|∞ max

i∈NN−1

‖ f − bi‖∞, where

|α|∞ = max{|αi | : i ∈ NN−1}. Thus if φ is an original function corresponding
to data D , using the triangle inequality ‖φ − f α‖∞ ≤ ‖φ − f ‖∞ + ‖ f α − f ‖∞
and convergence analysis of traditional spline f , one may easily obtain convergence
analysis of f α . If f has order of convergence O(hm) as h → 0, then f α will also have

the same order of convergence provided, |αi | < am
i = ( hi

xN − x1

)m ∀ i ∈ NN−1.
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3.4 Examples

Let a data set D = {(xi , yi , di ) : i ∈ NN } with x1 < x2 < · · · < xN be given.
Here yi and di are the function value and the first derivative value at the knot xi ,
respectively. Though in Sect. 3.2 we have considered a special type of cubic rational
FIF, the present approach can be applied to obtain fractal version of various polyno-
mial/rational splines available in the literature. We illustrate this claim with certain
examples. We would like to remark that in all these examples polynomials appearing
in denominators are preassigned and free parameters occuring in the denominators
are assumed to be positive.
Example 1:Consider a traditional cubicHermite interpolant f defined in a piecewise
manner by

f1
(
Li (x)

) = A1i (1 − θ)3 + A2iθ(1 − θ)2 + A3i (1 − θ)θ2 + A4iθ
3,

where A1i = yi , A2i = 3yi + hi di , A3i = 3yi+1 − hi di+1, A4i = yi+1. Consider
the family of base functions {b1i : i ∈ NN−1} such that b1i = b ∈ C 1(I,R) ∀ i and
b(xm) = f (xm) = ym and b(1)(xm) = f (1)(xm) = dm for m = 1, N . For instance, b
may be the two-point Hermite interpolant b1i (x) = b(x) = A∗

1i (1− θ)3 + A∗
2iθ(1−

θ)2 + A∗
3i (1 − θ)θ2 + A∗

4iθ
3, where A∗

1i = y1, A∗
2i = 3y1 + (xN − x1)d1, A∗

3i =
3yN − (xN − x1)dN , A∗

4i = yN . Then the α-fractal function corresponding to f
provides C 1-cubic Hermite FIF

f α
1 (Li (x)) = f1(Li (x)) + αi ( f α

1 − b1i )(x) ∀ x ∈ I, i ∈ NN−1.

This cubic FIF is studied by adopting a constuctive approach in [5].
Example 2: Consider a piecewise defined nonrecursive C 1-rational cubic spline
discussed in [17] with two shape parameter vi , wi defined as follows

f2
(
Li (x)

) = C1i (1 − θ)3 + C2iθ(1 − θ)2 + C3iθ
2(1 − θ) + C4iθ

3

(1 − θ)3 + viθ(1 − θ)2 + wiθ2(1 − θ) + θ3
,

where C1i = yi , C2i = vi yi + hi di , C3i = wi yi+1 + hi di+1, C4i = yi+1. We
choose the family B = {b2i ∈ C 1(I ) : i ∈ NN−1} of base functions, where b2i are
rational functions with form similar to that of the classical interpolant. Our specific
choice for b2i is

b2i (x) = C∗
1i (1 − θ)3 + C∗

2iθ(1 − θ)2 + C∗
3iθ

2(1 − θ) + C∗
4iθ

3

(1 − θ)3 + viθ(1 − θ)2 + wiθ2(1 − θ) + θ3
,

whereC∗
1i = y1, C∗

2i = vi y1+(xN −x1)d1, C∗
3i = wi yN +(xN −x1)dN , C∗

4i = yN .
Then the corresponding α-fractal function corresponding to f is obtained

f α
2 (Li (x)) = f2(Li (x)) + αi ( f α

2 − b2i )(x) ∀ x ∈ I, i ∈ NN−1.



Toward a Unified Methodology for Fractal Extension … 235

This rational FIF is studied by adopting constructive approach in Chand et al. [7].
Example 3: Consider a piecewise defined nonrecursive C 1-rational cubic spline
discussed in [19] with four shape parameter λi , βi , γi , δi defined as follows

f3
(
Li (x)

) = D1i (1 − θ)3 + D2iθ(1 − θ)2 + D3iθ
2(1 − θ) + D4iθ

3

λi (1 − θ)2 + βi (1 − θ)2θ + γi (1 − θ)θ2 + δiθ2
,

where D1i = λi yi , D2i = (λi + βi )yi + λi hi di , D3i = (γi + δi )yi+1 −
δi hi di+1, D4i = δi yi+1. We choose the family B = {b3i ∈ C 1(I ) : i ∈ NN−1}
of base functions with form similar to that of the classical interpolant f as

b3i (x) = D∗
1i (1 − θ)3 + D∗

2iθ(1 − θ)2 + D∗
3iθ

2(1 − θ) + D∗
4iθ

3

λi (1 − θ)2 + βi (1 − θ)2θ + γi (1 − θ)θ2 + δiθ2
,

where D∗
1i = λi y1, D∗

2i = (λi +βi )y1+λi (xN −x1)d1, D∗
3i = (γi +δi )yN −δi (xN −

x1)dN , D∗
4i = δi yN . Then the α-fractal function corresponding to f provides C 1-

cubic rational FIF

f α
3 (Li (x)) = f3(Li (x)) + αi ( f α

3 − b3i )(x) ∀ x ∈ I, i ∈ NN−1.

The aforementioned FIF is studied constructively by Chand et al. [6].
Example 4: Consider a piecewise defined nonrecursive C 2 rational quintic spline f
discussed in [10] with two shape parameter βi , γi defined as follows

f4
(
Li (x)

) =

5∑
j=1

E jiθ
j (1 − θ)5− j

βi (1 − θ) + γiθ
,

where E0i = βi yi , E1i = (4βi + γi )yi + βi hi di , E2i = (6βi + 4γi )yi + (3βi +
γi )hi di + βi

h2i
2 Di , E3i = (4βi + 6γi )yi+1 − (βi + 3γi )hi di+1 + γi

h2i
2 Di+1, E4i =

(βi + 4γi )yi+1 − γi hi di+1, E5i = γi yi+1. We choose the family B = {b4i ∈ C 2(I ) :
i ∈ NN−1} of base functions with form similar to that of the classical interpolant
f , i.e.,

b4i (x) =

5∑
j=1

E∗
j iθ

j (1 − θ)5− j

βi (1 − θ) + γiθ
,

where E∗
0i = βi y1, E∗

1i = (4βi + γi )y1 + βi (xN − x1)d1, E∗
2i = (6βi + 4γi )y1 +

(3βi + γi )(xN − x1)d1 + βi
(xN −x1)2

2 D1, E∗
3i = (4βi + 6γi )yN − (βi + 3γi )(xN −

x1)dN + γi
(xN −x1)2

2 DN , E∗
4i = (βi + 4γi )yN − γi (xN − x1)dN , E∗

5i = γi yN . Then
the α-fractal function corresponding to f provides the C 2 quintic rational FIF
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f α
4 (Li (x)) = f4(Li (x)) + αi ( f α

4 − b4i )(x) ∀x ∈ I, i ∈ NN−1.

Remark 9 Our predilection to the particular choice of examples is attributablemerely
to the convenience. To be a little more precise, our specific choice enables to combine
f (Li (x)) and bi (x) and provides a simple expression for f α . Since shape preserv-
ing aspects of traditional splines reported in these examples are studied already in
the literature, we can obtain shape preserving aspects of the corresponding fractal
generalization using Theorem 1.

Remark 10 Apart from providing a common platform for shape preserving fractal
interpolation, the depth of Theorem 1 can be emphasized also by utilizing it for
developing fractal analogue of some shape preserving approximation results (as in
[20]). However, we shall postpone this to a future work and confine the current article
to interpolation.

4 Numerical Illustration

In this section, we will illustrate Method 1 and Method 2 (see Sect. 3.3) that
yield positivity preserving rational cubic spline FIFs with shape parameters with
some simple examples. To this end, let us take a set of positive Hermite data
D = {(0, 0.1, 2.4), (0.4, 1, 2.7), (0.75, 2, 8.2), (1, 5, 15.8)}. Assuming the values
of scaling factors αi = 0.5 and shape parameters ui = vi = 0.1 for all i ∈ {1, 2, 3},
the fractal curve in Fig. 1a attains negative values at certain points, which may be
undesirable for some practical applications.

For constructing a positivity preserving rational cubic spline FIF, we take scal-
ing factors that satisfy the conditions given in Method 1, our choice being α1 =
0.18, α2 = 0.30 and α3 = 0.20. With this choice of scaling factors, the expressions

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5
Data
Nonpositive rational cubic FIF

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
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3

3.5

4

4.5

5
Data
Positive rational cubic FIF by Method 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Data
Positive rational cubic FIF by Method 2

(a) (b) (c)

Fig. 1 Rational cubic spline FIF with shape parameters (the interpolating data points are given
by the circles and the relevant rational cubic spline FIF by the solid lines). a Nonpositive rational
cubic FIF, b Positive rational cubic spline FIF by Method 1, c Positive rational cubic spline FIF by
Method 2
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occurring in braces of the left-hand side of inequalities (14) and (15) turn out to be
positive for all i ∈ NN−1. Consequently, ui > 0 and vi > 0 are free to be chosen. By
taking u1 = 0.1, u2 = 0.2, u3 = 0.5, and v1 = 0.1, v2 = 0.3, v3 = 0.7, we generate
the positive fractal spline displayed in Fig. 1b. To illustrate Method 2, we first con-
struct the positive cubic spline f by selecting ui and vi according to Remark 6 and
choose bi with the same ui , vi . After computing the maximum and minimum value
of f and bi , we select scaling factors according to Remark 2 as mentioned inMethod
2 in Step 3. In particular, we take ui , vi as in Fig. 1b and α1 = 0.05, α2 = −0.001,
α3 = −0.0007. As mentioned earlier (see Remark 7), Method 2 has advantage that
it also allows negative values of scaling for preserving positivity. Input the deriv-
ative values and parameters values in the functional equation represented by (12)
whereupon the points of the graph of f α are computed in Fig. 1c.

5 Concluding Remarks and Possible Extensions

In this article, we have constructed a unified approach for the fractal generalization
of various traditional nonrecursive polynomial and rational spline. Even though the
results obtained in this article are general enough, we applied it on a rational cubic
spline with two shape parameters. Some more examples are reported to bring the
advantage of the current study.

To keep the size of this article within reasonable limits, we have not been able
to include monotonicity/convexity for the cubic rational FIF developed in Sect. 3.
However, let us note that one can develop the method with the idea inherent in
positivity preserving method. For instance, construct monotone cubic Hermite f
using appropriate algorithm [9] then select α according to the Theorem 1 so that f α

preserves shape inherent in f . These details, numerical illustrations, and convergence
analysis, etc., will appear elsewhere. Extension of the proposed rational fractal spline
to shape preserving bivariate interpolation is also under consideration.
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Unistochastic Matrices and Related
Problems

Aaron Carl Smith

Abstract A natural map sends unitary matrices to a subset of bistochastic matrices.
We refer to matrices in the image of the map as being unistochastic. The map will be
defined, and properties will be discussed. A necessary condition for a ray pattern to
be a unitary matrix’s ray pattern with be given. Observations regarding eigenvalues
of unistochastic matrices and their relationship with paths of unitary matrices will
also be presented.

Keywords Unistochastic · Bistochastic · Ray pattern · Circulant

1 Introduction

An n × n matrix is stochastic if all of its entries are nonnegative and all of its
rows sum to one. A stochastic matrix is bistochastic if all columns sum to one also.
The Euclidean norm of each row (column) from a unitary matrix is one; it follows
that if the modulus of every entry of a unitary (orthonormal) matrix is squared,
the resulting matrix will be bistochastic. Bistochastic matrices are also referred to as
doubly stochasticmatrices. The termbistochasticwill be used here to avoid confusion
with multistaged models [26].

LetBn denote the set of n × n bistochastic matrices. By the Birkhoff-von Neu-
mann theorem,Bn is the convex hull formed by the n ×n permutation matrices [16].
This convex hull is referred to as Birkhoff’s polytope [2]. The permutation matrices
are the extreme points of Birkhoff’s polytope since each one cannot be represented
as an average of two distinct points in the set [21]. The volume of Birkhoff’s poly-
tope is well understood for smaller 2 ≤ n ≤ 10 [1, 3, 5, 10]; Cappellini et al. [4]
approximates the volume of the polytope with
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nn−n2(2π)1/2−nen2+C+O(1/n) (1)

where C is a constant.
Letϒ be themap that sends unitarymatrices,U , to the set of bistochasticmatrices,

B, by squaring the moduli of unitary entries,

ϒ : U → B, (2)

b jk = |u jk |2. (3)

Matrices in the image of ϒ are called unistochastic. Unistochastic matrices that
are the image of an orthonormal matrix are called orthostochastic [2]. Some authors
use the term orthostochastic for matrices that are in the image of unitary matrices
[6].

For n = 2, all bistochastic matrices are unistochastic. All 2 × 2 bistochastic
matrices are of the form

[
p 1 − p

1 − p p

]
. (4)

For any arguments θ11, θ21, and θ22

⎡
⎣

√
peiθ11

√
1 − peiθ12

√
1 − pei(θ11−θ21+θ22+π) √

peiθ22

⎤
⎦ (5)

is in the preimage. The set of 3 × 3 unistochastic matrices is a proper subset ofB3.
The matrices

1
2

⎡
⎣
1 0 1
1 1 0
0 1 1

⎤
⎦ , 1

6

⎡
⎣
3 3 0
1 2 3
2 1 3

⎤
⎦ (6)

are bistochastic, but not unistochastic [15, 18]. To see this, use Proposition2 and say
that the diagonals are positive, then attempt to find arguments for the off-diagonal
entries. Blockmatriceswith one of the previous 3×3matrices show that unistochastic
matrices are proper subsets of bistochastic matrices when the matrix’s size is greater
than 2.

For a bistochastic matrix, B, to be unistochastic it must satisfy these row and
column inequalities [23, 27]:

max
m=1:n

√
Bmj Bml ≤ 1

2

n∑
k=1

√
Bkj Bkl (7)
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max
m=1:n

√
B jm Blm ≤ 1

2

n∑
k=1

√
B jk Blk (8)

For 3 × 3 bistochatic matrices, these conditions can be improved to triangle
inequalities for B to be unistochastic, and equalities for B to be orthostochastic [27].

If
(
r jkeiθ jk

)
is a unitary matrix, then

n∑
k=1

r jkrlke
i(θ jk−θlk) = δ jl . (9)

It follows that if j �= l, then the cumulative sum of these products equals zero. The
previous inequalities give a method to evaluate if moduli could be the moduli from
a unitary matrix. The off-diagonal sums of zero lead to a method to determine if a
ray pattern matrix is a ray pattern of a unitary matrix.

Theorem 1 Suppose that U = (r jkeiθ jk ) is a unitary matrix, let σ jl be a permutation
such that

Arg

⎛
⎝e

i

(
θ

jσ−1
jl (k)

−θ
lσ−1

jl (k)

)⎞
⎠ ≤ Arg

⎛
⎝e

i

(
θ

jσ−1
jl (k+1)

−θ
lσ−1

jl (k+1)

)⎞
⎠ (10)

where

Arg

⎛
⎝e

i

(
θ

jσ−1
jl (k)

−θ
lσ−1

jl (k)

)⎞
⎠ ∈ (−π, π ], (11)

then the points

m∑
k=1

r
jσ−1

jl (k)
r
lσ−1

jl (k)
�=0

r jσ−1
jl (k)

rlσ−1
jl (k)

e
i

(
θ

jσ−1
jl (k)

−θ
lσ−1

jl (k)

)

, (12)

m = 1, 2, . . . , n (13)

form a convex polygon.

Proof Since U is unitary, the total sum for each jl is zero. Thus the partial sums
form a polygon. By the selection of σ jl , each interior angle is less than π , it follows
that the polygon is convex. ��

A corollary of this result is a test to evaluate if there are no unitary matrices in a
ray pattern class [19, 20].
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Corollary 1 If A is an n × n ray pattern matrix, σ jl are permutations that sorts
a jka jl by arguments as above with zero moduli entries having zero argument, and
the sum

n∑
k=1

cos−1 cos(θ jσ−1
jl (k)

− θ jσ−1
jl (k+1) − θlσ−1

jl (k)
+ θlσ−1

jl (k+1) + π) (14)

is not a multiple of π for some j �= l, then A is not a unitary matrix’s ray pattern.

For a n × n unitary matrix, if the paths formed by zero and

m∑
k=1

r
jσ−1

jl (k)
r
lσ−1

jl (k)
�=0

r jσ−1
jl (k)

rlσ−1
jl (k)

e
i

(
θ

jσ−1
jl (k)

−θ
lσ−1

jl (k)

)

, (15)

m = 1, 2, . . . , n (16)

are plotted on a n × n multiplot, the diagonal plots will be the unit interval and the
off-diagonal plots will form convex polygons. Here, colinear points are included as
polygons; orthonormal matrices will have colinear paths. The jl-plot is a reflection
of the l j-plot.

A trend in the literature is that bistochastic and unistochastic matrices are well
understood for n = 3 and n = 4, and the volume of literature for larger matrices
decreases as n increases [2, 7, 11, 13, 27].

2 Properties of the Map

Since ϒ acts on the entries of a matrix, maps defined by permutating rows and
columns of a matrix commute with ϒ .

Proposition 1 If U is an n × n unitary matrix, P1 and P2 are n × n permutation
matrices, then

ϒ(P1U P2) = P1ϒ(U )P2. (17)

Proof The permutation matrices act on the position of entries and do not
change their values; ϒ acts on the value of matrix entries, and do not change their
position. ��
Proposition 2 If Dα and Dβ are diagonal unitary matrices that are equal size as a
unitary matrix U, then [13]

ϒ(DαU Dβ) = ϒ(U ). (18)
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Proof Diagonal unitary matrices act on the arguments of a matrix’s entries, they do
not change the moduli of entries, nor do they change the location of entries. ��
Definition 1 Two unitary matrices U1 and U2 are equivalent if there exists diagonal
unitary matrices D1 and D2 such that [11]

U1 = D1U2D2. (19)

Sincemultiplying by diagonal unitarymatrices does not change themoduli in each
position, ϒ sends equivalent matrices to the same unistochastic matrix. A dephase
representation of a unitarymatrix is an equivalentmatrixwith nonnegative real entries
in the first row and first column [8]. Fourier matrices are dephased matrices.

Definition 2 An isolated matrix, U , is a unitary matrix such that if ϒ(U ) = ϒ(V ),
then U and V are equivalent [25].

Definition 3 Two unitary matrices U1 and U2 are Haagerup-equivalent if there
exists diagonal unitary matrices D1 and D2, and permutation matrices P1 and P2
such that [11, 14]

U1 = P1D1U2D2P2. (20)

Haagerup equivalence is useful when using tangent maps to study unistochastic
matrices [11, 25].

Themapϒ sendsHaagerup-equivalentmatrices to unistochasticmatriceswith the
same Shannon entropy. This is the entropy of a Markov shift (one-side or two-sided)
whose measure is defined by the constant probability vector and B [17, 27].

Furthermore, Haagerup-equivalent matrices have the same squared Jarlskog
invariant since multiplication by diagonal unitary and permutations do not change
the area of unitarity triangles [11].

3 Proof that a Unitary Group is Connected

This section reviews the elementary proof that a unitary group, Un , is connected.
This is done to establish notation. This proof can be found in many introductory
topology texts.

The set of n×n unitary matrices is closed under multiplication and forms a group.
Sinceϒ is continuous, andUn is compact and connected under the relative topology,
Bn is compact and connected. For all n, the set of n × n orthogonal matrices is not
connected under the relative topology since there are no continuous paths from a
matrix with determinant −1 to the identity matrix [22].

Proposition 3 The set of n × n unitary matrices, Un is a connected set under the
relative topology.
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Proof Let U be an n × n unitary matrix. By definition

UU∗ = I, and (21)

U∗U = I. (22)

Thus every unitary matrix is normal and unitarily diagonalizable. Say that

U = SDS∗ (23)

where S is also a unitary matrix. Unitary matrices form a group and

S∗U S = D. (24)

Therefore D is a diagonal unitary matrix. It follows that

D = diag(eiθ1 , . . . , eiθn ) for some θ1, θ2, . . . , θn ∈ R. (25)

Let fU be the function that sends real values to unitary matrices defined by

fU (t) =SDt S∗ (26)

where Dt is the diagonal unitary matrix

Dt = diag(eiθ1t , eiθ2t , . . . , eiθn t ). (27)

Furthermore

fU (0) = I, (28)

fU (1) = U, (29)

Thus fU ([0, 1]) gives a path from I to U . Since U could be any unitary matrix,
every unitary matrix has a path to the identity matrix. Hence every unitary group is
connected. ��

4 Circulant Unistochastic Matrices

A circulant matrix with row vector
(
v1v2 . . . vn

)
is of the form

⎛
⎜⎜⎜⎜⎜⎝

v1 v2 v3 . . . vn

vn v1 v2 . . . vn−1
vn−1 vn v1 . . . vn−2

...
...

...
. . .

...

v2 v3 v4 . . . v1

⎞
⎟⎟⎟⎟⎟⎠

. (30)
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A matrix is circulant if and only if it is diagonalizable by conjugating with a Fourier
matrix [9].

For a given natural number, n, let

ω = e
2π
n i

. (31)

Let F be the n × n discrete Fourier transform matrix defined by

F =
(

1√
n
ω( j−1)(k−1)

)
. (32)

Theorem 2 If D is an n × n diagonal unitary matrix, then F∗DF is a circulant
unitary matrix and

ϒ(F∗DF) (33)

is a circulant unistochastic matrix. Furthermore,

F
(
ϒ(F∗DF)

)
F∗ (34)

gives a diagonalization of ϒ(F∗DF).

Proof A matrix is circulant if and only if it is diagonalizable by a discrete Fourier
transform matrix [9]. Discrete Fourier transform matrices are unitary, andUn forms
a group under matrix multiplication, hence F∗DF is a circulant unitary matrix. It
follows that there is a row vector −→u = (u1, u2, . . . , un) such that

F∗DF =

⎛
⎜⎜⎜⎜⎜⎝

u1 u2 u3 . . . un

un u1 u2 . . . un−1
un−1 un u1 . . . un−2

...
...

...
. . .

...

u2 u3 u4 . . . u1

⎞
⎟⎟⎟⎟⎟⎠

. (35)

By the definition of ϒ ,

ϒ(F∗DF) =

⎛
⎜⎜⎜⎜⎜⎝

|u1|2 |u2|2 |u3|2 . . . |un|2
|un|2 |u1|2 |u2|2 . . . |un−1|2

|un−1|2 |un|2 |u1|2 . . . |un−2|2
...

...
...

. . .
...

|u2|2 |u3|2 |u4|2 . . . |u1|2

⎞
⎟⎟⎟⎟⎟⎠

. (36)

Since F∗DF is unitary, ϒ(F∗DF) is unistochastic. The matrix ϒ(F∗DF) is circu-
lant with row vector (|u1|2, |u2|2, . . . , |un|2). Hence ϒ(F∗DF) is circulant, and its
diagonalization follows. ��
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5 Unistochastic Eigenpaths

For any n, the unitary group Un is connected and the map ϒ is continuous with
respect to the Frobenius norm, thus the unistochastic matricesϒ(Un) are connected.
Since eigenvalues depend continuously on matrix entries [12], the eigenvalues from
the unistochastic image of a unitary matrix will form continuous curves. For any
probability matrix, all eigenvalues are on the unit disk, and (1, 1, . . . , 1)T is a right
eigenvector with eigenvalue 1.

Definition 4 Let g : R → C
n×n be a continuousmap, I be a real interval, and
(M)

denote the eigenvalues of the square matrix M . The eigenpath of (g, [a, b]) is



(
g (I)

)
. (37)

A unistochastic eigenpath is the eigenpath of
(
ϒ ◦ fU , I

)
.

Unfortunately, when two unitary matrices are continuous deformation of each
other, their characteristic polynomials do not identify which eigenvalues are defor-
mations of each other. If the two matrices have the same conjugating matrix and
same block form in their Jordan canonical forms, then locations on the diagonal
show which eigenvalues are paired. The property of being a circulant matrix is pre-
served byϒ , and all circulant matrices are diagonalizable by Fourier matrices. These
properties give us the ability to construct unitary matrix paths where the eigenvalues
of the path’s unistochastic image are easily identified as distinct curves on the closed
unit disk of the complex plane (Table1).

The figures presented here are unistochastic eigenpaths with the unitary matrices
being circulant. This is done so that, computationally, it is easy to identify which
eigenvalues are continuous deformations of each other. The technique used to plot
eigenpaths does not use characteristic polynomial roots, it uses the discrete Fourier
transform to diagonalize ϒ ◦ fU (t). The plotted points are the diagonal entries of
the diagonal matrices

F
(
ϒ ◦ fU (t)

)
F∗. (38)

All plots were constructed with R [24]. Here is the color scheme:
From how the columns are ordered in our definition of the discrete Fourier trans-

form matrix, conjugate eigenvalues share colors. One is always an eigenvalue of a
stochastic matrix and called the stochastic eigenvalue, the figures appear to have
n − 1 curves; the stochastic eigenvalue is a fixed point on the plots.

Table 1 The colors for each eigenpath along the diagonal

Color Black Red Green Blue Cyan Magenta Yellow Gray

Diagonal
entry

1 2 3 4 5 6 7 8

n/2 n n − 1 n − 2 n − 3 n − 4 n − 5 n − 6
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Since the change of basis matrix is determined, one needs to select the arguments
of the eigenvalues of U and a real interval to construct an eigenpath. In each figure,
the eigenvalues of U (rounded) are listed on the right; the interval and matrix size is
in the main title (Figs. 1 and 2).

Fig. 1 A unistochastic
eigenpath for a 10 × 10
circulant unitary matrix. The
rounded off eigenvalues of
the unitary matrix are listed
in the figure

Fig. 2 A unistochastic
eigenpath for a 10 × 10
circulant unitary matrix. The
rounded off eigenvalues of
the unitary matrix are listed
in the figure
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6 Hypocycloids and Circulant Unistochastic Eigenpaths

For eigenvalues of 1, ω, ω2, . . . , ωn−1, and sufficiently large N , the eigenpath of
(ϒ ◦ fF∗ DF , [0, N ]) forms hypocycloids [27].

Proposition 4 If

U0 =

⎛
⎜⎜⎜⎝

0 . . . 0 1

I

0
...

0

⎞
⎟⎟⎟⎠ (39)

then (ϒ ◦ fU0 ,R)’s eigenpath forms hypocycloids centered on the origin with outer
radius 1 and inner radii j

n , j = 1, 2, . . . , n − 1 (Figs. 3 and 4).

Using a geometric sum and the eigenvalue formula for circulant matrices, it can
be shown that the eigenvalues along (ϒ ◦ fU0 ,R) are of the form

λs = 1

n2 sin2 π t
n∑

k=1

csc2 π
n [k − 1 + t]ω(k−1)(k−s). (40)

Fig. 3 The eigenpath for the
15 × 15 permutation matrix
that sends m → m + 1
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Fig. 4 The eigenpath for the 16 × 16 permutation matrix that sends m → m + 1

References

1. Beck,M., Pixton,D.: The ehrhart polynomial of the birkhoff polytope.DiscreteComput.Geom.
30(4), 623–637 (2003)

2. Bengtsson, I., Ericsson, A., Kus, M., Tadej, W., Zyczkowski, K.: Birkhoff’s polytope and
unistochastic matrices, N = 3 and N = 4. Commun. Math. Phys. 259(2), 307–324 (2005)

3. Canfield, E.R., McKay, B.D.: The asymptotic volume of the Birkhoff polytope. Online J. Anal.
Comb. 4, 4 (2009)

4. Cappellini, V., Sommers, H.J., Bruzda, W., Życzkowski, K.: Random bistochastic matrices. J.
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Film Story Structure and Shot Type Analysis
Using One-Way ANOVA, Kruskal–Wallis
Test, and Poisson Distribution Test

Udjianna Sekteria Pasaribu and Klara Ajeng Canyarasmi

Abstract Film is a popular media of storytelling nowadays and is commonly con-
sidered as a social and art study subject. In fact, AOF can be observedmathematically
such as the shot type usage as a sequence of random event, and on how a film’s story
adapts a particular story structure, in this case the Arch Plot Structure (APS). This
study can be considered as one of the pioneering mathematical film studies. Three
Indonesian children education themed movies are studied here. For the plot struc-
ture study, five ranked values were created to quantify the qualitative data. One-way
ANOVA and Kruskal–Wallis test were used to study whether each film followed
APS For the shot type study, four ranked values were created. Further, as a sequence
of random events, the Poisson distribution is applied to fit to the shot type usage of
each observed film.

Keywords Arch plot structure · Shot type · Story structure · One-way ANOVA ·
Kruskal–Wallis · Poisson distribution test

1 Introduction

“The moment we cry in a film is not when things are sad but when they turn out to
be more beautiful than we expected them to be,” [6] is an excellent quotation from
Alain de Botton (a Swiss-British writer, philosopher, and television presenter) to
describe that films of any sort have the power to depict stories in the most persuasive
and wonderful ways to the audience. According to Oxford Online Dictionary, film is
defined as a story or event recorded by camera as a set of moving images and shown
in a cinema or on television [7].
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For all we know, film is amedia to interpret story, therefore, commonly considered
as a social and art study subject. This stereotype could also be what makes film to be
considered as something immeasurable to some. The writers, among other preceding
peoplewith similar idea, would like to prove otherwise; there are aspects of a film that
are measurable both in quantity and quality. There are many film aspects which can
be considered as measurable, random events such as expense and budgeting history,
its political or ethnical effect, art and audio quality or technique usage, and picture
or framing quality or technique usage. Tsivian and team pioneered a statistical film
study in regard to its shot called Cinemetrics [11]. Cinemetrics mostly study shots
in the form of statistics descriptive. In this study, the writer would like to study film
shot’ cinematic aspects using both inference and descriptive statistics.

This paper constrained only to analyze the film story development as segmentation
base and framing technique usage, the shot type usage. The reason for choosing them
is because the story is considered as the essence of film, therefore it is better to analyze
it before doing other analyses, and shot type usage is considered as one of the easiest
and most objective cinematography techniques to be observed.

2 Theory

2.1 Arch Plot Structure (APS) in Film Storytelling

There aremainly six departments inmost film productions: creative (story and script-
ing), art, sound, editing and special effects, production, and cinematography [5]. As
mentioned before, the story is no doubt the core of most films produced; every other
film aspect depends on the story the film wants to deliver. There are theories of story
development structure for stories in every storytellingmedia including film. Themost
classic and still widely adapted story structure nowadays is known as the Arch Plot
Story structure, abbreviated as APS. APS is a goal-oriented plot where the character
will try to gain his or her goal against forces of antagonism [9]. APS comparts the
film into three acts as can be seen in Fig. 1.

Figure1 mainly shows story intensity by time progression in a typical 120-min
film. The circled dots in the graphic represents highlighted events of the film which
will not be explained here. As one can see, the story is getting intense from 10
to 100th minutes and declining from 100th minutes to the end of the story. This
condition occurs because each act has incremental story characteristics shown in
Table1.

It is necessary to prove that the observed films adapt a particular story structure,
in this case the APS, before analyzing anything else. For this purpose, the hypothesis
test is applied with the null and alternative hypothesis as follows:



Film Story Structure and Shot Type Analysis … 253

Fig. 1 The Arch plot story structure

Table 1 Story progression characteristic for acts [4]

Act 1 Act 2 Act 3

Exposition
Part of a story that introduces
the characters, shows some of
their interrelationships, and
places them within a time and
place

Obstacles
The main character encounters
obstacle after obstacle that
prevent him from achieving his
dramatic need

Climax (Second Culmination)
Point at which the plot reaches
its maximum tension and the
forces in opposition confront
each other at a peak of
physical or emotional action

Inciting Incident
An event that sets the plot of
the film in motion. It occurs
approximately halfway
through the first act

First Culmination
The main character seems
close to achieving his or her
goal/objective, and then
everything falls apart

Denouement
Brief period of calm at the end
of a film where a state of
equilibrium returns

Plot Point
An event that thrusts the plot
in a new direction, leading into
a new act of the screenplay

Midpoint
The main character reaches
his/her lowest point and seems
farthest from fulfilling the
dramatic need or objective

Plot Point

H0: each segment of the i th film adapt the arch plot story structure
H1: at least one segment of the i th film does not adapt the arch plot story
structure

For i = 1, 2, . . . , n, as many n observed films, or in this study 3.
To perform analyses, first the observed films shall be parted into three segments:

segments 1, 2, and 3 which are proportional to the proportion of Acts 1, 2, and 3, or
can be written as:
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Eti : APS value for i th film, where Eti = {0, 1, 2, 3, 4}
with i = 1, 2, 3 and for every x ∈ ti , |x | = 30. The ranked values are defined below
to analyze the observed films’ segments in this paper:

0: highly not adapting, 3: greatly adapting, or
1: greatly not adapting, 4: highly adapting
2: fairly adapting.

The arch plot story progression according to the corresponding act. It will be proven
that each observed film adapts the APS by calculating whether each of their segments
adapts the same characteristics of each act with similar value. For each film segment,
there will be randomly picked smaller subsegments. Then the ranked value will be
assigned to each of the subsegments according to how adaptive the subsegments
are to the corresponding act. Should the values have been assigned, two inference
tests will be applied to test the hypothesis: parametric One-way ANOVA [15] and
nonparametricKruskal–Wallis Test. The null and alternative hypothesis for both tests
are:

H0i : μi,1 = μi,2 = μi, j versus H1i : ∃ k, l � μi,k �= μi,l , k, l = 1, 2, 3

For j = 1, 2, . . . m and i = 1, 2, 3 [13] with m total observed segments on each
film, in this case 3. One-way ANOVA can be written as

Yi jk = μi + αi j + εi jk

of whichμi is the grandmean of each Film i segment mean, that isμi = 1
k

∑k
i=1 μ j ,

αi j as effect of j th segment of Film i and εi jk is random error with εi jk ∼ N (0, σ 2).
To obtain valid data for this study, one must do an intensive observation on each
given subsegment. For each film, Kruskal–Wallis test uses statistic

Hi = 12

ni (ni + 1)

k∑
j=1

R2
i j

ni j

− 3(ni + 1)

with ni = ni1 + ni2 + · · · + nik for k denotes each film’s observed segment which
is 3 and Ri j is random variable of sum of ranks corresponding to ni j and i = 1, 2, 3
denotes Film i [14].

Throughout this paper, many tests will prerequire independent data. Therefore,
the Chi-squared test will be used to check data’s independency, with hypothesis:

H0i : the observation on each segment is independent
H1i : there are at least two segments in which the observation is not indepen-
dent

on the i th film, i = 1, 2, 3.
Of course, the APS is not the only story structure used worldwide. If one has seen

a film and intuitively feels that it does not follow the APS, he or she can look for
another story structure and apply similar analysis.
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2.2 Shot Type Analysis

After proofing that each observed film adapts the arch plot story structure, the next
analysis can proceed, in this research the shot type usage. Shot type is a framing
technique used to interpret the points of story in a film. Shot type is a useful tool
to highlight events or to show all the information the director wants the audience to
notice.

No matter how thoroughly planned, the shooting process is something no one can
fully predict. There are many factors contributing to this unpredictability: the actors’
and actresses’ mood swings, the set condition (especially if it was used a nonartificial
set) such asweather or people surrounding it, evendirector’s sudden creative decision.
Due to its unpredictability, cinematography technique usage such as shot type can be
considered as a sequence of random events, therefore, also considered as a stochastic
processwith continuous parameter value [10]. Based on each observed film following
the APS, it can be written that

Sti : shot type value for i th film, where Sti = {1, 2, 3, 4}
With i = 1, 2, 3 and for every x ∈ ti , |x | = 30 s. In this study, the shot type will
be categorized into four categories which also represent the ranked value of the shot
type usage random event:

1: most information, least focus 3: less information, more focus
2: more information, less focus 4: least information, most focus

The same film segmentation should be done for this analysis as well. The difference
is in this analysis each subsegment will have four data instead of one because there
should be more than one shot in each subsegment. The data is the sum usage of shot
type 1 until 4 for each segment.

Because counting usage of shot type is statistically a random events counting
process, it supposedly follows phenomena in Poisson counting process. Therefore it
will be proved that for each observed film, its shot type usage is a Poisson distribution.
In 2002, Brown and Zhao developed a Poisson distribution test based on Anscombs
statistic which will be used in this study [3]. Under the circumstances that this is a
social research related to preference for films which highly vary, a relatively smaller
significance level will suffice.

Assuming {X (t)|t ≤ n, t ∈ Z
+} are independent nonnegative integer-valued

random variables with P(X = x) = f (x), the null and alternative hypotheses for
the new Anscombe Poisson distribution test are:

H0i : Xi j ∼ Poiss(λi j ), λi1 = λi2 = · · · = λinVersus.

H1i : Xi j ∼ Poiss(λi ),
∑n

j=1
(λi j − λ̄i ) > 0

with n indicating the number of segments in film i , which is 3, i = 1, 2, 3.
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According to Brown and Zhao, first Yi =
√

Xi − 3
8 [1] is defined. From it the

statistic

Tnewi = 4
n∑

j=1

(Yi j − Ȳi )

was gained to provide test for H0. Tnewi has approximately a Chi-squared distribution
with degree of freedom n − 1 [2]. Hence, if Tnewi > χ2

(n−1;1−α)
, H0i is rejected.

Using this test, one would know whether shot type usage within the observed film
follows Poisson distribution with certain rate or not, which will prove that it is a
mathematically random events counting process.

3 Data Analysis

For this analysis, three Indonesian children educationmovieswere observed:Denias:
Senandung di Atas Awan (shortened to DS) by John de Rantau (2006) assigned as
Film 1, Laskar Pelangi (LP) by Riri Riza (2008) as Film 2, and Negeri 5 Menara
(N5M) byAffandiA.Rachman (2012) as Film3 according to their launching year.DS
tells the story of a Papuan child named Denias who seeks for proper education which
barely existed in his village. LP is a movie of poor but knowledge-thirst children of
Belitung, a region in southeast Sumatra, who struggle in their way to gain proper
education, crusades the idea that children do not necessarily need education but must
be immediately sent to work. Lastly, N5M is a movie about Alif’s struggle, a West
Sumatra child, to find out where he really meant to study and live: Madani Pesantren
(Islam-based school) with his fellows from around Indonesia, or his dream campus
in West Java, Indonesia. The reason for choosing these movies is because not only
do they have the same genre, but because they have a similar story plot: a struggle
to gain better education for young Indonesian individuals.

For each segment of the observed movies, random subsegments of 30 s will be
picked. The following is the function of the observed films’segmentation for shot
type usage.

Eti =

⎧⎪⎨
⎪⎩

G1ti
for ti1 ≤ ti ≤ ti2 seconds

G2ti
for ti2 < ti ≤ ti3 seconds

G3ti
for ti3 < ti ≤ ti4 seconds

(1)

for G pti
is a stochastic random variable of APS adaptation on to-be-tested segment

p of Film i , with i, p = 1, 2, 3 and value

G pti
= {0, 1, 2, 3, 4} , for x ∈ ti , |x | = 30 s (2)
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Table 2 Film shot segmentation function’s limit (in second)

i ti1 ti2 ti3 ti4
1 26 1131 4760 6338

2 0 1624 5247 6996

3 25 2381 5027 6694

Fig. 2 Boxplot of the story
structure data

The function limits and the total number of observable subsegments for each film
is shown in the Table2 and the observation result can be seen in Fig. 2, Tables3, 4
and 5.

The writers will study the observed films’s inference statistics using both para-
metric One-way ANOVA and nonparametric Kruskal–Wallis test, both using the
following null and alternative hypotheses

H0i : μi,1 = μi,2 = μi,3 versus H1i : ∃ k, l � μi,k �= μi,l , k, l = 1, 2, 3

for i = 1, 2, 3. First, the data must be proven independent. Chi-squared test shows
that Films 1, 2, and 3 data give p-values, correspondently, P1 = 0.394, P2 = 0.315,
and P3 = 0.076. Therefore, each observed FilmAPS adaptation value does not reject
the null hypothesis of independency under all signification levels α < 0.076. Now
one may proceed to the inference test.

As an example, Film 1 has ANOVA result table:

Table 3 ANOVA result table for Film 1’s APS adaptatiton

Source of variation SS d f MS F p-value

Between groups 0.283 2 0.142 3*0.124 3*0.884

Within groups 21.717 19 1.143

Total 22 21
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Table 4 Descriptive statistics for segment 1 data

Segment 1 Film 1 Film 2 Film 3

Mean 2.8 3 3.143

Median 3 3 3

Mode 3 3 4

Sample variance 1.2 0.5 0.809

Minimum 1 2 2

Maximum 4 4 4

Sum 14 15 22

Count 5 5 7

Table 5 Descriptive statistics for data of segment 2

Segment 2 Film 1 Film Film 3

Mean 3.083 1.7 1.1

Median 3.5 1.5 0

Mode 4 0 0

Sample variance 1.174 2.9 2.544

Minimum 1 0 0

Maximum 4 4 4

Sum 37 17 11

Count 12 10 10

with p-value P1 = 0.884. Compared to any level of significance α < 0.884 therefore
H01 was not rejected which leads to the conclusion that DS adapts the APS. Films
2 and 3 have p-values consecutively P2 = 0.0680 and P3 = 0.0034. From previous
results it can be concluded that using One-way ANOVA, all observed films follow
APS for all significance levels α > 0.00871.

Now the Kruskal–Wallis test will be conducted on each film. The p-values for
Films 1, 2, and 3 are consecutively P1 = 0.351, P2 = 0.119, and P3 = 0.015. Hence
for each observed film, the null hypothesis will not be rejected for any significance
level α < 0.015. Comparing significance level from both tests, Kruskal–Wallis
test gives a higher limit value, or in other words, showing greater chance for the
observed films not rejecting the null hypothesis. Therefore for this study, one can
choose Kruskal–Wallis test to show that the observed film segments, and therefore
the whole film, follow APS with story progression in Fig. 1.

Under significance level limit 0.015, it shows that from 10,000 events, 150 events
did not reject H0. This value however, which is actually taken from Film 3 p-value,
is much smaller than Film 1 and 2 p-values which is taken limit on 0.119. This
occurred due to occasional nonincrementing intensity progression adapted in N5M
especially in its Act 2: Act 2 tells Alif and his friends’life in Pesantren including their
sub-stories, which have rather flat progression. The following figure shows how the
APS graphic would be for N5M.
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Fig. 3 The arch plot structure for Negeri 5 Menara

Table 6 Descriptive statistics for data of segment 3

Segment 3 Film 1 Film 2 Film 3

Mean 3 3.4 3.4

Median 3 4 4

Mode 2 4 4

Sample variance 1 0.8 0.8

Minimum 2 2 2

Maximum 4 4 4

Sum 15 17 17

Count 5 5 5

In Fig. 3, the circles indicate story point just like in Fig. 1while the dots indicate the
beginning of substories or transition to the main story. As can be seen, the influence
of having many substories on the overall film progression is suppressed to a point.
This creates a rather exponential story intensity progression instead of linear, which
causes low value on APS evaluation that is rather linear as can be seen in Fig. 1.
But in the end all observed films do adapt from APS with better interpretation using
nonparametric test, Kruskal–Wallis test.

By segmenting eachfilm into three acts, there should be differences infilmaspects’
usage from one act to another. For the shot type the films will follow story structure
segmentation function with subsegment sampling shown in Table6. The result of
each shot type usage is given in Fig. 4 as well (Table7).

Figure4b shows that Film 1 has outlying value for more information, less focus
type shot usagewhich is 8 times, andmuch bigger compared to the usual usagewhich
is within no usage to two usage. The usage occurred on subsegment 2, with Denias
and Noel, where the antagonist child, who liked to pick on Denias, fight and their
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Fig. 4 Boxplot of all shot
type usage

Table 7 Total number of observed films’observable subsegments

Film i Act 1 Act 2 Act 3 Total

N n N n N N N n

1 37 3 121 6 53 3 211 12

2 54 3 121 6 58 3 233 12

3 56 3 111 6 56 3 233 12

teacher came to mediate between them. It was delivered with back-to-back shots,
hence it is reasonable to have up to 8 usages in the subsegment. Outliers contained in
observation data can be analyzed usingGrubb’s Test if it is single outlier, or analyzed
separately from the rest of data if they are more than one just as done by Pasaribu
and team [8].

In this study, it will be proved that particularly the “less information, more focus”
shot type usage has Poisson distribution. The reason for choosing that shot type usage
as example is because the writer considers shot type 3 as the key shot type whose
usage shows how intense a film explain its story. Similar to (1), the following is the
function of the observed films’s segmentation for shot type usage:

Sti =

⎧
⎪⎨
⎪⎩

A1ti
for ti1 ≤ t1 ≤ ti2 seconds

A2ti
for ti2 < t1 ≤ ti3 seconds

A3ti
for ti3 < t1 ≤ ti4 seconds

(3)

for Apti
is a stochastic random variable of shot type 3 usage on Act p of Film i with

i, p = 1, 2, 3, and value similar to (2),

Apti
= {1, 2, 3, 4} for x ∈ ti , |x | = 30 (4)

and function limits following Table2.
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According to Anscombe new Poisson test on the data, shot type 3 usage for Films
1, 2, and 3 has rate, consecutively, λ3,1 = 1.0833, λ3,2 = 3.0833, and λ3,3 = 2.75.
Assuming that the “less information, more focus” shot type usage is denoted with
Xi,3, it will be proven that Xi,3 ∼ Pois(λ3,i ) for i = 1, 2, 3 denoting the i th film.

According to the Chi-squared independency test, the p-value for Films 1,2, and 3
are, consecutively: P1 = 0.000594, P2 = 0.000549, and P3 = 0.16866. Compared
with the significance level, the null hypothesis for eachmovie is not rejected, therefore
proving the observed films’ usage of shot type 3 is independent for each subsegment.
Now the new Anscombe Poisson distribution test can be conducted.

According to Anscombe Poisson distribution test, the statistics values for each
film are consecutively: Tnew1 = 13.745, Tnew2 = 21.459, Tnew3 = 11.293. With
α = 0.02, gained χ2

0.98,11 = 22.618. Because Tnewi < χ2
0.98,11, the null hypothesis

for eachmovie is not rejectedwhich leads to the conclusion that the “less information,
more focus” shot type usage Film 1 follows Poisson distribution with rate λ3,1 =
1.0833, Film 2 with λ3,2 = 3.0833, and Film 3 with λ3,3 = 2.75.

Optionally, Goodness-of-Fit test [12] can be conducted on each result. The fol-
lowing is a difference table between the observed and expected value:

As can be seen in Table8, excluding the 6 times usage, the difference for Film 1 is
considerably small, less than 0.9, with the greatest difference occurring for 3 and 4
times usage. However, the greatest difference on Films 2 and 3 is increased from the
greatest 3.827 occurred on one time usage in Film 2 and 2.580 for 5 times usage in
Film3. The shot type 3with six times usage difference for Film1 is distinctively large.
This occurred due to the expected number of segments having 6 times usage from
12 segments according to X1,3 ∼ Pois(1.083) is 0.0091 (or rounded to none), while
the actually observed value is 1. To avoid this bias, the p-value evaluation will be
conducted instead. Consecutively, the p-values are Pgof3,1 = 0.989, Pgof3,2 = 0.959,
and Pgof3,3 = 0.995. For level of significance α < 0.959, it can be concluded that
each movie “most information, least focus” shot type usage greatly follows Poisson
distribution. These results prove that the usage of shot type 3 is a random event with
occurrence probability according to their rate. One can also use the same method for
other shot types (Tables9, 10, 11 and 12).

Table 8 Descriptive statistics for shot type 1

Shot type 1 Film 1 Film 2 Film 3

Mean 0.583 0.583 0.333

Median 0.5 0 0

Mode 0 0 0

Sample variance 0.447 0.629 0.424

Minimum 0 0 0

Maximum 2 2 2

Sum 7 7 4
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Table 9 Descriptive statistics for shot type 2

Shot type 2 Film 1 Film 2 Film 3

Mean 1.917 2.5 2.417

Median 1 2.5 2

Mode 1 0 1

Sample variance 4.811 4.454 4.811

Minimum 0 0 0

Maximum 8 7 7

Sum 23 30 29

Table 10 Descriptive statistics for shot type 3

Shot type 3 Film 1 Film 2 Film 3

Mean 1.333 3 3

Median 1 3 3.5

Mode 1 3 4

Sample variance 2.969 5.091 2.727

Minimum 0 0 0

Maximum 6 7 5

Sum 16 36 36

Table 11 Descriptive statistics for shot type 4

Shot type 4 Film 1 Film 2 Film 3

Mean 0.917 0.667 0.417

Median 0 0 0

Mode 2.447 1.333 0.447

Sample variance 2.447 1.333 0.447

Minimum 0 0 0

Maximum 5 3 2

Sum 11 8 5

By relating the shot type 3 usage rate and the story structure, it is proven to say
that in general, Film 2 which is Laskar Pelangi movie has the most story intensity
increment and Film 1 which is Denias: Senandung di Atas Awan has the least. It is
practically true for both cases: Laskar Pelangi tells a story full of turmoil, making
the story dense with emotional surprises. As for Denias: Senandung di Atas Awan,
it is a wonderful movie full of many shots of Indonesian natural beauty (which
explains the rate for the shot type 1, the “most information, least focus,” usage is the
highest compared to other movies) but delivered in a less dramatic, more subtle way,
explaining the less usage of shot type 3.
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Table 12 Difference table between the observed and expected value of shot type 3 times of usage

Times of usage Difference between observed and expected

Film 1 Film 2 Film 3

0 0.25 3.827 0.0707

1 0.082 0.055 0.006

2 0.803 2.613 0.280

3 0.861 0.037 0.163

4 0.233 0.002 2.580

5 0.050 0.060 2.937 ×10−5

6 107.673 0.180 0.461

7 0.001 1.750 0.181

Sum 109.953 8.524 3.742

After knowing how much each observed film uses shot type 3, one can consider
howoftenmore focused shots are used, supposedly implying to howmuch the director
of each filmwants to emphasize its story points. These results can be related to further
study of how well the audience understands and enjoys the observed films.

4 Conclusions and Suggestions

Representing the observed film genre, Denias: Senandung di Atas Awan, Laskar
Pelangi, and Negeri 5 Menara follow the arch plot story structure. Furthermore,
with significance level α = 0.02, the “less information, more focus” class shot
type usage in the three movies was proved following Poisson distribution with rate,
consecutively, λ3,1 = 1.0833, λ3,2 = 3.0833, and λ3,3 = 2.75. For further study, it
is suggested that the conductor analyzes the observed movies in smaller and more
subsegments. Subsegmenting the whole movie is recommended for greater accuracy.
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Characterization of Total Very Excellent
Trees

N. Sridharan and S. Amutha

Abstract Let G = (V, E) be a simple graph. A subset D of V is said to be a total
dominating set of G if every vertex v ∈ V is adjacent to at least one vertex of D. The
total domination number γt (G) is the minimum cardinality of a total dominating set
of G. A total dominating set with γt (G) cardinality is said to be a γt -set of G. A
graph G is said to be total excellent if given any vertex x of G, there is a γt (G)-set
of G containing x . A γt -set D of G is said to be total very excellent γt -set of G if
for each vertex u ∈ V − D, there is a vertex v ∈ D such that (D − v) ∪ {u} is a
γt -set of G. The graph G is said to be total very excellent if it has at least one total
very excellent γt -set. Total very excellent graphs are total excellent. In this paper we
characterize total very excellent caterpillars and total very excellent trees.

Keywords Dominating set · Excellent graphs · Total domination number · Total
very excellent graphs

2000 Mathematics Subject Classification: 05C

1 Introduction

We consider only finite simple undirected graphs. If G = (V, E) is a graph and
u ∈ V , the neighborhood N (u) of u is the set {u ∈ V : uv is an edge of G} and
the closed neighborhood N [u] of u is the set N (u) ∪ u. A subset D of V is said
to be a dominating set in G if every vertex in V − D is adjacent to some vertex in
D., i.e.,V = ∪

u∈D
N [u]. The domination number of G is the minimum cardinality
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of a dominating set in G and is denoted by γ(G). A dominating set D of G with
cardinality γ(G) is called a γ-set of G. A subset D of vertex set V (G) of a graph G
is said to be a total dominating set of G if each vertex u ∈ V (G) is adjacent to at least
one vertex v ∈ D., i.e., (V = ∪

u∈D
N (u)). A graph has a total dominating set only if

it has no isolated vertices. The minumum cardinality of a total dominating set of G
is called the total domination number and is denoted by γt (G). A total dominating
set D of G with cardinality γt (G) is called a γt -set of G. An exhaustive treatment
of fundamentals of domination and several advanced topics in domination are given
in [3]. For graph theoretic terminologies, we refer to [1].

G.H. Fricke et. al. [2] call a vertex of a graphG to be good if it is contained in some
γ-set of G and bad if it is not. They call a graph G to be γ-excellent if every vertex
of G is good. Henning at al. [4] defined γt -good, γt -bad vertices and introduced the
concept of γt - excellent graphs. They also provided a constructive characterization
of γt -excellent trees. They proved that a path Pn is a γt -excellent iff either n = 3 or
n = 4k + 2 for k ≥ 0. Yamuna [6] provided a construction where a non-excellent
graph G is imbedded in an excellent graph H such that γ(H) ≤ γ(G) + 2, and
also proved that if a graph G is not excellent, then there is a subdivision graph H of
G which is excellent. Yamuna [5, 7, 8] introduced new classes of excellent graphs
such as just excellent graphs, very excellent graphs, and rigid very excellent graphs.
Yamuna also characterized very excellent trees.

In this paper we introduce the class called class of total very excellent graphs and
intiate a study on this class.

2 Definition and Examples

In this section, we define and give examples for total very excellent graphs and
characterize total very excellent paths, cycles, and caterpillars.

Definition 2.1 Avertex u of a graph G is said to be γt -good if it is contained in some
γt -set of G, otherwise it is said to be γt -bad. A graph G is said to be γt -excellent or
very excellent if every vertex of G is γt -good.

A total excellent graph G is said to be total very excellent(TVE), if there is a
γt -set D of G such that for each vertex u ∈ V − D, there exist a vertex v ∈ D such
that (D − v)∪ {u} is a γt -set of G. A γt -set D of G satisfying this property is called
a total very excellent γt -set (TVE γt -set) of G.

Example 2.2

(1) The cycles C3,C4,C5,C6,C10 are total very excellent cycles.
(2) The paths P2, P3, P6, P10 are total very excellent paths. [for each of these paths,

a TVE γt -set is as shown in the following figure].
(3) Complete graphs Kn(n ≥ 2) are total very excellent.
(4) The cycle C7 is not total very excellent.
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Let D be a γt -set of G. To each u ∈ D, the total private neighbour of u with respect
to D is difined as P Nt (D, u) = {v ∈ V |N (v)∩ D = {u}}. Note that P Nt (D, u) �= φ
for all u ∈ D.

Remark 2.3 If G is a total very excellent graph and D is a total very excellent γt -set
of G, for each v ∈ V − D, there exists u ∈ D such that Dv = (D − u) ∪ {v} is a
γt -set of G. Clearly P Nt (D, u) ⊂ N [v]. Otherwise Dv is not a γt -set of G.

The following theorem characterizes TVE paths.

Theorem 2.4 P2, P3, P6 and P10 are the only paths which are total very excellent

Proof It is enough to show that P4k+2 for k ≥ 3, is not total very excellent. Let P
be v0, v1, v2, . . . , v4k+1. Assume that P is TVE and D is a TVE γt -set for P . Each
component of 〈V − D〉 is either K1 or P2. We can assume that v0, v4k+1 /∈ D (and
hence v1, v2, v4k−1, v4k ∈ D). Hence at least two components of 〈V − D〉 are K1.
So the number of components of 〈V − D〉 is either k + 1 or k + 2. (As k ≥ 3, the
number of components of 〈V − D〉 ≥ k + 1 ≥ 4).

Case(i)
The number of components of 〈V − D〉 is k +1. Then except the components v0 and
{v4k+1}, all other components of 〈V − D〉 are P2, and the number of components of
〈D〉 is k. Either there is a component of 〈D〉having four vertices (all other components
have exactly two vertices) or exactly two of the components of 〈D〉 having three
vertices, while others are P2. Find i such that vi /∈ D but v j ∈ D for all 1 ≤
j < i . (Clearly 3 ≤ i ≤ 5). Note that vi+1 /∈ D. If i = 3 or 4, there is no
v ∈ D such that P Nt (D, v) ⊆ N [v0] = {v0, v1}. So i �= 3 or 4. If i = 5 then
D = {v1, v2} ∪ {v j+3, v j+4/0 ≤ j ≤ k − 1} and there is no v ∈ D such that
P Nt (D, v) ⊆ N [v4k+1], which is a contradiction.

Case(ii)
The number of components of 〈V −D〉 is k+2. In this case 〈D〉 has k+1 components
and each component is P2. As v0, v3, v4 /∈ D and v1, v2, v5, v6 ∈ D, there is no
v ∈ D such that P Nt (D, v) ⊆ N [v0] = {v0, v1}, which is a contradiction. Thus
P4k+2 is not TVE for all k ≥ 3. �
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Similar to Theorem 2.4, we obtain the following theorem which characterizes
TVE cycles.

Theorem 2.5 Cycles C3,C4,C5,C6 and C10 are the only cycles which are TVE.

Total very excellent caterpillars:
A caterpillar is a tree T such that removal of all the pendant vertices of T leaves a
path P which is called the spine of T .

If T is a caterpillar and P : u1, u2, . . . , uk is the spine of T , to each i(1 ≤ i ≤ k),
let ai be the number of pendant vertices of T which are adjacent to the vertex vi .
Then the caterpillar T can be represented by the finite sequence (a1, a2, . . . , ak).
Note that a1 > 0 and ak > 0; and for all other i, ai ≥ 0. For example, the sequence
(1, 2, 3, 0, 3, 2) represents the caterpillar shown in the following figure.

We now characterize the caterpillars which are total very excellent.

Theorem 2.6 Let T = {a1, a2, · · ·, ak} be a caterpillar (T �= K2). T is TVE if and
only if the following condition holds:

(i) If ai �= 0(i < k), then either ai+1 = ai+2 = 0 and ai+3 �= 0 or ai+s = 0 for
1 ≤ s ≤ 6 and ai+7 �= 0.

(ii) If ai �= 0, ai+7 �= 0 then ai+14 = 0.

Proof Assume that the given caterpillar is TVE. Let P : u1, u2, · · ·, uk be the spine
of T and D be a TVE γt -set of T . To each i for which ai �= 0, select a pendant vertex
vi of T adjacent to ui . Note that every γt -set of T contains ui , whenever ai �= 0.
If x ∈ D such that D′ = (D − x) ∪ {vi } is a γt -set of T , then D ∩ N (ui ) = {x},
otherwise D′ −vi is also total dominating set of T , leading to a contradiction. So the
γt -set D′ does not contain ui−1 and ui+1, as D′ ∩ N (ui ) = {vi }. As ui−1 and ui+1
are not in a γt -set, it follows that ai−1 = 0 = ai+1. Let j be such that

(i) i < j ≤ k
(ii) as = 0 for all i < s < j and
(iii) a j �= 0.

Let A = { ui−1, ui , ui+1, · · ·, u j , u j+1 } ∪N (ui ) ∪ N (u j ).
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As (D − {ui−1, ui+1}) ∪ {vi } and (D − {u j−1, u j+1}) ∪ {v j } are γt -sets of T , it
follows that D − A is a γt -set of T − A, and hence D ∩ A is a γt -set of 〈A〉. Let
D∗ = ((D ∩ A)− {ui−1, u j+1})∪ {ui+1, u j−1}. Let D∗ is a TVE γt -set for the path
vi ui ui+1 · · · u jv j . As this TVE path contains more than four vertices (i + 1 < j),
by the Theorem 2.4, this path is either P6 or P10. So either j = i + 3 or i + 7.
Then ai �= 0 ⇒ either ai+3 �= 0 and ai+1 = ai+2 = 0 or ai+7 �= 0 and ai+1 =
· · · = ai+6 = 0. This proves (i). To prove (ii), assume that for some i , ai , ai+7, ai+14
are positive. Let A = {us/ i ≤ s ≤ i + 14} ∪ N (ui ) ∪ N (ui+7) ∪ N (ui+14) and
D∗ = ((D ∩ A)−{ui−1, ui+15})∪{ui+1, ui+13}. Then as before, D∗ is a TVE γt -set
for subtree H shown in the following figure.

� �

� �� � � � � � � � � � � �

vi vi+7
vi+14

ui ui+7 ui+14

�

�

Note that γt (H) = 10 and |D∗ ∩ {ui+6, ui+8}| = 1. If ui+6 ∈ D∗, then D∗ =
{ui , ui+1, ui+3, ui+4, ui+6, ui+7, ui+10, ui+11, ui+13, ui+14 }. In this case there is
no x ∈ D∗ such that (D∗ − x) ∪ {ui+12} is a γt -set of H .

If ui+8 ∈ D∗, then D∗ = { ui , ui+1, ui+3, ui+4, ui+7, ui+8, ui+10, ui+11, ui+13,
ui+14 } and in this case there is no x ∈ D∗, such that (D∗ − x) ∪ {ui+2} is a γt -set
of H . In either case we get a contradiction to the fact that D∗ is a TVE γt -set of H .
Thus ai �= 0 and ai+7 �= 0 ⇒ ai+14 = 0 and hence we get (ii).

Nowwe assume that the given caterpillar T = (a1, . . . , ak) satisfies the conditions
(i) and (ii), we give one TVE γt -set D for T . Let S0 = { ui/1 ≤ i ≤ k and ai �= 0 }.
In other words, S0 is the set of support vertices of T . To each i < k, let

Si =

⎧⎪⎨
⎪⎩

{ui+1, ui+3, ui+4, ui+6} if ai �= 0 and ai+7 �= 0

φ if either ai = 0 or ai−7 �= 0

ui+1 if ai−7 = 0; ai �= 0 and ai+3 �= 0

and let Sk = {uk−1}. One can verify that D = k∪
i=0

Si is a TVE γt -set of T . Thus we

have proved the theorem. �
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3 New TVE graphs from known TVE graphs:

The following lemmas are useful to produce graphs which are not TVE graphs.

Lemma 3.1 Let G be a graph with δ(G) ≥ 1, and w1uvw2 be a path in G such that
degw1 = degw2 = 1 in G, then G is not total very excellent.

Proof The vertices u and v belong to every γt -set of G. If D is a total dominating
set containing the vertex w1, then D − w1 is also a total dominating set of G. Thus
w1, w2 are not an element of any γt -set of G. So w1 and w2 are γt -bad vertices of
G. Thus G is not even γt -excellent. �

Corollary 3.2 If G is a graph with δ(G) ≥ 1, then its corona G ◦ K2 is not γt -
excellent. �

Lemma 3.3 Let u be a vertex of a graph G with δ(G) ≥ 1. If w1w2uv2v1 is a path
in G such that degw1 = degv1 = 1 and degw2 = degv2 = 2, then G is not γt -excellent
and hence not TVE.

Proof For vertices w2, v2 belong to every total dominating set of G. If D is a total
dominating set of G and if u /∈ D, then bothw1, v1 ∈ D and (D −{w1, v1})∪ {u} is
a total dominating set of G. It follows that D is not a γt -set of G. Thus u belongs to
every γt -set of G. If D is any γt -set of G, then u, w2, v2 ∈ D and {w1, v1}∩ D = φ.
In otherwords, w1 and v1 are γt -bad vertices of G. Thus G is not TVE. �

The following theorems are useful to obtain new TVE graphs from known TVE
graphs.

Theorem 3.4 Let u be a vertex of a graph G and δ(G) ≥ 1. A graph H is obtained
from G by attaching a path P4 at u. Then H is total very excellent iff there exist total
very excellent γt -set D of G such that

(i) u ∈ D
(ii) there exists v ∈ N (u) ∩ D such that P Nt (v, D) = {u}.
Proof Clearly γt (H) = γt (G) + 2. Let uw1w2w3w4 be the path attached to u to
obtain H from G. Assume that H is TVE and D is a TVE γt -set of H . Assume that
w2, w3 ∈ D. As D is TVE γt -set of H , (D −w2)∪ {w4} is a γt -set of H . (Note that
(D − x) ∪ {w4} is a γt -set of H only when P Nt (D, x) ⊆ N [w4]).
Case (i)
If w1 ∈ D, then as (D −w2)∪ {w4} is a γt -set of H , it follows that u ∈ D. As both
w1, u ∈ D, N (u)∩D∩V (G) = φ. [Otherwise D−w1 itself a total dominating set for
H ]. For anyv ∈ P Nt (u, D),v ∈ N (u)∩V (G).Hence D′ = (D−(w1, w2, w3))∪{v}
is a TVE γt -set for G. Then D′ is TVE and u ∈ D′, v ∈ N (v) ∩ V (G) such that
P Nt (v, D) = {u}.
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Case(ii)
Let w1 /∈ D. As (D − {w2, w3}) ∪ {w4} is a γt -set of H and as w1 /∈ D, it follows
that u ∈ D. As w1 /∈ D and u ∈ D, N (u) ∩ D ∩ V (G) �= φ. As D is TVE γt -set
of H , there exist x ∈ D such that D∗ = {D − x} ∪ {w1} is a γt -set of H . Clearly
x /∈ {w2, w3}. We claim that x �= u. If x = u, then D − {u, w2, w3} is a total
dominating set for G, which is a contradiction. Therefore x �= u. If x /∈ N [u], then
D−{w3, w2, x} is a total dominating set for G, a contradiction. There fore x ∈ N [u].
Clearly P Nt (D′, x) = {u}.

Conversely, let G be a total very excellent such that there is a TVE γt -set Dof G
such that (i) u ∈ D (ii) there exist v ∈ N (u) ∩ D such that P Nt (v, D) = {u}. Then
D ∪ {w2, w3} is a TVE γt -set of H . �

Theorem 3.5 Let G be a total very excellent graph and u ∈ V (G) such that γt (G −
N [u]) exists and γt (G − N [u]) ≥ γt (G) − 1 and γt (G) = γt (G − u). Then the
graph H is obtained from G by attaching a path P3 at u, is total very excellent.

Proof H is obtained by joining the vertex u of G and the vertex w1 of the path
w1w2w3. Let D be any γt -set of G. Then D ∪ {w2, w1} is a total dominating set for
H . Thereforeγt ≤ γt (G)+2.Let D′ be anyγt -set of H . Then |D∩{w2, w1, w0}| = 2.
Let D∗ = D′ ∩ V (G). If u /∈ D∗, then D∗ is a total dominating set for G − u, and
|D∗| ≥ γt (G − u) = γt (G). If u ∈ D∗ and u is not isolated in D∗, then D∗ is the a
total dominating set for G. If u ∈ D∗ but it is an isolated vertex in D∗, then D∗ − u is
a total dominating set for (G − N [u]), and |D∗ − u| = |D∗|−1 ≥ γt [G − N (u)] ≥
γt (G) − 1. Thus, γt (H) = γt (G) + 2. If D is TVE γt -set of G, then D ∪ {w2, w1}
is a γt -set of H . In fact it is a TVE γt -set of H . �

Theorem 3.6 Let G be a TVE graph and u be a vertex of G such that γt (G − u)
exists and γt (G − u) ≥ γt (G). Attach a path uw1w2w3 at u. Let the resulting graph
be H. If there is a γt -set D for H such that either u /∈ D or u is not an isolated
vertex in 〈D ∩ V (G)〉, then H is also a TVE.

Proof From the first part of the proof of Theorem 3.5, γt (H) = γt (G)+ 2. If D∗ is
a TVE γt -set of G, then D∗ ∪ {w1, w2} is a TVE γt -set of G. �

4 Characterization of TVE Trees

In this section, we characterize the TVE trees. First we introduce four types of
operations.

Type I Operation:
Let G be a TVE graph and v be a vertex of G adjacent to a pendant vertex w. Attach
k(k ≥ 1)more pendant vertices at v. Then the resulting graph H is also TVE graph.
We say that H is obtained from G by using the operation of Type I.
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Type II Operation:
Let G be a TVE graph and D be a TVE γt -set of G. Let u ∈ D and there exist x ∈ D
such that P N (x, D) = {u}. Let H be the graph obtained from G by attaching a path
uw1w2w3w4 at u. Then by Theorem 3.4, H is also TVE. We say that H is obtained
from G by using the operation of Type II.

Type III Operation:
Let G be a TVE graph and u be a vertex of G. Let γt (G − u) ≥ γt (G). Attach a path
uw3w2w1 at u. Let the resulting graph be H . If there is a γt -set D of H such that
either u /∈ D or u is not isolated in 〈D ∩ V (x)〉, then H is said to be obtained from
G with the operation of the type III. ( By Theorem 3.6, H is aalso TVE).

Type IV Operation
Let G be a TVE graph and D be a TVE γt -set of G. Let x ∈ D such that
P Nt (x, D) = {u}. Attach a new path w1w2w3w4u3u2u1 by joining w4 and u.
The resulting graph H is also a TVE graph. We say that H is obtained from G by
using the operation of Type IV.

The following theorem characterize TVE trees.

Theorem 4.1 A tree T with n ≥ 2 vertices is TVE tree if and only if it can be
obtained from P2 by applying finite sequence of operations I, II, III, and IV.

Proof We prove the result by induction of the order of T . Clearly the result is true if
order is of T ≤ 5.

Assume that the result is true for all TVE trees of order m < n for some n ≥ 5.
Let T be a TVE tree with n vertices. If there is a vertice u ∈ V (T ) which is adjacent
to two pendant vertices, say u1 and u2. Then the tree T − u1 is a TVE tree of order
n − 1 and hence by our assumption the result is true for T − u1 and hence for T .

Assume that every vertex of T is adjacent to at most one pendant
vertex x . · · · · · · · · · (∗)

Let u1, u2, . . . , uk be the longest path in T . Then by (∗), k ≥ 4 and degu1 = deguk

= 1; while degu2 = deguk−1 = 2. By lemma 3.1, the vertex u3 is not adjacent to any
pendant vertex and by lemma 3.3, there is no path u3w2w1 where w2 �= u2, u3. In
other words deg(u3) = 2 in T .

Let D be a γt–set of T . Without loss of generality, we can assume that D contains
no pendant vertex.

The vertex u4 is not adjacent to a pendant vertexw �= u5. [For if a pendant vertex
w �= u5 is adjacent to u4, there exist an element x ∈ D such that (D − x) ∪ {w} is
a γt -set. Clearly x �= u2, u3, u4. Now (D − x) is also a total dominating set of T ,
which is a contradiction].

Case(i) Let deg(u4) = 2.Weclaim thatu5 ∈ D.As D is aTVEγt -set, (D−x)∪{u1}
is a γt -set of T for some x ∈ D. As P Nt (D, x) ⊆ N [u1], it follows that x = u3. Let
D∗ = (D − x) ∪ {u1}. As D∗ is a γt -set of T , deg(u4) = 2 and u3 /∈ D∗, we have
u5 ∈ D∗(the vertex u4 may or may not be in D∗). Thus u5 ∈ D.
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Subcase(i) If u4 /∈ D, let D′ = D − {u2, u3}. Then D′ is a γt -set for the tree
T5 = T − {u1, u2, u3, u4}. In fact D′ is a TVE γt -set for T5. As D is a TVE γt -set
for T , and as u4 /∈ D, there is one y ∈ D such that (D − y) ∪ {u4} is a γt -set for T .
Clearly y /∈ {u2, u3}, and hence y ∈ D′. Now P Nt (y, D′) = {u5}; y �= u5 and yu5
is an edge in T5. Thus T5 is a TVE tree of order n − 4, u5 ∈ D′, a TVE γt -set for T5;
and P Nt (y, D′) = {u5} for some y ∈ D′. T can be viewed as it is obtained from
T5 by attaching a path P4 at u5. In other words T is obtained from T5 by using the
operation of type II. By the induction hypothesis the result is true for T5 and for T .

Subcase (ii) Both u4, u5 ∈ D. Note that P Nt (D, u5) �= φ, select a vertex w ∈
P Nt (u5, D). As N (u4) ∩ D = {u3, u5}, w �= u4. Also w /∈ D, (otherwise D − u4
is a γt -set for T ). Let D′ = (D − {u2, u3, u4})∪ {w}. Then D′ is a TVE γt—set for
T5, also P Nt (D′, w) = {u5}. As T can be viewed to be obtained from T5 using the
operation of type II, the result is true for T also.

Case(ii) Let deg(u4) ≥ 3. Note that u4 is not adjacent to any pendant vertex of T .

Subcase (i) Let u4w2w1 be a path in T with degw1 = 1 and w2 �= u5. Then
w2, u4 ∈ D and let D′ = D − {u2, u3}. Then D′ is a TVE γt -set for T4 (where
T4 = T − {u1, u2, u3}). Note that γt (T4 − u4) ≮ γt (T4). Hence T can be viewed as
obtained by using the operation of Type III. As T4 is a TVE tree of order less than n
by the induction hypothesis, the result is true for T4 and hence for T .

Subcase(ii) Let u4w3w2w1 be a path of length three in T , where w3 �= u3, u5 and
no free P2 is attached at u4. By Lemmas 3.1 and 3.3, deg(w3) = 2.

(a) If N (u4) ∩ (D − {u3, w3}) �= φ, Then D − {u2, u3} is a TVE γt -set for T4,
where T4 = T − {u1, u2, u3} and γt (T − u4) ≥ γt (T4) = γt (T ) − 2. In this case T
is obtained from T4 by using the operation of type III.

(b) If N [u4]∩(D−{u3, u4}) = {u4} then deg(u4) = 3; u5 /∈ D and P Nt (D, u4) =
{u5}. It follows that N [u5] ∩ D = {u4} and hence u6 /∈ D. But u6 is dominated by
D − {u2, u3, u4, w2, w3}. Let D′ = (D − {u2, u3, u4, w2, w3}) ∪ {u6}. Then D′
is a TVE γt -set for T5 (The tree component of T − u4u5 that contains u5) and
P Nt (D′, u6) = {u5}. The result is true for T5 and T is obtained from T5 using the
operation of type IV.

If N [u4] ∩ (D − {u3, w3}) = φ, then d(u4) = 3 in T and u4, u5 �= D. There
exist x ∈ D − {u2, u3, w2, w3} such that (D − x) ∪ {u4} is a γt -set for T . As
P Nt (x, D) ⊆ N [u4], we have P Nt (x, D) = {u5}. Note that x �= u5. Let T5 be the
tree component of T − u4u5 that contains the vertex u5. As D is a TVE γt -set of T
and u4, u5 /∈ D, it follows that γt (T5) = γt (T ) − 4 and D − {u2, u3, w2, w3} is a
TVE γt -set of T . In this case also T is obtained from T5 by using the operation of
type IV. �

Illustration: We illustrate the theorem by the following example given in the
figure.



274 N. Sridharan and S. Amutha

Theorem 4.2 If T is a TVE tree, then γt (T ) is even.

Proof Note that γt (P2) = 2. Let T be a TVE tree of order n ≥ 2. Then by the
Theorem 4.1, T is obtained from P2 by applying finite sequence of operations I, II,
III or IV. So we get a sequence P2 = T1, T2, . . . , Tk = T of TVE trees such that
each Ti+1 is obtained from Ti by using one of the four operations. Note that
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(1) γt (Ti ) = γt (Ti+1) if Ti+1 is obtained from Ti by using the operation of type I.
(2) γt (Ti+1) = γt (Ti )+ 2 if Ti+1 is obtained from Ti by using the operation of type

either II or III.
(3) γt (Ti+1) = γt (Ti ) + 4 if Ti+1 is obtained from Ti by using the operation of

type IV.

Thus γt (Ti ) is even iff γt (Ti+1) is even.
As γt (T1) = γt (P2) = 2, it follows that γt (T ) is even. �
Remark 4.3 For every integer m ≥ 1, there exists a TVE tree Tm with γt (Tm) = 2m.
If m = 1, take T1 = P2. If m > 1, consider the star K1,m . Now subdivide exactly
one edge of K1,m once and subdivide all other edges of K1,m twice. Let Tm be the
resulting tree. Clearly γt (Tm) = 2m and Tm is a TVE tree. (For m = 4, T4 is shown
in the following figure).

�

�

�

�

� � �� � �

�

�

Tree T4 which is a TVE tree and γt(T4) = 8.

Conjecture: If G is a TVE-graph, then γt (G) is even.

Acknowledgments This work was supported by the Department of Science and Technology, Gov-
ernment of India through Project SR/S4/MS:357/06 to the first and second authors. The authors
thank the referees for their valuable comments which helped to improve the paper.

References

1. Balakrishnan, R., Ranganathan, K., A text book of graph theory, Springer (2000)
2. Fricke, G.H., Haynes, T.W., Hedetniemi, S.T., Hedetniemi, S.M., Laskar, R.C.: Excellent trees.

Bull. Int. Combin. Appl. 34, 27–38 (2002)
3. Haynes, T.W., Hedetniemi, S.T., Slater, P. J.: Fundamentals of domination in graphs. Marcel

Dekker Inc, (1998)
4. Henning, M.A., Haynes, T.W.: Total domination excellent trees. Discrete Appl. Math. 263,

93–104 (2003)
5. Sridharan, N., Yamuna, M.: Every γ-excellent, γ-flexible graph is γbi -excellent. J. Discrete

Math. Sci. Cryptogr. 7(1),103–110 (2004)
6. Sridharan, N., Yamuna, M.: A note on excellent graphs. Ars Combinatoria 78, 267–276 (2006)
7. Sridharan, N., Yamuna, M.: Very excellent graphs and rigid very excellent graphs. AKCE J.

Graphs. Combin. 4, 211–221 (2007)
8. Yamuna, M.: Excellent—Just excellent—Very excellent graphs. Ph.D thesis, Alagappa Univer-

sity (2003)



Quadratic Residue Cayley Graphs
on Composite Modulus

Angsuman Das

Abstract In this paper, we initiate the study of quadratic residue Cayley graphs
ΓN modulo N = pq, where p, q are distinct primes of the form 4k + 1. It is
shown that ΓN is a regular, symmetric, Eulerian, and Hamiltonian graph. Also, the
vertex connectivity, edge connectivity, diameter, and girth of ΓN are studied and
their relationship with the forms of p and q are discussed. Moreover, we specify
the forms of primes for which ΓN is triangulated or triangle-free and provide some
bounds for the order of the automorphism group of ΓN , Aut (ΓN ) and domination
number of ΓN .

Keywords Cayley graph · Quadratic residue · Pythagorean prime

1 Introduction

The Cayley graph was first considered for finite groups by Arthur Cayley in 1878.
Since then, a lot of research has been done on various families of Cayley graphs, e.g.,
unitary Cayley graphs, Paley graphs, Dihedral Cayley graphs, quadratic residue Cay-
ley graphs, etc. In this paper, we will focus on quadratic residue Cayley graphs, i.e.,
where the generating set is the set of all quadratic residues in the group. Many works
exist in the literature on Cayley graphs on quadratic residues on prime and prime
power modulus. In fact, the family of Cayley graphs also contain another impor-
tant subfamily of Paley graphs, where the generating set is the set of all quadratic
residues in the finite field Fq , q = pn with a prime p of the form 4k + 1. In [1], the
authors studied quadratic residue modulo 2n Cayley graphs. However, as far as our
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knowledge, quadratic residue Cayley graphs on modulus of the form pq, where p
and q are distinct primes remained unexplored till date.

In this paper, we study the quadratic residue Cayley graphs ΓN modulo N = pq,
where p, q are distinct Pythagorean primes, i.e., primes of the form 4k+1. It is shown
that ΓN is a regular, Eulerian, Hamiltonian, and arc-transitive graph. Also, the vertex
connectivity, edge connectivity, diameter, and girth of ΓN are studied. Moreover, the
conditions under which ΓN is triangulated and triangle-free are discussed. We also
provide some bounds for the order of Aut (ΓN ) and domination number of ΓN .

2 Preliminaries

In this section, for convenience of the reader and also for later use, we recall some
definitions and notations concerning integers modulo N and quadratic residues in
elementary number theory. For undefined terms and concepts in graph theory the
reader is referred to [2] and [5]. Throughout this paper, graphs are undirected, simple,
and without loops.

An odd prime p is called a Pythagorean prime if p ≡ 1(mod 4). Throughout
this paper, even if it is not mentioned, a prime p always means a Pythagorean
prime and N = pq means the product of two distinct Pythagorean primes. By
ZN , Z

∗
N ,QRN ,QNRN ,J +1

N ,J −1
N , we mean the set of all integers modulo N , the

set of all units in integersmodulo N , the set of all quadratic residues and nonquadratic
residues, which are also units in integers modulo N , the set of all units in integers
modulo N with Jacobi symbol +1 and −1 respectively. For the sake of convenience,
a ≡ b(mod n) is sometimes written as a = b, in places where the modulus is clear
from the context. We can conclude the following lemma from the results which can
be found in any elementary number theory book, e.g., [4].

Lemma 1 If N = pq, then the following are true:

• J +1
N is a subgroup of Z

∗
N and QRN is a subgroup of J +1

N .

• |Z∗
N | = φ(N ) = (p − 1)(q − 1), |J +1

N | = |J −1
N | = (p−1)(q−1)

2 and |QRN | =
(p − 1)(q − 1)

4
, where φ denotes the Euler’s Phi function.

• x ∈ QRN ⇐⇒ x ∈ QRp ∩ QRq .
• x ∈ J +1

N \ QRN ⇐⇒ x ∈ QNRp ∩ QNRq .
• x ∈ J −1

N ⇐⇒ x ∈ QNRp ∩ QRq or x ∈ QRp ∩ QNRq . �

Lemma 2 If p, q are two distinct primes of the form p ≡ q ≡ 1(mod 4), then −1
is a quadratic residue in ZN .

Proof To show that −1 is a quadratic residue in ZN , we need to show that x2 ≡
−1(mod N ) has a solution. But,
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x2 ≡ −1(mod N ) ⇔ x2 ≡ −1(mod p) and x2 ≡ −1(mod q)

Now, as p and q are Pythagorean primes, −1 is a square in both Zp and Zq . Thus,
x2 ≡ −1(mod N ) have a solution in ZN . �

3 Quadratic Residue Cayley Graph Modulo N

We now define the quadratic residue Cayley graphs ΓN modulo N = pq and study
some of their basic properties.

Definition 1 Quadratic Residue Cayley Graph modulo N For N = pq, quadratic
residue modulo N Cayley graphs ΓN is given by ΓN = (V, E), where V = ZN and
(a, b) ∈ E ⇔ a − b ∈ QRN .

Remark 1 ΓN is a Cayley Graph (G, S) where G = (ZN ,+) and S = QRN .
Observe that as −1 ∈ QRN and QRN is a group with respect to modular multi-
plication, QRN is also closed with respect to additive inverse, i.e., S = −S and
0 	∈ S.

Theorem 1 ΓN is Hamiltonian and hence connected.

Proof Since, 1 ∈ QRN , the vertex set {0, 1, 2, . . . , N − 1}, taken in order, can be
thought of as a Hamiltonian path. Hence, the theorem. �

Theorem 2 ΓN is regular with valency φ(N )/4 and hence Eulerian.

Proof Let x ∈ ZN . By N (x), we mean the set of vertices in ΓN which are adjacent
to x , i.e., N (x) = {z ∈ ZN : x − z ∈ QRN }. If possible, let ∃z1, z2 ∈ N (x) with
z1 	= z2 such that x − z1 = x − z2. But, x − z1 = x − z2 = s(say) ∈ QRN ⇒
z1 = x − s = z2, a contradiction. Thus, ∀s ∈ QRN , ∃ a unique z ∈ ZN such that
x − z = s. Thus, degree or valency of x = |N (x)| = |QRN | = φ(N )/4. Now,
let p = 4k + 1, q = 4l + 1. Since, degree of each vertex = φ(N )

4 = (p−1)(q−1)
4 =

4k·4l
4 = 4kl is even, ΓN is Eulerian. �

Note However, ΓN is not strongly regular (See Remark 3).

Remark 2 ΓN is not self-complementary: A necessary condition for a
self-complementary graph G with n vertices is that number of edges in G equals
n(n−1)

4 . But, the number of edges in ΓN with N vertices is N ·φ(N )
8 <

N (N−1)
4 . How-

ever, the next theorem shows thatΓN has a homomorphic image of itself as a subgraph
of its complement graph.

Theorem 3 ΓN has a homomorphic image of itself as a subgraph of its complement
graph Γ c

N .
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Proof Let n ∈ Z
∗
N \QRN .We define a functionψ : ΓN → Γ c

N given byψ(x) = nx .
For injectivity, ψ(x1) = ψ(x2) ⇒ nx1 = nx2 ⇒ x1 = x2, as n is a unit in ZN . For
homomorphism, x, y adjacent in ΓN ⇒ x − y ∈ QRN ⇒ n(x − y) 	∈ QRN ⇒ nx
and ny are not adjacent in ΓN , i.e., ψ(x) and ψ(y) are adjacent in Γ c

N . �

4 Symmetricity of ΓN

In this section, we study the action of Aut (ΓN ) and its consequences.

Theorem 4 ΓN is vertex-transitive.

Proof As ΓN is a Cayley graph, it is vertex transitive. (by Theorem 3.1.2 in [2])
However, we show the existence of such automorphisms explicitly, which will be
helpful later.

Choose a ∈ QRN and b ∈ ZN and define a function ϕ : ZN → ZN given by
ϕ(x) = ax + b,∀x ∈ ZN . We show that ϕ is an automorphism. ϕ is injective, for

ϕ(x1) = ϕ(x2) ⇒ ax1 + b = ax2 + b ⇒ a(x1 − x2) = 0 ⇒ x1 = x2 as a ∈ Z
∗
N

For surjectivity, ∀y ∈ ZN , ∃x = a−1y − a−1b ∈ ZN such that ϕ(x) = a(a−1y −
a−1b)+b = y.Moreover, ϕ is a graph homomorphism, as x and y are adjacent inΓN

⇔ x − y ∈ QRN ⇔ a(x − y)+ b − b ∈ QRN ⇔ (ax + b)− (ay + b) ∈ QRN ⇔
ϕ(x) − ϕ(y) ∈ QRN ⇔ ϕ(x) and ϕ(y) are adjacent in ΓN . Thus, ϕ ∈ Aut (ΓN ).

Now, let u, v ∈ ZN be two vertices ofΓN .We take a = 1 ∈ QRN and b = v−u ∈
ZN . Then the map ϕ : ZN → ZN given by ϕ(x) = ax + b is an automorphism on
ΓN such that ϕ(u) = v. Thus, Aut (ΓN ) acts transitively on ZN , i.e., V (ΓN ). �

Theorem 5 ΓN is arc-transitive and hence edge transitive.

Proof Let {u1, v1}, {u2, v2} be two edges (considered as having a direction) in ΓN .
Therefore, u1 − v1, u2 − v2 ∈ QRN . We take a = (u2 − v2)(u1 − v1)

−1 ∈ QRN

and b = u2 − au1 ∈ ZN and construct the automorphism ϕ(x) = ax + b as in
Theorem 4. Since ϕ(u1) = u2 and ϕ(v1) = v2, ΓN is arc transitive, and hence edge
transitive. �

Corollary 1 |Aut (ΓN )| ≥ Nφ(N )
4 .

Proof In Theorem 4, it was shown that ϕ : ZN → ZN given by ϕ(x) = ax +b,∀x ∈
ZN is an automorphism for a ∈R QRN and b ∈R ZN . Thus, |Aut (ΓN )| ≥ Nφ(N )

4 .�

Corollary 2 Edge connectivity of ΓN is φ(N )/4.

Proof Since ΓN is connected and vertex-transitive, by Lemma 3.3.3 in [2], its edge
connectivity is equal to its valency. �
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Lemma 3 [2] The vertex connectivity of a connected edge transitive graph is equal
to its minimum valency. �

Corollary 3 Vertex connectivity of ΓN is φ(N )/4.

Proof Since, ΓN is a connected edge-transitive graph with valency φ(N )/4, by
Lemma 3, ΓN has vertex connectivity φ(N )/4. �

5 Diameter, Girth, and Triangles of ΓN

In this section, we find the diameter and girth of ΓN . It is noted that ΓN is of dual
nature when it comes to diameter and girth. To be more specific, it depends on
whether 5 is a factor of N or not. If 5 is one of the two factors of N , we call it ΓN

of Type-I and else call it ΓN of Type-II. First, we prove two lemmas which will be
used later.

Lemma 4 Let p be a prime of the form 4k + 1 and c ∈ Zp. Then, the number of
ways in which c can be expressed as difference of two quadratic residues in Z

∗
p are

(1) p−1
2 if c ≡ 0(mod p). (2) p−5

4 if c ∈ QRp. (3) p−1
4 if c ∈ QNRp.

Proof

1. If c ≡ 0(mod p), then for all r ∈ QRp, c can be expressed as r − r . Thus, the
number in this case, is equal to the number of elements in QRp, i.e.,

p−1
2 .

2. For this case, assume that c 	≡ 0(mod p), i.e., c ∈ Z
∗
p. Let c = a2 − b2 =

(a + b)(a − b), where a, b ∈ Z
∗
p. Now, for all p − 1 values of d ∈ Z

∗
p, letting

a +b = d; a −b = c
d , we get all possible solutions of the equation c = a2 −b2.

From this, we get a = 1
2

(
d + c

d

)
and b = 1

2

(
d − c

d

)
. However, we need to

ensure that a, b ∈ Z
∗
p, i.e., d ± c

d 	≡ 0(mod p), i.e., d2 	≡ ±c(mod p).
Now, if c ∈ QRp, then −c ∈ QRp. (as −1 is a quadratic residue in Z

∗
p).

In this case, there exist two square roots of c and two other square roots of
−c. Thus, we lose 4 possible values of d. Thus, the number of solutions is
reduced to p − 5. Moreover, it is observed that the 4 solutions of (a + b, a −
b), namely (d, c

d ), (−d, c
−d ), ( c

d , d), ( c
−d ,−d) lead to the same solution a2 =

1
4

(
d + c

d

)2 ; b2 = 1
4

(
d − c

d

)2. (As p is odd, d 	= −d). Thus, the number of

distinct solutions is reduced to p−5
4 .

3. The proof for c ∈ QNRp follows exactly using the same arguments except the
fact that in this case, we do not lose those four solutions as c 	≡ ±d2. Thus, the
number of ways c can be expressed as difference of quadratic residues is p−1

4 .�

Lemma 5 Let N = pq, where p, q are Pythagorean primes. Then

1. If c ∈ QRN , then the number of ways in which c can be expressed as difference
of two quadratic residues, i.e., c = x2 − y2, x, y ∈ Z

∗
N is (p−5)(q−5)

16 .
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2. If c ∈ J +1
N \ QRN , then the number of ways in which c can be expressed as

difference of two quadratic residues is (p−1)(q−1)
16 .

3. If c ∈ J −1
N , then the number of ways in which c can be expressed as difference

of two quadratic residues is either (p−1)(q−5)
16 [if c ∈ QRq , but c 	∈ QRp] or

(p−5)(q−1)
16 [if c ∈ QRp, but c 	∈ QRq ].

4. If c( 	= 0) ∈ ZN \ Z
∗
N , i.e., c is a nonzero, nonunit in ZN , then

a. If c ≡ 0(mod q) and c ∈ QRp, then the number of ways in which c can be

expressed as difference of two quadratic residues is (p−5)(q−1)
8 .

b. If c ≡ 0(mod q) and c ∈ QNRp, then the number of ways in which c can

be expressed as difference of two quadratic residues is (p−1)(q−1)
8 .

c. If c ≡ 0(mod p) and c ∈ QRq , then the number of ways in which c can be

expressed as difference of two quadratic residues is (q−5)(p−1)
8 .

d. If c ≡ 0(mod p) and c ∈ QNRq , then the number of ways in which c can

be expressed as difference of two quadratic residues is (q−1)(p−1)
8 .

Proof

1. If c ∈ QRN , then c ∈ QRp and c ∈ QRq . Thus, the result follows from the
Chinese Remainder Theorem and second part of Lemma 4.

2. If c ∈ J +1
N \ QRN , then c ∈ QNRp and c ∈ QNRq . Thus, the result from

the Chinese Remainder Theorem and third part of Lemma 4.
3. If c ∈ J −1

N , then either of two cases may arise, namely c ∈ QRq; c ∈ QNRp

or c ∈ QRp; c ∈ QNRq .
If c ∈ QRq; c ∈ QNRp, then by applying the second part of Lemma 4 for
q and the third part of Lemma 4 and Chinese Remainder Theorem, we get the
count as (p−1)(q−5)

16 . Similarly, the case c ∈ QRp; c ∈ QNRq follows.
4. As c ∈ ZN \ Z

∗
N , either p | c or q | c [not both, as that would imply c ≡

0(mod N )].
If q | c and p � c, two cases arise, namely (a) c ≡ 0(mod q) and c ∈ QRp, and
(b) c ≡ 0(mod q) and c ∈ QNRp. In both the cases, the lemma follows from
the Chinese Remainder Theorem and Lemma 4.
Similarly, if q � c and p | c, two cases arise, namely (c) c ≡ 0(mod p) and
c ∈ QRq and (d) c ≡ 0(mod p) and c ∈ QNRq . Again, these cases follow
similarly. �

5.1 Quadratic Residue Cayley Graph of Type-I

Lemma 6 If N = 5q, then x, y ∈ QRN ⇒ x − y 	∈ QRN .

Proof Since x, y ∈ QRN , ∃a, b ∈ Z
∗
N such that x ≡ a2(mod N ) and y ≡

b2(mod N ). If possible, let x − y ∈ QRN . Then, ∃c ∈ Z
∗
N such that x − y ≡

c2(mod N ). Therefore, a2 − b2 ≡ c2(mod N ) ⇒ a2 ≡ b2 + c2(mod N ) ⇒
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a2 ≡ b2 + c2(mod 5). Now, as a, b, c ∈ Z
∗
N , a, b, c are relatively prime to 5.

But a2 ≡ b2 + c2(mod 5) has no solution in Z
∗
5, which is a contradiction. �

Theorem 6 If N = 5q, then ΓN is triangle-free.

Proof If possible, let x, y, z ∈ ZN be vertices of a triangle in ΓN . Then, x − y, z −
y, x − z ∈ QRN . However, x − z ≡ (x − y) − (z − y)(mod N ), a contradiction to
Lemma 6. Thus, ΓN is triangle-free. �
Lemma 7 [2] If G is an abelian group and S is an inverse-closed subset of G \ {e}
with |S| ≥ 3, then the Cayley graph (G, S) has girth at most 4. �
Corollary 4 If N = 5q, then gir th(ΓN ) = 4.

Proof Since ΓN is triangle-free, gir th(ΓN ) ≥ 4. However, as ΓN is a Cayley graph
with G = ZN and generating set S = QRN such that |S| = q − 1 ≥ 3, by Lemma
7, gir th(ΓN ) is at most 4. Thus, gir th(ΓN ) = 4. �

Now, with the help of the following two lemmas, we prove that if N = 5q, where
q is a Pythagorean prime, then diam(ΓN ) = 3.

Lemma 8 If N = 5q, where q is a Pythagorean prime, then the number of vertices
at distance 2 from the vertex 0 ∈ ΓN is 3q − 1.

Proof Let x be a vertex at distance 2 from 0. Clearly, x 	= 0. Since, d(0, x) 	= 1, it
follows that x 	∈ QRN . Also, as d(0, x) = 2, ∃u ∈ ΓN such that 0, u are adjacent
and u, x are adjacent, i.e., u, u − x ∈ QRN , i.e., x = u − (u − x) can be expressed
as difference of two quadratic residues modulo N . Thus, the number of vertices x
at distance 2 from the vertex 0 is equal to the number of x 	∈ QRN which can
be expressed as difference of two quadratic residues. Now, we finish the proof by
appealing to Cases 2,3, and 4 of Lemma 5 with p = 5.

Case 2: The number of such x ∈ J +1
N \QRN , i.e., |J +1

N \QRN | is (p−1)(q−1)
4 =

q − 1.
Case 3: In J −1

N , only those x’s, for which x ∈ QRq but x 	∈ QR5, can be
expressed as difference of two quadratic residues. Note that the other type of x’s
cannot be expressed as difference of quadratic residues as p = 5. Thus, the number
of x ∈ J −1

N which can be expressed as difference of two quadratic residues is

|{x ∈ J −1
N : x ∈ QRq & x 	∈ QR5}| =

(
q−1
2

)
2 = q − 1.

Case 4: If x is a nonzero, nonunit element inZN , out of the four cases in Lemma 5,
the last three cases are applicable. Note that in the first case x cannot be expressed
as difference of quadratic residues as p = 5. Thus, the number of x which can be
expressed as difference of two squares in this category is

= |{x : x ≡ 0(mod q) & x ∈ QNR5}| + |{x : x ≡ 0(mod 5) & x ∈ QRq}|
+ |{x : x ≡ 0(mod 5) & x ∈ QNRq}|

= 5 − 1

2
+ q − 1

2
+ q − 1

2
= q + 1
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Combining all these cases, we get the total number of vertices at a distance 2 from
the vertex 0 as (q − 1) + (q − 1) + (q + 1) = 3q − 1. �

Lemma 9 If N = 5q, where q is a Pythagorean prime, then the number of vertices
at distance 3 from the vertex 0 ∈ ΓN is q + 1.

Proof From the proof of Lemma 8, it is evident that x’s which are not at a distance
1 or 2 from the vertex 0 fall under either of the two categories: (i) x ∈ J −1

N , with
x ∈ QR5, but x 	∈ QRq or (ii) x is a nonzero, nonunit inZN such that x ≡ 0(mod q)

and x ∈ QR5. Observe that in both the cases, x ∈ QR5.
We now construct a path of length 3 from 0 to x . Consider the vertex 1 and x .

Now, x − 1 	∈ QR5, otherwise, we get two consecutive integers x, x − 1 ∈ QR5,
which is a contradiction. Thus, by Lemma 5, d(x, 1) = d(x − 1, 0) = 2 or 1. Also,
d(1, x) 	= 1 as that would give a path 0, 1, x of length 2 from 0 to x , a contradiction.
Hence, d(1, x) = 2. Let the shortest path from 1 to x be 1, u, x . Then, 0, 1, u, x is
a path from 0 to x and hence, d(0, x) ≤ 3. On the other hand, d(0, x) 	= 1, 2. Thus,
d(0, x) = 3.

Now, the number of such x’s at a distance 3 from 0 is

|{x ∈ J −1
N : x ∈ QR5; x 	∈ QRq}| + |{x ∈ ZN : x ≡ 0(mod q); x ∈ QR5}|

= 2

(
q − 1

2

)
+ 5 − 1

2
= (q − 1) + 2 = q + 1.

�

Theorem 7 If N = 5q, where q is a Pythagorean prime, then diam(ΓN ) = 3.

Proof Since ΓN is regular with degree φ(N )/4 = q −1, number of vertices adjacent
to 0, i.e., at distance 1 from 0 is q − 1. By Lemma 8, Lemma 9 and counting the
point 0 itself, we get the number of all points at distance 0, 1, 2, 3 from the vertex 0
as 1 + (q − 1) + (3q − 1) + (q + 1) = 5q = N . Thus, it exhausts all the vertices
in ΓN , i.e., all the points, apart from 0 itself, are at either distance 1, 2 or 3 from 0.
Since, ΓN is symmetric, the maximum distance between any two vertex is 3, i.e.,
diam(ΓN ) = 3. �

5.2 Quadratic Residue Cayley Graph of Type-II

Theorem 8 If N = pq where 5 � N, then ΓN is triangulated and gir th(ΓN ) = 3.

Proof Let x ∈ ZN be any vertex in ΓN . Consider x, x + 32, x + 52 ∈ ZN . These
three vertices form a triangle as 9, 16, 25 are relatively prime to N and belong to
QRN . Thus, every vertex x ∈ ΓN is a vertex of a triangle in ΓN . Hence, ΓN is
triangulated. Now, existence of triangle in ΓN ensures its girth to be 3. �
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Lemma 10 Let N = pq where 5 � N. If 0, x ∈ ZN be nonadjacent vertices in ΓN ,
then ∃u ∈ ZN such that 0 and u are adjacent and u and x are adjacent.

Proof Since 0, x ∈ ZN be nonadjacent vertices in ΓN , x is not a quadratic residue
in ZN . Also, N = pq with 5 � N implies p, q > 5. Therefore, by Lemma 5, x can
always be expressed as difference of two quadratic residues, say u, v ∈ QRN such
that x = u − v. Since, u ∈ QRN , 0 and u are adjacent in ΓN . Also, u − x = v is a
quadratic residue, i.e., u and x are adjacent in ΓN . �

Theorem 9 If N = pq where 5 � N, then diam(ΓN ) = 2.

Proof Let x, y ∈ ZN . If x − y ∈ QRN , then d(x, y) = 1. If x − y is not a quadratic
residue, then 0 and x − y are non-adjacent vertices in ΓN . Therefore, by Lemma 10,
∃u ∈ ZN such that 0 is adjacent to u and u is adjacent to x − y. So using a translation
of y, we get y is adjacent to u + y and u + y is adjacent to x in ΓN . Thus, d(x, y) = 2
and hence diam(ΓN ) = 2. �

Now, we turn toward a special property of ΓN of Type-II. Earlier, we have men-
tioned that ΓN , both Type-I and II, are not strongly regular. However, in ΓN of
Type-II, if x, y are two adjacent vertices, then there are a fixed number of vertices
(depending only on N and not on x, y) in ΓN which are adjacent to both x and y.

Theorem 10 Let N = pq, where p, q > 5 are primes with p = 4k +1, q = 4l +1.
If x, y are two adjacent vertices in ΓN , then there are exactly (k − 1)(l − 1) vertices
in ΓN which are adjacent to both x and y.

Proof Since x, y are two adjacent vertices in ΓN , x − y ∈ QRN . By Lemma 5,
the number of ways in which x − y can be expressed as difference of two quadratic
residues is (p−5)(q−5)

16 = (4k−4)(4l−4)
16 = (k − 1)(l − 1). Let x − y = u − v where

u, v ∈ QRN . Therefore, 0, u are adjacent (as u ∈ QRN ) and u, x−y are adjacent (as
u − (x − y) = v ∈ QRN ) in ΓN . Thus, by using a translation by y and symmetricity
of ΓN , y, u + y are adjacent and u + y, x are adjacent. Hence, there are exactly
(k − 1)(l − 1) vertices in ΓN which are adjacent to both x and y. �

Remark 3 By Theorem 2 and 10, it follows that ΓN of Type-II is regular and any
two neighbours in ΓN have equal number of common neighbours. However, any two
nonadjacent vertices may not have equal number of common neighbors. Thus, ΓN

is not strongly regular.

In Theorem 8, it was shown that ΓN of Type-II is triangulated. Now, by using
Theorem 10, we count the number of triangles in ΓN of Type-II.

Theorem 11 If N = pq with p = 4k +1, q = 4l +1 being primes >5, then number
of triangles in ΓN is 2

3 Nk(k − 1)l(l − 1).

Proof Let x be a vertex in ΓN . The number of vertices adjacent to x is φ(N )/4. Let
y be one of those vertices adjacent to x . Now, by Theorem 10, there are (k −1)(l −1)
vertices zi ’s in ΓN which are adjacent to both x and y, thereby forming a triangle.
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Thus, the count of triangles with x as a vertex, comes to φ(N )
4 (k −1)(l −1). However,

this number is twice the actual number of triangles with x as a vertex, since we could
have also started with choosing zi instead of y and get y as the common neighbor of
x and zi . Thus, the actual number of triangles with x as a vertex is φ(N )

8 (k −1)(l −1).

Now, varying x over the vertex set of ΓN , the count becomes φ(N )
8 N (k − 1)(l − 1).

Again, this count is to be divided by 3, as if x, y, z are vertexes of a triangle, then the
triangle is counted thrice once with respect to each vertex. Thus, the actual number
of triangles in ΓN is = φ(N )

24 N (k − 1)(l − 1)

= (p − 1)(q − 1)

24
N (k −1)(l −1) = 4k.4l

24
N (k −1)(l −1) = 2

3
Nk(k −1)l(l −1).

�

Remark 4 Note that one of k − 1, k, k + 1 is divisible by 3. But as p = 4k + 1 =
3k + (k + 1), k + 1 is not divisible by 3, thus k(k − 1) is divisible by 3. As a result,
the number of triangles is a positive integer.

6 Domination Number of ΓN

In this section, we use some existing theorems in the literature, to find a bound on
the domination number γ of ΓN . First, we state some results in graph domination
which we will use, without proof. (See [3])

Theorem 12 [3] Let G be a graph with n vertices. Then the following are true:

1. If G has a degree sequence d1, d2, . . . , dn with di ≥ di+1, then

γ (G) ≥ min{k : k + (d1 + d2 + . . . + dk) ≥ n}.

2. If G has no isolated vertex and has minimum degree δ(G), then

γ (G) ≤ n

δ(G) + 1

δ(G)+1∑
j=1

1

j
.

Theorem 13 If N = pq, then γ (ΓN ) ≥ 5. Specifically, if N = 5q, then

5 ≤ γ (ΓN ) ≤ 5

q∑
j=1

1

j
.



Quadratic Residue Cayley Graphs on Composite Modulus 287

Proof For the first part, we assume that p = 4l + 1. Since, ΓN is regular with
degree φ(N )

4 = (p−1)(q−1)
4 = l(q − 1), we have γ (ΓN ) ≥ min{k : k + kl(q − 1) ≥

(4l + 1)q} = 5.
For the second part, i.e., N = 5q, we put l = 1. Also, as ΓN has no isolated

vertex,

γ (ΓN ) ≤ 5q

(q − 1) + 1

q∑
j=1

1

j
= 5

q∑
j=1

1

j
.

�

Remark 5 A similar upper bound could have been given for the general case, how-
ever, the expression being messy, may not provide meaningful insight.

7 Conclusion and Future Work

In this paper, we introduced a special class of quadratic residue Cayley graphs and
proved some basic features of this family. However, a lot of questions are still unre-
solved. The chromatic number and domination number of this family of graphs can
be interesting topics for further research.
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A Dynamic Programming Algorithm
for Solving Bi-Objective Fuzzy Knapsack
Problem

V.P. Singh and D. Chakraborty

Abstract This paper considers bi-objective knapsack problem with fuzzy weights,
says bi-objective fuzzy knapsack problem (BOFKP). Here we introduce an index
which gives the possibility of choosing the item (weights and knapsack availabil-
ity are fuzzy in nature) for knapsack with crisp capacity such that both the objective
value are optimized.Amethodology using dynamic programming technique has been
introduced in this paper with an algorithmwhich gives the optimal solution for single
objective fuzzy knapsack problem (FKP) with some possibility. Using this method-
ology an algorithm is given to find the Pareto frontier in case of bi-objective fuzzy
knapsack problem. Compromise ratio method for decision-making under fuzzy envi-
ronment has been used to find the compromise solution. The possibility index gives
an idea to choose the solution according to decision-maker’s choice. An illustrative
example is given to demonstrate the methodology.

Keywords Bi-objective fuzzy knapsack problem · Triangular fuzzy number ·
Dynamic programming · Possibility index · Compromise ratio method

1 Introduction

The bi-objective fuzzy knapsack problem is an extension of fuzzy knapsack problem
[7]. Fuzzy knapsack problem is a knapsack problem where the weight of the items
are fuzzy in nature. Knapsack problem is one of the most relevant mathematical
programming problem with numerous applications in different areas. The knapsack
problem [8] is a problem where a decision-maker is searching for a combination
of different items for filling the knapsack. The objective is to optimize the total
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utility value of all chosen items by the decision-maker subject to the capacity of
knapsack. In bi-objective fuzzy knapsack problem the objective is to optimize both
the objectives subject to the capacity of knapsack. The knapsack may correspond to
a ship, truck, or a resource. Knapsack problem has a simple structure which permits
to study combinatorial optimization problems.

In most real world situations, decisions are often taken by the decision-maker
in the presence of conflicting objectives. Some researchers used fuzzy theory to
solve this type of problem. Zadeh [14] proposed fuzzy set theory, using this theory
[10] described multiple choice knapsack problem with fuzzy coefficients. Kasperski
and Kulej [6] solve the 0-1 knapsack problem with fuzzy data. Lin and Yao [7]
described FKP by taking each weight wi , i = 1, 2...n as imprecise value. They
consider w̃i = (wi − Δi1, wi , w + Δi2) be the fuzzy number, thus the decision-
maker should determine an acceptable range of values for each w̃i , which is the
interval [wi − Δi1, wi + Δi2], 0 ≤ Δi1 < wi , and 0 ≤ Δi2. Then the decision-
maker chooses a value from the interval [wi − Δi1, wi + Δi2] as an estimate of each
weight. Estimate is exactly w̃i if the acceptable grade is 1, otherwise, the acceptable
grade will get smaller when the estimate approaches either wi − Δi1 or wi + Δi2.
To calculate an estimate of the fuzzy weight defuzzification of the fuzzy number w̃i

from the interval [wi − Δi1, wi + Δi2] has been used.
The main idea behind this paper is to solve the bi-objective knapsack problem in

fuzzy environment. Since in real world situations, the decision-makers often face the
problem of uncertainty in selecting the amount of data which is used in packaging
the knapsack. To overcome this difficulty we have taken fuzzy data to solve this
type of problem without defuzzification. There are varieties of applications available
for bi-objective fuzzy knapsack problem such as various packing problem, cargo
loading, cutting stock, or economic planning. For example, the problem of making
investment decisions in which the size of an investment is based on the amount of
money required, the knapsack capacity is the amount of availablemoney to invest, the
investment profit, and rate of investment profit are the expected return. The notable
features of our approach are as follows:

• We develop a new possibility index for calculating the possibility of putting fuzzy
weight into a knapsack of crisp capacity as well as fuzzy capacity. Possibility index
gives an opportunity to the decision-makers to select the fuzzy weight according
to their choice.

• We introduced a dynamic programming algorithm to solve fuzzy knapsack prob-
lem which gives the optimal solution with some possibility index. The selection
of possibility index may vary according to the choice of decision-makers.

• For solving bi-objective fuzzy knapsack problem, the Pareto optimal frontier is
generated using the optimal values of each objective. Then the compromise ratio
method for decision-maker under fuzzy environment has been used for selecting
the best compromise solution.

In this paper, the weight as triangular fuzzy number has been used and solve it
without defuzzification. Defuzzification of fuzzy number gives a real value corre-
sponding to that fuzzy number with some loss of information. Defuzzification of
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fuzzy number, converts the fuzzy knapsack problem into crisp knapsack problem.
Since the weights are fuzzy in nature we can fill the weights with some possibility,
having any value between [0, 1]. Sengupta and Pal [11] introduced an acceptability
index to order two intervals in terms of value. Similarly, we introduced a possibility
index for calculating the possibility [3] of putting fuzzy weight within a knapsack.
Proposed possibility index provides themeasurewhether the knapsack can hold fuzzy
weight. There are three types of decision-makers [9] who want to get the solution.
If the possibility index is 1 weight can be filled completely in the knapsack and if it
is zero it cannot fill. If the possibility index lies between [0,1] weight can be filled
with this much possibility. Possibility index may be near 1 and also may be closer to
zero. It depends on the decision-maker how he chooses the weight. There are Pes-
simistic decision-maker, Optimistic decision-maker, and Moderate decision-maker.
An optimistic decision-maker can take the worst case for optimizing the solution,
i.e., he tolerates the less possibility index for expected higher utility value, on the
other hand pessimistic decision-maker always chooses the highest possibility index.
A moderate decision-maker can choose the middle value of the possibility.

An algorithmhas been introducedbasedondynamic programming [1, 5, 12, 13] to
solve fuzzyknapsackproblem,which gives the optimal solutionwith somepossibility
index. The possibility index gives the possibility of choosing fuzzy weights out of
available weight (knapsack capacity). The possibility index is introduced in Sect. 3.
For solving bi-objective fuzzy knapsack problem, first we optimize each objective
function using proposed dynamic programming algorithm. We select number of
copies for both the objective functions separately and the Pareto optimal frontier is
generated by using these numbers of copies. Then the compromise ratio method [4]
for decision-maker under fuzzy environment has been used for selecting the best
compromise solution.

The rest of the paper is organized as follows, Sect. 2 outlines the preliminaries
and definition of the fuzzy compromise ratio method for multi-attribute decision-
making. In Sect. 3, we develop possibility index for selecting the fuzzy weight into
the knapsack of crisp (or fuzzy) capacity. In Sect. 4, bi-objective fuzzy knapsack
problem by multistage decision process has been defined and a methodology along
with algorithms has been given to calculate the Pareto frontier. In Sect. 5, a numerical
example has been demonstrated by our proposed algorithm. Finally, we state our
conclusion in Sect. 6.

2 Preliminaries: Concepts and Definitions

Zadeh [14] in 1965, introduced the concept of a fuzzy set. A fuzzy set Ã in X is
characterized by a membership function μÃ(x) which associates with each points
in X a real number in the interval [0,1], with the value of μÃ(x) at x representing
the “grade of membership” of x in Ã. where X is a space of points (objects), with a
generic element of X denoted by x .



292 V.P. Singh and D. Chakraborty

2.1 LR-type Fuzzy Number

Definition 1 A fuzzy number M̃ is of LR − t ype if there exist reference functions
L(for left), R(for right), and scalars α > 0, β > 0 with

μM̃(x) =
{

L(m−x
α

), for x ≤ m
R( x−m

β
), for x ≥ m (1)

m, called the mean value of M̃, is a real number and α and β are called the left and
right spreads, respectively. Symbolically M̃ is denoted by (m, α, β)LR.

For reference function L, different function can be chosen. Dubois and Prade in
1988 mention, for instance, L(x) = max(0, 1 − x)p, L(x) = max(0, 1 − x p), with
p > 0, L(x) = e−x or L(x) = e−x2 . If m is not a real number but an interval [m, m]
then the fuzzy set M̃ is not a fuzzy number but a fuzzy interval.

For LR fuzzy number the computations necessary for the arithmetic operations
are considerably simplified: the exact formulas that can be given for ⊕ and �. Let
Ã = (a, α, β)LR, B̃ = (b, γ, δ)LR be two fuzzy number of LR-type. Then,

1. (a, α, β)LR ⊕ (b, γ, δ)LR = (a + b, α + γ, β + δ)LR

2. −(a, α, β)LR = (−a, β, α)LR

3. (a, α, β)LR � (b, γ, δ)LR = (a − b, α + δ, β + γ )LR

2.2 Triangular Fuzzy Number

Definition 2 It is a fuzzy number represented with three points as follows:

Ã = (a1, a2, a3)

this representation is interpreted as membership functions:

μÃ(x) =

⎧
⎪⎪⎨
⎪⎪⎩

0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2
a3−x
a3−a2

, a2 ≤ x ≤ a3
0, x > a3

(2)

2.3 Fuzzy Compromise Ratio Method for MADM

There are n possible alternatives s1, s2, . . . , sn from which the decision-maker has
to choose on the basis of m attributes c1, c2, . . . , cm . Here it has been assumed that
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m attributes have equal weights. The ratings of the alternatives s1, s2, . . . , sn on
attribute c1, c2, . . . , cm , as given by the decision-maker be f̃i j = (mi j ;αi j , βi j ). So
the fuzzy decision matrix is given by

Ỹ = ( f̃i j )m×n =

⎛
⎜⎜⎜⎜⎝

f̃11 f̃12 . . f̃1n

f̃21 f̃22 . . f̃2n

. . . . .

. . . . .

f̃m1 f̃m2 . . f̃mn

⎞
⎟⎟⎟⎟⎠

Since the m attributes may be measured in different ways, the decision matrix
Y needs to be normalized. The linear scale transformation has been used here to
transform the various attribute scale into a comparable scale. After normalization we
get

r̃i j = ( mi j

dmax
i j

; αi j

dmax
i j

,
βi j

dmax
i j

)
for ci ∈ C1

and

r̃i j =
⎧
⎨
⎩

( amin
i

mi j
; amin

i .βi j
mi j .(mi j +βi j )

,
amin

i .αi j
mi j .(mi j −αi j )

)
, for amin

i �= 0, ci ∈ C2

(
1 − mi j

dmax
i j

; αi j
dmax

i j
,

βi j
dmax

i j

)
, for amin

i = 0, ci ∈ C2

Where

dmax
i = max

1< j<n
{mi j + βi j | f̃i j = (mi j ;αi j , βi j )} and

amin
i = min

1< j<n
{mi j − αi j | f̃i j = (mi j ;αi j , βi j )}

The normalization method mentioned above is to preserve the property that the
range of a normalized triangular fuzzy number belongs to the closed interval [0, 1].
Then the fuzzy decision matrix can be transformed into normalized fuzzy decision
matrix:

R̃ = (̃ri j )m×n =

⎛
⎜⎜⎜⎜⎝

r̃11 r̃12 . . r̃1n

r̃21 r̃22 . . r̃2n

. . . . .

. . . . .

r̃m1 r̃m2 . . r̃mn

⎞
⎟⎟⎟⎟⎠

Then, the fuzzy positive ideal solution s+ and the fuzzy negative ideal solution
s− have been defined, whose weighted normalized vectors are ã+ = (̃a+

1 , ã+
2 . . . ã+

m )

and ã− = (̃a−
1 , ã−

2 . . . ã−
m ), respectively. Difference between each alternative
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s j ( j = 1, 2 . . . n) and the positive ideal solution and the fuzzy negative ideal solu-
tion have been measured by using fuzzy distance between two fuzzy numbers. It is
given by

D̃(s j , s+) =
m∑

i=1

d̃ (̃ri j , ã+
i )

D̃(s j , s−) =
m∑

i=1

d̃ (̃ri j , ã−
i )

Now the smaller D̃(s j , s+), the better s j .

3 The Possibility Index

Let us consider two fuzzy numbers Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) whose
membership functions can be calculated by Eq.2. Now if we take a knapsack of
capacity B̃ and we want to fill the weight Ã into the knapsack of capacity B̃ then we
have three possibilities for filling the weight in the knapsack which are classified as
follows.

1. Ã can be completely filled into the knapsack of capacity B̃, i.e., possibility is one.
2. Ã cannot be filled into the knapsack of capacity B̃, i.e., possibility is zero.
3. Ã can be filled with some possibility into the knapsack of capacity B̃, i.e., possi-

bility lies between zero and one.

If Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) are two fuzzy numbers then the possibility
index for filling fuzzy weights in given capacity is denoted by PI (̃A�B̃), i.e., the
possibility of filling Ã in B̃ and given by

PI (̃A�B̃) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 − y1
(a3−b3)
(a3−a1)

, if b3 < a3 and a2 ≤ b2
y2

(b3−a1)
(a3−a1)

, if b3 < a3 and a2 > b2
1, if b3 ≥ a3
0, if b3 ≤ a1

(3)

where y1 = {μD̃(x)|μÃ(x) = μB̃(x) f or x ≥ b2}, y2 = {maxμD̃(x)|μD̃(x) =
min(μÃ(x), μB̃(x)} and μD̃(x) represents the membership value of fuzzy set D̃ =
Ã ∩ B̃. Figure1 shows some sets which defines above condition for calculating the
possibility index.
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Fig. 1 Sets of fuzzy numbers

When b3 < a3 and a2 < b2, the possibility index can be calculated as:

PI (̃A�B̃) = Area occupied by Ã in the knapsack of capacity B̃

Total area of Ã
= 1 − y1

(a3 − b3)

(a3 − a1)

where y1 = {μD̃(x)|μÃ(x) = μB̃(x) f or x ≥ b2} and μD̃(x) represents the mem-
bership value of fuzzy set D̃ = Ã ∩ B̃.

When b3 < a3 and a2 > b2 the possibility index can be calculated as:

PI (̃A�B̃) = Area occupied by Ã in the knapsack of capacity B̃

Total area of Ã
= y2

(b3 − a1)

(a3 − a1)

where y2 = {maxμD̃(x)|μD̃(x) = min(μÃ(x), μB̃(x)} and μD̃(x) represents the
membership value of fuzzy set D̃ = Ã ∩ B̃.

When b3 ≥ a3 the possibility index can be calculated as:

PI (̃A�B̃) = Area occupied by Ã in the knapsack of capacity B̃

Total area of Ã
= 1

When a1 ≥ b3 the possibility index can be calculated as:

PI (̃A�B̃) = Area occupied by Ã in the knapsack of capacity B̃

Total area of Ã
= 0
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Fig. 2 PI of Ã = (a1, a2, a3) for different value of b(crisp)

Since the knapsack capacity is crisp value. Let B̃ = (b, b, b), i.e., a crisp value
b is knapsack capacity which is shown in Fig. 2. Now our possibility index can be
given as:

PI (̃A�b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if a3 ≤ b
1 − μÃ(b)

(a3−b)
(a3−a1)

, if a2 ≤ b < a3
μÃ(b)

(b−a1)
(a3−a1)

, if a1 < b < a2
0, if b ≤ a1

(4)

Please note that the first line of text that follows a heading is not indented, whereas
the first lines of all subsequent paragraphs are.

4 Bi-Objective Fuzzy Knapsack Problem
by Multistage Decision Process

A bi-objective fuzzy knapsack problem may be viewed as n stage decision process
where the fuzzy stage transformation equation unite all the stages (Fig. 3). In a
dynamic programming structure of bi-objective fuzzy knapsack problem, the stage
transformation equation transforms input state variable and decision variable to an
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Fig. 3 Multistage decision process in fuzzy environment

output state which works as an input state variable for its next stage and this process
continues upto nth stage. If S0 is the input state variable for first stage and d1 is the
decision variable then stage 1 will consume some part of input and decision variable
and it will give an immediate return in the form of utility value for both the objective
function f 11 and f 22 correspond to their possibility index PI1 at first stage. At first
stage decision variable has a crisp value, while from 2nd stage onwards it becomes
fuzzy. If we have S j as input state fuzzy variable at j th stage which is output from
the ( j −1) stage and d̃ j for ( j > 1) is decision variable then the immediate return at
stage j is given by ( f 1j , f 2j , PI j ). Similarly at nth stage we get an optimal return f 1n
and f 2n for first and second objective, respectively, with possibility PIn . This optimal
value that corresponds to each objective function will be of optimal utility value
for first and second objectives, respectively, and by moving in backward direction
with respect to the corresponding decision variable, we calculate the nondominated
set of items. Here possibility index plays an important role at each stage. Since the
decision-makers have values of possibility index at each stage so that they can select
the optimal value according to their tolerance limits. The selection of possibility
index will change the solution according to DM’s choices.

4.1 Methodology

In the classical bi-objective knapsack problem all the weights and item profits are
assumed to be crisp in nature. Mathematically, it is defined as,

max fk(x) =
n∑

i=1

uk
i xi for k = 1, 2

s.t
n∑

i=1

wi xi < W , i = 1, . . . , n.
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If the item are n in number then u1
i and u2

i (i = 1, 2, . . . n)represents the util-
ity values of each item for first and second objective, respectively, and wi repre-
sents the crisp weight of each item with knapsack capacity W . In the formulation
of bi-objective fuzzy knapsack problem, the used weights are fuzzy in nature. In
practice, we see many knapsack problems that involve items whose weights or price
value are imprecise. Here we consider the problem in which weights of the items
are triangular fuzzy number w̃i = (w1i , w2i , w3i ), knapsack capacity W and utility
values are crisp. After fuzzifying the crisp value W we obtain W̃ = (W1, W2, W3).
Now the bi-objective fuzzy knapsack problem as a linear programming model is
described by

max fk(x) =
n∑

i=1

uk
i xi for k = 1, 2

s.t
n∑

i=1

w̃i xi 	 W , i = 1, . . . , n.

Nowa dynamic programming technique of decision-making in fuzzy environment
[2] is given to solveFKPusing the possibility index introduced in the previous section.
The solution obtained by this method depends upon the DM who chooses the profit
with respect to possibility index in each stage. Since in the dynamic programming
we divide an n-stage problem into n single stage problem and then used backward
recursive approach to get the solution. Following steps are given to solve fuzzy
knapsack problem.

Step 1: First we formulate the problem by defining the symbol given below-
xi : Number of copies of an item i selected for knapsack.
yi

k : Upper bound of an item i for kth objective.
di : State variable (Available weight in each stage i).
uk

i : Value of an item i for kth objective (k= 1, 2) selected for knapsack.
Fi

k(xi ):Value in stage i given xi number of copies for kth objective (k= 1, 2).

f i,Nt
k (di ): Maximum possible utility value selected at stage i to n for

kth objective (k= 1, 2) according to the decision-makers’ tolerance limit
Nt for t = 1, 2, 3.
PIi (xi ): Possibility index in stage i for weights selected in the knapsack.

Step 2: We start from nth item and calculate the optimal value for each objective
function and possibility index of weight for this item. In the next stage
we take nth and (n − 1)th item and again calculate the optimal value and
possibility index of weights. Continuing in this manner at i th stage we have
i number of items, for calculating the optimal value and possibility index
which is selected by the DM in each stage we require optimal value and
possibility index from previous stage. So we defined stage transformation
equations for profit and the possibility index as
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Fi
k(xi , di ) = xi ∗ ui + f i+1,Nt

k (di ) for k = 1, 2 (5)

PIi (xi , di ) = 1

2
(PI((xi ∗ w̃i )�di ) + PI(õwi�r̃wi )) (6)

f i,Nt
k (di ) = max {Fi

k(xi , di )|max {PIi (xi , di )} ∈ Nt for t = 1, 2, 3} (7)

Here d
′ = �r̃wi3, r̃wi = di − (xi ∗ w̃i ) is the remaining fuzzy weight at

stage i and õwi =
n∑

j=i+1
x∗

j w̃ j is the optimal weight at stage i due to its

all previous stages where x∗
i is the optimal value at stage i. PIi (õwi�r̃wi )

represent the possibility index of two fuzzy number which is calculated by
Eq.3. Initial values are given by the equations.

f n+1,Nt
k (di ) = 0 (8)

PIn+1(õwn�r̃wn) = PI((xi ∗ w̃i )�di ) (9)

Step 3: Once calculating the value of f i,Nt
k (di ), PIi (xi ) at first stage it depends

upon the decision-maker to choose the optimal value in the next stage. Let
N1, N2, N3 are the tolerance limit for the optimistic, moderate, and pes-
simistic decision-makers, respectively. Then the selection of PIi (xi ) for the
next stage has been showed in Fig. 4 depending on the selected decision-
maker and the corresponding f i,Nt

k (di ) value will be optimal value for profit.
Step 4: Now we have utility values and possibility index for all the stages. Moving

backward by considering the optimal value (chosen by DM) corresponding
to remainingweight fromfirst stage to nth stagewill give the solution and the
selected number of copies of item for that decision-maker and the selected
number of copies. Similarly for other decision-makers they can select there
tolerance limit.

Step 5: According to the decision-maker’s tolerance limit select the upper bound
of each item for each objective. Here we select only those values of xi for
which the possibility index PIi ∈ Nt at di = W . Now stage transformation
equations for uniting all the stages in case of mixed approach

Fig. 4 Selection of
possibility index by DM



300 V.P. Singh and D. Chakraborty

Fi
k(xi , di ) = xi ∗ uk

i + f i+1,Nt
k (d

′
)

f i,Nt
k (di ) = max {Fi

k(xi , di )|max {PIi (xi , di )} ∈ Nt }

Step 6: Now, we select number of copies for both the objectives by moving in
backwarddirectionwithmaximumobjectives values provided the possibility
index for di = W at last stage (i = 10) should not be less than from
possibility index at di−1 = W .

4.2 Algorithms for Fuzzy Knapsack Problem

Algorithm 1 Calculating functional value for each objective function at each state
of a stage with possibility index
Require: w̃i = (w1i , w2i , w3i ), W , uk

i , n, k

Ensure: f i
k (di ), PI

′
i (di ), yi

k
1: w̃i , i = 1, 2, ...n
2: for i := n → 1 do
3: l := 0
4: while w2i ∗ l ≤ W do
5: l := l + 1
6: end while
7: for xi := 0 → l do
8: for di := 0 → W do
9: x∗

n+1(di ) := 0

10: if (di < w1i ) then
11: f n

k (di ) := 0
12: PIn (di ) := 0
13: end if
14: if (w3i < di < xi ∗ w3i )or(di ≥ xi ∗ w3i ) then

15: f n+1,Nt
k (di ) := 0 for all decision-makers, i.e., t = 1, 2, 3

16: r̃wi := di − (xi ∗ w̃i )

17: õwi :=
n∑

j=i+1
x∗

j w̃ j

18: PI(õwn�r̃wn ) := PI((xi ∗ w̃i )�di )

19: Fi
k (xi , di ) := xi ∗ uk

i + f i+1,Nt
k (di )

20: PIi (xi , di ) := 1
2 (PI((xi ∗ w̃i )�di ) + PI(õwi �r̃wi ))

21: if (PIi (xi , di ) ∈ Nt ) then
22: yi

k = xi
23: end if
24: f i,Nt

k (di ) := max {Fi
k (xi , di )|max {PIi (xi , di )} ∈ Nt for t = 1, 2, 3}

25: x∗
i (di ) := xi for whichmax {Fi

k (xi , di )|max {PIi (xi , di )} ∈ Nt } is selected.
{Here N1, N2, N3 are the tolerance limits for optimistic, moderate, pessimistic decision-maker respec-
tively.}

26: end if
27: end for
28: end for
29: end for
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Algorithm 2 Generating Pareto frontier
Require: w̃i = (w1i , w2i , w3i ), W , uk

i , n, k
Ensure: X = (x1, x2, . . . xn )

1: w̃i , i = 1, 2, ...n
2: for i := n → 1 do
3: for xi := 0 → yi

k do
4: for di := 0 → W do
5: Repeat Steps 9 to 20 of Algorithm 1.
6: PI∗i (xi , di ) := max {PIi (xi , di )} ∈ Nt |max {Fi

k (xi , di ) for t = 1, 2, 3}
7: end for
8: end for
9: end for
10: for xi := 0 → yi

k do
11: if (PI1(xi , W)) ≥ PI∗2 (xi , W) then
12: X := X ∪ {xi } ∪ {x∗

i−1} ∪ . . . ∪ {x∗
1 }

13: end if
14: end for

5 Numerical Example

Let us consider that there is a truck with 10 tons loading capacity. The decision-
makers have two types of items A and B with fuzzy weights. Here f1 represents
the profits on the items of type A and B, respectively, f2 represent the amount used

Table 1 Data for knapsack problem

Weight 2̃ = (1.5, 2, 3) 2̃ = (1.5, 2, 3)

f1 6 10

f2 20 3

Type A B

Table 2 Solution for first objective at stage 1

d2 x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 max x∗
2

1 – – – – – – – –

2 – (10, 0.34) – – – – (10, 0.34) 1

3 – (10, 1) – – – – (10, 1) 1

4 – (10, 1) (20, 0.34) – – – (10, 1) 1

5 – (10, 1) (20, 0.83) (30, 0.03) – – (20, 0.83) 2

6 – (10, 1) (20, 1) (30, 0.34) – – (20, 1) 2

7 – (10, 1) (20, 1) (30, 0.7) (40, 0.08) – (30, 0.7) 3

8 – (10, 1) (20, 1) (30, 0.92) (40, 0.34) (50, 0.01) (30, 0.92) 3

9 – (10, 1) (20, 1) (30, 1) (40, 0.62) (50, 0.12) (40, 0.62) 4

10 – (10, 1) (20, 1) (30, 1) (40, 0.83) (50, 0.34) (40, 0.83) 4
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Table 4 Solution for second objective at stage 1

d2 x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 max x∗
2

1 – – – – – – – –

2 – (3, 0.34) – – – – (3, 0.34) 1

3 – (3, 1) – – – – (3, 1) 1

4 – (3, 1) (6, 0.34) – – – (3, 1) 1

5 – (3, 1) (6, 0.83) (9, 0.03) – – (6, 0.83) 2

6 – (3, 1) (6, 1) (9, 0.34) – – (6, 1) 2

7 – (3, 1) (6, 1) (9, 0.7) (12, 0.08) – (9, 0.7) 3

8 – (3, 1) (6, 1) (9, 0.92) (12, 0.34) (15, 0.01) (9, 0.92) 3

9 – (3, 1) (6, 1) (9, 1) (12, 0.62) (15, 0.12) (12, 0.62) 4

10 – (3, 1) (6, 1) (9, 1) (12, 0.83) (15, 0.34) (12, 0.83) 4

in manufacturing the items of the type A and B, respectively. Our objective is to
optimize both the objective functions subject to knapsack capacity (W = 10) and
find number of copies per item which gives the compromise solution for both the
objectives (Table1).

If a moderate decision-maker is trying to find the solution then the selected pos-
sibility index should be greater than 0.5. Here the solution is given for moderate
decision-maker. First we solve it by taking each objective separately using our pro-
posed dynamic programming algorithm.

From Tables2, 3, 4, 5, 6, and 7 it is clear that we select x2 = 0, 1, 2, 3, 4 and
x1 = 0, 1, 2, 3, 4 since the possibility index at X1 = X2 = 5 is less than 0.5.

The following Pareto frontier can be generated for the above problem

• (40,12) �−→ (0,4)
• (38,66) �−→ (3,2)
• (34,83) �−→ (4,1)

Now fuzzy decision matrix is given by

Ỹ = ( f̃i j )2×3 =
(

(0; 0; 0) (6; 1.5; 3) (8; 2; 4)
(8; 2; 4) (4; 1; 2) (2; 0.5; 1)

)

After calculating normalized fuzzy decision matrix fuzzy positive ideal solution
and fuzzy negative ideal solution are given by ã+ = {(0.67; 0.16; 0.34), (0.67; 0.16;
0.34)} and ã− = {(0; 0; 0), (0.16; 0.04; 0.08)}, respectively.

So using compromise ratio method we get the solution which is 3 copies of type A
and 2 copies of type B with the possibility index 0.96. Where decision at each stage
for selecting the possibility depends upon the tolerance limit of moderate decision-
maker.
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Table 6 Solution for both objectives at stage 1

d2 x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 max f1

1 – – – – – –

2 – (10, 3, 0.34) – – – (10, 3, 0.34)

3 – (10, 3, 1) – – – (10, 3, 1)

4 – (10, 3, 1) (20, 6, 0.34) – – (10, 3, 1)

5 – (10, 3, 1) (20, 6, 0.83) (30, 9, 0.03) – (20, 6, 0.83)

6 – (10, 3, 1) (20, 6, 1) (30, 9, 0.34) – (20, 6, 1)

7 – (10, 3, 1) (20, 6, 1) (30, 9, 0.7) (40, 12, 0.08) (30, 9, 0.7)

8 – (10, 3, 1) (20, 6, 1) (30, 9, 0.92) (40, 12, 0.34) (30, 9, 0.92)

9 – (10, 3, 1) (20, 6, 1) (30, 9, 1) (40, 12, 0.62) (40, 12, 0.62)

10 – (10, 3, 1) (20, 6, 1) (30, 9, 1) (40, 12, 0.83) (40, 12, 0.83)

Table 7 Solution for both objectives at stage 2

d1 x1 = 0 x1 = 3 x1 = 4 max f1 max f2

10 (40, 12, 0.83) (38, 66, 0.96) (34, 83, 0.91) (40, 12, 0.83) (34, 83, 0.91)

6 Conclusion

From the crisp knapsack problem when it is extended into fuzzy knapsack problem
and solving it without defuzzification the resulting value of optimal profit varies with
the selection of possibility index byDM’s choices at each stage. The possibility index
of selecting fuzzy weights in available fuzzy weights gives the opportunity to DM
to select the optimal value. The result of single objective is used while solving for
both the objective together and find the Pareto frontier. After calculating the Pareto
frontier we use compromise ratio method for fuzzy to find the best solution.

Acknowledgments Authors are grateful to the anonymous reviewers for their constructive com-
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A Fuzzy Random Periodic Review Inventory
Model Involving Controllable Back-Order
Rate and Variable Lead-Time

Sushil Kumar Bhuiya and Debjani Chakraborty

Abstract In this paper, a fuzzy random periodic review inventory model with con-
trollable back-order rate and variable lead-time has been consideredwhere the annual
demand is treated as a fuzzy random variable. The shortage is partially backlogged
and the back-order rate is dependent on the back-order discount and the length of the
lead-time. The lead-time crashing cost is being introduced as a negative exponential
function of the lead-time. We develop a methodology to find the optimal review
period, optimal target level, and optimal lead-time. A numerical example is provided
to illustrate the model.

Keywords Inventory · Fuzzy random variable · Possibilistic mean value

1 Introduction

In any real-life inventory system, the occurrence of shortage is a natural phenomenon.
In such a situation, some customers are willing to wait for back orders and some
customers become impatient and turn to other firms. Thus, the inventory model,
which considers both back orders and lost sales cases, is more realistic than the ones
based on the individual cases. Montogomery et al. [14] developed continuous and
periodic review inventory models with a mixture of back orders and lost sales. Abad
[1, 11, 17], andmany other researchers also studied on the problemofmixture of back
orders and lost sales. In fuzzy environment,Ouyang andYao [16] developed amixture
inventory model with fuzzy demand and random lead-time demand. Chang et al. [5]
analyzed a mixture inventory model with fuzzy random variable lead-time demand.
Vijayan and Kumaran [20] developed the mixed model for both the continuous and
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periodic review inventory model with fuzzy cost. Dey [6] presented a fuzzy random
continuous review inventory model under mixture of back orders and lost sales with
imprecise budgetary constraint and with constant lead-time. Throughout the above
model, the back rate is considered constant. However, in realistic situations, the back-
order rate is dependent on the back-order discount and the length of the lead-time.
The supplier can always provide a price discount on the stock-out item in order to
increase more back orders. Thus, the rate of back is proportional to the discount
offered by the production house. Pan and Hsiao [18] derived a continuous review
inventory model with back-order discount and variable lead-time. The back-order
rate is also dependent on the lead-time. Since bigger lead-time might lead to longer
shortage period, many customers may not like to wait for back orders. Ouyang and
Chuang [15] have considered the controllable back-order rate, which is dependent
on the length of the lead-time as a function of the amount of shortage. In this study,
we consider the rate of back order as a mixture of back-order discount proportion
and the length of the lead-time through an exponential function of the amount of
shortage.

In most inventory models, lead-time is considered as a predetermined constant,
which is not a control variable. However, after implementation of Just In Time
[13], lead-time has received extensive attention in every manufacturing company. By
reducing the lead-time, we can minimize the safety stock and can improve the level
of service to a customer. Liao and Shyu [13] first derived a probabilistic model with
variable lead-time where order quantity was preassumed. Ben-Daya and Raouf [2]
extended the [13] model by considering the order quantity as a decision variable. The
model [2] extended by [17] by including stock-out cost. Many studies (for instance
[4, 5, 18]) presented the problem of the lead-time reduction.Wu et al. [21] developed
a computational procedure for optimal inventory policy with negative exponential
crashing cost and variable lead-time demand. Recently, Dey and Chakraborty [9]
proposed a fuzzy random periodic inventory system. They introduced the lead-time
crashing cost as a negative exponential function of the lead-time.

In this paper, we propose a model to analyze fuzzy random periodic review inven-
tory system with mixture of back orders and lost sales. We consider the lead-time as
a decision variable. The crashing cost is introduced as a negative exponential func-
tion of the lead-time. The back-order rate is an amalgamation of back-order discount
proportion and the length of the lead-time through the reciprocal of the exponential
function of the amount of the shortage. The purpose of this paper is to develop a
periodic review inventory model involving controllable back-order rate and variable
lead-time under fuzzy random variable demand. A methodology is established such
that the total cost is minimized in the fuzzy sense. A solution procedure is demon-
strated to find the optimal policy. A numerical example is also presented to illustrate
the proposed methodology.

The paper is organized as follows: In Sect. 2, we mention the basic concepts
from fuzzy sets, which we need for our purpose. In Sect. 3, we build the model that
represents our problem and find the solution. We then give an algorithm to compute
optimal solution. In Sect. 4, we consider a numerical example to which we apply



A Fuzzy Random Periodic Review Inventory Model … 309

our algorithm and interpret the solution. Finally, we derive our conclusion and list
relevant references.

2 Preliminary Concepts

We begin with a few basic concepts that we will need.

2.1 Triangular Fuzzy Numbers

A normalized triangular fuzzy number Ã = (a, a, a) is a fuzzy subset of the real
line R, whose membership function μ Ã(x) satisfies the following conditions [22]:
(i) μ Ã(x) is a continuous function from R to the closed interval [0, 1],
(i i) μ Ã(x) = L(x) = x−a

a−a is strictly increasing function on [a, a],
(i i i) μ Ã(x) = 1 for x = a,
(iv) μ Ã(x) = R(x) = a−x

a−a is strictly decreasing function on [a, a],
(v) μ Ã(x) = 0 elsewhere,
where a, a, a, are real numbers. L(x) and R(x) are the left and right shape continuous
functions, respectively. A triangular fuzzy number Ã = (a, a, a) can be represented
by its α-cuts as A = [A−

α , A+
α ], where α ∈ [0, 1], A−

α = a + α(a − a), and
A+

α = a − α(a − a).
Without any loss of generality, all fuzzy quantities are assumed to be triangular

fuzzy numbers throughout this paper.

2.2 Possibilistic Mean Value of a Fuzzy Number

Let Ã be a fuzzy number, then the interval-valued possibilistic mean is defined as
M( Ã) = [

M∗( Ã), M∗( Ã)
]
, where M∗( Ã), and M∗( Ã) are the lower and upper

possibilistic mean values of Ã [3] and are, respectively, defined by

M∗( Ã) =
1∫
0

αA−
α dα

1∫
0

αdα

and M∗( Ã) =
1∫
0

αA+
α dα

1∫
0

αdα

.

The possibilistic mean value of Ã is then defined by

M( Ã) = M∗( Ã)+M∗( Ã)
2 .

In other words, the possibilistic mean value of Ã can be written as

M( Ã) =
1∫
0

α(A−
α + A+

α )dα.
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Let Ã and B̃ be two fuzzy numberswhere Aα = [A−
α , A+

α ], and Bα = [B−
α , B+

α ], α ∈
[0, 1], then, for ranking fuzzy numbers, we have Ã ≤ B̃ ⇐⇒ M( Ã) ≤ M(B̃).

2.3 Fuzzy Random Variable and Its Expectation

Kwakernaak [12] first introduced the basic concept of fuzzy random variables and
later [19] further developed the concept. We mention below what we need for our
work in subsequent sections.

Let us consider Fc(R), the set of all fuzzy numbers. Now, let (Ω,B,P) be a
probability space, then a mapping χ : Ω → Fc(R) is said to be a fuzzy random
variable (or FRV for short) if for all α ∈ [0, 1], the two real-valued mapping inf χα :
Ω → R and sup χα : Ω → R (define so that for all ω ∈ Ω we have that χα(ω) =
[inf (χ(ω))α, sup (χ(ω))α]) are real-valued random variables. If X̃ is a fuzzy random
variable then the fuzzy expectation of X̃ is a unique fuzzy number. It is defined by

E(X̃) = ∫
X̃dP =

{( ∫
X−

α dP,
∫

X+
α dP

)
: 0 ≤ α ≤ 1

}
,

where the α-cut of fuzzy random variable is [X ]α = [X−
α , X+

α ] for all α ∈ [0, 1]. The
α-cut representation of fuzzy expectation is given by vα = [E(X̃)]α = E[X ]α =
[E(X−

α ), E(X+
α )], α ∈ [0, 1].

3 Methodology

In this section, we build a mathematical model, which we will need to represent
our model and then find its solution, which will be interpreted in the context. The
analysis interpretations is similar to those of [7–9].

3.1 Model and Assumptions

In real world, the most widely used operating doctrine for periodic review system is
the order up to target level R doctrine. This system requires the inventory level to be
reviewed periodically and a sufficient order is placed to bring the inventory position
up to R.

The following notations have been used:

T time between review
R target inventory level
J cost of making a review
C0 fixed ordering cost per order
A = J + C0
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h holding cost per unit per year
π stock-out cost per unit stock-out
π0 marginal profit per unit
πx back-order price discount offered by supplier
β fraction of demand back-ordered during the stock-out period,

(0 ≤ β ≤ 1)
L lead-time(in years)
R(L) lead-time crashing cost
d̃(ω) annual demand (ω ∈ Ω where (Ω,B,P) is a probability space)
d̃L(ω) lead-time demand (ω ∈ Ω)
d̃L+T (ω) lead-time plus one period demand (ω ∈ Ω)
x+ max{0, x}
There is no time-dependent back-order cost. The back orders are incurred in very
small quantities so that when an order arrives, it is usually sufficient to meet any
outstanding back orders.

In periodic review inventory system, the safety stock or buffer stock is defined as
the difference between target level R and the lead-time plus one period demand. In
order to maintain the nonnegative safety level, we assumed R ≥ M(d̃L+T ) where
M(d̃L+T ) denotes the expected lead-time plus one period demand in possibilistic
sense and defined by

M(d̃L+T ) =
1∫

0

α

[
d−

L+T,α + d+
L+T,α

]
dα. (1)

In order to incorporate fuzziness and randomness simultaneously [7], the annual
demand is treated as a discrete fuzzy randomvariable d̃(ω) (ω ∈ Ω where (Ω,B,P
is a probability space). Let us suppose that the annual customer demand d̃(ω) is
of the form {(d̃1, p1), (d̃2, p2), (d̃3, p3), · · · · ·, (d̃n, pn)}, where each of d̃i ’s are
triangular fuzzy numbers of the form (di , di , di ) with corresponding probabilities
pi ’s, i = 1, 2, 3, · · · · ·, n. Further, let μd̃i

(x) denote the membership function

corresponding to each d̃i , i = 1, 2, 3, · · · · ·, n, and defined by

μd̃i
(x) =

{
Li (x), di ≤ x ≤ di

Ri (x), di ≤ x ≤ di

with [di , di ] as the support of each d̃i . Where di is the modal of fuzzy number d̃i , Li ,
and Ri are the left and right reference functions, respectively. The lead-time demand
and the lead-time plus one period demand are considered to be connected to the
annual demand through the length of the lead-time and period in the following form:

d̃L(ω) = d̃(ω) × L
d̃L+T (ω) = d̃(ω) × (L + T )

Annual demand d̃(ω) is a fuzzy random variable of the form d̃i = (di , di , di )
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with probability pi , for all i = 1, 2, 3 · · · ··, n, thus, the lead-time demand and
the lead-time plus one period demand are also fuzzy random variable of the form
d̃L ,i = (d L ,i , dL ,i , d L ,i ), and d̃L+T,i = (d L+T,i , dL+T,i , d L+T,i ), respectively, with
probability pi , for all i = 1, 2, 3 · · · ··, n. The expectation of fuzzy random variable
is a unique fuzzy number. The triangular form of the expected lead-time demand and
lead-time plus one period demand are given by E(d̃L(ω)) = d̃L = (d L , dL , d L),
and E(d̃L+T (ω)) = d̃L+T = (d L+T , dL+T , d L+T ), respectively. The α-cut repre-
sentation of the expected lead-time demand and lead-time plus one period demand
are defined as follows:

d−
L ,α(ω) = d−

L ,α(ω) × L and d+
L ,α(ω) = d+

L ,α(ω) × L

⇒

⎧
⎪⎪⎨
⎪⎪⎩

E

(
d−

L ,α(ω)

)
=

n∑
i=1

d−
i,α pi × L

E

(
d+

L ,α(ω)

)
=

n∑
i=1

d+
i,α pi × L

and
d−

L+T,α(ω) = d−
L+T,α(ω) × (L + T ) and d+

L+T,α(ω) = d+
L+T,α(ω) × (L + T )

⇒

⎧⎪⎪⎨
⎪⎪⎩

E

(
d−

L+T,α(ω)

)
=

n∑
i=1

d−
i,α pi × (L + T )

E

(
d+

L+T,α(ω)

)
=

n∑
i=1

d+
i,α pi × (L + T )

The total cost function in fuzzy sense is given by

C̃ (R, T, L)

=
[

h

{
R − d̃(ω)L − d̃(ω)

2
T

}
+

{
h(1 − β) + {π + π0(1 − β)}

T

}
M(d̃L+T − R)+

]

+
[

A + R(L)

T

]
(2)

where M(d̃L+T − R)+ denoted the possibilistic value of the expected shortage at
each cycle and calculated by

M

(
d̃L+T − R

)+
=

1∫

0

α

[(
(d̃L+T − R)+

)−

α

+
(

(d̃L+T − R)+
)+

α

]
dα.

The lead-time is a decision variable in our proposedmodel.We consider a negative
exponential crashing cost function as in [9]. The total crashing cost is of the following
form

Crashing cost R(L) = λe−μL .
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Some Known values of lead-time crashing cost for values of the lead-time L are
used to calculate the parameter λ and μ.

Now as explained earlier, the back-order rate is proportional to back-order dis-
count offered by supplier and it is also dependent on the lead-time through the amount
of shortage. We define the back-order rate as a combination of back-order discount
proportion and the length of the lead-time through the reciprocal of the exponential
function of the amount of shortage. We define the back-order rate as

Back-order rate β = k1
πx
π0

+ k2e−M(d̃L+T −R)+ where 0 ≤ πx ≤ π0 and 0 ≤
k1 + k2 ≤ 1. Thus the total cost function (2) is rewritten as

C̃ (R, T, L)

=
[

h

{
R − d̃(ω)L − d̃(ω)

2
T

}
+

{
h

(
1 − k1

πx

π0
− k2e−M(d̃L+T −R)+

)}
M(d̃L+T − R)+

]

+
⎡
⎣

{ {π + π0(1 − k1
πx
π0

− k2e−M(d̃L+T −R)+)}
T

}
M(d̃L+T − R)+ + A + λe−μL

T

⎤
⎦ (3)

To find the optimal solution, we need to determine

(i) the exact expression of M(d̃L+T − R)+;
(ii) the fuzzy expected value of the total cost function and, then defuzzified the

expected value;
(iii) derive the optimal values of the target level R∗, review of period T ∗ and the

lead-time L∗ such that minimize the expected total annual cost.

3.2 Determination of Expected Shortage M(d̃L+T − R)+

The expected shortage in possibilistic sense is determined [9, 10] as follows:
Situation 1. For R lying between d L+T and dL+T , we have the α-level set of the

lead-time plus one period demand as

(d̃L+T )α =
{ [R, d+

L+T ,α], α ≤ L(R)

[dL+T,α, d+
L+T,α], α > L(R)

which implies

(
(d̃L+T − R)+

)

α

=
{ [0, d+

L+T,α − R], α ≤ L(R)
[d−

L+T,α − R, d+
L+T,α − R], α > L(R)

(4)

Therefore, the possibilistic mean is calculated as follows:
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M

(
d̃L+T − R

)+
=

1∫

0

α

[(
(d̃L+T − R)+

)−

α

+
(

(d̃L+T − R)+
)+

α

]
dα

=
L(R)∫

0

α(d+
L+T,α − R)dα +

1∫

L(R)

α{(d−
L+T,α − R) + (d+

L+T,α − R)}dα

=
1∫

0

αd+
L+T,αdα +

1∫

L(R)

αd−
L+T,αdα − R(1 − 0.5L2(R)) (5)

Situation 2. For R lying between dL+T and d L+T , the α-level set of the lead-time
plus one period demand is given by

(d̃L+T )α =
{ [R, d+

L+T,α], α ≤ R(R)
φ, α > R(R)

which implies

(
(d̃L+T − R)+

)

α

=
{ [0, d+

L+T,α − R], α ≤ R(R)
φ, α > R(R)

(6)

Therefore, the possibilistic mean is calculated as follows:

M

(
d̃L+T − R

)+
=

1∫

0

α

[(
(d̃L+T − R)+

)−

α

+
(

(d̃L+T − R)+
)+

α

]
dα

=
R(R)∫

0

α(d+
L+T,α − R)dα

=
R(R)∫

0

αd+
L+T,αdα − 0.5RR2(R) (7)

3.3 Possibilistic Mean Value of the Fuzzy Expected Total Cost
Function

The total cost function (3) is given by



A Fuzzy Random Periodic Review Inventory Model … 315

C̃ (R, T, L)

=
[

h

{
R − d̃(ω)L − d̃(ω)

2
T

}
+

{
h

(
1 − k1

πx

π0
− k2e−M(d̃L+T −R)+

)}
M(d̃L+T − R)+

]

+
⎡
⎣

{ {π + π0(1 − k1
πx
π0

− k2e−M(d̃L+T −R)+)}
T

}
M(d̃L+T − R)+ + A + λe−μL

T

⎤
⎦ (8)

where the possibilistic mean value of the expected shortage at each cycle, M(d̃L+T −
R)+ is given by either (5) or (7) depending on the position of R ∈ [d L+T , d L+T ].
As mentioned before, the total cost function is a fuzzy random variable. The expec-
tation of the fuzzy random variable is a unique fuzzy number. For computational
purpose, the expectation of the total annual cost is defuzzified using its possibilistic
mean value.

The α-level set of the total cost function is given by

C−
α

= h

[
R − d+

α L − d+
α

2
T

]
+

[
h

(
1 − k1

πx

π0
− k2e−M(d̃L+T −R)+

)]
M(d̃L+T − R)+

+
⎡
⎣

{ {π + π0(1 − k1
πx
π0

− k2e−M(d̃L+T −R)+)}
T

}
M(d̃L+T − R)+ + A + λe−μL

T

⎤
⎦

C+
α

= h

[
R − d−

α L − d−
α

2
T

]
+

[
h

(
1 − k1

πx

π0
− k2e−M(d̃L+T −R)+

)]
M(d̃L+T − R)+

+
⎡
⎣

{ {π + π0(1 − k1
πx
π0

− k2e−M(d̃L+T −R)+)}
T

}
M(d̃L+T − R)+ + A + λe−μL

T

⎤
⎦

The α-level set of expected value of total cost function is the given by

E(C−
α )

=
n∑

i=1

{
h

[
R − d+

α L − d+
α

2
T

]
+

[
h

(
1 − k1

πx

π0
− k2e−M(d̃L+T −R)+

)]
M(d̃L+T − R)+

+
[ {π + π0(1 − k1

πx
π0

− k2e−M(d̃L+T −R)+)}
T

]
M(d̃L+T − R)+ + A + λe−μL

T

}
pi
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E(C+
α )

=
n∑

i=1

{
h

[
R − d−

α L − d−
α

2
T

]
+

[
h

(
1 − k1

πx

π0
− k2e−M(d̃L+T −R)+

)]
M(d̃L+T − R)+

+
[ {π + π0(1 − k1

πx
π0

− k2e−M(d̃L+T −R)+)}
T

]
M(d̃L+T − R)+ + A + λe−μL

T

}
pi

Therefore, the possibilistic mean value of the fuzzy expected total cost is calcu-
lated by

M(R, L , T ) =
1∫

0

α

(
E(C−

α ) + E(C+
α )

)
dα

=
[

A + λe−μL

T
+ Rh

]
+

[(
1 − k1

πx

π0
− k2e−M(d̃L+T −R)+

)
(h + π0

T
) + π

T

]
M(d̃L+T − R)+

− h

(
L + T

2

) {
1

6

n∑
i=1

(di + di )pi + 2

3

n∑
i=1

di pi

}
(9)

3.4 Optimal Solution

The optimal solution minimizes the total expected cost per year in the fuzzy sense.
To find the optimal solution we follow the following steps:

Step 1: Input the values of A, C0, h, J, π, π0, πx , k1, k2, λ and μ;
Step 2: Calculate the possibilistic mean value of the fuzzy expected shortage using

either (5) or (7) with the condition 0 ≤ L(R) ≤ 1 or 0 ≤ R(R) ≤ 1,
respectively;

Step 3: Determine the safety stock criteria, i.e., R − M(dL+T ) ≥ 0;
Step 4: Find the possibilistic mean value of the fuzzy expected total cost from (9);
Step 5: Solve the following minimization problem;

Min M(R, T, L)

Subject to

R − M(dL+T ) ≥ 0

R − d L+T ≤ 0

R, T, L ≥ 0

Step 6: Stop.

We next mention an example to which we will apply the algorithm mentioned here
as an illustration.
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4 Numerical Example

A small watchband company sells a certain type of watch. The company uses an
‘order up to R’ policy. The cost of placing an order and review is Rs. 100. The
inventory carrying cost is Rs. 40. The penalty cost for stock-out is Rs. 135 and the
marginal profit per item is Rs 300. At the stock-out period, the back-order price
discount is Rs. 100. It is estimated that the lead-time crashing cost is λe−μL (L is in
year) where λ = 150 and μ = 70. The annual demand information is given in the
following table

Demand Probability
(560, 580, 605) .18
(540, 570, 595) .17
(400, 415, 435) .24
(450, 475, 500) .16
(435, 460, 490) .25

Here, we have A = 100, h = 40, π = 135, π0 = 300, and πx = 100.
The expected lead-time plus one period demand is (469.35, 491.9, 516.95)×(L+T ).
The possibilistic mean value of the expected annual cost is

M(R, T, L) =
[(

1 − k1
3

− k2e−M(d̃L+T −R)+
)(

40 + 300

T

)
+ 135

T

]
M(d̃L+T − R)+

+
[
100 + 150e−70L

T
+ 40R

]
−

(
L + T

2

)
19692.67

The safety or buffer stock is calculated by

SS = R −
{
1
6

n∑
i=1

(di + di )pi + 2
3

n∑
i=1

di pi

}
(L + T ) = R − 492.3167(L + T ).

The final form of the optimization problem reduces to

Min M(R, T, L)

Subject to

R ≥ 492.3167(L + T )

R − 491.9(L + T ) ≥ 0

R − 516.95(L + T ) ≤ 0

R, T, L ≥ 0

The changes in the values for the parameters k1 and k2 can appear due to uncer-
tainties and dynamic market conditions. In a decision-making process, the sensitivity
analysis can be useful for implications of these changes in the values of parameters.
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Table 1 Optimal solution of the example when the values of k2 change

k1 k2 β R L(in yr) T (in yr) Total cost

0 0 0 85.20904 0.06849983 0.09744154 2146.329

0 0.1 0.0998180 85.22673 0.06854816 0.09746703 2145.792

0 0.2 0.1995910 85.24659 0.06860238 0.09749552 2145.191

0 0.3 0.2993042 85.26911 0.06866375 0.09752765 2144.513

0 0.4 0.3989359 85.29491 0.06873396 0.09756423 2143.740

0 0.5 0.4984539 85.32483 0.06881528 0.09760635 2142.849

0 0.6 0.5978084 85.36003 0.06891086 0.09765550 2141.804

0 0.7 0.6969198 85.40215 0.06902519 0.09771371 2140.560

0 0.8 0.7956542 85.45360 0.06916484 0.09778398 2139.045

0 0.9 0.8937754 85.51789 0.06933979 0.09787006 2137.147

Table 2 Optimal solution of the example when the values of k1 change

k1 k2 β R L(in yr) T (in yr) Total cost

0.1 0 0.03333333 85.21474 0.06851541 0.09744978 2146.156

0.2 0 0.06666670 85.22066 0.06853156 0.09745832 2145.977

0.3 0 0.10000000 85.22682 0.06854834 0.09746718 2145.791

0.4 0 0.13333330 85.23321 0.06856578 0.09747638 2145.598

0.5 0 0.16666670 85.23988 0.06858393 0.09748594 2145.397

0.6 0 0.20000000 85.24682 0.06860283 0.09749589 2145.188

0.7 0 0.23333330 85.25407 0.06862254 0.09750626 2144.971

0.8 0 0.27777770 85.26164 0.06864312 0.09751707 2144.744

0.9 0 0.30000000 85.26956 0.06866463 0.09752837 2144.508

Table 3 Optimal solution of the example when the values of k1 and k2 change

k1 k2 β R L(in yr) T (in yr) Total cost

0.1 0.1 0.1331443 85.23312 0.06856559 0.09747622 2145.599

0.2 0.2 0.2662222 85.26137 0.06864258 0.09751664 2144.747

0.3 0.3 0.3992013 85.29510 0.06873435 0.09756454 2143.730

0.4 0.4 0.5320265 85.33629 0.06884615 0.09762249 2142.515

A sensitivity analysis of the above problem is carried out. The optimal solutions of
the above problem for different values of k1 and k2 are presented in the Tables1, 2
and 3, respectively.

Tables1, 2 and 3 show that as the back-order parameter increases, the back-order
rate increases and with the increases of back-order rates, the total cost decreases.
It is also observed that when the back-order rate increases, target inventory level,
lead-time, and period of review are increasing. Based on the optimal solutions for
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different values of k1 and k2, management judged the review period, target inven-
tory level, and lead-time. If k1 is zero then there will be no back-order discount, the
optimal expected minimum cost is 2137.147, which attains at T ∗ = 0.09787006,
R∗ = 85.51789, L∗ = 0.06933979, and β∗ = 0.8937754. For k2 = 0, the rate of
back order is independent of the lead- time. The optimal values of the review period,
target inventory level, lead-time, and rate of back order are T ∗ = 0.09752837,
R∗ = 85.26956, L∗ = 0.06866463, and β∗ = 0.30000000, respectively, and corre-
sponding cost is 2144.508. If both the k1 and k2 are nonzero, the optimal expected cost
is 2142.515, which attains at T ∗ = 0.09762249, R∗ = 85.33629, L∗ = 0.06884615,
and β∗ = 0.5320265.

5 Conclusion

In this paper, a fuzzy random periodic review inventory model with mixture of back
order and lost sales is considered where the annual demand is assumed as a fuzzy
random variable. The review period, target inventory level, lead-time, and back-order
rate are considered as decision variables. The back-order rate has been introduced by
themixture of back-order discount proportion and the length of the lead-time through
the reciprocal of the exponential function of the amount of shortage. A methodology
has been developed such that the total cost is minimized in the fuzzy sense. We
present a solution procedure to find the optimal policy. Finally, a numerical example
is solved by our proposed methodology. The sensitivity of the solution for changes
in the values of parameters k1 and k2 has been discussed.

In future research on this model, it would be interesting to deal with imprecise
probabilities and treat the back-order discount proportion as a decision variable. On
the other hand, a possible extension of this model can be derived by considering the
service level constraint.
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Supplier Selection Using Fuzzy Risk Analysis

Kartik Patra and Shyamal Kumar Mondal

Abstract In this paper, three different multi-item supplier selection model have
been developed. The selection has been made optimizing the profit and risk which
are considered as objective functions for all models. The optimization has been done
under some constraints. It is considered that each supplier has an limited capacity
to supply any item. The purchasing cost of each item from different supplier as
well as associative risk is known. Also total space and budget are constant of a
retailer. All the parameters have been considered as crisp in Model-I. The demand
has been considered as fuzzy Model II. Necessity and possibility measures have
been introduced in this paper to defuzzyfy the fuzzy constraints. The risk values
have been considered as fuzzy in Model III in addition to the fuzzy demand. To
defuzzyfy the fuzzy objective two different methods, credibility measure and α-cut
method have been introduced.Multi-Objective Genetic Algorithm (MOGA) has been
used to illustrate all the models numerically.

Keywords Risk · Supplier selection · Possibility · Necessity · MOGA

1 Introduction

Supplier selection is one of the most widely researched areas in supply chain man-
agement. One of themost significant business decisions faced by a retailer in a supply
chain is the selection of appropriate suppliers while trying to satisfy multi-criteria
based on price, quality, demand and delivery. Hence supplier selection is a multi-
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criteria decision making problem. The objective of supplier selection is to identify
suppliers with the highest potential for meeting a retailers needs consistently.

In this paper three different multi-objective and multi-items supplier selection
models have been developed in crisp and fuzzy environments. All parameters have
been considered as crisp in first model. In real world problems, the demand of a
commodity is not always certain. Generally it is vague in nature. So demand of the
items has been considered as fuzzy in the second model. As a result the constraints
becomes fuzzy. As a fuzzy constraint represents a fuzzy event, it should be satisfied
in the some predefined possibility and necessity (cf. [5, 6, 13, 14]). Analogous to
chance constrained programming with stochastic parameters, in fuzzy environment,
it is assumed that some constraints will hold with a least possibility, η1. Again some
constraints may be satisfied with some predefined necessity, η2. These possibility
and necessity constraints may be imposed as per the demand of the situation. Also
the risk in any system are not always certain, so the risk and demand of the items
are considered as fuzzy in the third model. The total available space and budget are
constant for a retailer. Each items purchased from different suppliers have different
risk depending on their purchasing cost, time of delivery etc. Now a retailer always
wants to maximize their total profit and minimize their risk in the business. So in
this paper the profit function is maximized and risk is minimized for all the models.
Also to convert the fuzzy objective to crisp objective two different methods such as
α-cut method and credibility measure method have been used.

To get the optimality of the proposed model, Multi-Objective Genetic Algorithm
(MOGA) has been introduced. Genetic Algorithm manipulates a family of solutions
in the search of an optimal solution. So a retailer can take any optimal value from
the set of solutions to buy a item from a supplier as per his/her need.

2 Literature Review

Different supplier selection models have been established by different researchers
in different times in crisp or fuzzy environments. Lin [12] introduced an inte-
grated model for supplier selection under a fuzzy situation. Arikan [1] presented
a fuzzy solution approach for multi-objective supplier selection. Ruiz-Torres et al.
[20] described a supplier selection model with contingency planning for supplier
failures. Shirkouhi et al. [21] presented a supplier selection and order allocation
problem using a two-phase fuzzy multi-objective linear programming. Kilic [11]
presented an integrated approach for supplier selection in multi-item/multi-supplier
environment. Rezaei and Davoodi [18] presented a multi item inventory model with
imperfect quality.

The fuzzy set theory is one of the best tools to handle impreciseness and vagueness.
It was first introduced by Zadeh [24]. Goguen [8, 9] showed the intention of the
authors to generalize the classical notion of a set. Zadeh [25] also introduced the
concept of linguistic variable and its application to approximate reasoning. Dubois
and Prade [4] presented theory and application on fuzzy set theory.
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Just like in most real-world decision making problems, uncertainty is another
important property of supplier selection problems. So risk is an important factors
in any business. Different risk analysis problems have been introduced by differ-
ent researchers. Chen et al. [2] introduced fuzzy risk analysis based on ranking
generalized fuzzy numbers with different left and right heights. Patra and Mondal
[17] presented a new ranking method of generalized trapezoidal fuzzy numbers and
applied it to evaluate the risk in diabetes problems.

Genetic algorithm approach was first proposed by Holland [10]. Because of its
generality, it has been successfully applied to many optimization problems, for
its several advantages over conventional optimization methods. There are several
approaches using genetic algorithms to deal with the multi-objective optimization
problems. These algorithms can be classified into two types-(i) Non-Elitist MOGA
and (ii) ElitistMOGA. AmongNon-ElitistMOGAFonseca and Fleming’sMOGA [7],
Srinivas and Deb’s NSGA [22] enjoyed more attention. Among Elitist MOGAs one
can refers Rudolph’s Elitist Multi-objective evolutionary algorithm (Rudolph [19]),
Deb et al.’s [3] Elitist Non-dominated Shorting Multi-objective Genetic Algorithm.
These algorithms normally select solution from parent population for cross-over and
mutation randomly. After these operations parent and child population are combined
together and among them better solutions are selected for next iteration.

3 Preliminaries

Triangular Fuzzy Number (TFN): A TFN Ã is specified by the triplet (a1, a2, a3)
and is defined by its continuousmembership functionμÃ(x) : F → [0, 1] as follows:

μÃ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − a1
a2 − a1

if a1 ≤ x ≤ a2
a3 − x

a3 − a2
if a2 ≤ x ≤ a3

0 otherwise

(1)

α-cut of Fuzzy Number:
The α-cut / α - level set of a fuzzy number Ã is a crisp set which is defined as
Ãα = {x ∈ R : μÃ(x) ≥ α} where α ∈ [0, 1].

3.1 Possibility, Necessity and Credibility

Any fuzzy subset ã of R (where R represents a set of real numbers) with membership
function μã(x) : R → [0, 1] is called a fuzzy number. Let ã and b̃ be two fuzzy
numbers with membership functions μã(x) and μb̃(x), respectively. According to
Dubois and Prade [5, 6], Zadeh [26], Liu and Iwamura [13, 14],Wang and Shu [23],
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Liu and Iwamura [14]

Pos
(̃
a ∗ b̃

) = {
sup(min(μã(x),μb̃(y))), x, y ∈ R and x ∗ y

}
(2)

Nes
(̃
a ∗ b̃

) = {
inf (max(1 − μã(x),μb̃(y))), x, y ∈ R and x ∗ y

}
(3)

where the abbreviation “Pos” and “Nes” represent possibility and necessity respec-
tively. Also, ∗ is any of the relations >,<,=,≤,≥ .

On the other hand necessity measure of an event ã ∗ b̃ is a dual of possibility
measure. The grade of necessity of an event is the grade of impossibility of the
opposite event and is defined as

Nes(ã ∗ b̃)= 1 − Pos(ã ∗ b̃).
Also necessity measures satisfy the condition

Min(Nes(ã ∗ b̃),Nes(ã ∗ b̃)) = 0
If ã, b̃ ∈ R and c̃ = f (ã, b̃) where f : R × R → R be a binary operation then

membership function μc̃ of c̃ is defined as
μc̃(z) = sup{(min(μã(x),μb̃(y))), x, y ∈ R and z = f (x, y)∀z ∈ R}
Let ã = (a1, a2, a3) and b̃ = (b1, b2, b3) be two triangular fuzzy numbers. Then

for these fuzzy numbers, following (Wang and Shu [23], Liu and Iwamura [14])
Lemmas 1–2 can be derived.

Lemma 1 When b is a crisp number, Pos(ã ≤ b) < η iff δ = b−a1
a2−a1

< η

Proof Let Pos(ã ≤ b) < η
From Fig. 1 it is clear that Pos(ã ≤ b) = b−a1

a2−a1

Therefore,Pos(ã ≤ b) < η iff δ = b−a1
a2−a1

< η

Lemma 2 When b is a crisp number, Pos(ã ≥ b) > η iff δ = a3−b
a3−a2

> η

Proof Let Pos(ã ≥ b) > η
From Fig. 1 it is clear that Pos(ã ≥ b) = a3−b

a3−a2

Therefore,Pos(ã ≥ b) > η iff δ = a3−b
a3−a2

> η

Fig. 1 Measure of Pos(ã ≤ b) and Pos(ã ≥ b)
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Based on possibility measure and necessity measure the the third set function Cr,
called credibility measure, was analyzed by Liu and Liu [15], Maity et al. [16]. They
defined the credibility measure in the following form

Cr(A) = [ρPos(A) + (1 − ρ)Nec(A)] (4)

where A be a fuzzy subset of R and 0 < ρ < 1.
Using this credibility the expected value of any fuzzy number Ã = (a1, a2, a3)

can be calculated as

E(Ã) = 1

2
[(1 − ρ)a1 + a2 + ρa3] (5)

4 Multi-objective Programming Problems Under
Possibility and Necessity Constraints

A general multi-objective mathematical programming problem with fuzzy parame-
ters should have the following form:

Max f1(u, ξ)

Min f2(u, ξ) (6)

s.t. gj(u, ξ) ≤ b, j = 1, 2, ..., n.

where u is the decision vector, ξ is a vector of fuzzy parameter, f1(u, ξ) and f2(u, ξ)
are the objective functions, gj(u, ξ) are constraint functions, j = 1, 2, ..., n. To con-
vert the fuzzy objectives and constraints to their crisp equivalents, Liu and Iwamura
[14] proposed a method to convert the above problem into an equivalent fuzzy pro-
gramming problem under possibility constraints. Similarly we can convert the above
problem to following fuzzy programming problem under possibility/necessity con-
straints

Max f1(u, ξ)

Min f2(u, ξ) (7)

s.t. Nes{ξ|gj(u, ξ) ≤ b} > η1j and/or Pos{ξ|gj(u, ξ) ≤ b} > η2j

where η1j and η2j, j = 1, 2, ..., n are predetermined confidence level for fuzzy con-
straints. Nes{.} denotes the necessity of the event in {.}. So a point ξ is feasible if
and only if necessity of the set {ξ|gj(u, ξ) ≤ b} is at least η1j. Pos{.} denotes the
possibility of the event in {.}. So a point ξ is feasible if and only if possibility of the
set {ξ|gj(u, ξ) ≤ b} is also at least η2j, j = 1, 2, ..., n.
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5 Mathematical Formulation of a Supplier Selection
Model in Crisp and Fuzzy Environment

5.1 Notations

To develop the proposed model following notations have been used.

• Si: Selling price of ith item .
• pij: The purchase cost of ith item from jth supplier.
• Tj: The transaction cost for jth supplier.
• Di: The demand of ith item.
• rij: The risk value for ith item supplies by jth supplier.
• Cij: The capacity of ith item which can be supplied by jth supplier.
• ωi: A storage space needed by product i
• W : Available total storage space.
• Xij: Number of ith items supplied from jth supplier.
• TP: Total profit in the business.
• R: Total risk in the business.
• B: Available total budget of a retailer.

5.2 Assumptions

The proposed model have been formulated under the following assumptions.

• Shortages and backordering are not allowed.
• Each supplier has an limited capacity for each item.
• Available total storage space for a retailer is limited.
• Total budget of a retailer is limited.
• For each item a risk value has been considered for a supplier due to various factors
such as (i) shipment in delay, (ii) purchasing cost, (iii) economic dealing.

• A supplier dependent transaction cost has been considered.
• Each item needs a storage space.

5.3 Proposed Supplier Selection Model in Crisp
Environment: Model I

In this paper a supplier selection model has been considered in which there are m
different approved suppliers and each supplier may supply n different products with
limited capacity. There exists a risk value rij for jth supplier who supplies ith product
to a retailer whose demand (Di) is known over a finite planing horizon. The retailer
have a selling price Si for ith item. Here storage space and budget constraints have
been considered for the retailer. The purchasing cost of each item varies from supplier
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to supplier. Also there exist different transaction cost for different suppliers. Now
the retailer want to procure each required amount of item from a supplier such that
the total profit of the retailer is maximum as well as total risk value is minimum.

To formulate the above problem it is suppose that the retailer procures ith item of
amount Xij from jth supplier. Therefore the total procurement cost (TC) for n items
is given by

TC =
n∑

i=1

m∑
j=1

Xijpij +
m∑

j=1

TjYj (8)

where Yj (j = 1, 2, ...,m) be calculated as follows:

Yj =
{
1, for Xij > 0
0, for Xij = 0

The retailer sells these n items to the customers. After selling all items he/she collects
the total revenue (TR) which is given by

TR =
n∑

i=1

m∑
j=1

XijSi (9)

Therefore from this business the retailer earns the total profit (TP) that is given by

TP =
n∑

i=1

m∑
j=1

XijSi −
n∑

i=1

m∑
j=1

Xijpij −
m∑

j=1

TjYj (10)

Simultaneously the retailer wants to minimize the total risk to collect all these items
from the suppliers. Now the total risk R is given by

R =
n∑

i=1

m∑
j=1

Xijrij/

n∑
i=1

m∑
j=1

Xij (11)

Therefore the above problem can be described in the following form in crisp envi-
ronment:

Max TP =
n∑

i=1

m∑
j=1

XijSi −
n∑

i=1

m∑
j=1

Xijpij −
m∑

j=1

TjYj

and

Min R =
n∑

i=1

m∑
j=1

Xijrij/

n∑
i=1

m∑
j=1

Xij
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subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

Xij − Di ≥ 0 i = 1, 2, ..., n

∑n
i=1 ωi(

∑m
j=1 Xij − Di) ≤ W

0 ≤ Xij ≤ Cij i = 1, 2, .., n & j = 1, 2, ...,m

Yj =
{
1, for Xij > 0
0, for Xij = 0 j = 1, 2, ...,m∑n

i=1
∑m

j=1 Xijpij ≤ B

This is amulti objective decisionmaking problemwhere a retailer wants tomaximize
the profit (TP) andminimize the risk (R). To solve the above problemMulti-Objective
Genetic Algorithm (MOGA) has been applied. GA manipulates a family of solution
in the search of an optimal solution. This is an advantage of GA which is better than
another methods. So different retailer may have choose different optimal value as
per their strategy in the business.

5.4 Proposed Supplier Selection Model in Fuzzy
Environment: Model II

In this model retailer’s demand for each item has been considered fuzzy which is
triangular. All other constraints are same as in Model I. Therefore under this fuzzy
environment the model can be depicted as follows:

Max TP =
n∑

i=1

m∑
j=1

XijSi −
n∑

i=1

m∑
j=1

Xijpij −
m∑

j=1

TjYj

and

Min R =
n∑

i=1

m∑
j=1

Xijrij/

n∑
i=1

m∑
j=1

Xij

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

Xij − D̃i ≥ 0 i = 1, 2, ..., n

∑n
i=1 ωi(

∑m
j=1 Xij − D̃i) ≤ W

0 ≤ Xij ≤ Cij i = 1, 2, ..., n & j = 1, 2, ...,m

Yj =
{
1, for Xij > 0
0, for Xij = 0 j = 1, 2, ...,m∑n

i=1
∑m

j=1 Xijpij ≤ B
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where ∼ indicates the fuzzyness of the parameter.
Here the two fuzzy constraints actually stand for fuzzy relation. There are sev-

eral representations of fuzzy relation. Here these relations are interpreted in the
form of possibility theory in which fuzzy numbers are interpreted by a degree of
uncertainty. It is considered that there are n items that are supplied by m suppli-
ers. According to Liu and Iwamura [13], first two constraints reduce to follow-
ing respective necessary and possibility constraints. There may be two different
combinations of the fuzzy constraints depending on the different scenarios such as
Scenario 1:

Nes{D̃1 >

m∑
j=1

x1j} < η11

Nes{D̃2 >

m∑
j=1

x2j} < η12

...

Nes{D̃n >

m∑
j=1

xnj} < η1n

Nes{(
n∑

i=1

m∑
j=1

ωixij − W ) <

n∑
i=1

ωiD̃i} > η1,n+1

Scenario 2:

Pos{D̃1 ≥
m∑

j=1

x1j} < η11

Pos{D̃2 ≥
m∑

j=1

x2j} < η12

...

Pos{D̃n ≥
m∑

j=1

xnj} < η1n

Pos{(
n∑

i=1

m∑
j=1

ωixij − W ) ≤
n∑

i=1

ωiD̃i} > η2,n+1

Equivalent Crisp Representation of Model II

Let D̃i = (Di1,Di2,Di3) be a triangular fuzzy number represented in Fig. 1. So∑m
i=1 ωiD̃i = (D′

1,D′
2,D′

3) is also a triangular fuzzy number by it’s properties.
Therefore on the basis of Lemma 1–2 the fuzzy Model II reduces to following multi
objective crisp model:

Max TP =
n∑

i=1

m∑
j=1

XijSi −
n∑

i=1

m∑
j=1

Xijpij −
m∑

j=1

TjYj

and

Min R =
n∑

i=1

m∑
j=1

Xijrij/

n∑
i=1

m∑
j=1

Xij

subject to constraint for all scenarios

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ Xij ≤ Cij i = 1, 2, ..., n & j = 1, 2, ...,m

Yj =
{
1, for Xij > 0
0, for Xij = 0 j = 1, 2, ...,m∑n

i=1
∑m

j=1 Xijpij ≤ B
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and
Scenario 1:

(
∑m

j=1 x1j − D11)

(D12 − D11)
> (1 − η11)

(
∑m

j=1 x2j − D21)

(D22 − D21)
> (1 − η12)

...

(
∑m

j=1 xnj − Dn1)

(Dn2 − Dn1)
> (1 − η1n)

(
∑n

i=1
∑m

j=1 ωixij − W ) − D′
1

(D′
2 − D′

1)
< (1 − η1,n+1)

Scenario 2:

(D13 − ∑m
j=1 x1j)

(D13 − D12)
< η11

(D23 − ∑m
j=1 x2j)

(D23 − D22)
< η12

...

(Dn3 − ∑m
j=1 xnj)

(D23 − D22)
< η1n

D′
3 − (

∑n
i=1

∑m
j=1 ωixij − W )

(D′
3 − D′

2)
> η2,n+1

5.5 Proposed Supplier Selection Model with Fuzzy Risk:
Model III

Here the risk value of each item supplied from each supplier has been considered
as fuzzy which are taken as triangular fuzzy number i.e., r̃ij = (rij1, rij2, rij3) and
demand is also taken as fuzzy as in Model II. Therefore the proposed model can be
described as follows

Max TP =
n∑

i=1

m∑
j=1

XijSi −
n∑

i=1

m∑
j=1

Xijpij −
m∑

j=1

TjYj

and

Min R̃ =
n∑

i=1

m∑
j=1

Xijr̃ij/

n∑
i=1

m∑
j=1

Xij

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

Xij − D̃i ≥ 0 i = 1, 2, ..., n

∑n
i=1 ωi(

∑m
j=1 Xij − D̃i) ≤ W

0 ≤ Xij ≤ Cij i = 1, 2, ..., n & j = 1, 2, ...,m

Yj =
{
1, for Xij > 0
0, for Xij = 0 j = 1, 2, ...,m∑n

i=1
∑m

j=1 Xijpij ≤ B

Lemma 3: Since all the risk values (r̃ij) are triangular fuzzy number so the total risk
R̃ is also a triangular fuzzy number such that
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R̃ =
n∑

i=1

m∑
j=1

Xij r̃ij/

n∑
i=1

m∑
j=1

Xij

= (

n∑
i=1

m∑
j=1

Xijrij1/

n∑
i=1

m∑
j=1

Xij,

n∑
i=1

m∑
j=1

Xijrij2/

n∑
i=1

m∑
j=1

Xij,

n∑
i=1

m∑
j=1

Xijrij3/

n∑
i=1

m∑
j=1

Xij)

= (R1,R2,R3)

where Rk = ∑n
i=1

∑m
j=1 Xijrijk/

∑n
i=1

∑m
j=1 Xij, k = 1, 2, 3.

Since one of the objective functions is fuzzy in nature, hence to solve the model
the fuzzy objective function converted into the crisp objective functions. Here two
methods for defuzzyfications of the objective function have been given as follows:

α-cut Method

Now the fuzzy objective function is converted to a crisp objective function using the
α-cut of the objective function. Let (R̃)α = [RL

α,RR
α]. Now our aim is to minimize

both the RL
α and RR

α and maximize TP with the given constraints. Here the fuzzy
constraints are converted to crisp constraints using necessity measure as given in the
previous model. So the problem becomes

Max TP =
n∑

i=1

m∑
j=1

XijSi −
n∑

i=1

m∑
j=1

Xijpij −
m∑

j=1

TjYj

Min RL
α = R1 + α(R2 − R1)

and

Min RR
α = R3 − α(R3 − R2)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∑m

j=1 xij − D11)

(Di2 − Di1)
> (1 − η1i) i = 1, 2, ..., n

(
∑n

i=1
∑m

j=1 ωixij−W )−D′
1

(D′
2−D′

1)
< (1 − η1,n+1)∑n

i=1 ωi(
∑m

j=1 Xij − D̃i) ≤ W
0 ≤ Xij ≤ Cij i = 1, 2, ..., n & j = 1, 2, ...,m

Yj =
{
1, for Xij > 0
0, for Xij = 0 j = 1, 2, ...,m∑n

i=1
∑m

j=1 Xijpij ≤ B
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Credibility Measure Method

On the basis of credibility measure in by Liu and Iwamura [13, 14], Maity et al. [16]
the expected value of fuzzy risk objective R̃ is given by

E(R̃) = 1

2
((1 − ρ)R1 + R2 + ρR3) where 0 < ρ < 1

6 Procedure of MOGA

Step-1: Generate initial population P1 of size N .
Step-2: i ← 1 [i represent the number of current generation.]
Step-3: Select solution from Pi for crossover.
Step-4: Made crossover on selected solution to get child set C1.
Step-5: Select solution from Pi for mutation.
Step-6: Made mutation on selected solution to get solution set C2.
Step-7: Set P′

i = Pi
⋃

C1
⋃

C2
Step-8: Partition P′

i into subsets F1,F2, · · · ,Fk , such that each subset contains
non-dominated solutions of P′

i and every solutions of Fi dominates every
solu.s of Fi+1 for i = 1, 2, · · · , k − 1.

Step-9: Select largest possible integer l, so that no of solu.s in the setF1
⋃

F2
⋃ · · ·⋃

Fl ≤ N .

Step-10: Set Pi+1 = F1
⋃

F2
⋃ · · · ⋃ Fl.

Step-11: Sort Fl+1 in decreasing order by crowding distance.
Step-12: Set M = number of solutions in Pi+1.
Step-13: Select first N − M solutions from set Fl+1.
Step-14: Insert these solution in solution set Pi+1.
Step-15: Set i ← i + 1.
Step-16: If termination condition does not hold, goto step-3.
Step-17: Output Pi.
Step-18: End.

7 Numerical Illustration

To illustrate the Model I, Model II and Model III it is considered that there are two
supplierswho supply two different items.Now a retailer has to decidewhat amount of
items will be taken from which supplier such as the profit and risk will be optimized.
To study the feasibility of both models following input values of the parameters have
been taken.
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Table 1 Solution set of Model I

X11 X12 X21 X22 R TP($)

4.31 177.69 92.06 8.72 0.1097 3485.41

14.34 171.04 89.75 10.27 0.1117 3572.36

16.43 169.03 89.75 10.26 0.1120 3578.36

40.86 141.0 72.74 28.08 0.1201 3585.75

61.31 122.5 67.83 34.74 0.1251 3606.63

Input data for Model I:
m = 2, n = 2, S1 = 50$, S2 = 40$, p11 = 25$, p12 = 27$, p21 = 30$, p22 =

32$, r11 = 0.15, r12 = 0.1, r21 = 0.12, r22 = 0.18, S1 = 50$, S2 = 40$,T1 =
1000$,T2 = 700$,w1 = 0.2,w2 = 0.18,C11 = 150,C12 = 200,C21 =
100,C22 = 80, W = 200,B = 8000$,D1 = 130,D2 = 100.

Output data for Model I:
Optimizing the Model I by multi objective Genetic Algorithm with respect to the

above input values, the results has been shown in Table1 as follows:
FromTable1 it is observed that theminimumrisk is 0.1097 and to get theminimum

risk, the profit value is 3485.41$. To obtain these risk and profit values, the retailer
buys the item 1 and 2 of amount 4.31 and 92.06 respectively from supplier 1 and
177.69 and 8.72 from supplier 2. It also noticed that the maximum profit is 3606.63
and at that time the risk is 0.1251. So, if a retailer wants to get higher profit then
he/she has to take higher risk and if he/she wants lesser risk then he/she will have
less profit.

Input data for Model II:
Here the demand of the items are considered as D̃1 = (110, 130, 150), D̃2 =

(90, 100, 110), η11 = 0.95, η12 = 0.9, η13 = 0.7, η21 = 0.15, η22 = 0.2, η23 =
0.8. All other input values are same as in Model I. Since n = 2, so the number of
fuzzy constrained is 3 which are discussed numerically as follows.

Scenario 1:

(
∑2

j=1 x1j − D11)

(D12 − D11)
> (1 − η11)

(
∑2

j=1 x2j − D21)

(D22 − D21)
> (1 − η12)

(
∑2

i=1
∑2

j=1 ωixij − W ) − D′
1

(D′
2 − D′

1)
< (1 − η13) (12)

Output data for Scenario 1:
The optimal results of Model II in scenario 1 are obtained by MOGA in Table2 as
follows: Scenario 2:
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Table 2 Solution set of Model II in scenario 1

X11 X12 X21 X22 R TP($)

39.35 73.97 48.50 46.87 0.1320 1845.29

39.35 73.97 48.22 48.04 0.1323 1851.79

39.35 73.97 48.22 47.46 0.1321 1847.18

39.35 73.97 48.22 47.61 0.1322 1848.39

39.35 73.97 49.85 42.07 0.1308 1820.36

Table 3 Solution set of Model II in scenario 2

X11 X12 X21 X22 R TP($)

121.72 25.29 60.03 48.06 0.1436 2909.71

121.72 25.29 60.03 48.51 0.1437 2913.37

121.72 25.29 60.03 48.94 0.1438 2916.80

121.72 25.29 59.32 50.29 0.1440 2920.57

120.95 26.07 60.02 47.97 0.1435 2907.55

(D13 − ∑2
j=1 x1j)

(D13 − D12)
< η11

(D23 − ∑2
j=1 x2j)

(D23 − D22)
< η12

D′
3 − (

∑2
i=1

∑2
j=1 ωixij − W )

(D′
3 − D′

2)
> η23 (13)

Output data for Scenario 2:
The optimal results of Model II in scenario 2 are obtained by MOGA in Table3

as follows: From the consideration of necessity and/or possibility constraints in
above two scenarios it is observed that the total demand for a planning horizon for
scenarios 1 and 2 belongs to [Di1,Di2] and [Di2,Di3] respectively. From these it
may be concluded that necessity and possibility constraints demand the lower and
upper range of the values of demand. Hence if a decision maker desires to impose
the demand constraints in possibility sense, he/she should be expected to happen the
imprecise demand at higher level (i.e., [Di2,Di3]). On the other hand, for necessary
constraint, he/she will expect the demand at lower level. This feature is reflected
from the results of scenarios 1 and 2 as the scenario 1 involving three necessary
constraints furnishes lowest profit.

Input data for Model III:
Here the risk values are considered as r̃11=(0.1, 0.15, 0.2), r̃12=(0.07, 0.1, 0.13),

r̃21 = (0.08, 0.12, 0.16), r̃22 = (0.14, 0.18, 0.21). All other parameters are remain
same as in the previous model.
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Fig. 2 Risk, Profit, no. of item purchased from different suppliers with different α-cuts

Output data for Model III by α-cut method:
Taking different α-cut of the fuzzy risk the obtained optimized results are given

in the following Fig. 2
From these Fig. 2a–d, the amount of risk and profit as well as the amount of

quantities collected from supplier 1 and supplier 2 can be obtained very easily for
anyα-cut. For example, whenα = 0.5 at that time the minimum risk value lies in the
interval [0.1049 0.1110] along with the maximum profit 1805.02$, also the amount
of item purchased from supplier 1 and supplier 2 are 92.02 and 110.58 respectively.

Output data for Model III by credibility measure method:
Now the optimal result has been obtained using the credibility measure of the

fuzzy risk objective function taking the value of ρ = 0.5. Here the maximum profit
is 1708.95$ and the minimum risk is 0.1051 when the amount of items purchased
from supplier 1 is 39.29 and 45.42 respectively and the amount of items purchased
from supplier 2 is 74.04 and 33.65 respectively.

Comparison of result obtained by α-cut and credibility measure methods:
From the above two results it is seen that the risk calculated by the credibility

measure is 0.1051 and it lies in the interval [0.1049 0.1110]which is found by α-cut
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method. But it is seen that the maximum profit in the α-cut method is more than the
credibility measure method. So the α-cut method gives the better solution than the
credibility measure method.

8 Conclusion

Different multi item supplier selection by a retailer has been considered. The selec-
tion has been done maximizing the profit and minimizing the risk. All parameters
associated with the suppliers and retailer have been considered as crisp in the first
model. In the second model the demand of the items for a retailer has been consid-
ered as fuzzy and in the third model risk of taking an item from a supplier as well as
demand of the items for a retailer have been considered also as fuzzy. The necessity
and possibility constraint are used to convert fuzzy constraints to crisp constraints
and the fuzzy objective function has been converted to crisp objective using α-cut
and credibility measure methods. The objective functions of all models have been
optimized simultaneously using Multi-Objective Genetic Algorithm. Finally all the
models are illustrated using numerical example.

References

1. Arikan, F.: A fuzzy solution approach for multi objective supplier election. Expert Syst. Appl.
40, 947–952 (2013)

2. Chen, S.M., Munif, A., Chen, G.S., Liu, H.C.,Kuo, B.C.: Fuzzy risk analysis based on ranking
generalized fuzzy numbers with different left heights and right heights. Expert Syst. Appl. 39,
6320–6334 (2012)

3. Deb, K., Pratap, A., Agarawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 182–197 (2002)

4. Dubois, D., Prade, H.: Fuzzy sets and systems. Theory and applications. Academic Press. Inc.,
New York (1980)

5. Dubois, D., Prade, H.: Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci.
30,183–224 (1983)

6. Dubois, D., Prade, H.: Possibility theory. Academic Press, New York (1988)
7. Fonseca, C.M. Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization, Formula-

tion, Discussion and Generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International
Conference on Genetic Algorithm, San Mateo, CA: Morgan Kauffman, 416–423 (1993)

8. Goguen, J.A.: L-Fuzzy sets. JMAA 18, 145–174 (1967)
9. Goguen, J.A.: The logic of inexact concepts. Synthese 19, 325–373 (1969)
10. Holland, H.J.: Adaptation in Natural and Artificial Systems, University of Michigan (1975)
11. Kilic, H.S.: An integrated approach for supplier selection in multi-item/ multi-supplier envi-

ronment. Appl. Math. Model. 37, 7752–7763 (2013)
12. Lin, R.H.: An integrated model for supplier selection under a fuzzy situation. Int. J. Prod. Econ.

138, 55–61 (2012)
13. Liu, B., Iwamura, K.B.: Chance constraint programming with fuzzy papameters. Fuzzy Sets

Syst. 94, 227–237 (1998)
14. Liu, B., Iwamura, K.B.: A note on chance constrainted programming with fuzzy coefficients.

Fuzzy Sets Syst. 100, 229–233 (1998)



Supplier Selection Using Fuzzy Risk Analysis 337

15. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value model. IEEE
Trans. Fuzzy Syst. 10(4), 445–450 (2002)

16. Maity, A.K., Maity, K., Maity, M.: A production recycling inventory system with imprecise
holding costs. Appl. Math. Model. 32, 2241–2253 (2008)

17. Patra, K., Mondal, S.K.: Risk analysis in diabetes prediction based on a new approach of
ranking of generalized trapezoidal fuzzy numbers. Int. J. Cybern. Syst. 43(8), 623–650 (2012)

18. Rezaei, J., Davoodi, M.: A deterministic multi item inventory model with supplier selection
and imperfect quality. Appl. Math. Model. 32, 2106–2116 (2008)

19. Rudolph, G.: Evolutionary Search under Partially Ordered Fitness Sets. In: Proceedings of the
International Symposium on Information Science Innovations in Engineering of Natural and
Artificial Intelligent Systems (ISI), 818–822 (2001)

20. Ruiz-Torres, A.J., Mahmoodi, F., Zeng, A.Z.: Supplier selection model with contingency plan-
ning for supplier failures. Comput. Ind. Eng. 66, 374–382 (2013)

21. Shirkouhi, S.N., Shakouri, H., Javadi, B., Keramati, A.: Supplier selection and order allocation
problem using a two-phase fuzzy multi-objective linear programming. Appl. Math. Model. 37,
9308–9323 (2013)

22. Srinivas, N., Deb, K.: Multi-objective optimization using nondominated sorting in genetic
algorithms. J. Evol. Comput. 2(3), 221–248 (1994)

23. Wang, J., Shu, Y.F.: Fuzzy decision modelling for supply chain management. Fuzzy Sets Syst.
150, 107–127 (2005)

24. Zadeh, L.A.: Fuzzy Sets. Inf. Control. 8, 338–356 (1965)
25. Zadeh, L.A.: The concept of linguistic variable and its application to approximate reasoning.

I, II, III. Inf. Sci. 8,199–249 (1975), 9, 43–58 (1976)
26. Zadeh, L.A.: Fuzzy sets as a basis of possibility. Fuzzy Sets Syst. 1, 3–24 (1978)



The Control for Prey–Predator System
with Time Delay and Refuge

Shashi Kant and Vivek Kumar

Abstract In this paper, a prey–predator model with control and refuge is proposed
and analyzed. Linear functional response is used. Time delay is the gestation period.
Linear stability analysis is performed. The stability result is proved by assuming a
suitable Lyapunov function. The main contribution of this paper is to propose a new
model and derive an expression for the control of model. The control has many appli-
cations in sustainable development process. This research is not a case study, hence
real data is not available for numerical simulation. However, the system is simulated
by using an artificial set of parameters to validate our theoretical formulation.

Keywords Prey–predator system · Time delay · The control · Refuge

1 Introduction

Study of prey–predator systems is a current research area in ecology. Modeling of
such systems is very challenging and crucial because it involves number of parameters
such as environment, etc. However, a good literature is available. Basic variables in
any prey–predator system are prey and predator.

To include the impact of environment on the prey–predator system, researchers
introduced the concept of time delay. By this prey–predator ecosystem became more
scientific and complicated. Few examples include:
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1. Prey–predator system with continuous time delay [1]

⎧⎪⎨
⎪⎩

ẋ1(t) = x1(t)[r1 − a11x1(t − τ ) − a12x2(t)
1+m1x1(t)

],
ẋ2(t) = x2(t)[−r2 + a21x1(t−τ )

1+m1x1(t−τ )
− a23x3(t)

1+m2x2(t)
],

ẋ3(t) = x3(t)[−r3 + a32x2(t−τ )
1+m2x2(t−τ )

].
(1.1)

2. Ratio-dependent predator–prey system with time delay [2]

{
dx
dt = x(a − bx) − cxy

my+x ,
dy
dt = y(−d + f (x(t−τ ))

my(t−τ )+x(t−τ )
).

(1.2)

3. Viral Infection model with delayed non-lytic immune response [3]

⎧⎪⎨
⎪⎩

ẋ = s − dx + kx(1 − x
xmax

) − βxy
1+qz ,

ẏ = βxy
1+qz − ay,

ż = ce−aτ y(t − τ ) − bz.

(1.3)

4. A prey–predator Model with continuous time delay [4]

{
ẋ = x(t)[ε1 − α1x(t) − γ1y(t)],
ẏ = y(t)[−ε2 − α2x(t) + γ2

∫ t
−∞ F(t − τ )x(τ )dτ ]. (1.4)

5. A Stage- structured prey–predator model with time delay [5]

⎧⎪⎨
⎪⎩

ẋ = α(t)y(t) − r x(t) − Ω(t)x(t) − η(t)x2(t),

ẏ = Ω(t)x(t) − Q(t)y(t) − ρ(t)y2(t) − a(t)y(t)z(t),

ż = z(t)[−r1(t) + λ(t)a(t)y(t) − c(t)]z(t) − β(t)
∫ 0
−τ k(s)z(t + s)ds].

(1.5)

It is also important to mention here that delays are used for different purposes, for
example, gestation period, maturation period, etc. The concept of prey refuge is
adopted from the study of Sahabuddin Sarwardi et al. [6]. The concept of control
is adopted from the study of Li Yi-min and Zhu Yan [7]. Motivated by the study of
G.-P Hu and X.-L Li [8] linear functional response is considered.
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2 The Model

By the above discussion, in this study we proposed the following delayed prey–
predator system:

{
dx
dt = x(t)[r1 − a11x(t)] − p1(1 − m)y(t)x(t),
dy
dt = qp1(1 − m)y(t − τ )x(t − τ ) − r2y(t),

(2.1)

where x(t) and y(t) denote prey and predator population densities at time t respec-
tively. r1 is the growth rate of prey population, r2 is the death rate of predator popu-
lation. p1 is predation coefficient, q is conversion coefficient, m is prey refuge, τ is
time delay the gestation period of predator and a11 is a positive constant. By refuge,
we mean that prey has a defense by means of habitat structure, etc. Therefore, only
(1 − m)x prey population is available for predation.

Remark 1 In the study of Li Yi-min and Zhu Yan [7], the time delay τ is the time
taken by predator from infant stage to the ripe stage.

The main concern in ecology is to find the stability of coexistence. Therefore, we
will also pay stress on the coexisting equilibrium of the model (2.1), which admit one
positive equilibrium point E∗(x∗, y∗). The components of this positive equilibrium
point must be

{
x∗ = r2

qp1(1−m)
,

y∗ = r1qp1(1−m)−a11r2
qp21(1−m)2

.

First, let us consider the system without delay. Let

{
X = x(t)[r1 − a11x(t)] − p1(1 − m)y(t)x(t),

Y = qp1(1 − m)y(t)x(t) − r2y(t).

Jacobian of (2.1) at E∗(x∗, y∗) takes the form

J =
(

∂X
∂x

∂X
∂y

∂Y
∂x

∂Y
∂y

)

(x∗,y∗)
=

(
c11 c12
c21 c22

)
, (2.2)

where

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

c11 = r1 − 2a11x∗ − p1(1 − m)y∗,
c12 = −p1(1 − m)x∗,
c21 = qp1(1 − m)y∗,
c22 = −r2 + qp1(1 − m)x∗.
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The characteristics equation of jacobian matrix (2.2) is given by

λ2 − (c11 + c22)λ + (c11c22 − c12c21) = 0. (2.3)

Second, we consider the system with delay viz. system (2.1). Let M(t) = x(t) −
x∗, N (t) = y(t) − y∗ be the perturbed variables. The system (2.1) can be expressed
in matrix form after the process of linearization as:

d

dt

(
M(t)
N (t)

)
= A1

(
M(t)
N (t)

)
+ A2

(
M(t − τ )

N (t − τ )

)
, (2.4)

where A1 and A2 are derived from the model system. Indeed, the jacobian of the
system (2.1) at positive equilibrium point takes the form;

J∗ =
(

r1 − 2a11x∗ − p1(1 − m)y∗ −p1(1 − m)x∗
0 −r2

)
+

(
0 0

qp1(1 − m)y∗ qp1(1 − m)x∗
)

e−λτ

or

J ∗ =
(

r1 − 2a11x∗ − p1(1 − m)y∗ −p1(1 − m)x∗
qp1(1 − m)y∗e−λτ qp1(1 − m)x∗e−λτ − r2

)
. (2.5)

Hence, in the general form the characteristics equation of (2.5) may be written as

P(λ) + Q(λ)e−λτ = 0, (2.6)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(λ) = λ2 + m1λ + m2,

Q(λ) = n1λ + n2,

m1 = −(r1 − 2a11x∗ − p1(1 − m)y∗ − r2),

m2 = −r2(r1 − 2a11x∗ − p1(1 − m)y∗),
n1 = −qp1(1 − m)x∗,
n2 = (

(r1 − 2a11x∗ − p1(1 − m)y∗)(qp1(1 − m)x∗) + qp21(1 − m)2x∗).

Hence, by putting λ = iω in (2.6) and separating the real and imaginary parts and
following standard process, it is easy to find the value of τ0, a crucial point for Hopf
bifurcation. The point τ0 is called Hopf bifurcation point. The detail may be seen
in a standard book on delay differential equations (DDE). We skip the detail of that
process. The value of τ0 is calculated as;

τ0 = 1

ω
arccos

ω2(n2 − m1n1) − n2m2

n2
2 + n2

1ω
2

. (2.7)
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Hence, by the above discussion and using the Routh–Hurwitz criteria and Hopf
bifurcation theorem, we can state the following lemma:

Lemma 2.1 If c11 + c22 < 0 and c11c22 − c12c21 > 0, then the equilibrium
E∗(x∗, y∗) of system (2.1) is asymptotically stable for τ ∈ [0, τ0) and unstable for
τ > τ0. Hopf bifurcation occurs when τ = τ0, where c11 = r1 − 2a11x∗ − p1(1 −
m)y∗, c12 = −p1(1 − m)x∗, c21 = qp1(1 − m)y∗, c22 = −r2 + qp1(1 − m)x∗.

3 The Control in the Responding System
with Ideal Time Delay

The responding system with ideal time delay takes the form

{
dx1
dt = x1(t)[r1 − a11x1(t)] − p1(1 − m)y1(t)x1(t),

dy1
dt = qp1(1 − m)y1(t − τ )x1(t − τ ) − r2y1(t).

(3.1)

If we add the control function u to the equation governing the predator population,
we have

{ dx1
dt = x1(t)[r1 − a11x1(t)] − p1(1 − m)y1(t)x1(t),

dy1
dt = qp1(1 − m)y1(t − τ )x1(t − τ ) − r2y1(t) + u.

(3.2)

The control function u has many applications in sustainable development. For exam-
ple, if we are interested to maintain the population of a particular area to a standard
level and prey population is much higher than predator population. In this condition,
predator cannot predate their prey sufficiently. People can rise the mortality of prey
to maintain the equilibrium level.

If we denote error between the systems (3.2) and (2.1) as

{
e1 = x1 − x,

e2 = y1 − y.
(3.3)

The error equations takes the form

{
de1
dt = r1e1 − a11e1(x1(t) + x(t)) − p1(1 − m)(e2x1(t) + y(t)e1),

de2
dt = −r2e2 + qp1(1 − m)[y1(t − τ )x1(t − τ ) − y(t − τ )x(t − τ )] + u.

(3.4)
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Now, we are going to state and prove the main theorem of this paper:

Theorem 3.1 If the conditions in Lemma (2.2) are satisfied, a controller exists in
(3.2) of the form

u = qp1(1 − m)[y(t − τ )x(t − τ ) − y1(t − τ )x1(t − τ )] + p1(1 − m)e1x1(t)
and system (3.4) is stable when e1 = 0 and e2 = 0.

Proof Let us consider a Lyapunov function of the form:

V = 1

2
(e21 + e22) > 0. (3.5)

Therefore, the derivative of V w.r.t. time t is

V̇ = e1ė1 + e2ė2,
V̇ = e21[r1−a11(x1(t)+x(t))− p1(1−m)y(t)]− p1(1−m)e1e2x1(t)+e22[−r2]+

e2[qp1(1 − m){y1(t − τ )x1(t − τ ) − y(t − τ )x(t − τ )}] + ue2
= e21[r1−a11(x1(t)+ x(t))− p1(1−m)y(t)]+e22[−r2]+e2[qp1(1−m){y1(t −

τ )x1(t − τ ) − y(t − τ )x(t − τ )} − p1(1 − m)e1x1(t) + u].
Hence,

⎧
⎪⎨
⎪⎩

r1 − a11(x1(t) + x(t)) − p1(1 − m)y(t) < 0,

−r2 < 0,

(qp1(1 − m){y1(t − τ )x1(t − τ ) − y(t − τ )x(t − τ )} − p1(1 − m)e1x1(t) + u) = 0.
(3.6)

∴ u = qp1(1− m)[y(t − τ )x(t − τ )− y1(t − τ )x1(t − τ )] + p1(1− m)e1x1(t).

Therefore, by Eq. (3.6) we have

V̇ = e21[r1−a11(x1(t)+x(t))−p1(1−m)y(t)]−p1(1−m)e1e2x1(t)+e22[−r2]<0.

The proof is completed.

4 Numerical Example

For numerical simulation, we take the following set of parameters:

a11 = 1
4 , r1 = 1, p1 = 1

2 , (1 − m) = 1
3 , qp1 = 1

4 , r2 = 1
4 .

The model (2.1) takes the form;

{
dx
dt = x(t)[1 − 1

4 x(t)] − 1
6 y(t)x(t),

dy
dt = 1

12 y(t − τ )x(t − τ ) − 1/4y(t),
(4.1)
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and the initial values are taken as x(0) = 0.6, y(0) = 2. The positive equilibrium
point for (4.1) is calculated as E∗(3, 3

2 ). The value of τ0 is calculated as 0.43. The
responding system adding the controller takes the form;

{
dx1
dt = x1(t)[1 − 1

4 x1(t)] − 1
6 y1(t)x1(t),

dy1
dt = 1

12 y1(t − τ )x1(t − τ ) − 1/4y1(t) + u,
(4.2)

By theorem (3.1), the controller for (4.1) is given by

u = 1

12
[y(t − 0.43)x(t − 0.43) − y1(t − 0.43)x1(t − 0.43)] + 1

6
e1x1 (4.3)

The system behavior of (4.1) is represented in Figs. 1, 2, 3, 4.
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Fig. 1 Solution of (4.1) for τ = 0.40 < τ0
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Fig. 2 Solution of (4.1) for τ0 = 0.43
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Fig. 3 Solution of (4.1) for τ = 0.50 > τ0
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Fig. 4 The control of the system (4.1)

5 Discussion

If we ignore the prey refuge the system (2.1) takes the form

{
dx
dt = x(t)[r1 − a11x(t)] − p1y(t)x(t),
dy
dt = qp1y(t − τ )x(t − τ ) − r2y(t),

(5.1)

the similar analysis may be done. In this study we derive an expression for the control
in Theorem (3.1) which is the main contribution of this paper. The control has many
applications in the the development process with conserve. This is not a case study,
hence real data is not available for the purpose of numerical simulation. However,
system (2.1) has been simulated by considering an artificial set of parameters.
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Evaluation of Solving Time for Multivariate
Quadratic Equation System Using XL
Algorithm Over Small Finite Fields on GPU

Satoshi Tanaka, Chen-Mou Cheng and Kouichi Sakurai

Abstract The security ofmultivariate public-key cryptography is largely determined
by the complexity of solving multivariate quadratic equations over finite fields,
a.k.a. the MQ problem. XL (eXtended Linearization) is an efficient algorithm for
solving the MQ problem, so its running time is an important indicator for the com-
plexity of solving the MQ problem. In this work, we implement XL on graphics
processing unit (GPU) and evaluate its solving time for theMQ problem over several
small finite fields, namely, GF(2), GF(3), GF(5), and GF(7). Our implementations
can solve MQ instances of 74 equations in 37 unknowns over GF(2) in 36,972s, 48
equations in 24 unknowns over GF(3) in 933s, 42 equations in 21 unknowns over
GF(5) in 347s, as well as 42 equations in 21 unknowns over GF(7) in 387s. More-
over, we can also solve the MQ instance of 48 equations in 24 unknowns over GF(7)
in 34,882s, whose complexity is about O(267) with exhaustive search.

Keywords Multivariate public-key cryptography · XL · GPGPU

1 Introduction

The problem of finding roots of nonlinear multivariate polynomial equations over
finite fields lies at the core of the security for multivariate public-key cryptography
(MPKC). ManyMPKCs, e.g., Unbalanced Oil and Vinegar (UOV) [8], Hidden Field
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Equations (HFE) [12], and the QUAD stream cipher [5], base their security on the
quadratic case of such problems, which we will refer to as the MQ problem. There-
fore, estimating the complexity of solving the MQ problem is of crucial importance
for determining the security of these MPKCs.

To this date, there are two kinds of efficient algorithms for solving the MQ prob-
lem. One is the Gröbner basis method, and the other, the eXtended Linearization
(XL) algorithm. Both algorithms generate new equations from the original systems.
Although XL is shown to be a redundant variant of a Gröbner basis algorithm F4 [3],
it does have the advantage of having a smaller memory footprint in practice [15].

The bottleneck computation in XL is the solving of linearized systems. For sparse
systems generated by XL, the Wiedemann algorithm can be used to efficiently solve
an N × N nonsingular system with row sparsity k in O(k N 2) complexity in terms
of multiplications and additions. Here N is determined by the degree of regularity
for the MQ problem, which we will explain in more detail later in this paper.

There are several implementations of the XL-Wiedemann algorithm. Yang et
al. estimated the solving time for MQ instances in 6–15 unknowns based on a C++
implementation [15]. Moreover, they showed that the expected time for solving an
MQ instance of 40 equations in 20 unknowns over GF(256) is about 245 CPU cycles.
Cheng et al. implemented the XL-Wiedemann algorithm on a cluster of 8 PCs of
NUMA architecture [6]. As a result, they solved MQ instances of 36 equations in
36 unknowns over GF(2) in 46,944 s, 64 equations in 32 unknowns over GF(16) in
244,338s, as well as 58 equations in 29 unknowns over GF(31) in 12,713s.

Also, Mohamed et al. discussed how to solve systems derived from the HFE
Challenge 2 [10]. They use the MXL3 algorithm [9], which is essentially the XL
algorithm with the “mutant” strategy. They solved the HFE challenge 2 system with
128 equations and 16 hidden equations in 144 unknowns, with appropriate guessing
of variables. Their implementation of MXL3 solved such a system in 365,801s with
guessing 52 variables on a PC with 4 quad-core AMD Opteron 8356 Processors
and 128 GB memory. Moreover, according to their estimation, it would require
approximately 100,000 GB of memory in order to break the full version of HFE
Challenge 2 using MXL3.

So far, we have not seen any implementation of the XL-Wiedemann algorithm
on GPU, which is a candidate for further speed-up because several steps of the XL-
Wiedemann algorithm can be parallelized. Therefore, we consider accelerating XL-
Wiedemann on GPU. However, GPU implementation poses a set of very different
limitations from its CPU counterpart. Hence, in this paper we shall detail these
challenges and how we have dealt with them.

Our contributions include the following.Wepresent severalGPU implementations
of the XL-Wiedemann algorithm, in which multiplication of a sparse matrix with a
dense vector is parallelized on GPU. Moreover, we benchmark an implementation
based on the cuSPARSE library using floating-point arithmetic. Finally, we show the
experimental results of solving MQ instances over GF(2), GF(3), GF(5), and GF(7).
Our implementation can solve MQ instances of 74 equations in 37 unknowns over
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GF(2) in 36,972s, 48 equations in 24 unknowns over GF(3) in 933s, as well as 42
equations in 21 unknowns over GF(5) in 347s. The largest instance we have solved
is 48 equations in 24 unknowns over GF(7) in 34,883s, whose complexity is around
O(267) if we use a brute-force kind of approach.

The cuSPARSE library only supports floating-point arithmetic, not integer arith-
metic, let alone finite field arithmetics. Therefore, we need to use cuSPARSE
functions to implement finite field arithmetics via additional operations such as the
modular operations.

2 The MQ Problem and the XL-Wiedemann Algorithm

The security of MPKC is largely based on the complexity of solving a system of
multivariate nonlinear equations over finite fields. The MQ problem is a quadratic
case of this problem. Generic MQ is known to be NP-complete [4].

Let q = pk , where p is a prime, and x = {x1, . . . , xn} (∀i, xi ∈ GF(q)). Gener-
ally, multivariate quadratic polynomial equations in n unknowns over GF(q) can be
described as follows:

f (x) =
∑

1≤i≤ j≤n

αi, j xi x j +
∑

1≤i≤n

βi xi + γ = 0, (1)

where ∀i, j , αi, j , βi , γ ∈ GF(q). The MQ problem consists solving quadratic poly-
nomial equations given by y = { f1(x), . . . , fm(x)}

The original XL algorithm was proposed by Courtois et al. in [7]. The idea of XL
is based on a linearization technique, in which new unknowns representing nonlinear
terms, e.g., y1,2 = x1x2, are generated and treated as an independent variable. If the
number of equations is greater than the number of variables in the resulted linearized
system, then we can solve it by, e.g., Gaussian elimination. If not, we can generate
new equations from the original ones by raising to a higher degree. For the sake of
completeness, the XL algorithm is described in Algorithm 1. Simply put, the degree
of regularity D is the minimal degree at which the number of linearly independent
equations exceeds the number of unknowns in the linearized system.

The XL algorithm generates sparse equations in Step 1 of Algorithm 1. The
number of nonzero terms of an equation is only

(n+2
2

)
out of all possible

(n+D
D

)
terms, since the generated equations are just a product of the original equations and
some monomials. However, the Gaussian elimination is not suited for solving such
sparse linear systems, as it cannot take advantage of the sparsity. TheXL-Wiedemann
algorithm [11] addresses this problem of the original XL by replacing the Gaussian
elimination with the Wiedemann algorithm [14], which is more efficient for solving
systems of sparse linear equations.



352 S. Tanaka et al.

Algorithm 1 The XL algorithm [7]
Require: m quadratic polynomial equations F = { f1, . . . , fm}, m-th vector y = F(x), and the

degree of regularity D.
Ensure: The n-th unknown vector x = {x1, . . . , xn}.
1: Multiply: Generate products between all polynomial equations and all unknowns of the form∏D−2

j=1 xi j .
2: Linearize: Treat eachmonomial in xi of degree≤ D as a new, independent unknown and perform

an elimination algorithm on the linearized equations obtained in Step 1 to derive a univariate
equation.

3: Solve: Solve the univariate equations obtained in Step 1 over GF(q).
4: Back-substitute: Find the values of the other unknowns by back-substitution into the linearized

system.

The Wiedemann algorithm [14] is a solving method for a system of linear sparse
equations over finite fields. Let A be an N × N nonsingular matrix over GF(q). The
Wiedemann algorithm finds a nonzero vector x, where y = Ax. The Wiedemann
algorithm is described in Algorithm 2.

Algorithm 2 The Wiedemann algorithm [14]
Require: N × N nonsingular matrix A and vector b, where Ax = b.
Ensure: The unknown solution vector x.
1: Set b0 = b, k = 0, y0 = 0, and d0 = 0.
2: Compute the matrix sequence si = uk+1Ai bk for 0 ≤ i ≤ 2(N − d), with a random vector

uk+1.
3: Set f (λ) to the minimum polynomial of the sequence of si using the Berlekamp–Massey algo-

rithm.
4: Set yk+1 = yk + f −(A)bk , where f −(λ) := f (λ)− f (0)

λ
, bk+1 = b0 + A yk+1, and dk+1 =

dk + deg f (λ).
5: If bk+1 = 0, then the solution is x = yk
6: Set k = k + 1 and go to Step 2.

3 CUDA and Its Linear Algebra Libraries

Provided by NVIDIA, CUDA is a development environment for GPU based on C
language. Proprietary tools for using GPU have existed before CUDA; such tools
often need to tweak OpenGL and/or DirectX and disguise computation as graphics
rendering commands. Therefore, these tools are not easy to use, whereas CUDA is
efficient because it can use GPU’s computational cores directly.

In CUDA, hosts correspond to PC, and devices correspond to GPU. CUDAworks
by making the host control, the device via kernels. Because only one kernel can be
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executed at a time, we need to parallelize processing inside a kernel. A kernel handles
some blocks in parallel. A block also handles some threads in parallel. Therefore, a
kernel can handle many threads simultaneously.

NVIDIA provides several libraries for linear algebra. For example, the cuBLAS
library provides functions of the Basic Linear Algebra Subprograms (BLAS) library.
BLAS is classified into three levels of functionalities. Level 1 functions provide
operations on vectors, level 2 operations on vectors andmatrices, while level 3 allows
matrix–matrix operations. The cuSPARSE library is actually the sparse version of the
cuBLAS library. Therefore, cuSPARSE also provides these three levels of functions.

We assume that D is the degree of regularity for the XL algorithm. Then, XL
constructs an

(n+D
D

)×(n+D
D

)
linearizedmatrix from theMQ instances ofm equations

in n unknowns over GF(q). However, quadratic polynomial equations in n unknowns
have only

(n+2
2

)
terms. Therefore, we can reduce computations of matrix-vector

product as well as the memory footprint if we store the matrix in sparse form.
Let N be the degree of row and column in a matrix, and numN Z be the number

of nonzero elements in the matrix. Sparse matrix forms have value, row-index, and
column-index data of nonzero elements in a matrix. There are some sparse matrix
formats such as the following [1]

• The COO (coordinate) format is the most basic one. It simply holds value, row-
index, and column-index data of nonzero elements in the matrix. Therefore, it
requires 3numN Z for the memory space.

• The CSR (compressed storage row) assumes that the data vector is ordered by
the row-index. It differs only row-index from the COO formats, in which it holds
the head number of nonzero terms in each row-vector of the matrix instead of
row-index data. Then, it requires 2numN Z + N memory.

• The ELL (Ellpack-Itpack) format uses two dense N × maxN Z matrices, where
maxN Z is the maximal number of nonzero terms in a row-vector. One matrix
shows the value of nonzero matrix, and the other shows the column-index.

Figure1 shows examples of each of the three formats.

Fig. 1 Sparse matrix formats
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4 Implementing XL-Wiedemann on GPU

4.1 Degrees of Regularity Over Small Fields

The bottleneck of the XL-Wiedemann algorithm is the linear algebra part that solves
an N × N matrix system. Here N is determined by the degree of regularity D as
N = (N+D

D

)
. The degree of regularity is the minimal degree where the number of

linearly independent equations exceeds the number of linearized unknowns. We can
figure out the number of linearized unknowns N for the degreed as N = (N+d

d

)
easily.

Rønjon and Raddum gave an upper bound for the number of linearly independent
equations I , which can be decided using the following formula [13]:

I =
Dm
De∑

i=0

(−1)i
(

m + i

i + 1

) Dm−i ·De∑
j=0

(
n

j

)
. (2)

Here, Dm is the maximal degree of the monomials, and De is the degree of the
original equations. For the MQ problem, Dm = D − 2 and De = 2. Therefore, we
can find the minimal degree D, where I ≥ N (= (N+D

D

)
) by Formula (2). Figure2

shows degrees of regularity for MQ instances of 2n equations in n unknowns over
GF(2), GF(3), GF(5), and other prime fields for n ≤ 64. The cases of GF(5) and
other larger prime fields are actually quite similar. Only GF(2) and GF(3) differ from
the other cases because we need to take into consideration field equations αq = α.

From the definition of the degree of regularity, it is obvious that I ≥ N . How-
ever, for the Wiedemann algorithm to work, we need to reduce to N from I . The
simplest way is to randomly remove certain equations, which is our strategy in our
implementation.

Fig. 2 The degrees of regularity for m = 2n cases for n ≤ 64
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4.2 The Wiedemann Algorithm

The Wiedemann algorithm has three separate steps. The first step is to generate the

sequence {(u, Ai b)}2N
i=0 for an N × N matrix A and a vector b, where Ax = b, as

well as a random vector u. The second step is to find the minimal polynomial of the
generated sequence f (λ) using the Berlekamp-Massey algorithm. The final step is to
compute f −(A)b, where f −(λ) = f (λ)− f (0)

λ
. In this work, we only implement the

first step and the final step onGPU. This is because the Berlekamp–Massey algorithm
is sequential in nature, and hencemight not benefit from parallelization. For example,
it has many conditional branches, which are not suitable for GPU implementation.
Therefore, we implement the second step on CPU.

4.3 Generating Sequence {(U, Ai b)}2N
i=0

This step requires multiplying the sparse matrix A and the dense vector Ai−1b, as
well as taking dot product (u, Ai b). However, we can choose the random vector u
as u = {1, 0, . . . , 0}. Therefore, taking dot product amounts to looking up the first
coordinate in the vector Ai b. Hence, we should consider only multiplication of the
sparse matrix A and the dense vector Ai−1b.

Multiplying the sparse matrix A and the dense vector Ai−1b takes two steps. The
first one ismultiplying nonzero elements in thematrixwith the elements in the vector.
The other is summing the results of the partial multiplications for each row.

We choose the ELL format for representing sparse matrices. One advantage is
that every column width is the same in a matrix, and the multiplication result also
has such width. In CUDA kernels, the column width corresponds to the number
of threads, while the row height corresponds to the number of blocks. To achieve
maximal efficiency, each block should have the same number of threads. Therefore,
the ELL format is best suited for GPU implementation.

In summing the partial multiplication results, we use the parallel reduction tech-
nique [2]. This technique reduces sequential algorithms to the parallel version. Basi-
cally, it handles minimal computations of algorithms in parallel with several proces-
sors. Then, their results are inputs of next steps. The parallel reductionmethod iterates
to generate the final result. For summations, additions reduces the number of terms
into half in each step. Therefore, such a technique allows computing summation of n
items in O(log n) steps. Figure3 shows the image and an example of parallel reduc-
tion techniques for summations. It computes a summation of 8 terms over GF(7) in
3 steps with 4 processors.
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Fig. 3 Parallel reduction of summing 8 terms over GF(7)

4.4 Computing f −(A)b

Since f −(A)b = ∑d
i=1 ci Ai−1b, where d is the degree of f (λ), this step amounts

to summing ci Ai−1b, using the same partial sums from the previous step. Hence,
there are two strategies for computing Ai b. The first one is to store the result of Ai b
on GPU. This strategy can avoid recomputing Ai b. However, it needs about O(N 2)

memory for storing Ai b, where 0 ≤ i ≤ N (since d ≤ N ). Therefore, this strategy
can only work for smaller matrices.

The other strategy is to recompute Ai b on the fly. Although it repeats the com-
putation of d products of Ai b, it only requires O(Ai−1b) memory to hold the last
vector of Ai b. Therefore, this strategy is more suitable for large matrices.

4.5 cuSPARSE

The cuSPARSE library [1] provides functions that multiply a sparse matrix with a
dense vector. Therefore, we consider using cuSPARSE as an alternative implemen-
tation for computing A and Ai−1b. There are two important issues with implementa-
tions. First, the interface is fixed and opaque. The cuSPARSE library only provides
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this function for CSR format: y ← αAx +β y, where A is a matrix, x, y are vectors,
and α, β are scalars. Therefore, we set β = 0 for the first step. Moreover, we are
stuck with CSR format for representing sparse matrices when we use cuSPARSE
library.

The second issue is the restriction of the unknown type. The cuSPARSE library
only supports floating-point arithmetic, not integer arithmetic, let alone finite field
arithmetics. Therefore, we need to use cuSPARSE functions to implement finite field
arithmetics via additional operations such as the modular operations.

5 Experimental Results

We implement the XL-Wiedemann algorithm on GPU using two strategies, integer
version and cuSPARSE (floating-point) version. We experiment with solving the
largest cases for D = 4, 5 over GF(2), GF(3), GF(5), and GF(7) by both implemen-
tation strategies and summarize these instances in Table1.

Table2 shows the overall experimental results, and Table3 shows the profiling
results of the Wiedemann algorithm. Despite the overhead brought by the two issues
mentioned previously, the cuSPARSE version seems to outperform integer version
for larger cases. In our experiments, the Berlekamp–Massey algorithm can occupy a
significant portion of the total running time and hencemay beworth further optimiza-
tion.We can also use high-quality, state-of-the-art implementations from commercial
computer algebra systems like MAGMA.

Finally, we solve the largest case of D = 6 over GF(7), which has a system of
24 unknowns and 48 polynomials. We choose the version of using the cuSPARSE
library as a solver of the MQ instance, because of the result of D = 5 cases. Table4
shows the construction and experimental result of solving the MQ instance.

Table 1 MQ instances in our experiments

Field GF(q) GF(2) GF(3) GF(5) GF(7)

Degree
of regularity D

4 5 4 5 4 5 4 5

Unknowns n 24 37 15 24 13 21 13 21

Equations m 48 74 30 48 26 42 26 42

Matrix

Linearized terms 12,950 510,415 3,635 110,954 2,379 65,758 2,379 65,779

Nonzero terms 301 704 136 325 105 253 105 253
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Table 4 Solving the MQ instance of 48 equations in 24 unknowns over GF(7)

Constructions Unknowns n 24

Equations m 48

Matrix Linearized terms 593,774

Nonzero terms 325

Memory (MB) Matrix 2,208.44

Running time XL-Wiedemann Linearization
Wiedemann

34,881.637 580.406
34,301.231

Wiedemann algorithm Generating sequence
Berlekamp–Massey Compute
f −(A)b (s)

11,046.464 17,698.748
5,555.593

6 Conclusion

We provide GPU implementations of the XL-Wiedemann algorithm using both inte-
ger and floating-point arithmetic via the cuSPARSE library. Our implementation can
solveMQ instances of 74 equations in 37 unknowns over GF(2) in 36,972s, 48 equa-
tions in 24 unknowns over GF(3) in 933s, as well as 42 equations in 21 unknowns
over GF(5) in 347s by using the cuSPARSE library. Finally, we can solve the largest
case of D = 7 overGF(7), theMQ instance of 48 equations in 24 unknowns. By using
the cuSPARSE library, it takes 34,882s. Our next goal is to estimate the expected
solving time for larger degree cases.
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Hierarchical Visual Secret Sharing
Scheme Using Steganography

Biswapati Jana, Amita Samanta and Debasis Giri

Abstract The rapid growth of computer networks and technology constructs a favor-
able environment that can tolerate the multiusers in a hierarchy based. In any orga-
nization the personnel are frequently organized in the form of a hierarchy and there
is the requirement that information is distributed over the hierarchy on a “need-
to-know” basis. In this paper, we propose a new hierarchical visual secret sharing
scheme, where steganographic technique has been used to maintain hierarchy and
detect fake share using weight matrix-based embedding method. In this approach, we
have used a key matrix (K ) and a weight matrix (W ) to hide critical information (M)
into the share on each level of our proposed scheme. The basic ideas are: (i) to use an
EXclusive-OR operator to protect the key matrix (K ) and (ii) to use a weight matrix
(W ) to increase the data hiding rate while maintaining high quality of the share image
in each level in hierarchy of the scheme. The share generator or Trusted Authority
(TA) generates weight matrix Wi for share Si and each level modifies weight matrix
Wi+1 using the formula Wi+1 = (Wi × 5 mod 8) + 1 where i = 0, 1, 2, . . . , n to
keep track of level and maintain the hierarchical structure in proposed scheme. The
experimental results are demonstrated and tested using Peak Signal-to-Noise Ratio
(PSNR) value and relative entropy. It shows that our scheme is superior in terms of
PSNR compared to existing schemes.
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1 Introduction

Visual Cryptography (VC) is one kind of Visual Secret Sharing (VSS), introduced
by Naor and Shamir [1] in 1994. In VC, a secret image is encrypted into several
shares which is completely unrecognizable. While the shares are separate, the secret
image is completely incoherent. Each share holds different pieces of image and
the secret image comes out only by stacking a sufficient number of shares together
[2]. VC eliminates complex mathematical computation to recover the secret. The
encrypted message can be decrypted directly by the Human Visual System (HVS).
In (k, n) basic model of VC any k shares will decode the secret image out of n shares
which reduces security level. Any subset of k or more qualified shares can decrypt
the secret image but no information can be obtained by stacking lesser number of
qualified shares or by stacking disqualified shares. Chen et al. [3] pointed out that
cheating is possible in (k, n) VC when k < n. There are two types of cheaters in
VC. One is a malicious participant (MP) who is also a legitimate participant, namely
MP ∈ P (Qualified participant), uses his original share to create a Fake Share (FS)
to cheat the other qualified participant and the other is a malicious outsider (MO),
where MO /∈ P , will create FS by using some random images as input to decode the
original image. The MO will try to create FS of different sizes because the size of the
original share may vary. Cheating may also happen in Extended Visual Cryptographic
Schemes (EVCS) by MP.

In this paper, we proposed Hierarchical Visual Secret Sharing (HVSS) scheme
to protect secret in any hierarchical organizational environment then we propose a
Steganographic approach to prevent cheating by detecting FS in HVSS and then
revealed secret image from original share by simple stacking the valid shares. We
have used a secret key K and a weight matrix W to hide critical information M
into the share on each level of hierarchical secret sharing scheme. Here we consider
the share generator as the Trusted Authority (TA). When any share holder wants to
know whether a share is original or not, he sends a request to the trusted authority
(TA) to check both the shares. Then TA extracts the embedding message from both
shares. If TA retrieves the original embedded message from any share, the share will
be acceptable, otherwise it will be rejected.

The rest of the paper is organized as follows. Section 2 reviews some required
primitives including related work. Overview of Visual Secret Sharing (VSS) is dis-
cussed in Sect. 3. Data hiding techniques are discussed in Sect. 4. Our proposed
method is discussed in Sect. 5. Performance evaluation and security analysis of the
proposed scheme are presented in Sect. 6. Finally, some conclusions are given in
Sect. 7.
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2 Related Work

The main principle of VC was first introduced by Naor and Shamir [1]. In 1996,
Ateniese et al. [4] proposed an elegant VC scheme for general access structures based
on the cumulative array method. In 1997, Naor and Pinkas [5] showed some methods
of authentication and identification for VC. Their scenario focuses on authentication
and identification between two participants. In 1999, Yang and Laih [6] presented two
cheating prevention VC schemes to break the misleading secrets forged by dishonest
participants. The first method generates an additional verification share to check the
validity of each share, where the verification share should be hold by the trusted
authority (TA) to verify the validity of each share. The second method transforms
a conventional VC scheme to another cheating prevention VC scheme with greater
pixel expansion in each generated shares. The stacking of any two shares reveals the
verification image which can be inspected by user to check the validity of the shares.
In 2002, Hu and Tzeng [7] proposed a new definition for VC, in which the secret
image can be either darker or lighter than the background. In 2006, Horng et al. [8]
proposed a cheating method against some VC schemes. In their cheating method,
the cheater needs to know the exact distribution of black and white subpixels of the
shares of honest participants. They demonstrated a process of collusive cheating by
n + 1 participants to the other user in (2, n) VC schemes, and presented two simple
possible solutions to address the problem. The first method generates a dedicated
verification share to each participant which can be applied to investigate the genuine
of the shares gathered from other participants. The second one uses a (2, n + l) VC
scheme instead of (2, n) scheme in a 2-out-of-n coding instance, that frustrates the
malicious user in predicting the structure of the transparencies possessed by other
participants. In 2007, Hu and Tzeng [9] presented three robust methods to improve
the weaknesses of previously cheating prevention VC schemes, two for conventional
VC and another for extended VC. However, like the previous cheating prevention
VC schemes in [8, 9], additional verification share or greater pixel expansion is
required to endow the ability about resisting cheating against malicious participants.
In 2011, Chen et al. [3, 10] proposed another cheating prevention method where the
method can divide the cheating prevention schemes into two classes. One is based
on share authentication where another share (transparency) is used to authenticate
other shares (transparencies) and the other is based on blind authentication where
some property of the image is used to authenticate the reconstructed secret image.
In 2007, Tassa [11, 12] proposed a new secret sharing scheme based on Birkhoff
interpolation to deal with hierarchical threshold access structures. However, unlike
Shamir’s secret sharing scheme, Tassa’s scheme is not able to use all potentials
of underlying polynomial to share multiple secrets. Using Tassa’s scheme to share
more than t0 secrets makes it possible for some nonauthorized subset of participants
to recover some of the secrets. In 2012, Guo et al. [13] proposed a Hierarchical
Threshold Secret Image Sharing (HTSIS) based on Steganography and Birkhoff
interpolation. In this technique nonauthorized participants are able to recover the
secret image. To overcome this weakness, Nasrollah et al. [14] proposed a secret
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image sharing scheme with a hierarchical threshold access structure using cellular
automata and Birkhoff interpolation. In their technique participants are able to detect
tampering of the recovered secret image. A data hiding scheme for binary images has
been proposed by Tseng et al. [15]. In 2013, Fan et al. [16] proposed an improved
efficient data hiding scheme for gray scale images using weight matrix. Here, we
propose Hierarchical Visual Secret Sharing scheme that provides cheating prevention
in hierarchical structure using a weight matrix and a key matrix.

3 Visual Secret Sharing

In Visual Secret Sharing (VSS), the shares are presented into transparencies. After
taking the Secret Image (SI), the transparencies are generated; each white and black
pixel of SI is handled separately. The structure appears as a collection of m black and
white subpixels in each of the n transparencies. So one pixel of the SI corresponds to
n×m subpixels, denoted by an n×m Boolean matrix, called as base matrix (B), such
that Bi j = 1 if and only if the j-th subpixel of the i-th share is black and Bi j = 0 if
and only if the j-th subpixel of the i-th share is white. The gray level of the stack of k
shared blocks is determined by the Hamming Weight H(V ) of the “or” ed m-vector
V of the corresponding k rows in B. This gray level is interpreted by the visual system
of the users as black if H(V ) ≥ d and as white if H(V ) ≤ d −α × m for some fixed
threshold d and relative difference α. According to Naor and Shamir [1], a solution to
the (k, n)-VSS consists of two collections C0 (for white) and C1 (for black) of n ×m
base matrices. The solution is considered valid if the following conditions hold:

1. A block of a stacking result represents the color is white by the HVS when the
“or” V of any k of the n rows satisfies that H(V ) is less than or equal to d −α×m
for any matrix B0 in C0.

2. A block of a stacking result represents the color is black by the HVS when the
“or” V of any k of the n rows satisfies that H(V ) is more than or equal to d for
any matrix B1 in C1.

3. For any subset {i1, i2, . . . iq} of {1, 2, . . . , n} with q < k, the two collections D0,
D1 of q × m matrices obtained by restricting each n × m matrix in C0, C1 to
rows i1, i2, . . ., iq are indistinguishable in the sense that they contain the same
matrices with the same frequencies.

3.1 Cheating in VSS

There are three types of cheating in VSS which are described below:

1. Cheating a VSS by an MP (CA-1):
As the cheater is an MP, it is possible to use genuine share as a template to
construct a set of fake share which are indistinguishable from its genuine share.
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The stacking of these FS and Si (from which FS generated) reveals the fake
image of perfect blackness. As the cheaters set a cheating image and the goal is to
generate fake transparency and make victim to accept the cheating image, CA-1
is a meaningful cheating.

2. Cheating a VSS by an MO (CA-2):
Malicious Outsider (MO) does not hold any genuine transparency; the MO only
knows the transparency construction technique. As MO is the outsider, he does
not know the right transparency size for the fake transparency. For this, Hu and
Tzeng [7] give one solution, that is, to try all possible transparency sizes. At first,
MO chooses a fake image and encode the fake image into two fake transparencies
FT1 and FT2 with the optimal (2, 2)-VSS. Then enough pairs of fake transparen-
cies FT1,i and FT2,i with various sizes and subpixel distributions are generated,
where 1 ≤ i ≤ r for some value of r . Now the stacking of two fake transparency
FT1,c, FT2,c, and Tv (Victim’s transparency) shows the fake image for some c,
where 1 ≤ c ≤ r.

3. Cheating an EVSS by an MP:
The VSS in which the shares are meaningful or identifiable to every participant,
is called Extended VSS (EVSS). The qualified participant creates the FS from the
genuine share by interchanging the black pixels by the white pixels which leads to
less contrast of the reconstructed image. The less contrast in reconstructed image
will be hard to see the image.The fake image in the stacking of the fake shares
has enough contrast against the background since the fake image is recovered in
perfect blackness. There are two phases when cheating process happens against
a VSS. The phases are: (1) Fake share construction phase: In this phase the fake
shares are generated. (2) Image reconstruction phase: The genuine share and fake
share are stacked together and then the fake image appears.

4 Data Hiding Using Weight Matrix

A data hiding scheme for binary images using a key matrix (K ) and a weight matrix
(W ) has been proposed by Tseng et al. [13]. Fan et al. [14] proposed an improved
efficient data hiding scheme for grayscale images. In the following, we describe
Tseng’s data hiding scheme which exploits HVSS. The sender extracts the LSB plane
S from the grayscale image SI as the embedding domain and then S is partitioned
into nonoverlapping blocks Si of size m × n. For simplicity, we assume that the size
of S is a multiple of m ×n. A key matrix K of the same size as Si is created with a key
shared by sender and receiver. Next, an m ×n integer weight matrix W which will be
shared by sender and receiver is generated. The criterion of choosing W is that each
entry of matrix is randomly assigned a value from the aggregate {1, 2, . . . , 2r − 1}
and each element of aggregate {1, 2, . . . , 2r − 1} appears at least once in W , where
r denotes the number of secret bits that will be embedded into each block Si . As
2r − 1 ≤ m × n and there are many choices for W, it can first pick 2r − 1 elements
from W and assign {1, 2, . . . , 2r − 1} to them. The remaining m × n − (2r − 1)
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elements can be assigned randomly. Next, it will embed two data bits, say b1b2 into
Si . Calculate SUM((Si ⊕ K ) ⊗ W ). Where ⊕ denotes bitwise EXclusive-OR and
⊗ denotes entry-wise multiplication operator. The function of SUM() represents the
modular summation of all the entries of matrix (Si ⊕ K )⊗W. Then, calculate weight
difference: d = (b1, b2, . . . , br ) − SUM((Si ⊕ K ) ⊗ W ) mod 2r . If d is equal to
zero modulo 2r then Si is intact; otherwise, modify Si to S′

i to satisfy the following
invariant:

SUM(S′
i ⊗ W ) = b1b2 mod 2r (1)

With this invariant, the receiver can derive b1b2 by computing SUM(S′
i ⊗ W ) mod

2r . Here, we have used this method for share authentication by embedding critical
information M in high embedding rate. There exists high-risk security vulnerability
in special case, because an attacker will be able to estimate the form of random
key matrix and weight matrix by using brute-force attack. In order to overcome
the drawbacks of the above scheme, an improved embedding strategy is developed
in this paper by changing the weight matrix sequence using the formula Wi+1 =
(Wi × 5 mod 8) + 1, where i = 0, 1, 2, . . . , n number of shares in each level.

5 Proposed Scheme

5.1 Hierarchical Visual Secret Sharing (HVSS)

In this section, we first describe our proposed hierarchical visual secret sharing
scheme using steganography and then describe how cheating cannot be mounted
in this scheme. Encrypt the secret for different levels. In a hierarchical structure, a
user in a security class has access to information items of security classes of lower
levels, but not of upper levels. Hierarchical structures are used in many applications
including military, government, schools and colleges, private corporations, computer
network systems, etc. The block diagram of proposed work is shown in Fig. 1. Here
a secret image (SI) can be distributed into n number of secret shares Si , each of
these are unique subset of original secret. Each shareholder of level-1 keeps a copy
of his share. Now for each share of level-1, a unique secret image have to be choosen
and modified level-1 shares would be generated by OR-ing an original level-1 share
with its corresponding unique secret. At the time of stacking the level-2 shares,
the corresponding unique secret reveals which was chosen by the parent level-1
share. The participant can cheat other. If the cheater is a Malicious Participant (MP),
he uses his genuine share as a template to construct a set of fake shares which
are indistinguishable from its genuine share. The stacking of these fake shares and
the original share reveals the fake image.The Algorithm-1 is for share generation,
Algorithm -2 is for level-1 share modification, and Algorithm-3 for generating fake
shares are shown below:
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Fig. 1 Block diagram of Hierarchical Visual Secret Sharing (HVSS)

Algorithm-1 (Algorithm for share generation in HVSS):

Step 1: Take a secret image (SI[i][ j]) and convert it into binary form.
Step 2: Construct a general matrix GM using formula J 0

i = 0i−110k−i for
1 ≤ i < k and J 0

k = 1k−10, where k is the number of secret share and
i = 0, 1, 2, . . . , k.

Step 3: Choose two matrices C0 (for white pixels) and C1 (for black pixels)
obtained by permuting the columns of the corresponding matrix GM in
all possible ways.

Step 4: Take each pixel from binary image SI[i][ j] and generate sub pixel of k × k
matrices.

Step 5: For i = 1 to k
For x = 1 to length(SI[i][ j])

For y = 1 to length(SI[i][ j])
If (SI[x][y] = 0),

then select row of matrix C0 (Starting from row 1)
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Else
select row of matrix C1 (Starting from row 1)

EndIf
Share S(i) = Split pixel according to matrix value of C0 or C1

i = i + 1;
End For

End For
End For

Step 6: End

Algorithm-2 (Algorithm for Level-1 share modification):

Step 1: Input original share Si , and choose another secret image SIi .

Step 2: Assume that each pixel of Si has m black and n white subpixels.
Step 3: For each white pixel of the secret image SIi , copy the corresponding

subpixels of the pixel in Si to modified share S′
i .

Step 4: For each black pixel of the secret image SIi , randomly assign m black and
n white subpixels to modified share S′

i such that the pixel in the stacking
of modified share S′

i with original share Si is perfect black.
Step 5: Generate modified share S′

i .

Step 6: End

Algorithm-3 (Algorithm for generating fake share):

Step 1: Input original share Si , and a fake image FI, which has the same size of
secret image SI.

Step 2: Assume that each pixel of Si has x black and y white subpixels.
Step 3: For each white pixel of the fake image FI, copy the corresponding

subpixels of the pixel in Si to fake share FS.
Step 4: For each black pixel of the fake image FI, randomly assign x black and y

white subpixels to fake share FS such that the pixel in the stacking of
fake share FS with original share Si is perfect black.

Step 5: Generate fake share FS.
Step 6: End

5.2 Cheating prevention in hierarchical visual secret
sharing (HVSS)

A Steganographic approach is proposed to prevent cheating by detecting fake share
in HVSS scheme and then revealed secret image from original share. The attacks
are to reveal fake images which cheat honest participants. In this approach, we have
used a key matrix K and a weight matrix W to hide critical information M into
the share on each level of HVSS. The basic ideas are: (i) to use a different binary
operator Exclusive-OR to protect the key matrix K from being compromised, and
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TA

S1 S2 S3 S4

IM1= S1⊕ K1 IM2   = S2   ⊕ K2

-- -- -- -- -- -- -

1
′ = IM1⊗ W1 2

′ = IM2⊗ W2Wi = (W * 5 mod 8)+1.

Stego Share -- -- -- -- -- --

Fig. 2 Block Diagram of generating stego share in HVSS using weight matrix

(ii) to use a weight matrix W to increase the data hiding rate while maintaining high
quality of the host image. The block diagram of the scheme is depicted in Fig. 2.
The share generator or Trusted Authority (TA) generates different key matrix to
keep track of the level of each share which is predefined and generates different
weight matrix Wi for each share using the formula Wi+1 = (Wi × 5 mod 8) + 1
and embedded the critical information (M) into each share with different weight
matrix. After generating shares (Si ), TA generates an Intermediate matrix (IM) by
EXclusive-ORing between the share and key matrix (K ), I Mi = Si ⊕ Ki and
keep a copy of the Intermediate matrix (IM). The modified share (S′

i ) is generated
by changing 1 bit modification from Si (using Algorithm-4). TA keeps a table of
Intermediate matrix (IM), its corresponding key matrix (K ) and weight matrix (W ).

When any share holder wants to know whether a share is original or not, he sends
a request to the TA to check both the shares. Then TA Exclusive-OR the modified
share with all predefined key matrix and check with all intermediate matrix in one bit
tolerant process. In this way TA check the modified share to decide the corresponding
weight matrix. Now using the corresponding weight matrix, the embedding message
from the share is extracted. If TA retrieves the original embedded message from any
share, the share will be accepted; otherwise, it will be rejected (Fig. 3).
Algorithm-4 (Embedding Process):

Step 1: Consider original share Si , a critical message M, a 3 × 3 key matrix K ,
and a 3 × 3 Weight matrix W.

Step 2: Divide each character of message into two (4 bits each) parts and store
into message msg.

Step 3: Copy S into T .
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Fig. 3 Block diagram of cheating prevention in HVSS using weight matrix

Step 4: To compute Intermediate matrix (IM), consider a 3 × 3 matrix of
original share (S) that is, Si and EXclusive-OR each pixel value with
corresponding position value of 3×3 key matrix. Hence IMi is computed
as IMi = Si ⊕ Ki .

Step 5: Keep a copy of IMi .
Step 6: Multiply each pixel value of IMi with corresponding position value of

3 × 3 weight Matrix W.

Step 7: Calculate modulo value of SUM(IMi ⊗ Wi )(mod2r ), where r = 4.
Step 8: Compute the weight difference: d = (b1, b2, . . . , br )−SUM(IMi

⊗
Wi ).

Step 9: If d = 0, keep Fi intact, otherwise complement dth position of Wi in Si .
Step 10: Choose next 3×3 matrix of S and repeat until entire message is embedded.
Step 11: End
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Algorithm-5 (Extracting Process):

Step 1: Consider Stego share T, all predefined 3 × 3 key matrix K and all copy of
Intermediate matrix (IMi ).

Step 2: Consider 3 × 3 matrix of T and EXclusive-OR with all predefined key
matrix (Ki ) and check with all intermediate matrix (IMi ) in one bit tolerant
process and determine weight matrix (Wi ).

Step 3: Multiply each pixel value of T with corresponding position value of Wi .

Step 4: Calculate Sum of each product.
Step 5: Extract message by Sum (mod2r ).
Step 6: Concatenate two messages into one and then convert ASCII value of

each character into string.
Step 7: End

Let us consider the following original share S (Ref. Table 1).
TA generates several key matrices Ki (i = 1, 2, . . . , n) to secure the system. Use

K1 for share 1, K2 for share 2, . . . Kn for share n. Key Matrices are predefined, like
(Figs. 4 and 5)

K1 =
⎡
⎣

1 0 0
1 0 1
1 1 0

⎤
⎦ , K2 =

⎡
⎣

1 0 1
0 0 1
0 1 0

⎤
⎦ , K3 =

⎡
⎣

1 1 0
1 0 0
0 1 0

⎤
⎦ and so on.

Weight matrices are generated by the formula Wi+1 = (Wi × 5 mod 8) + 1,

i = 0, 1, 2, . . . , n. We use W1 for share 1, W2 for share 2, . . . , Wn for share n,

where

W1 =
⎡
⎣

1 2 3
4 5 6
7 8 2

⎤
⎦ , W2 =

⎡
⎣

6 3 8
5 2 7
4 1 3

⎤
⎦ , W3 =

⎡
⎣

7 8 1
2 3 4
5 6 8

⎤
⎦ and so on.

Message Embedding:
Suppose, we want to embed a string of two characters, say ‘is’, where ASCII values
of ‘i’ and ‘s’ are 105 and 115, respectively.

Now, binary representations of 105 and 115 by 8-bit word are 01101001 and
01110011. In 01101001, first 4-bit represents 6 in decimal and next 4-bit represents
9. Similarly, in 01110011, first 4-bit represents 7 in decimal and next 4-bit represents

Table 1 Binarization of host image F

1 0 1 1 0 0

1 1 0 1 1 1

0 0 1 0 0 0

0 1 1 1 0 1

1 0 0 0 1 1

0 1 0 1 1 0
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No

Yes

N Y

Read Host image F, secret message M, 3*3 
key matrix and 3*3 weight matrix.

Calculate size(F) i.e. strlen. Convert string character into 
ASCII value (A). Divide each A value by two parts(4 bits 
each) and store into msg. Initialize Y=1 

If Y<=2*strlen Copy remaining pixel 
values of F into S

Display the 
Stego image S

End

Select 3*3 matrix of F and copy into S

Compute IM by Exclusive - ORing each pixel value of 
S with corresponding pixel value of key matrix (K).

Multiply each pixel value of IM with corresponding 
pixel values of 3*3 weight matrix(W)

Calculate Sum of each product

Modify Sum by mod(Sum, 16)

Compute Weight difference d=b1, b2 . . .br -Sum

If d=0
Keep F intact

Complement dth

position of F

Y=Y+1

Start

Fig. 4 Flow chart of embedding process

3. So message, msg = 6, 9, 7, 3. For simplicity, we consider the embed string, say
‘i ′. To generate Intermediate matrix IM1, we choose first 3 × 3 matrix of S1 and
EXclusive-ORing by key matrix K1. That is,

IM1 = F1 ⊕ K1 =
⎡
⎣

1 0 1
1 1 0
0 0 1

⎤
⎦ ⊕

⎡
⎣

1 0 0
1 0 1
1 1 0

⎤
⎦ =

⎡
⎣

0 0 1
0 1 1
1 1 1

⎤
⎦
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No

yes

If r<=2*strlen Convert sequential 
two messages into one

Convert decimal value 
into corresponding 
character value

Display the Secret message

End

Select 3*3 matrix of S i.e. Si

Exclusive-OR each pixel value of Si

with all predefined Key matrix (Ki )

Check with all intermediate matrix IMi in one 
bit tolerant process and determine 
corresponding weight matrix.

Multiply each pixel value of Si with corresponding 
pixel value of 3*3 weight matrix (Wi).

Calculate Sum of each product

Modify Sum by mod (Sum, 16)

Store Sum into msg (r)

r=r+1

Start

Read Stego image S, secret message M, all intermediate matrix and 
all predefined key matrix Ki. String Length=strlen. Initialize r=1

Fig. 5 Flow chart of extracting process

Now, (IM1 ⊗ W1) should be calculated as

⎡
⎣

0 0 1
0 1 1
1 1 1

⎤
⎦ ⊗

⎡
⎣

1 2 3
4 5 6
7 8 2

⎤
⎦ =

⎡
⎣

0 0 3
0 5 6
7 8 2

⎤
⎦

And so as SUM(IM1 ⊗ W1) = 31.
Now, d can be calculated as

d = (b1, b2, . . . , br ) − SUM(I Mi ⊗ Wi ) mod 2r , where r = 4

= 6 − 31 mod 16

= 7
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So we modify seventh position of S1. Modified S1, that is, S′
1 will be

⎡
⎣

1 0 1
1 1 0
1 0 1

⎤
⎦

Similarly, we can choose second 3 × 3 matrix of Si and EXclusive-ORing by key
matrix K1. Then we can get IM2 as

IM2 = S2 ⊕ K1 =
⎡
⎣

1 0 0
1 1 1
0 0 0

⎤
⎦ ⊕

⎡
⎣

1 0 0
1 0 1
1 1 0

⎤
⎦ =

⎡
⎣

0 0 0
0 1 0
1 1 0

⎤
⎦

Now (IM2 ⊗ W1) should be calculated as

⎡
⎣

0 0 0
0 1 0
1 1 0

⎤
⎦ ⊗

⎡
⎣

1 2 3
4 5 6
7 8 2

⎤
⎦ =

⎡
⎣

0 0 0
0 5 0
7 8 0

⎤
⎦ .

Then we calculate SUM(IM2 ⊗ W1) = 20.

d = (b1, b2, . . . , br ) − SUM(IMi ⊗ Wi ) mod 2r

= 9 − 20 mod 16

= 5

So, we modify fifth position of S2. Modified S2, that is, S′
2 will be

⎡
⎣

1 0 0
1 0 1
0 0 0

⎤
⎦

Message Extraction:
Receiver have to know the corresponding weight matrix W to retrieve the secret
message, but receiver has no information about the weight matrix, which is used
for that particular share. So, one has to Ex-OR all predefined key matrix (Ki ) with
modified share S′

i and compare with all intermediate matrix (IMi ) in one bit tolerant.
As soon as one gets proper intermediate matrix, then the corresponding weight matrix
will be determined.

Now, we calculate Ex-OR between predefined key matrix (Ki ) and modified share
F ′

i as follows:

S′
1 ⊕ K1 =

⎡
⎣

1 0 1
1 1 0
1 0 1

⎤
⎦ ⊕

⎡
⎣

1 0 0
1 0 1
1 1 0

⎤
⎦ =

⎡
⎣

0 0 1
0 1 1
0 1 1

⎤
⎦
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S′
1 ⊕ K2 =

⎡
⎣

1 0 1
1 1 0
1 0 1

⎤
⎦ ⊕

⎡
⎣

1 0 1
0 0 1
0 1 0

⎤
⎦ =

⎡
⎣

0 0 1
1 1 1
1 1 1

⎤
⎦

S′
1 ⊕ K3 =

⎡
⎣

1 0 1
1 1 0
1 0 1

⎤
⎦ ⊕

⎡
⎣

1 1 0
1 0 0
0 1 0

⎤
⎦ =

⎡
⎣

0 1 1
0 1 0
1 1 1

⎤
⎦

Now, one can check with all intermediate matrix (IMi ) in one bit tolerant process
and determine the weight matrix W1.

SUM(S′
1 ⊗ W1) mod 2r = SUM

⎡
⎣

1 0 1
1 1 0
1 0 1

⎤
⎦ ⊗

⎡
⎣

1 2 3
4 5 6
7 8 2

⎤
⎦ mod 16 =

⎡
⎣

1 0 3
4 5 0
7 0 2

⎤
⎦

= 22 mod 16 = 6
To extract next message we consider next block S′

2. Ex-OR all predefined key
matrix (Ki ) with the modified share S′

i as follows:

S′
2 ⊕ K1 =

⎡
⎣

1 0 0
1 0 1
0 0 0

⎤
⎦ ⊕

⎡
⎣

1 0 0
1 0 1
1 1 0

⎤
⎦ =

⎡
⎣

0 0 0
0 0 0
1 1 0

⎤
⎦

S′
2 ⊕ K2 =

⎡
⎣

1 0 0
1 0 1
0 0 0

⎤
⎦ ⊕

⎡
⎣

1 0 1
0 0 1
0 1 0

⎤
⎦ =

⎡
⎣

0 0 1
1 0 0
0 1 0

⎤
⎦

S′
2 ⊕ K3 =

⎡
⎣

1 0 0
1 0 1
0 0 0

⎤
⎦ ⊕

⎡
⎣

1 1 0
1 0 0
0 1 0

⎤
⎦ =

⎡
⎣

0 1 0
0 0 1
0 1 0

⎤
⎦

Now, we check with all intermediate matrix (IMi ) in one bit tolerant process and
determine the weight matrix W1.

SUM(S′
2 ⊗ W1) mod 2r = SUM

⎡
⎣

1 0 0
1 0 1
0 0 0

⎤
⎦ ⊗

⎡
⎣

1 2 3
4 5 6
7 8 2

⎤
⎦ mod 16 =

⎡
⎣

1 0 0
4 0 6
0 0 0

⎤
⎦

= 11 mod 16 = 9

Now, one concatenates binary values of two messages 6(=0110 in binary) and 9
(=1001 in binary), which will be 01101001 in binary and equivalent in decimal will
be 105. Hence, receiver can convert 105 into corresponding character ‘i’.
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Lemma 5.1 Maximum possible weight matrix of r bit will be (2r +1)!- 2r .

Proof Consider r bit message need to embed, the possible combinations of r bit is
2r . As per requirement weight matrix W will be (1, 2, . . . , 2r -1). Number of values
within W is 2r +1. The all possible combinations of W will be (2r +1)!- 2r . �

Lemma 5.2 Maximum possible child of any node of HVSS will be (2r +1)!- 2r .

Proof As per requirement of HVSS, the possible number of weight matrix is (2r +1)!-
2r . Every child will carry information using different weight matrix of same parent.
So, maximum number of possible children will be (2r +1)!- 2r . �

Lemma 5.3 Maximum possible size of share for each level will be (2r +1)!- 2r .

Proof As per lemma 2, maximum number of children will be (2r +1)!- 2r . To generate
share one can use Base matrix B0. Here for (2r +1)!- 2r number of child share one
may have to use is (2r +1)!−2r × (2r +1)!−2r Base matrix. So possible maximum
size of share will increase (2r +1)!- 2r . �

Lemma 5.4 Maximum possible key matrix will be 2r×r .

Proof Key matrix is used to enhance security of HVSS. For r + 1 bit message
embedding, we use key matrix (K ) of r × r size. The key matrix have only 1 or 0.
So, maximum possible key matrix will be 2r×r .

Lemma 5.5 Number of Intermediate Matrix to be stored at Trusted Authority is
equal to the length of message bit.

Lemma 5.6 Predefined Key matrix (K ) will be chosen depending upon the variation
of bit which may be different H ≥ 2 (H = Hamming Distance).

The main aim of HVSS is secret message sharing through generating and dis-
tributing share which is perfect secure technique. In this scheme, key matrix K and
weight matrix W are necessary to protect share from intruders. This K is predefined
and W is also predefined for each share. This K and W and intermediate matrix I M
are stored as a table in Trusted Authority. None can get easily. So we conclude that
our scheme is secure. If one can use size invariant visual cryptography then the main
problem will be the increasing share size at a big rate in each level, can be removed.

6 Experimental Results and Discussion

We consider an original image shown in Fig. 6 and the corresponding four shares
or transparencies are shown in Fig. 7 using Algorithm-1. The transparencies are
usually shared by four participants so that each participant is expected to keep one
transparency. The secret image can be retrieved if k shares out of k shares are stacked
together as it is a (k, k)-scheme, which are shown in Fig. 7 for k = 4. However, the
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Fig. 6 Original image

S1 S2

S3 S4

Fig. 7 Generation of share S1, S2, S3, S4

secret image is totally invisible if fewer than k transparencies are stacked is shown
in Figs. 8 and 9. By stacking all the shares, one can get the original image in perfect
black shown in Fig. 10. It is implemented in NetBeans IDE 7.3.1 (Figs. 11, 12, 13,
14, 15, 16).

Consider share from level-1. Suppose S1 and another secret image I1. Now gen-
erate the modified share S11 by OR-ing S1 with SI1. S11 is distributed into two shares
S111, S112. By overlapping the two shares, we can get back S11 as shown below.

Cheating in Hierarchical Visual Secret Sharing (HVSS):
A malicious participant (MP) may cheat by creating a FS by taking another fake
image (FI) shown in Fig. 17 and giving it to other participant when asked for the
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S1&S2 S2 &S3

S3 &S1 S2&S4

Fig. 8 Stacking of two share S1 & S2, S2 & S3, S3 & S1 and S2 & S4, no visual information can
be retrieved

S1, S2,S3 S2, S3 ,S4

S1,S3,S4 S1, S2 ,S4

Fig. 9 Stacking of any three shares. Visual information cannot be retrieved because it is a (k, k)-
scheme

share. The FS is created with the help of the original share Si using Algorithm-2
shown in Fig. 18. It would be hard to detect it with a normal look that it is a FS1 and
not the original one.

Overlapped result of the FS1 with the share S1 is shown in Fig. 19 which only
shows fake image. Also overlapping the FS1 with all other shares including original
share S1 are shown in Fig. 20 which only shows fake image. In Fig. 21, we present
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Fig. 10 Result of stacking
all shares

Fig. 11 S1

Fig. 12 I1

Fig. 13 Modified share S
′
i



382 B. Jana et al.

Fig. 14 S
′
11

Fig. 15 S
′
12

the result of stacking of fake share with any one share excluding S1. When stack FS1
with all the shares excluding the S1, one can get both the images in an overlapped
manner which will create confusion, called Partial Cheating. This is known as partial
cheating as it creates a kind of confusion between the participants about the original
image.

It is noted that the critical message M is embedded into the share image in sender
side, and then in the receiver side, the critical message M which was embedded can
be extracted. If two messages are equal then the image is original, it can be accepted;
otherwise, it will be rejected. In this way, cheating can be prevented in our HVSS
scheme using data hiding techniques using matrix embedding method.
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Fig. 16 Result of
overlapping S

′
11S

′
12

Fig. 17 Fake image for
generation of FS

Fig. 18 Generation of Fake
Share using Algorithm-2.
(by Share S1)

Fig. 19 Stacking of Fake
Share and S1, generate fake
image
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FS1 , S1 , S2 FS 1, S1 , S 3

FS1,S1,S4 FS1,S1,S4

FS1,S1,S2,S3 FS1, S1, S3,S4

FS1,S1,S2,S4

Fig. 20 Overlapping the Fake Share with all other shares Including original share (S1) which shown
fake image

Distortion is measured by means of two parameters namely, Mean Square Error
(MSE) and Peak Signal-to-Noise Ratio (PSNR). The MSE is calculated using (2),

MSE = 1

M N

M∑
i=1

N∑
j=1

[X (i, j) − Y (i, j)] (2)
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FS 1+S 2 FS 1+S 3

FS 1+S 4

Fig. 21 Overlapping the fake share with all other shares excluding original share (S1) which shown
overlapped image for partial cheating. (Here we using only two share, so no information can be
retrieved)

where M and N denote the total number of pixels in the horizontal and the vertical
dimensions of the image. X (i, j) represents the pixels in the original image and
Y (i, j) represents the pixels of the Stego image (Fig. 22).

FS 1+S 2+S 3   FS 1+S 2+S 4

FS 1+ S 2+ S 3+ S 4

Fig. 22 Overlapping the Fake Share with all other shares excluding original share (S1) which
shown overlapped image for partial cheating
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The PSNR is calculated using the Eq. 3,

PSNR = 10 log10

(
Imax2

MSE

)
dB, (3)

where Imax is the intensity value of each pixel. The analysis in terms of PSNR
of original share and Stego share has given promising result. The PSNR of Stego
shares with respect to number of bits in secret message are shown in Table 2 and
corresponding graph shown in Fig. 23. It is found that when the number of bits in
secret message is increasing, the PSNR of Stego share is decreasing. The PSNR
varies from 88.7722 to 69.1343 when the number of bits in secret message varies
from 1 to 100 for share size of 93 × 239 pixel and the PSNR varies from 94.1617
to 74.4769 when the number of bits in secret message varies from 1 to 100 for share
size of 135 × 198 pixel.

To test the security in our proposed method, we have calculated relative entropy
(the differences) between the probability distributions of the original share and the
Stego share has been calculated by (4). Let pm and qn be probability measures for
original share, Mo and Stego share, Ns, respectively. The relative entropy distance
D(Ns||Mo) (also known as Kullback–Leibler distance) is defined as follows:

D(Ns||Mo) =
∑

qn(x)log
qn(x)

pm(x)
. (4)

When relative entropy between two probability distribution functions is zero then
the system is perfectly secure. D(Ns||Mo) is a nonnegative continuous function and

Table 2 PSNR versus embedded message

Share size Message length PSNR

S1 (93 × 239) 1 88.7722

5 81.7825

10 78.9950

20 76.2195

50 72.2886

80 71.9850

100 69.1343

S2 (135 × 198) 1 94.1617

5 88.1411

10 84.8675

20 81.6090

50 77.6296

80 75.7091

100 74.4769
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Fig. 23 Comparison graph
of number of character
versus PSNR

equals to zero if and only if pm and qn coincide. Thus D(Ns||Mo) can be naturally
viewed as a distance between the measures pm and qn .

Relative entropy of the probability distribution of the original share and the Stego
share varies depending upon number of character of secret message. In our exper-
iment, it is shown that when the number of characters in the secret message is
increasing, the relative entropy in Stego share is also increasing which is shown in
Table 3 and the corresponding graph is shown in Fig. 24.

Tables 4 and 5 show the comparison of our proposed scheme for binary share with
Guo et al.’s scheme [13] and Pakniat et al.’s scheme [14] in term of average PSNR
values.

From Table 4, it is concluded that our proposed scheme has higher PSNR values
than previous schemes. Here we have used share as binary image, as a cover image,
but Pakniat et al.’s scheme uses grayscale image. The comparison of Pakniat et al.’s
scheme with our proposed scheme with respect to level-1, level-2, and level-3 shares
has been shown in Table 5 and it is clear that our scheme is superior in terms of PSNR
compared to existing techniques.

Table 3 Relative entropy between the probability distribution of the original share and the Stego
share

No. of character Entropy of
original share

Entropy of stego
share

Entropy
difference

S1 (93 × 239) 1 7.4719 7.4719 0.0000

2 7.4719 7.4722 0.0003

5 7.4719 7.4724 0.0005

10 7.4719 7.4728 0.0009

15 7.4719 7.4730 0.0011

25 7.4719 7.4735 0.0016

50 7.4719 7.4746 0.0027

80 7.4719 7.4746 0.0027

100 7.4719 7.4747 0.0028
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1 2 5
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25
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No of character

Entropy difference(x10-4)

Fig. 24 Comparison graph between number of character and Entropy difference (in 10−4)

7 Conclusion

In this paper, we have proposed a new protocol for hierarchical visual secret sharing
using Steganography. We have shown that cheating cannot be mounted in our scheme.
We have shown that in our scheme, PSNR varies from 88.7722 to 69.1343 when the
number of characters varies from 1 to 100 of share size is 93 × 239 pixel. Relative
entropy of the probability distribution of the original share and the Stego share
varies depending upon number of character of secret message. In our experiment,
it is shown that when the number of characters in the secret message is increasing
then the relative entropy in Stego share is also increasing. No verification share is
required to prevent the cheating in our scheme. The relative entropy of the probability
distribution of the original share and Stego share is minimum which implies that our
system is assumed to be more secure. In comparison with Pakniat et al.’s scheme
with our proposed scheme in terms of PSNR, our scheme gives 78.95. The size of
the share will increase proportionally with the level number in HVSS. So, one can
develop size invariant HVSS. Further, we have compared our scheme with existing
hierarchical secret sharing schemes and it showed that our scheme is better than the
existing schemes.

Table 4 Comparisons of average PSNR between the proposed scheme for level-1 share and Guo
et al.’s scheme and Pakniat et al.’s scheme for grayscale image

Scheme Average PSNR

Guo et al.’s scheme (grayscale image) 38.19

Pakniat et al.’s scheme (grayscale image) 51.23

Proposed scheme (binary share) 78.953
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Table 5 Comparisons of average PSNR in level-1, level-2, and level-3 between the proposed
scheme for binary share and Pakniat et al.’s scheme for grayscale image

Scheme PSNR in level-1 PSNR in level-2 PSNR in
level-3

Pakniat et al.’s scheme (grayscale image) 51.23 51.23 51.23

Proposed scheme(binary share) 78.95 81.94 88.96
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Covering Arrays of Strength Four
and Software Testing

Yasmeen Akhtar, Soumen Maity and Reshma C. Chandrasekharan

Abstract A covering array t − CA(n, k, g), of size n, strength t , degree k, and
order g, is a k × n array on g symbols such that every t × n subarray contains every
t × 1 column on g symbols at least once. Covering arrays have been studied for
their applications on software testing, hardware testing, drug screening, and in areas
where interactions of multiple parameters are to be tested. We define the coverage
measure μt (A) of an array A by the ratio between the number of distinct t-tuples
contained in the column vectors of A and the total number of t-tuples given by

(k
t

)
gt .

Given fixed values of t, k, g, and n, our objective is to construct an array A of size
atmost n having largest possible coverage measure. This problem is called covering
arrays with budget constrains. In this article, we present an algebraic construction
method for strength four covering arrays with budget constraints.

Keywords Covering arrays · Combinatorics · Group action · Software testing

1 Introduction

This article focuses on constructing new strength four covering arrays with very good
coverage measure. A covering array t − CA(n, k, g), of size n, strength t , degree k,
and order g, is a k×n array on g symbols such that every t×n subarray contains every
t × 1 column on g symbols at least once. The covering array number t −CAN(k, g)
is the smallest n for which a t −CA(n, k, g) exists. For example, a 4− C A(22, 5, 2)
is shown below [4]:
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⎛
⎜⎜⎜⎝

0 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

⎞
⎟⎟⎟⎠

There is a vast array of literature [1, 5] on covering arrays, and the problem
of determining small covering arrays has been studied under many guises over the
past 30years. In [5], Hartman and Raskin discussed several generalizations of the
problem of creating small covering arrays motivated by their applications in the
realm of software testing. When testing a software system with k parameters, each
of which must be tested with g values, the total number of possible test cases is gk .
For instance, if there are 20 parameters and three values for each parameter, then the
number of input combinations or test cases of this system is 320 = 3486784401. A
fundamental problem with software testing is that testing under all combinations of
inputs is not feasible, even with a simple product [7, 11]. This means that the number
of defects in a software product can be vast, and defects that occur infrequently are
difficult to find in testing. Software developers cannot test everything, but they can
use combinatorial test design to identify the minimum number of tests needed to
get the coverage they want. Combinatorial test design enables users to get greater
test coverage with fewer tests. A study conducted by NIST in 2002 reports that
software bugs cost the U.S. economy $59.5 billion annually. More than a third of
this cost could be avoided if better software testing was performed. The goal of most
combinatorial testing research is to create test suites that find a large percentage of
errors of a system while having a small number of tests required. Covering arrays
prove useful in locating a large percentage of errors in software systems [2, 13]. The
test cases are the columns of a covering array t −CA(n, k, g). This is one of the five
natural generalizations in [5].

Covering arrays with budget constraints: A practical limitation in the realm of
testing is budget. In most software development environments, time, computing, and
human resources needed to perform the testing of a component is strictly limited.
To model this situation, we consider the problem of creating the best possible test
suite (covering the maximum number of t-tuples) within a fixed number of test cases
(fixed number of columns of the array). The coverage measure μt (A) of a testing
array A is defined by the ratio between the number of distinct t-tuples contained in the
column vectors of A and the total number of t-tuples given by

(k
t

)
gt . Our objective

is to construct a testing array A of size at most n having largest possible coverage
measure, given fixed values of t, k, g, and n. This problem is called covering arrays
with budget constrains.

Pairwise or two-way interaction testing and three-way interaction testing are
known for its effectiveness in different types of software testing [2, 8, 9]. How-
ever, software failures may be caused by interactions of more than two parameters.
A recent NIST study indicates that failures can be triggered by interactions up to 6
parameters [11]. Here we consider the problem of four-way interaction testing of the
parameters. In this article, we present an algebraic construction method for strength
four covering arrays with budget constraints.
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1.1 Fractional Linear Group

We summarize the results from group theory that we use. Let F be a Galois field
GF(s) where s = pm and p is prime. We adjoin to F the symbol ∞: it may be
helpful to think of the resulting set

X = F ∪ {∞}

as the projective line consisting of s + 1 points. Define

L(s) = {α : X �→ X | xα = ax + b

cx + d
, where a, b, c, d ∈ F and ad − bc �= 0}

Here it is understood that the symbol ∞ is subject to such formal arithmetic rules
as x + ∞ = ∞, ∞

∞ = 1, etc. It is easy to verify that L(s) is a group with respect
to functional composition: indeed L(s) is isomorphic with projective general linear
group PGL2(F). L(s) is called fractional linear group and |L(s)| = |PGL2(F)| =
(s2−1)(s2−s)

(s−1) = (s +1)s(s −1). It is known that the group L(s) is sharply 3-transitive
on F ∪ {∞} with degree s + 1. For the undefined terms and more details we refer
the reader to Robinson [12]; Chap.7.

2 The Construction

Given fixed values of t, k, g, and n we are to construct an array of size maximum
n having largest possible coverage measure. Here we only consider t = 4. The
elements of X = GF(g − 1) ∪ {∞} are the symbols of covering array. We choose g
so that g−1 is a prime or prime power. Group construction involves selecting a group
G and finding a vector v ∈ Xk . Set M to be the k ×k circulant matrix generated from
starter vector v. Here we take G = L(g − 1). For each a ∈ G, let Ma be the matrix
formed by the action of a on the elements of M . Let C be the k × g matrix that has
a constant column with each entry equal to x , for each x ∈ X . A vector v ∈ Xk is
said to be a starter vector for a 4−C A(n, k, g) if any 4× k subarray of the circulant
matrix M has at least one representative from each non-constant orbit of L(g − 1)
acting on 4-tuples from X . If v is a starter vector and k|L(g − 1)| + g ≤ n, then
the array formed by concatenating C , Ma , a ∈ G is a covering array with coverage
measure one. To see this, consider any four rows x1, x2, x3, and x4. The patterns with
all equal entries occur on rows x1, x2, x3, x4 since they occur in C . All other patterns
appear in rows x1, x2, x3, x4 since every 4× k submatrix of M contains at least one
representative from each of the orbits 2–5 given below and G is sharply 3-transitive
on X = GF(g − 1) ∪ {∞}.

If starter vector is not found, we look for a vector that produces an array with
maximum possible coverage measure. Such vector is called vector with good cov-
erage. This group construction follows the technique used in [10]. Since g − 1 is

http://dx.doi.org/10.1007/978-81-322-2452-5_7
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prime power, the group G = L(g − 1) is sharply 3-transitive on the projective line
X = GF(g − 1) ∪ {∞}. Under this group action, there are precise g + 11 orbits of
4-tuples. These g+11 orbits are determined by the pattern of entries in their 4-tuples:

1. One orbit of patterns with four equal entries or constant orbit:
{[a, a, a, a] : a ∈ X}

2. Four orbits of patterns with three equal entries and one different:
{[a, a, a, b] : a, b ∈ X, a �= b}, {[a, a, b, a] : a, b ∈ X, a �= b},
{[a, b, a, a] : a, b ∈ X, a �= b}, {[b, a, a, a] : a, b ∈ X, a �= b}

3. Three orbits of patterns with two copies of two different entries:
{[a, a, b, b] : a, b ∈ X, a �= b}, {[a, b, a, b] : a, b ∈ X, a �= b},
{[a, b, b, a] : a, b ∈ X, a �= b}

4. Six orbits of patterns with two equal entries and two different entries:
{[a, a, b, c] : a, b, c ∈ X, a �= b �= c}, {[b, a, a, c] : a, b, c ∈ X, a �= b �= c},
{[a, b, a, c] : a, b, c ∈ X, a �= b �= c}, {[b, a, c, a] : a, b, c ∈ X, a �= b �= c},
{[a, b, c, a] : a, b, c ∈ X, a �= b �= c}, {[b, c, a, a] : a, b, c ∈ X, a �= b �= c}

5. g − 3 orbits of patterns with four distinct entries. The reason is this. There are
g(g − 1)(g − 2)(g − 3) 4-tuples with four distinct entries and each orbit contains
g(g − 1)(g − 2) 4-tuples as |L(g − 1)| = g(g − 1)(g − 2).

We show an example to explain the method.

Example 1 Let g = 4, k = 15, and n = 364. Then X = GF(3) ∪ {∞}. For g = 4,
there are 15 orbits: 1 orbit of type 1, 4 orbits of type 2, 3 orbits of type 3, 6 orbits of
type 4 and 1 orbit of type 5. Let v = (0001102∞∞1∞101∞). Build the following
circulant matrix M from v:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∞ 1 0 1 ∞ 1 ∞ ∞ 2 0 1 1 0 0
0 0 ∞ 1 0 1 ∞ 1 ∞ ∞ 2 0 1 1 0
0 0 0 ∞ 1 0 1 ∞ 1 ∞ ∞ 2 0 1 1
1 0 0 0 ∞ 1 0 1 ∞ 1 ∞ ∞ 2 0 1
1 1 0 0 0 ∞ 1 0 1 ∞ 1 ∞ ∞ 2 0
0 1 1 0 0 0 ∞ 1 0 1 ∞ 1 ∞ ∞ 2
2 0 1 1 0 0 0 ∞ 1 0 1 ∞ 1 ∞ ∞
∞ 2 0 1 1 0 0 0 ∞ 1 0 1 ∞ 1 ∞
∞ ∞ 2 0 1 1 0 0 0 ∞ 1 0 1 ∞ 1
1 ∞ ∞ 2 0 1 1 0 0 0 ∞ 1 0 1 ∞
∞ 1 ∞ ∞ 2 0 1 1 0 0 0 ∞ 1 0 1
1 ∞ 1 ∞ ∞ 2 0 1 1 0 0 0 ∞ 1 0
0 1 ∞ 1 ∞ ∞ 2 0 1 1 0 0 0 ∞ 1
1 0 1 ∞ 1 ∞ ∞ 2 0 1 1 0 0 0 ∞
∞ 1 0 1 ∞ 1 ∞ ∞ 2 0 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now the 24 elements of L(3) acting on M produces 24 matrices. We also need to
add the following matrix,
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C =

⎛
⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

⎞
⎟⎟⎠

T

to ensure the coverage of orbit 1. By horizontally concatenating the 24 matrices and
C , we build a 15 × 364 testing array with coverage measure 0.834.

2.1 Choice of Vector v

Recall that we set M to be the k × k circulant matrix generated from a starter vector
v. Then, any four rows in the matrix M must have at least one element from each of
the orbits 2− 5. To determine which vectors will work as starters, we define the sets
d[x, y, z] for positive integers x, y, and z as follows:

d[x, y, z] = {(vi , vi+x , vi+x+y, vi+x+y+z) | 0 ≤ i ≤ k − 1}
where the subscripts are takenmodulo k. For v to be a starter vector, each set d[x, y, z]
must contain a representative from each of the orbits 2 − 5. A covering array of
strength 4 satisfies the property that for any four distinct rows all possible 4-tuples of
g symbols occur at least once as a column. For computational convenience, we divide
the collection of

(k
4

)
choices of four distinct rows from k rows into few equivalence

classes. We define an equivalence relation ∼ on this collection of choices of four
rows out of k rows as

(α,β, γ, δ) ∼ (α′,β′, γ′, δ′) if and only if

β − α = β′ − α′ mod k and γ − β = γ′ − β′ mod k and δ − γ = δ′ − γ′ mod k.
This equivalence relation induces a partition of the set of all choices of four rows
into equivalence classes [x, y, z] given by

[x, y, z] = {(i, i + x, i + x + y, i + x + y + z) mod k | i = 0, 1, ..., k − 1}
where x = β −α, y = γ −β and z = δ − γ all considered under modulo k. For k =
9, the class [2, 2, 3] = {(0, 2, 4, 7), (1, 3, 5, 8), (2, 4, 6, 0), (3, 5, 7, 1), (4, 6, 8, 2),
(5, 7, 0, 3), (6, 8, 1, 4), (7, 0, 2, 5), (8, 1, 3, 6)}. Given k, to generate all equivalence
classes without repetition, we give specific choices for x, y, and z: x = 1, 2, ..., � k

4�,
y = x, x + 1, ..., k − 1 and z = x, x + 1, ..., k − 1 such that

1. x + y + z ≤ k − 1 − x : The reason is this. Let w = k − x − y − z. Then w has
to be strictly greater than x . If w = x , then the classes [x, y, z] and [x, x, y] are
the same.

2. If y > � k−2x
2 � then z ≥ x + 1: The class [x, y, x] for y > w and the class

[x,w, x] for y < w are the same where x + y + x +w = k as z = x . Hence when
y ≤ � k−2x

2 � we allow z ≥ x and for y > � k−2x
2 � we require z ≥ x + 1.
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3. If k ≡ 0 mod 4 : In addition to the above choices of x, y and z we need to
consider one more class with x = y = z = k

4 .

At this stage, we would like to make few remarks about the size of equivalence
classes defined by above choices of x, y, and z.

1. k �≡ 0 mod 2 :
If k is an odd integer, then each class contains exactly k distinct choices from
the collection of

(k
4

)
choices and hence there are total l = (k−1)(k−2)(k−3)

24 distinct
classes of size k.

2. k ≡ 0 mod 2 :
If k is an even integer, then k

2 can be written as sum of two positive integers a and
b where a ≤ b in � k

4� different ways.
Case 1 : If k �≡ 0 mod 4, then class of the form [a, b, a] contains only k

2 distinct
choices. So there are total � k

4� equivalence classes of size k
2 and the remaining

classes are of size k.
Case 2 : If k ≡ 0 mod 4, then a class of the form [a, b, a] contains only k

2 distinct
choices and a class of the form [a, a, a] where a = k

4 contains only k
4 distinct

choices. Here we get total k
4 − 1 equivalence classes of size k

2 , exactly one class
of size k

4 and the remaining classes are of size k.

For k = 9, the equivalence classes are [1, 1, 1], [1, 1, 2], [1, 1, 3], [1, 1, 4], [1, 1, 5],
[1, 2, 1], [1, 2, 2], [1, 2, 3], [1, 2, 4], [1, 3, 1], [1, 3, 2], [1, 3, 3], [1, 4, 2], [2, 2, 2],
and each equivalence class is of size 9. Thus 14 × 9 = (9

4

)
. A vector v is said to

be a starter vector if each set d[x, y, z] has a representation from each of the orbits
2−5. Often, representation from orbit of type 1 is taken care by attaching g constant
columns, one for each symbol. Once a starter vector is found, the circulant matrix
M is constructed and acted upon by the group L(g − 1) and concatenated to form
an array of size k|L(g − 1)|. To this array, g constant columns are added to ensure
the coverage of orbit 1 to produce a covering array of size k|L(g − 1)| + g.

3 Results

The coverage measure of a covering array is always one. For computational con-
venience, we rewrite the coverage measure of an array A for t = 4 in terms of
equivalence classes [x, y, z] and d[x, y, z] as follows:

μ4(A) =
∑

x,y,z
|[x, y, z]| × number of distinct 4-tuples covered by d[x, y, z]

(k
4

)
g4

.

We use computer search to find vectors v with very high coverage measures. Table1
shows vectors with high coverage, the number of test cases (n) generated by our
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Table 1 Acomparison of the number test cases (n)producedbyour constructionwith high coverage
measure and best known n for full coverage

(g, k) Vector v with good coverage Our Results n
(coverage
measure)

Best known
n [3]

(3, 16) 00001001∞∞011∞1∞ 99 (0.828) 237

(3, 17) 0000010∞∞101∞01∞1 105 (0.851) 282

(3, 18) 00010∞0∞1001∞111∞∞ 111 (0.864 ) 293

(3, 19) 000010010∞01∞0∞111∞ 117 (0.883) 305

(3, 20) 0000110101∞0∞10∞∞11∞ 123 (0.892) 314

(3, 21) 00001010∞1∞∞10∞∞001∞1 129 (0.906) 315

(3, 22) 0000011∞0∞0110∞1∞∞∞01∞ 135 (0.913) 315

(3, 23) 0000001∞∞0101∞10∞10∞∞∞1 141 (0.923) 315

(3, 24) 00000001∞∞0101∞10∞101∞∞1 147 (0.924) 315

(3, 25) 0000000011∞0∞011∞01∞0∞11∞ 153 (0.930) 363

(4, 18) 00010021∞∞∞21020∞2 436 (0.851) 760

(4, 19) 0000121011∞01∞0∞221 460 (0.866) 760

(4, 20) 0000112101202∞0221∞2 484 (0.878) 760

(4, 21) 0000011021010∞2∞0221∞ 508 (0.887) 1012

(4, 22) 0000001102∞02021∞∞01∞1 532 (0.894) 1012

(4, 23) 00000001210210∞∞20112∞1 556 (0.898) 1012

(4, 24) 00000000121∞011∞02∞0∞112 580 (0.899) 1012

(4, 25) 000000000121220∞011∞2012∞ 604 (0.901) 1012

(5, 21) 110131300∞30010∞∞3203 1265 (0.834) 1865

(5, 22) 3∞32011200∞∞00∞0∞10010 1325 (0.842) 1865

(5, 23) 0002∞03100∞203021332320 1385 (0.854) 1865

(5, 24) 003∞21022212300032302310 1445 (0.860) 1865

(5, 25) ∞200∞0∞∞31020∞300303∞∞33 1505 (0.869) 2485

(5, 26) 202002211000∞0121031∞∞2300 1565 (0.873) 2485

(5, 27) ∞∞03002030∞000∞11∞0031301∞3 1625 (0.880) 2485

(5, 28) 013333130320∞1∞1003200310300 1685 (0.883) 2485

(5, 29) 00012212∞010∞3110031020031010 1745 (0.891) 2485

(5, 30) 33001∞0∞000330∞∞010012∞1313001 1805 (0.894) 2485

(6, 25) 000403014003033404320∞1∞∞ 3006 (0.811) 6325

(6, 26) ∞0∞40021404010013010011444 3126 (0.819) 6456

(6, 27) 433∞∞01∞∞20∞03020∞∞0∞00401∞ 3246 (0.826) 6606

(6, 28) 4023031100232200∞21∞∞2020020 3366 (0.829) 6714

For g = 5, the elements of GF(4) are represented as 0,1, 2, and 3; here 2 stands for x and 3 stands
for x + 1
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technique, best known n with full coverage. A comparison of our construction with
best known covering array sizes show that our construction produces significantly
smaller testing arrays with very high coverage measures.

4 Conclusions

In this paper, we have proposed construction of strength four covering arrays with
budget constraints. In order to test a software component with 25 parameters each
having three values, our construction can generate a test suite with 153 test cases that
ensurewith probability 0.93 that software failure cannot be caused due to interactions
of two, three, or four parameters whereas best known covering array in [3] requires
363 test cases for full coverage. The results show that the proposed method could
reduce the number of test cases significantly.
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Amplitude Equation for a Nonlinear Three
Dimensional Convective Flow in a Mushy
Layer

Dambaru Bhatta and Daniel N. Riahi

Abstract We consider a nonlinear three-dimensional convective flow in a mushy
layer. A mushy layer is a partially solidified region formed during solidification of
binary alloys. During solidification, fluid flow within the mushy layer can cause ver-
tical chimneys or channels void of solid. These chimneys can generate imperfections
in the final form of the solidified alloy. The equations governing the mushy layer
system are the continuity equation, heat equation, solute equation, and conservation
of momentum which is governed by Darcy’s law. A quadratic nonlinear evolution
equation satisfied by the amplitude is derived for hexagonal cells. This equation is
obtained from the first-order system using the adjoint of the linear system.An explicit
solution of the amplitude equation is also presented.

Keywords Evolution equation · Three-dimensional · Convective flow ·
Solidification · Mushy layer

1 Introduction

In solidification of binary alloys, vertical chimneys or channels void of solid that are
typically oriented in the direction of gravity are observed by experimentalists. When
a binary alloy is solidified from cooled boundary, due to the temperature difference at
the solidification front, the interface becomes unstable.Hence a heterogeneous region
of both solid and liquid, famously referred as mushy layer, is formed. This layer is
sandwiched between a solid layer at the bottom and a liquid layer at the top. Con-
vection plays a very important role during the solidification process of binary alloys.
The convective flow within the mushy layer influences the formation of thread-like
structures known as freckles in the final form of the solidified alloy. Convective flows
in a horizontal mushy layer are known to produce chimneys during solidification of
binary alloys. It is well known that convection in the chimneys causes a thin hair-like

D. Bhatta (B) · D.N. Riahi
University of Texas-RGV, Edinburg, TX, USA
e-mail: dambaru.bhatta@utrgv.edu

© Springer India 2015
R.N. Mohapatra et al. (eds.), Mathematics and Computing,
Springer Proceedings in Mathematics & Statistics 139,
DOI 10.1007/978-81-322-2452-5_27

399



400 D. Bhatta and D.N. Riahi

structure called freckles. Study of hydrodynamic stability was carried bymany scien-
tists including Helmholtz, Kelvin, Rayleigh, and Reynolds in the nineteenth century
because of its practical importance. Lev Landau [1] proposed an equation to analyze
hydrodynamic stability. Various case studies on hydrodynamic and hydromagnetic
stabilities have been presented by Chandrasekhar [2].

A fairly large number of, theoretical as well as experimental, studies have been
devoted to predicting the chimney formation during the solidification process. Drazin
and Reid [3] have presented various studies done by many researchers. They pre-
sentedmethods and results of thermal convection, rotating and curved flows, and par-
allel shear flows. Development of asymptotic theory of Orr–Sommerfeld equation,
applications of linear stability theory, and nonlinear theory of hydrodynamic stabil-
ity have been presented. Many previous studies have examined in detail about the
mechanism of freckle formation during the solidification of multicomponent alloys.
A thermodynamically consistent model was proposed by Hill et al [4] to analyze a
mushy layer. Fowler [5] developedmathematical analysis of freckle formation to pre-
dict the criterion for freckling. This prediction is equivalent to the classical Rayleigh
number condition for convective instability. Huppert et al. [6] studied experimentally
the six different cases that arise when homogeneous solution is cooled from below
and also evaluated the criterion for which solid–liquid interface becomes unstable.
Worster [7] developed themodel for the dendritic growth that often formed during the
solidification of binary alloy by considering the region of mixed phase as continuum.

Several experimental studies concerning the solidification of binary alloy with or
withoutmagnetic filed have been reported in the literature. Vives and Perry [8] carried
out an experimental investigation of solidification of tin and aluminum alloys under
the influence of externally imposed magnetic field. They reported that the stationary
magnetic field decreases the superheat and increases the rate of solidification. Chen
et al. [9] and Chen [15] carried out experimental studies on directional solidifica-
tion of aqueous chloride solution. Worster [10, 11] applied linear stability analysis
for the two-layer model and concluded that the mushy layer mode is responsible
for the development of chimneys. Tait et al. [12] observed the hexagonal pattern of
convection just when the system becomes unstable during their experimental work.
Amberg andHomsy [13] studied the simplifiedmushy layermodel with constant per-
meability. They carried out a weakly nonlinear analysis of simplified mushy layer
model that was proposed byWorster [7]. A near-eutectic approximation was applied
and the limit of large far-field temperature was considered. Such asymptotic limits
allowed them to examine the dynamics of mushy layer. A weakly nonlinear analysis
of simplified mushy layer model that was proposed in [7] was carried out by Ander-
son and Worster [14]. A near-eutectic approximation was applied and the limit of
large far-field temperature was considered. Such asymptotic limits allowed them to
examine the dynamics of mushy layer. They also considered the limit of large Stefan
number, which enabled them to reach a domain for the existence of the oscillatory
mode of convection.

Study on oscillatory modes of nonlinear compositional convection in mushy lay-
ers was carried out by Riahi [16, 19]. In another development byOkhuysen and Riahi
[17, 18], a weakly nonlinear analysis of buoyant convection in two-layer model was
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considered. They predicted subcritical down-hexagonal pattern for the case of reac-
tive mushy layer. Muddamallappa et al. [20] investigated linear marginal stabilities
for magnetoconvection cases. Bhatta et al. [21, 22, 24] studied weakly nonlinear
convective flow in mushy layer with permeable mush–liquid interface for constant
and variable permeability cases. Lee et al. [23] carried out numerical modeling of
one-dimensional binary alloy solidification with a mushy layer evolution. Fluxes
through steady chimneys in a mushy layer during binary solidification was studied
by Rees et al. [25]. Wells et al. [26] analyzed the stability and optimal solute fluxes
for nonlinear mushy layer convection. Various numerical methods needed to com-
pute the solutions for the mushy layer system are presented by Cheney and Kincaid
[27]. However, analysis of nonlinear convection for three-dimensional mushy layer
case had not been undertaken until recently. The objective of this paper is to analyze
three-dimensional convective flow in a mushy layer. As a first step, we derive an
evolution equation satisfied by the amplitude for hexagonal cells. This amplitude
equation is quadratic nonlinear.

2 Governing System for the Mushy Layer

We consider a system governing the mushy layer of thickness d which is cooled from
below and the solidification front advances with a constant speed V0 as shown in the
Fig. 1. Derivation and justification of equations governing a mushy layer have been
presented various authors [5, 10, 11, 13, 14]. The geometry of the physical system
is shown in Fig. 1.

This system is given by

μ

Π

−→
U = −∇ p − (ρ − ρ0) g

−→
k

∇ · −→
U = 0

Fig. 1 Geometry of the
physical system

x

Liquid

Mushy Layer

Solid

o

y

z
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∂T

∂t
+ −→

U · ∇T = κ∇2T + lh

γ

∂Φ

∂t

χ
∂C

∂t
+ −→

U · ∇C = (C − Cs)
∂Φ

∂t
. (1)

Here the equations represent conservation of momentum, conservation of mass,
heat equation, and solute equation, respectively. Here t, T, κ, γ, lh, represent time,
temperature, thermal diffusivity of the liquid, specific heat of the liquid, and latent
heat per unit mass, respectively. Here

−→
U = U i + V j + W k is the liquid flux where

U, V are used to denote horizontal components, W denotes the vertical component
of

−→
U , and i, j, k are the unit vectors along x, y, z directions. Also Φ stands for

the local solid volume fraction, i.e., Φ = 1 − χ where χ is the local liquid volume
fraction. C is the composition of the liquid and Cs is the composition of the solid
phase. Hereμ is used for dynamic viscosity of the liquid, p represents the dynamic
pressure, ρ is the density of the liquid, ρ0 is some reference value of the liquid
density, and g denotes the acceleration due to gravity. Also ρ = ρ0[1+ β(C − C0)]
where β is the expansion coefficient of solid and C0 is some reference value C .
Permeability Π = Π(χ) is a function of the local liquid volume fraction, χ .

The boundary conditions are

T = Te, W = 0 at z = 0

T = T0, Φ = W = 0 at z = d.

Here T0 denotes the temperature at the mush–liquid interface (at z = d), and Te

and Ce represent eutectic temperature and eutectic concentration (at the solid–mush
interface, z = 0), respectively.

2.1 Nondimensionalization

We nondimensionalize the system in a frame moving with the solidification front at

constant speed V0 and use the following scalings: velocity scale is V0, i.e.,
−→
U = −→

U
V0
,

length scale is κ
V0
, time scale is κ

V 2
0
, pressure scale is κμ

Π0
, Θ = T −T0�T ,K = Π0

Π
where

ΔT = T0−Te, ΔC = C0−Ce andΠ0 is a reference value ofΠ.Thenondimensional
constants appearing in the derivation are Rayleigh number, R = βgΠ0ΔC

V0μ
, Stefan

number, S = lh
γΔT , and concentration ratio, C = Cs−C0

ΔC .
Nondimensional system can be expressed as

K
−→
U + ∇P + RΘ

−→
k = −→

0

∇ · −→
U = 0
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(
∂

∂t
− ∂

∂z

)
[Θ − SΦ] + −→

U · ∇Θ = ∇2Θ

(
∂

∂t
− ∂

∂z

)
[(1 − Φ) Θ + CΦ] + −→

U · ∇Θ = 0 (2)

with boundary conditions:

Θ = −1, W = 0 at z = 0

Θ = Φ = W = 0 at z = δ

where W denotes the vertical component of
−→
U . Also δ = V0d

κ
is a growth peclet

number representing the dimensionless depth of the mushy layer. For this study, we
take permeability as constant, i.e.,K = 1.

3 Solution Procedure

Assuming solutions of the form

Θ(x, y, z, t) = θb(z) + εθ (x, y, z, t)

Φ(x, y, z, t) = φb(z) + εφ (x, y, z, t)
−→
U (x, y, z, t) = −→

0 + ε
−→u (x, y, z, t)

P(x, y, z, t) = pb(z) + εp (x, y, z, t) (3)

where θb, φb, pb are solutions to the steady basic state system (systemwith no flow)
and θ, φ,

−→u , p are perturbation solutions. Here ε is the perturbation parameter.

3.1 Basic State Solutions

Using (3) in (2) and setting ε = 0, we obtain steady basic state system as

d2θb

dz2
+ dθb

dz
− S

dφb

dz
= 0 (4)

(1 − φb)
dθb

dz
+ (C − θb)

dφb

dz
= 0 (5)

dpb

dz
+ Rθb = 0 (6)
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with boundary conditions:

θb = −1 at z = 0

θb = φb = 0 at z = δ.

Solutions θb and φb are, respectively, given by

z = r1 − C

r1 − r2
ln

[
1 + r1
r1 − θb

]
+ C − r2

r1 − r2
ln

[
1 + r2
r2 − θb

]
(7)

and

φb = θb

θb − C
(8)

where r1, r2 are given by

r1 = C + S + θ∞ +
√

(C + S + θ∞)2 − 4C θ∞
2

r2 = C + S + θ∞ −
√

(C + S + θ∞)2 − 4C θ∞
2

.

and θ∞ is the nondimensional temperature far away from mush–liquid interface.
Thickness of the layer can be determined as

δ = r1 − C

r1 − β
ln

[
1 + r1

r1

]
+ C − r2

r1 − r2
ln

[
1 + r2

r2

]
.

4 Perturbed System

Using (3) in the system (2), the perturbed system can be obtained as

−→u + ∇ p + Rcθ k̂ = −εR1θ k̂ (9)(
∇2 + ∂

∂z

)
θ − S

∂φ

∂z
− θ ′

bw = ε

[
∂

∂τ
(θ − Sφ) + −→u · ∇θ

]
(10)
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∂

∂z
{(θb − C ) φ − (1 − φb) θ} + θ ′

bw = ε

{
−−→u · ∇θ − ∂

∂z
(θφ)

+ ∂

∂τ
{(θb − C ) φ − (1 − φb) θ} + ε

∂

∂τ
(θφ)

}
(11)

∇ · −→u = 0 (12)

with θ = w = 0 at z = 0 and θ = φ = w = 0 at z = δ, τ = εt and
ε is the perturbation parameter, given by R−Rc

R1
. Here Rc is the critical Rayleigh

number and R1 is the nonlinear contribution to R beyond the value for the most
critical neutrally stable linear solution. Here −→u = (u, v, w) and θ ′

b denote the
derivative of θb with respect to z. Now, we eliminate the pressure from the Eq. (9) by
taking the double curl of that equation. Also using the continuity equation, the third
component of ∇ × ∇ × −→u becomes −∇2w. Similarly, for the third component of

∇ × ∇ ×
(
Rcθ k̂

)
, we have

−Rc

[
∂2θ

∂x2
+ ∂2θ

∂y2

]
= −Rc(Δ2θ).

Here�2 represents two-dimensional Laplacian operator. These allow us to transform
Eq. (9) as

∇2w + Rc (Δ2θ) = −εR1 (Δ2θ) (13)

4.1 Linear and Adjoint Systems

Considering

θ = θ0 + εθ1 + ε2θ2 + . . .

φ = φ0 + εφ1 + ε2φ2 + . . .

w = w0 + εw1 + ε2w2 + . . .

and denoting the solution of linear perturbed system by q0 = [
w0, θ0, φ0

]Tr ,
where Tr is used to denote the transpose, the linear system can be obtained from
Eqs. (10), (11) and (13) by comparing the coefficients of ε0 as follows

∇2w0 + Rc (Δ2θ0) = 0 (14)(
∇2 + ∂

∂z

)
θ0 − S

∂φ0

∂z
− θ ′

bw0 = 0 (15)

∂

∂z
[(θb − C ) φ0 − (1 − φb) θ0] + θ ′

bw0 = 0 (16)
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The boundary conditions at the solidifying front are θ0 = w0 = 0 and at the
mush–liquid interface are θ0 = φ0 = w0 = 0.

For the quantities belonging to the adjoint system, we use the sub-index a, i.e.,
qa = [

wa θa φa
]Tr . To obtain the adjoint system, we multiply the Eqs. (14), (15)

and (16) by wa, θa and φa , respectively, add them and integrate and then take the
limit as follows:

lim
L→∞

1

4L2

∫ δ

0

∫ L

−L

∫ L

−L

[
wa

(
∇2w0

)
+ Rwa (Δ2θ0)

+θa

(
∇2 + ∂

∂z

)
θ0 − S θa

∂φ0

∂z
− θaθ ′

bw0

+φa

{
∂

∂z
[(θb − C ) φ0 − (1 − φb) θ0] + θ ′

bw0

}]
dV = 0 (17)

Here L denotes the length in xy-plane. The boundary conditions satisfied by adjoint
solutions at the solidifying front are θa = wa = φa = 0 and at the mush–liquid
interface are θa = wa = 0. The adjoint system can be obtained as

∇2wa − θ ′
bθa + θ ′

bφa = 0

R (Δ2wa) +
(

∇2 − ∂

∂z

)
θa + (1 − φb)

∂φa

∂z
= 0

S
∂θa

∂z
+ (C − θb)

∂φa

∂z
= 0

5 Evolution Equation for the Amplitude

First-order system is obtained from Eqs. (13), (10) and (11) by comparing the coef-
ficients of ε1 as

∇2w1 + Rc (Δ2θ1) = −R1 (Δ2θ0) (18)(
∇2 + ∂

∂z

)
θ1 − S

∂φ1

∂z
− θ ′

bw1 =
[

∂

∂τ
(θ0 − Sφ0) + −→u0 .∇θ0

]
(19)

∂

∂z
{(θb − C ) φ1 − (1 − φb) θ1} + θ ′

bw1 = −−→u0 ·∇θ0 − ∂

∂z
(θ0φ0)

+ ∂

∂τ
{(θb − C ) φ0 − (1 − φb) θ0} (20)
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Using poloidal and toroidal decompositions of a divergence-free vector
(Chandrasekhar [2]), we can express

−→u0 .∇θ0 = ∂2u P0

∂x∂z

∂θ0

∂x
+ ∂2u P0

∂y∂z

∂θ0

∂y
− (�2u P0

) ∂θ0

∂z

where u P0 is the poloidal component of−→u0 . To derive the evolution equation satisfied
by the amplitude, we multiply (18), (19) and (20) by wa , θa , and φa , respectively,
and integrate the result with respect to x, y, z and take the limit. Left-hand side of
this operation becomes

LHS = lim
L→∞

1

4L2

∫ δ

0

∫ L

−L

∫ L

−L

[
wa

{
∇2w1 + Rc (Δ2θ1)

}

+θa

{(
∇2 + ∂

∂z

)
θ1 − S

∂φ1

∂z
− θ ′

bw1

}

+φa

{
∂

∂z
{(θb − C ) φ1 − (1 − φb) θ1} + θ ′

bw1

}]
dV (21)

where dV = dx dy dz. Right-hand side is given by

RHS = lim
L→∞

1

4L2

∫ δ

0

∫ L

−L

∫ L

−L
[−waR1 (Δ2θ0)

+θa

{
∂

∂τ
(θ0 − Sφ0) + ∂2u P0

∂x∂z

∂θ0

∂x
+ ∂2u P0

∂y∂z

∂θ0

∂y
− (�2u P0

) ∂θ0

∂z

}

+φa

{
∂

∂τ
{(θb − C ) φ0 − (1 − φb) θ0} − ∂

∂z
(θ0φ0)

−∂2u P0

∂x∂z

∂θ0

∂x
− ∂2u P0

∂y∂z

∂θ0

∂y
+ (�2u P0

) ∂θ0

∂z

}]
dV (22)

Integration by parts and use of boundary conditions simplify LHS as

LHS = lim
L→∞

1

4L2

∫ δ

0

∫ L

−L

∫ L

−L

[
w1

{
∇2wa − θ ′

b (θa − φa)
}

+ θ1 {Rc (Δ2wa)

+
(

∇2 − ∂

∂z

)
θa − (1 − φb)

∂φa

∂z

}
+ φ1

{
S

∂θa

∂z
+ (C − θb)

∂φa

∂z

}]
dV

which is zero because by the adjoint property. Nowwe simplify theRHSbywriting as

RHS = I1 + I2 + I3 + I4 (23)
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where

I1 = lim
L→∞

1

4L2

∫ δ

0

∫ L

−L

∫ L

−L
{−waR1 (Δ2θ0)} dV

I2 = lim
L→∞

1

4L2

∫ δ

0

∫ L

−L

∫ L

−L

{
θa

∂

∂τ
(θ0 − S φ0) + φa

∂

∂τ
{(θb − C ) φ0

− (1 − φb) θ0}} dV

I3 = lim
L→∞

1

4L2

∫ δ

0

∫ L

−L

∫ L

−L
(θa − φa)

{
∂2u P0

∂x∂z

∂θ0

∂x
+ ∂2u P0

∂y∂z

∂θ0

∂y

}
dV

I4 = lim
L→∞

1

4L2

∫ δ

0

∫ L

−L

∫ L

−L{
− (θa − φa)

(�2u P0

) ∂θ0

∂z
− φa

∂

∂z
(θ0φ0)

}
dV (24)

We assume that the linear and adjoint solutions take the following form

f (x, y, z, τ ) = A(τ ) f̃ (z)η1(x, y) (25)

Here A represents the amplitude and η1(x, y) = Re
[∑3

j=1 ei a j .r
]
, a1 =(

α
√
3

2 , α
2

)
, a2 =

(
−α

√
3

2 , α
2

)
, a3 = (0, −α) , r = (x, y) and α is the wavenum-

ber. These yield

η1(x, y) = cos
α

2

(
x

√
3 + y

)
+ cos

α

2

(
−x

√
3 + y

)
+ cos (−αy) (26)

Now we can simplify the integrals appearing in (24) as follows:

I1 =
[
α2R1A2

{∫ δ

0
w̃a θ̃0dz

}] (
Iη(2)

)

I2 =
[

A
d A

dτ

∫ δ

0

{
θ̃a

(
θ̃0 − S φ̃0

)

+ φ̃a
[
(θb − C ) φ̃0 − (1 − φb) θ̃0

]}
dz

] (
Iη(2)

)

I3 = A3
{∫ δ

0

(
θ̃a − φ̃a

)
θ̃0

(
Dũ P0

)
dz

} (
Iη(xy)

)

I4 = A3
[∫ δ

0

{
α2 (

θ̃a − φ̃a
)

ũ P0

(
Dθ̃0

) − φ̃a D
(
θ̃0φ̃0

)}
dz

] (
Iη(3)

)
(27)
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where D = d
dz and Iη(2) , Iη(xy) , Iη(3) are given by

Iη(2) = lim
L→∞

1

4L2

∫ L

−L

∫ L

−L
η21dx dy

Iη(xy) = lim
L→∞

1

4L2

∫ L

−L

∫ L

−L

{(
∂η1

∂x

)2

+
(

∂η1

∂y

)2
}

η1 dx dy

Iη(3) = lim
L→∞

1

4L2

∫ L

−L

∫ L

−L
η31dx dy (28)

Carrying out the integrations and taking the limits of (28) and equating LHS and
RHS, we obtain an equation satisfied by the amplitude as

c1
d A

dτ
= c2A + c3A2 (29)

where c1, c2, c3 can be expressed as

c1 =
∫ δ

0

{
θ̃a

(
S φ̃0 − θ̃0

) + φ̃a
[
(C − θb) φ̃0 + (1 − φb) θ̃0

]}
dz

c2 = α2R1

∫ δ

0
w̃a θ̃0dz

c3 =
∫ δ

0

[
α2 (

θ̃a − φ̃a
) {

ũ P0

(
Dθ̃0

) + 1

2
θ̃0

(
Dũ P0

)} − φ̃a D
(
θ̃0φ̃0

)]
dz (30)

Solution of the Eq. (29) is obtained as

A(τ ) = A0(
1 + c

b A0
)

e−bτ − c
b A0

(31)

where b = c2
c1

, c = c3
c1

, and c1, c2, c3 are given in (30). Here A0 = A(0) the
initial value of A. The steady-state solution for the amplitude can be obtained as
A(∞) = − b

c .
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Effect of Variable Bottom Topography
on Water Wave Incident
on a Finite Dock

Harpreet Dhillon and Sudeshna Banerjea

Abstract The problem of wave scattering by a finite rigid dock floating in water
with variable bottom topography is investigated here. Assuming the variation of the
bottom topography to be in the form of small undulations, a simplified perturbation
analysis is employed to solve the problem approximately. The first-order corrections
to reflection and transmission coefficients are obtained in terms of integrals involving
the shape function describing the bottom topography. Two types of shape functions
describing a patch of sinusoidal ripples and a Gauss-type curve are considered. For
a sinusoidal patch of ripples at the bottom, first-order correction to the reflection
coefficient shows a resonating behavior when the wavelength of sinusoidal bottom
is half the wavelength of the incident field. It is also observed that when the dock
totally shadows the sinusoidal undulations, resonance does not occur.

Keywords Wave scattering · Perturbation analysis · Variable bottom topography

1 Introduction

Wave interaction with a thin floating plate can be used to model a wide range of
physical system viz breakwaters, docks, sea floes, very large floating structures etc.
For this reason, this is one of thewell-studied problems and a number ofmathematical
methods have been developed to handle these problems. The problem of water wave
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scattering by a finite rigid dock floating on free surface was considered by a number
of researchers. Most work on finite dock problems is concerned with infinitely deep
water or water of uniform finite depth. An integral equation approach is used in the
literature to solve these problems approximately. For example, [7, 8] used an integral
equation approach to obtain an asymptotic solution for short waves. [9] also used
another integral equation approach to obtain approximate solution for large wave
numbers. References of more works can be found in the paper of [5] who considered
oblique wave scattering by a finite dock floating on water of uniform finite depth.
They formulated the problem as a mixed boundary value problem and reduced into
a system of dual integral equations. Linton [10] also solved this problem using the
modified residue calculus technique. However, it is unlikely that the water depth will
be constant under the entire structure. For this reason, there is a need to study the
effect of undulated bottom topography on the ocean waves incident on a rigid dock.

Recently, [4] investigated the problem of oblique wave scattering by a semi-
infinite rigid dock with bottom undulations. In this paper, oblique wave scattering by
a finite rigid dock in ocean with bottom undulations is investigated. We use a simpli-
fied perturbation method directly to the governing partial differential equation, the
boundary and infinity conditions satisfied by the potential function describing the
fluid motion. Use of perturbation analysis procedure produces two boundary value
problems (BVPs) for the potential functions upto first order (cf. [4]). The boundary
value problem for the zero-order potential function (BVP-I) is concerned with the
problem of water wave scattering by a finite dock in water of uniform finite depth. As
mentioned earlier, this problem was studied by Linton [10] who used the residue cal-
culusmethod of complex variable theory to determine the reflection and transmission
coefficients explicitly. In the present paper, we have reproduced themethod of [10] to
obtain expression for the velocity potential, reflection coefficient |R0|. The BVP-II
is a radiation problem in water of uniform finite depth. Without solving BVP-II, the
first-order correction to the reflection and transmission coefficients are obtained here
by a simple application of Green’s integral theorem. Analytical expressions for first-
order corrections to these coefficients are obtained in terms of integrals involving
the shape function describing the bottom topography and the solution of BVP-I. For
two different shape functions of the bottom, the first-order corrections to reflection
and transmission coefficients are obtained and depicted graphically against the wave
number. It is observed that when the ocean bottom has sinusoidal undulations and the
undulated bottom is beneath the dock and its extent exceeds the length of the dock,
first-order correction to reflection coefficient |R1| becomes very large and we say
that |R1| exhibits resonance when the wavelength of the sinusoidal bottom is half the
wavelength of the incident field. It is also observed that an increase in the number of
ripples in the patch of sinusoidal bottom undulation induces a large amount of wave
energy radiation at infinity. Also, an increase in angle of oblique incidence enhances
the resonance in the first-order correction to reflection coefficient. The phenomena
of occurrence of resonance in the reflection coefficient is observed when the undula-
tions in the bottom is in the form of sinusoidal patch, irrespective of whether a barrier
is present or not (cf. [1–3, 6, 11, 13]). However, in our problem, it is interesting to
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observe that if the extent of undulation in the ocean bottom beneath the dock is within
the length of the dock, then such resonance does not occur. This shows that if the
dock totally shadows the undulations, then the resonant behavior is removed.

It may be mentioned here that the results in this paper are based on the assumption
of small undulations in the bottom topography. However in the literature, [12] used
variational approach to study the problem of scattering of water waves by an elastic
plate (ice cover) of variable thickness on the surface of ocean with undulating bottom
topography. They considered a model of more complexity with arbitrary undulations
in the ocean bed. The model in the chapter can be further improved by considering
the arbitrary undulations in the bottom instead of small undulations and we propose
to study this model using different technique in future.

2 Statement and Formulation

We consider time-harmonic potential flow in an ocean of finite depth having small
undulations at the bottom. A rectangular cartesian coordinate system is chosen in
which y-axis is taken vertically downward and y = 0 corresponds to the undisturbed
free surface of water. The bottom of the ocean with small undulation is described by
y = h + εc(x) where ε is a small nondimensional positive number which gives a
measure of smallness of the bottom undulations and c(x) is a bounded continuous
function and is such that c(x) → 0 as |x | → ∞ so that far away from the undu-
lations the bottom is of uniform finite depth h below the mean free surface. Let a
floating dock of width 2a occupy the position y = 0, |x | ≤ a, and a wave train be
obliquely incident on the dock from the direction of negative x-axis at an angle θ .
Let Re{φ(x, y)eiνz−iωt } be the velocity potential describing the irrotational motion
in the fluid region where ω is the angular frequency and ν is defined below. Then the
mathematical problem under consideration is to solve the following BVP for φ(x, y)

satisfying:

(∇2 − ν2)φ = 0 in 0 < y < h, − ∞ < x < ∞, (1)

the free surface condition

Kφ + φy = 0 on y = 0, |x | > a, (2)

where K = ω2/g, g being the gravity,

the condition at the dock

φy = 0 on y = 0, |x | ≤ a, (3)
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the bottom condition
φn = 0 on y = h + ε c(x), (4)

n denoting the normal derivative,

the edge condition

∂φ

∂r
∼ A ln r as r = ((x ± a)2 + y2)1/2 → 0, (5)

for some constant A at the edges (±a, 0) of the dock,

and the infinity conditions

φ(x, y) =
{

(eiμ(x+a) + Re−iμ(x+a))ψ0(y) as x → −∞,

T eiμ(x−a)ψ0(y) as x → ∞,
(6)

where
ψ0(y) = N−1

0 cosh k0(y − h) (7)

with

N 2
0 = 1

2

(
1 + sinh 2k0h

2k0h

)
,

k0 being the unique real positive root of the transcendental equation k tanh kh = K .
Here, ν = k0 sin θ and μ = k0 cos θ , R and T denote, respectively, the reflection
and the transmission coefficients to be determined.

3 Method of Solution

The bottom condition (4) can be approximated up to the first order of the small
parameter ε as

− ∂φ

∂y
+ ε

[
c′(x)

∂φ

∂x
− c(x)

∂2φ

∂y2

]
= 0 on y = h. (8)

The form of the approximate bottom condition (8) suggests that φ,R, and T have the
following perturbational expansions in terms of the small parameter ε:

φ(x, y; ε) = φ0(x, y) + εφ1(x, y) + O(ε2),

R(ε) = R0 + εR1 + O(ε2),

T (ε) = T0 + εT1 + O(ε2). (9)
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Substituting the expansions (9) in (1–3), (5), (6), and (8), we find after equating the
coefficients of identical powers of ε0 and ε1 from both sides of the results, that the
functions φ0(x, y) and φ1(x, y) satisfy the following boundary value problems, viz,
BVP-I and BVP-II, respectively.

BVP-I: The function φ0(x, y) satisfies

(∇2 − ν2)φ0(x, y) = 0 in 0 < y < h, − ∞ < x < ∞,

Kφ0 + φ0y = 0 on y = 0, |x | > a,

φ0y = 0 on y = 0, |x | ≤ a,

∂φ0

∂r
∼ A ln r as r → 0,

φ0y = 0 on y = h,

φ0(x, y) ∼
{

(eiμ(x+a) + R0e−iμ(x+a))ψ0(y) as x → −∞,

T0eiμ(x−a)ψ0(y) as x → ∞.
(10)

BVP-II: The function φ1(x, y) satisfies

(∇2 − ν2)φ1(x, y) = 0 in 0 < y < h, − ∞ < x < ∞,

Kφ1 + φ1y = 0 on y = 0, |x | > a,

φ1y = 0 on y = 0, |x | ≤ a,

φ1y = d

dx

(
c(x)

∂φ0(x, h)

∂x

)
− ν2c(x)φ0(x, h) on y = h,

∂φ1

∂r
∼ A ln r as r → 0,

φ1(x, y) ∼
{

R1e−iμ(x+a)ψ0(y) as x → −∞,

T1eiμ(x−a)ψ0(y) as x → ∞.
(11)

The BVP-I corresponds to the problem of oblique wave scattering by a rigid dock in
water of uniform depth h. Linton [10] solved this problem using the residue calculus
technique and obtained the reflection and transmission coefficients explicitly. The
BVP-II is a radiation problem in uniform finite depth water having a dock which
occupies the position −a ≤ x ≤ a, y = 0 and the bottom condition involves φ0,
the solution of BVP-I. Without solving for φ1(x, y), R1 and T1 can be determined
in terms of integrals involving the shape function c(x) and φ0(x, y).

Following the methodology of [10], and considering geometrical symmetry, it is
possible to split φ0(x, y) in this case into its symmetric and antisymmetric parts such
that

φ0(x, y) = φs
0(x, y) + φa

0 (x, y) (12)

where
φs
0(x, y) = φs

0(−x, y), φa
0 (x, y) = −φa

0 (−x, y). (13)
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The region x < 0 is considered and use of (13) will extend the solution into x > 0.
Then φ

s,a
0 (x, y) satisfy (10) with the additional condition φs

0x (0, y) = φa
0 (0, y) = 0

and the requirement that

φ
s,a
0 (x, y) → 1

2
(eiμ(x+a) + Rs,a

0 e−iμ(x+a))ψ0(y) as x → −∞ (14)

where α0 = −iμ = −i(k20 − ν2)
1
2 , αn = (k2n + ν2)

1
2 (n ≥ 1), ±ikn (n = 1, 2, ..)

are the purely imaginary roots of the transcendental equation k tanh kh = K and

ψn(y) = N−1
n cos kn(y − h) with Nn = 1

2

(
1 + sin 2knh

2knh

)
.

In −a < x < 0, φ0 has the expansion

φ
s,a
0 =

∞∑
n=0

εn

2
Bs,a

n (eβn x ± e−βn x ) cos

(
nπ

h

)
y, (15)

where ε0 = 1, εn = 2 for n ≥ 1 and βn =
((

nπ
h

)2

+ ν2
) 1

2

. As
n , Aa

n (n = 1, 2, . . .)

and Bs
n , Ba

n (n = 0, 1, 2, . . .) are unknown constants to be determined.
Using the residue calculus method, the expressions for R0 and T0 were obtained

analytically by [10] given by

R0 = 1

2
(e2iδs + e2iδa

)e−2iθe2iδ∞ ,

T0 = 1

2
(e2iδs − e2iδa

)e−2iθe2iδ∞ ,

where

δ∞ =
∞∑

n=1

(
tan−1

(
μ

βn

)
− tan−1

(
μ

αn

))

and

δs,a = arg

[
1 −

∞∑
n=0

Cs,a
n

iμ + βn

]

Cs,a
m , m ≥ 0 are the solutions to the infinite system of real equations

Cs,a
m ± Dm

∞∑
n=0

Cs,a
n

βm + βn
= ±Dm, m ≥ 0
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where

D0 = 2νe−2νa
∞∏

n=1

(1 − ν
αn

)(1 + ν
βn

)

(1 + ν
αn

)(1 − ν
βn

)

and for m ≥ 1,

Dm = 2βm(ν + βm)(αm − βm)e−2βma

(ν − βm)(αm + βm)

∞∏
n=1n 	=m

(1 − βm
αn

)(1 + βm
βn

)

(1 + βm
αn

)(1 − βm
βn

)

The constants As
n , Aa

n , Bs
n , Ba

n are obtained numerically from the system of linear
equations

∞∑
n=0

V s,a
n

[
1

αn − βm
± e−2βma

αn + βm

]
= 1

α0 + βm
± e−2βma

α0 − βm
, m ≥ 0 (16)

∞∑
n=0

V s,a
n

[
1

αn + βm
± e−2βma

αn − βm

]
= 1

α0 − βm
± e−2βma

α0 + βm

∓2hN0βm Bs,a
m e−βma sinh 2βma

x0 sin x0h
, m ≥ 0 (17)

after truncation, where

x0 = −ik0 and xn = kn (n ≥ 1)

and
V s,a
0 = As,a

0 + 1 ,

V s,a
n = As,a

n N0xn sin xnh

Nn x0 sin x0h
.

In the expression (16), the upper signs are associated with superscript s and lower
sign with superscript a.

To obtain R1, we apply Green’s integral theorem to the functions φ0 and φ1 in the
regions bounded by the lines y = 0, − X ≤ x ≤ −a; y = 0, − a ≤ x ≤ a; y =
0, a ≤ x ≤ X; x = ±X, 0 ≤ y ≤ h; y = h, − X ≤ x ≤ X (X > 0, Y > 0). If
L denotes the contour of this region then

∫

L

(
φ0

∂φ1

∂n
− φ1

∂φ0

∂n

)
dL = 0
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where n is the outward normal to the line element d L . The free surface condition
satisfied by φ0 and φ1 ensures that there is no contribution to the integral from the
lines y = 0, − X ≤ x ≤ −a, and y = 0, a ≤ x ≤ X . Also there is no contribution
to the integral from the line y = 0, − a ≤ x ≤ a because of the condition on the
dock. As both φ0 and φ1 describe outgoing waves as x → ∞, there is no contribution
to the integral from the line x = X, (0 ≤ y ≤ h) as X → ∞. The only contributions
arise from the integral along the line x = −X, (0 ≤ y ≤ h) as X → ∞ and the
integral along the bottom. Making X → ∞, we obtain ultimately

2iμR1 =
∫ ∞

−∞
c(x)[φ2

0x (x, h) + ν2φ2
0(x, h)]dx . (18)

Thus, R1 given by (3) can be obtained numerically once c(x) is known.
To obtain T1, we use Green’s integral theorem to the functions χ0(x, y) (=

φ0(−x, y)) and φ1(x, y) in the same region mentioned above and making X → ∞,
we find

2iμT1 = −
∫ ∞

−∞
c(x)[φ0x (x, h)φ0x (−x, h) + ν2φ0(x, h)φ0(−x, h)]dx . (19)

T1 given by (19) can be obtained numerically once c(x) is known. It may be noted
from (19) that if c(x) is an odd function, then T1 vanishes identically.

Example 1 The form of shape function c(x) is taken as

c(x) =
{

c0 sin λx −mπ
λ

≤ x ≤ mπ
λ

,

0 otherwise,
(20)

where m is a positive integer. This represents m sinusoidal ripples at the bottom with
wave length 2π

λ
.

We consider a < mπ
λ
, i.e., when the sinusoidal bottom topography is beneath the

dock and its extent exceeds the length of the dock then R1 is given by

R1 = c0
2iμ

[
4(N−1

0 )2
(

(ν2 − μ2)

λ2 − 4μ2 [(T 2
0 − R2

0)E
+ + E −] + 2R0(ν

2 + μ2)

λ
[cos λa−

(−1)m ]
)

− 4N−1
0

[ ∞∑
n=1

F−
n (R0(As

n + Aa
n) − T0(As

n − Aa
n)) +

∞∑
n=1

(As
n + Aa

n)F+
n

]

+
∫ −a

− mπ
λ

sin λx

[( ∞∑
n=1

αnG
+
n

)2

+ ν2

( ∞∑
n=1

G+
n

)2 ]
dx +

∫ mπ
λ

a
sin λx

[( ∞∑
n=1

αnG
−
n

)2

+ ν2

( ∞∑
n=1

G−
n

)2 ]
dx +

∫ a

−a
sin λx

[( ∞∑
n=1

βnH
−

n

)2

+ ν2

( ∞∑
n=1

H +
n

)2 ]
dx

]
(21)
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where

F±
n = N−1

n (ν2 ± iμαn)

λ2 + (αn ± iμ)2
[(αn ± iμ) sin λa + λ cos λa − λ(−1)me(αn±iμ)(a− mπ

λ
)]

G±
n = (As

n ± Aa
n)N−1

n eαn(±x+a)

H ±
n = εn

2
(−1)n(eβn x (Bs

n + Ba
n ) ± e−βn x (Bs

n − Ba
n ))

E ± = −2iμ sin λa ± λ cos λa ∓ λ(−1)me−2iμ(a− mπ
λ

)

while the first-order transmission coefficient is

T1 ≡ 0.

In this case, it is observed that |R1| becomes very large when λ = 2μ, i.e., when the
wavelength of sinusoidal ripples in the ocean bottom becomes twice the wavelength
of incident field.

Here a limiting process is used to evaluate |R1| as 2μ
λ

= ζ → 1. The limiting
value of |R1| as ζ tends to 1 is given by

R1 =−ic0
λ

[
2(N−1

0 )2

λ

(
i(ν2 − μ2) sin λa(T 2

0 − R2
0 + 1) + (−1)m(mπ − aλ)

[(T 2
0 − R2

0)e
−iλ(a− mπ

λ
) + eiλ(a− mπ

λ
)] + 4R0(ν

2 + μ2)[cos λa − (−1)m ]
)

− 4N−1
0 R0

∞∑
n=1

(As
n + Aa

n)N−1
n (ν2 − i λ

2αn)

λ2 + (αn − i λ
2 )2

[(αn − i
λ

2
) sin λa + λ cos λa−

λ(−1)me(αn−i λ
2 )(a− mπ

λ
)] − 4N−1

0

∞∑
n=1

(As
n + Aa

n)N−1
n (ν2 + i λ

2αn)

λ2 + (αn + i λ
2 )2

[(αn + i
λ

2
)

sin λa + λ cos λa − λ(−1)me(αn+i λ
2 )(a− mπ

λ
)] + 4N−1

0 T0

∞∑
n=1

(As
n − Aa

n)N−1
n (ν2 − i λ

2αn)

λ2 + (αn − i λ
2 )2

[(αn − i
λ

2
) sin λa + λ cos λa − λ(−1)me(αn−i λ

2 )(a− mπ
λ

)] +
∫ −a

− mπ
λ

sin λx

[ ( ∞∑
n=1

αnG
+
n

)2

+ ν2

( ∞∑
n=1

G+
n

)2 ]
dx +

∫ mπ
λ

a
sin λx

[ ( ∞∑
n=1

αnG
−
n

)2

+ ν2

( ∞∑
n=1

G−
n

)2 ]
dx

+
∫ a

−a
sin λx

[ ( ∞∑
n=1

βnH
−

n

)2

+ ν2

( ∞∑
n=1

H +
n

)2 ]
dx

]
. (22)

The expression for R1 when mπ
λ

< a is given by
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R1 = c0
2iμ

[ ∫ mπ
λ

− mπ
λ

sin λx

[ ( ∞∑
n=1

βnH
−

n

)2

+ ν2

( ∞∑
n=1

H +
n

)2 ]
dx

]
(23)

and
T1 ≡ 0.

In this case when the undulation in sea bed is beneath the dock and its extent is less
than the length of the dock, then such resonating behavior in |R1| is not observed.
Thus when the dock totally shadows the undulations, then |R1| does not exhibit any
resonance.

Example 2 Another form of shape function is taken as

c(x) = b0e
−ξ2x2 (ξ > 0), − ∞ < x < ∞. (24)

This represents a Gauss-type curve.
The expression for R1 in this case is given by

R1 = b0
2iμ

[
4(N−1

0 )2
(

(ν2 − μ2)[(R2
0 + T 2

0 )K + + K −] + R0(ν
2 + μ2)

√
πer f c(a

√
ξ2)√

ξ2

)

+ 4N−1
0

( ∞∑
n=1

(ν2 − iμαn)L +
n [R0(As

n + Aa
n) + T0(As

n − Aa
n)] +

∞∑
n=1

(ν2 + iμαn)

(As
n + Aa

n)L −
n

)
+

∫ −a

−∞
e−ξ2x2

[( ∞∑
n=1

αnG
+
n

)2

+ ν2

( ∞∑
n=1

G+
n

)2 ]
dx +

∫ ∞

a
e−ξ2x2

[( ∞∑
n=1

αnG
−
n

)2

+ ν2

( ∞∑
n=1

G−
n

)2 ]
dx +

∫ a

−a
e−ξ2x2

[ ( ∞∑
n=1

βnH
−

n

)2

+ ν2(

∞∑
n=1

H +
n )2

]
dx

]

(25)

and

T1 =−b0
iμ

[
4(N−1

0 )2
(

T0R0(ν
2 + μ2)K + + T0(ν

2 − μ2)

√
π er f c(a

√
ξ2)

2
√

ξ2

)

+ 2N−1
0

( ∞∑
n=1

(ν2 + iμαn)L +
n [R0(As

n − Aa
n) + T0(As

n + Aa
n)]+

∞∑
n=1

(ν2 − iμαn)(As
n − Aa

n)L −
n

)
−

∫ −a

−∞
e−ξ2x2

[ ( ∞∑
n=1

αnG
+
n

)

( ∞∑
n=1

(As
n − Aa

n)N−1
n αne

αn (x+a)

)
− ν2

( ∞∑
n=1

G+
n

)( ∞∑
n=1

(As
n − Aa

n)N−1
n eαn (x+a)

) ]
dx

+
∫ 0

−a
e−ξ2x2

[ ( ∞∑
n=0

βnH
−

n )(

∞∑
n=0

εn

2
(−1)nβn[e−βn x (Bs

n + Ba
n ) − eβn x (Bs

n − Ba
n )]

)
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+ ν2

( ∞∑
n=0

H +
n

) ( ∞∑
n=0

εn

2
(−1)n[e−βn x (Bs

n + Ba
n ) + eβn x (Bs

n − Ba
n )]

) ]
dx

]
(26)

4 Numerical Results

We have computed |R1| for different values of wave number K h, for two types of
shape functions c(x) characterizing the uneveness of the bottom asmentioned earlier.

It is verified that in example 1 for c(x) = c0 sin λx , x ε [−mπ
λ

, mπ
λ

] (Eq. 20), when
the length of the plate is made to tend to zero, then |R0| = 0 and |R1| coincide with
the result given in [3] and [6].

For numerical computation, the value of the nondimensional parameter c0
h is taken

as 0.01 and λh as 1 for the figures (1 and 8) which depicts |R1| against K h for c(x)

given by (20).
In Figs. 1 and 2, |R1| is plotted against K h for a

h =3, where
a
h < mπ

λh with number
of ripples m =2, 3, 5 and 7 and θ=π

9 and π
3 , respectively. In this case, the sinusoidal

bottom topography is beneath the dock and its extent exceeds the length of the dock.
In both the figures it is observed that |R1| is oscillatory in nature. As the number of

ripples increases, the frequency of oscillation in |R1| increases, and also more wave

Fig. 1 First-order reflection
coefficient |R1| for
c(x) = c0 sin λx with c0

h =
0.01 and λh = 1
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Fig. 2 First-order reflection
coefficient |R1| for
c(x) = c0 sin λx with c0

h =
0.01 and λh = 1
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Fig. 3 First-order reflection
coefficient |R1| for
c(x) = c0 sin λx with
c0
h =0.01 and λh =1
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energy is reflected. As the angle of incidence increases from π
9 to π

3 , it is seen that
the frequency of oscillation in |R1| decreases and the peak value slightly increases.
This phenomenon is due to multiple interaction of wave energy with the sinusoidal
ocean bed and the dock.

In Fig. 3, θ has been taken as 89.994◦ (very near to π
2 ) with the number of ripples

m =2, 3, 5, and 7. We expect that |R1| should be very small which is indeed the case
as is evident from the numerical computation. It is observed |R1| becomes almost
zero, that is, the first-order reflection coefficient vanishes as the angle of incidence
is taken very near to π

2 .

In Figs. 4 and 5, |R1| is depicted against ζ = 2μ
λ
for the shape function c(x) given

by (20) for a
h = 1, K h = 0.1, θ = π

6 , π
3 , respectively, and m = 2, 4. Here m is the

number of sinusoidal ripples in an otherwise flat bottom. These figures show that for
m = 2 and 4, the graph of |R1| sharply increases for ζ ≈ 1. Here, the value of |R1| is
evaluated from Eq. (21) by a limiting process as ζ → 1. This behavior in |R1| is due
to resonance which occurs when the wavelength of the ripple is half the wavelength
of the incident wave. However, the peak value of |R1| is much higher for m = 4 than
for m = 2. The peak value also increases as θ increases from π

6 to π
3 . Therefore,

an increase in the number of ripples in the patch of sinusoidal bottom undulation
induces a large amount of wave energy radiation at infinity. Also the increase in angle
of oblique incidence, enhances the resonance in |R1|.

Fig. 4 First-order reflection
coefficient |R1| against
ζ = 2μ

λ
for c(x) = c0 sin λx

with c0
h =0.01 and

K h = 0.1
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Fig. 5 First-order reflection
coefficient |R1| against
ζ = 2μ

λ
for c(x) = c0 sin λx

with c0
h =0.01 and K h = 0.1
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In Figs. 6, 7, and 8, a
h has been chosen to be 18 such that mπ

λh < a
h with θ = π

9 ,
π
3 and 89.994◦. It is observed that |R1| increases as K h increases, reaches a peak,
and then starts decreasing. The peak value increases as θ increases from π

9 to π
3 and

also as m increases from 2 to 5. In this case, resonance in |R1| is not observed. When
θ is 89.994◦, the value of |R1| becomes almost negligible. This shows that when the
length of the dock overshadows the length of the sinusoidal patch in the bottom, the
resonance exhibited by |R1| can be avoided.

Now, for the shape function given in example 2 by (24) which represents a Gauss-
type curve, |R1| and |T1| is depicted against K h for two different values of ξh
(Figs. 9, 10, 11, 12) when b0

h =0.1. It is seen that for each value of ξh, |R1| and |T1|

Fig. 6 First-order reflection
coefficient |R1| for
c(x) = c0 sin λx with
c0
h =0.01 and λh =1
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Fig. 7 First-order reflection
coefficient |R1| for
c(x) = c0 sin λx with
c0
h =0.01 and λh =1
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Fig. 8 First-order reflection
coefficient |R1| for
c(x) = c0 sin λx with
c0
h =0.01 and λh =1
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first increases with K h, attains a maximum, and then decreases as K h is further
increased. For all the figures it is observed that the peak value of |R1| and |T1|
decreases as ξh increases.

The Figs. 9 and 10 shows the variation of |R1| and |T1| against K h for θ = π
6 and

π
3 , respectively, and ξh =1. The Figs. 11 and 12 shows similar variation for ξh =2. It
is observed that the peaks in |R1| and |T1| become steeper and sharp with the increase
of the incident angle. Also as ξh increases, the reflection and transmission of wave
energy diminishes. It is also observed from the figures that transmission coefficient
is comparatively smaller than the reflection coefficient, which shows that there is
more reflection of wave energy than transmission.

Fig. 9 First-order reflection
and transmission coefficients
|R1| and |T1| for
c(x) = b0e−ξ2x2 with
ξh = 1; b0

h =0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Kh

R 1
an
d

T 1

6 and a h 3

T1

R1

Fig. 10 First-order
reflection and transmission
coefficients |R1| and |T1| for
c(x) = b0e−ξ2x2 with
ξh = 1; b0

h =0.1
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Fig. 11 First-order
reflection and transmission
coefficients |R1| and |T1| for
c(x) = b0e−ξ2x2 with
ξh = 2; b0

h =0.1
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Fig. 12 First-order
reflection and transmission
coefficients |R1| and |T1| for
c(x) = b0e−ξ2x2 with
ξh = 2; b0

h =0.1
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5 Conclusion

The problem of oblique water wave scattering by a variable by a finite rigid dock in
the presence of variable bottom topography is investigated by employing a simplified
perturbation analysis. The first-order corrections to the reflection and transmission
coefficients R1 and T1 are determined in terms of integrals involving the shape func-
tion describing the bottom and the solution of the corresponding scattering problem
for uniform finite depth water. For the case of a patch of sinusoidal ripples at the
bottom, |R1| is depicted in a number of figures. When the patch of sinusoidal ocean
bed is beneath the dock and its extent exceeds the length of the dock then |R1| is
oscillatory in nature and more over |R1| exhibits resonance when the wavelength
sinusoidal bottom is half the wavelength of the incident wave. This may be attributed
to the multiple interactions of the incident wave, sinusoidal bottom topography and
the edge of the dock. However, when the patch of sinusoidal bottom is beneath the
dock and within the extent of length of dock, |R1| does not exhibit oscillatory nature
and no resonance is found in this case. In this case, the transmission coefficient van-
ishes identically. For the case of a Gauss-type curve, the first-order corrections to
the reflection and transmission coefficients are found to decrease with increase of
ξh. Also for a given value of ξh, there is more reflection than transmission of wave
energy.
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Electrokinetic Effects on Solute Mixing
Near a Conducting Obstacle
Within a Microchannel

S. Bera and S. Bhattacharyya

Abstract A numerical study is made on the electroosmotic flow (EOF) near a polar-
izable obstacle mounted on one of the nonconducting walls of a microchannel. The
external electric field induces a Debye layer of nonuniform ζ -potential along the
obstacle, which results in a nonlinear electroosmostic flow. The combined effect of
surface roughness and nonuniform electric double layer on the polarizable obstacle
creates a vortical flow. The form of this vertical flow and its dependence on the bulk
ionic concentration is analyzed. Our numerical model is based on the Navier–Stokes
equations for fluid flow, Nernst–Planck equations for ionic concentration, and Poison
equation for induced electric potential. We have computed the governing nonlinear
coupled set of equations by the control volume method over a staggered grid system.
Our results show that the form of the vortical flow, which develops in the vicinity of
the obstacle, depends on the thickness of the Debye layer along the homogeneous
part of the channel. The occurrence of electrical neutrality of fluid outside the Debye
layer and recirculating vortex near the obstacle suggests that the fluid flow is influ-
enced by the induced electric field and vice-versa. The vertical flow, which leads to
enhanced mixing of solute in the microchannel.

Keywords Induced surface potential · Electroosmosis ·Nernst–Planck equations ·
Finite volume method · Charge density · Micro-vortex

1 Introduction

Electroosmosis offers an alternative means to pressure gradients to drive flow in
microchannels. Electrokinetic phenomena provide one of the most popular non-
mechanical techniques in microfluidics. This has drawn wide interest due to its
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robustness, no dynamic parts, and easy to operate conditions. Electroosmosis is the
preferred mode for manipulating fluids in microdevices, which is gaining increased
attention.Oneof themost promising applications ofmicrofluidics is the lab-on-a-chip
device. EOF is the bulk fluid motion driven by the electrokinetic force acting on the
net charged ions in the diffuse layer; the outer part of an electrical double layer (EDL).
For an EOF in a microchannel with thin EDL (linear EOF), the EOF is often mod-
eled using a simple slip velocity condition known as the Helmholtz–Smoluchowski
equation. This boundary condition provides a linear relationship between the slip
velocity and local applied electric field. The outside flow is governed by the viscous
diffusion and the fluid is considered electrically neutral. The EOF in this case is an
irrotational flow and is independent of the depth of the channel.

The nonlinear electrokinetic phenomenon provides a promising alternative mech-
anism for flow control in microfluidic devices. The vortical flow and mixing through
modulation of channel wall potential has been studied by several authors namely,
Ghosal [1], Erickson and Li [2], Yariv [3], Fu et al. [4], Bhattacharyya and Nayak [5],
Chen and Conlisk [6], Lin and Chen [7]. It is established in those forgoing studies on
EOF in a surface-modulated microchannel that the potential patch of opposite sign
may induce a vortex, the bulk flow being governed by the induced pressure gradient,
viscous diffusion, and electric body force.

The ζ -potential of a nonconducting surface in a classical electroosmosis is taken to
be a constant. When an inert conducting surface is embedded in a dielectric medium,
an external field will cause the surface to polarize. The electric field drives an ionic
current in the electrolyte. These ions cannot penetrate the conducting surface and
accumulate in a formof a charged cloud near the surface. This charge cloud grows and
expels the electric field lines and the surface behaving like an insulator. A nonuniform
chargedensity develops around thepolarizable surface,which results in a nonconstant
ζ -potential. The current drives positive ions along the surface where the initial cur-
rent enters and negative ions where it leaves. Consequently, the variable ζ -potential
along the conducting surface has a change of sign. Thus, the electrokinetics around
a polarizable conducting surface differ. Squires and Bazant [8, 9] refereed the elec-
troosmosis (ICEO) above a polarizable surface as the induced charge electroosmosis
and the electrophoresis of a polarizable particle as induced charge electrophore-
sis (ICEP). ICEO is a nonlinear phenomenon and many result in the formation of
vortices in a microchannel. The circulation and enhancement of species mixing by
introducing conducting surface in a microchannel was investigated by Wu and Li
[10]. Subsequently, Wu and Li [11] studied the ICEO around conducting hurdles
which are embedded with a microchannel. Eckstein et al. [12] made a combined
numerical and experimental study on vortex generation phenomena around sharp
corners in microfluidic devices through the ICEO mechanism. The recent progress
on ICEOand its various applications have been discussed byBazant and Squires [13].

Microvortices have advantage in species mixing in microdevices. In other situa-
tions, the appearance of vortices needs to be suppressed so as to avoid aggregation
of suspended particles leading to the eventual jumping of the device. In any case, the
study on vortical flow in ICEO is important. Most of the previous studies on ICEO
and micromixing are based on the thin Debye layer assumption. If the Debye layer
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thickness is much less than the geometric length scale of interest, the flows can be
captured by prescribing a slip velocity at the outer edge of the Debye layer. The slip
velocity is governed by the Helmholtz–Smoluchowski velocity UHS = −εeζi E0/μ,
where εe is the permittivity of the medium. The slip velocity assumption may not
hold if the Debye length is finite or the applied field is strong or both. The elec-
tric body force which governs the fluid flow and the convective transport of ions
are significant if either of the above conditions hold. In those cases, the momentum
equations and ion transport equations are coupled and the distribution of ions are not
governed by the equilibrium Boltzmann distribution. It may be noted that the Boltz-
mann distribution of ions is based on the assumption of thermodynamic equilibrium
where convective transport of ions are neglected.

In the present study, we have modeled the ICEO based on the Navier–Stokes
equations for fluid flow in which the electric body force effect is included. The
transport of ions is governed by the Nernst–Planck equations and the electric field
is governed by the Poisson equation. The nonlinear set of governing equations are
solved in a coupled manner through a control volume approach over a staggered grid
arrangement. We have studied the ICEO in the vicinity of a conducting polarizable
hurdle in the form of a block mounted on the lower wall of a microchannel. Our
results show that the form of vortical flow induced by the conducting hurdle depends
on the ionic concentration of the electrolyte.

2 Mathematical Model

We consider a long rectangular channel of height h and width W with h � W be
fielded with an incompressible Newtonian electrolyte of uniform permittivity and
viscosity. An obstacle of the form of a rectangular block of length (l) and height
(d) is considered to be mounted along the lower wall of the channel (Fig. 1). Two
types of electric field can be identified with their origin, one is the external electric
field and the other is the induced electric field developed due to the movement of
ions. The external applied electric field is generated by the electrodes placed at inlet
and outlet of the channel. The number Λ = E0h/φ0 measures the strength of the
external electric field in nondimensional form. The nondimensional equation for the
distribution of external potential (ψ) is governed by the following Laplace equation

∇2ψ = 0 (1)

The wall and all sides of the block are electrically insulated, i.e., ∇ψ · n = 0,
where n is the unit outward normal. Far upstream (x → −∞) and downstream
(x → ∞) of the block, ψ approaches a linear function of x , i.e., ψ = −Λx . Based
on the assumption of negligible surface conductivity (Wu and Li [10]), the induced
ζpotential along the surface of the obstacle is

ζi = −ψ + ψc (2)
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Fig. 1 Schematic diagram
of the microchannel with
wall-mounted conducting
obstacle

where

ψc =
∫

s ψdS

S
(3)

is the constant correction potential imposed for the requirement of electric neutrality
of the obstacle surface. Here, S is the total area of the conducting surface. So, the
induced zeta potential ζi varies with the local value of the externally applied electric
field.

The Navier–Stokes equation for electroosmotic flow of a constant property of
Newtonian fluid is ∇ · q∗ = 0

ρ

(
∂q∗

∂t
+ (q∗ · ∇)q∗

)
= −∇ p∗ + μ∇2q∗ + ρ∗

e E (4)

where q∗(= u∗, v∗, w∗) is the velocity field of the fluid with u∗, v∗, and w∗ are
the velocity components in the x , y, and z directions, respectively. The electric field
E (= Ex , Ey, Ez) is determined by the superposition of external electric field along
with the induced electric field developed due to migration of ions. The charge density
ρ∗

e is related to the electric field as

∇ · (εeE) = −εe∇2Φ∗ = ρ∗
e =

∑
i

zi eni (5)

Here Φ∗ is the electric potential, zi and ni are, respectively, the valance and molar
concentration of the i type ion; e is the elementary electric charge and εe = ε0εr ,
where ε0 is the permittivity of vacuum and εr is the dielectric constant of the solu-
tion. Total electric potential Φ∗ can be written as Φ∗ = ψ∗(x, y, z) + φ∗(x, y, z),
where φ∗ is the induced electric potential. The variables with superscript ∗ denotes
a dimensional quantity.

The transport equation of the ionic species i is governed by the Nernst–Planck
equation as

∂ni

∂t
+ ∇ · Ni = 0 (6)



Electrokinetic Effects on Solute … 431

where Ni (= −Di∇ni + niωi zi FE + ni q∗) is the net flux of ionic species. Di and
ωi (= Di/RT ) are, respectively, the diffusivity and mobility of i type species. Here
R is the gas constant F is a Faraday’s constant and T is the absolute temperature of
the solution. If we consider symmetric electrolyte then zi = ±1.

The velocity field is coupledwith themass transfer equation and the Poisson equa-
tion for the induced electric potential.We scale the velocityfieldq∗ by theHelmholtz–
Smoluchowski velocity UHS = εe E0φ0/μ, electric potential Φ∗ by φ0 (= K B T/e),
ni by the bulk ionic concentration n0, Cartesian coordinates by (h, h, W ), pressure
p by μUHS/h and time t by h/UHS. The parameter κ = [(2e2n0)/(εe K B T )]1/2
is reciprocal of the characteristic EDL thickness (λd ) and ε = λd/h = 1/κh. We
denote the nondimensional concentration of cation by g and anion by f . Here, K B

is Boltzmann constant, μ is the viscosity of the electrolyte, and F is the Faraday
constant.

The width (W ) of the channel is considered to be on the order of the length of the
channel. So, ε1 = h/W << 1. Thus, all gradients with respect to z can be neglected
and the flow can be treated as two-dimensional.

We can either specify the ion concentration or the flux at the surface. We assume
a no-slip boundary condition along the walls and all face of the block and constant
ζ -potential on the walls. The boundary conditions along the walls (y =0 and y =1)
can be described as

u = v = 0; φ = ζ ; g = e−ζ ; f = eζ (7)

Here, ζ is the surface potential of the channel wall which is constant only along the
homogenous parts of the channel wall. On the conducting block, ζ is replaced by
the local induced zeta potential ζi as defined in Eq. (3). The channel is assumed to
be sufficiently long upstream and downstream of the block and the flow is assumed
to be fully developed EOF at the far upstream and downstream of the block. We
imposed the upstream and downstream conditions at a distance from the origin four
times the length of the block. Far upstream of the block (x = −4):

u = uin; v = 0; φ = φin; g = gin, f = f in; ∂p

∂x
= 0 (8)

Far downstream of the block (x = +4):

∂u

∂x
= 0; ∂v

∂x
= 0; ∂φ

∂x
= 0; ∂g

∂x
= 0; ∂ f

∂x
= 0; ∂p

∂x
= 0 (9)

The values of u = uin, φ = φin, g = gin, f = f in at the inlet and outlet of the
computational domain are due to the 1− D fully developed electroosmotic flow over
a homogeneous microchannel. The governing equations can be determined by the
similar manner as described above. Under the Debye–Huckel approximation with
κh � 1, the electroosmotic flow in plane channel can be obtained as
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φin = [ζ1 sinh((1 − y)h)/λ + ζ2 sinh(yh)/λ]/ sinh(h/λ) − Λx (10)

uin = y(ζ1 − ζ2) − ζ1(1 − φ/ζ1) (11)

gin = e−φin ; f in = e+φin
(12)

Here, ζ1, ζ2 are the zeta potential at lower wall (y = 0) and upper wall (y = 1),
respectively.

2.1 Mass Transport Equation

The electrokinetic transport of the uncharged sample species is considered in the
present analysis. In absence of no chemical reaction or absorption of species on
the wall, the transport of species are governed by convection and diffusion. The
governing equation for species transport in the nondimensional form is

∂C

∂t
+ (q · ∇)C = 1

Pe
∇2C (13)

where the advection speed is q. Here C(x, t) is the dimensionless species concentra-
tion, scaled by the reference concentration C0 and D is the diffusion coefficient of
the species. Here, Peclet number is based on sample diffusivity D and is defined as
Pe = Uh/D. No mass flux is assumed along the channel wall. Thus, the boundary
conditions of C are as follows:

C = Cin at x = −L; ∂2C
∂x2

= 0 at x = L and ∂C
∂y = 0 at y = 0, 1.

where the value for Cin is specified as Cin = 1 on the lower inlet (0 ≤ y ≤ 0.5)
and Cin = 0 on the upper inlet (0.5 ≤ y ≤ 1) of the channel. The nondimensional
channel length L is taken to be sufficiently long to establish a steady mixing.

3 Numerical Methods

Our computations start by solving the Laplace Eq. (1) for a given value of Λ to
determine the external electric field (ψ) and the induced potential (ζi ) along the
surface. A central difference scheme is used to discretize the Eq. (1). A line-by-line
iterative method along with the successive overrelaxation technique (SOR) is used
to compute the discretized equations. The grids are considered to be the same as that
of the grids used for computing other variables.

We solved the coupled set of governing nonlinear equations for fluid flowand ionic
species concentration through a finite volume method on a staggered grid system
[14]. The discretized form of the governing equations is obtained by integrating the
governing equations over each control volumes.Different control volumes are used to
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integrate different equations. The equations for fluid flow and ion transport involves
first-order derivatives of electric potential. Near the obstacle, both the imposed and
induced electric potential undergo a sharp change. In order to capture accurately
the sharp change in variable values, we have used the second-order upwind scheme,
QUICK (Quadratic Upwind Interpolation Convective Kinematics) [15], to discretize
the convective and electromigration terms in both concentration and Navier–Stokes
equations. The QUICK scheme uses a quadratic interpolation/exterpolation between
the three nodal values of variables to estimate its value at the interface of the control
volume. The upwind scheme imparts stability to the numerical solution in the region
where a steep gradient in variables occur. An implicit first-order scheme is used
for discretizing the time derivative terms. Due to coupling of equations, we solve
the system of linear algebraic equations through a block elimination method (Varga
[16]). The resulting discretized equations are solved iteratively through the pressure
correction-based iterative algorithm SIMPLE [17]. The iteration starts by assuming
the induced electric potential φ at every cell center.

We considered a nonuniform grid spacing along y-direction and uniform grids
along the other axis and δt was taken as 0.001. To check the effects of grid spacing,
computations have beenperformed for three differentmesheswithGrid 1: 200 ×240,
Grid 2: 400×240, and Grid 3: 400×500 for fully developed EOF and compared
with the results due to Mirbozorgi et al. [18]. In Grid 1 and Grid 2, we considered a
nonuniform grid size where δy is assumed to vary between 0.005 to 0.01 with δx is
either 0.02 (for Grid 1) or δx = 0.01 (for Grid 2). In Grid 3, we considered δx = 0.01
and 0.0025 ≤ δy ≤ 0.005. Figure2a, b suggests that the results obtained by Grid 2
and Grid 3 agree fairly well with each other and these results are in close agreement
with the result due to Mirbozorgi et al. [18]. Thus, we find Grid 2 is optimal.

Wehave also tested the accuracyof our numerical algorithmbycomparingwith the
results due to Fu et al. [4] when the EOF near a step-jump in ζ -potential is considered
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Fig. 2 Comparison of our computed solution withMirbozorgi et al. [18] and the effects of grid size
for fully developed EOF in a plane microchannel when channel height (h) is 10 µm, λd =0.46µm
(κh = 21.74), ζ =−25mV, and Re=0.02. a Velocity; b ionic concentrations
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Fig. 3 Comparison of the
ionic concentration for
cations and anions near a
step jump in ζ -potential with
Fu et al. [4], when ionic
strength is 10−2 mol/m3

(κh = 1.04) and external
electric field corresponding
to 105 V/m with height of the
channel is 0.1µm. Dotted
line, g; dashed line, f
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for ionic strength n0 = 10−4 mol/m3 and external electric field corresponding to
105 V/mwith height of the channel is 0.1µm. Figure3 shows that our result for ionic
concentration (g, f ) is in good agreement with the result due to Fu et al. [4].

4 Results and Discussions

We consider the height of the channel h = 10µm, viscosity μ = 0.001Kg/m s,
density ρ = 1000Kg/m3, Faraday constant F = 96500Cmol−1, gas constant
R = 8.315J/mol K at temperature T = 300K, diffusion coefficient D+ =
D− = 2.0 × 10−9 m2/s. The external electric field is assumed 104 V/m, thus
the Λ = 4.0 when h = 10µm. In all the computations presented below, the ζ -
potential of the homogenous part of the microchannel is −1 and channel height,
h is 10µm. The Reynolds number based on Helmholtz–Smoluchowski velocity
UHS(= 1.788 × 10−3 m/s) is Re=1.78 × 10−3 when ζ = −1, Schmidt number,
Sc=500, and the Peclet number Pe=0.89. The EDL thickness (λd) varies from
0.20 to 0.96µm when the ionic concentration of the aqueous solution varies from
2.4×10−3 to 10−4 mol/m3. This implies that the Debye–Huckel parameter κh varies
between 10.42 to 50.12 when h = 10µm.

Figure4 shows the induced ζ -potential distribution along the top face of the con-
ducting polarizable block. We determined ζi on the surface of the conducting block
through the Eqs. (2) and (3). When an electric field is applied, the current derives
positive ions into a thin diffuse layer on one side of the block and negative ions into
the other side, also attracting equal and opposite surface charge on the opposite side
surface of the block. After the polarization of the block, it behaves like an insula-
tor and an induced dipolar double layer is formed. The distribution of ζi shows a
symmetry pattern around the vertical line y = 0.
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Fig. 4 Distribution of induced zeta-potential (ζi ) along the top face of the block when κh = 32.84,
h = 10µm and E0 = 104 V/m. The ζ -potential along the homogenous part of the channel walls
is −1
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Fig. 5 Streamline patterns in the vicinity of the blockwhenh = 10µm, ζ = −1 and E0 = 104 V/m.
a Nonconducting hurdle with λd = 0.30µm (κh=23.2); b conducting hurdle with λd = 0.43µm
(κh =23.2); c conducting hurdle with λd = 0.30µm (κh =32.84)

The streamline patterns near the block at different EDL thickness is shown in
Fig. 5a–c. We have also included the case in which the block is insulated with same
ζ -potential as that of the plane wall of the channel. The streamlines of the liquid flow
near the polarizable block surface is distorted and micro-vortex is generated because
of the nonuniform, induced charge distribution on the conducting hurdle. The flow
around the nonconducting channel wall shows no vortex over the block (Fig. 5a).
In the presence of an imposed electric field, the surplus ions in the diffused EDL
will move. The motion of ions drag the advancement liquids and a electroomsotic
flow sets-in. Along the nonconducting surface, the net charge density is uniform;
whereas, a nonuniform distribution of net charge occurs along the conducting block.
The opposite sign in the net charge density along the conducting block draws flow
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Fig. 6 Streamwise velocity profile at different x-stations when h = 10µm, ζ = −1, E0 =
104 V/m, andκh varies between10.38 to 32.84.a x = −2.5 (far upstreamof the block);b x = −0.25
(top face of the block where ζi < 0); c x = 0.25 (top face of the block where ζi > 0). Symbols
Debye–Huckel solution. Arrow indicates the increasing direction of κh

in the opposite direction and a vortex develops close to the top face. The EOF away
from the block is, however, independent of κh and the flow is close to the Helmholtz–
Smoluchowski velocity UHS.

In Fig. 6a–c, we present the u-velocity profiles far upstream of the block (x =
−2.5) and on the upper surface of the block (x = −0.25, 0.25) for different values of
the EDL thickness (λd ) when E0 = 104 V/m and h = 10µm. Along the flat surface,
the EDL is homogeneous and the flow is primarily along the direction of the electric
field. The u-velocity profile is plug-like and independent of the variation of EDL
thickness for large κh. Outside the EDL on the plane surface, the flow is determined
by the Helmholtz–Smoluchowski velocity UHS. However, at κh =10.38, the EDL is
relatively thick and the velocity profile assumes a parabolic shape even at x = −2.5.
The velocity distribution over the flat surface (x = −2.5) is in agreement with the
analytic solution based on the Debye–Huckel approximation as given by Eq. (11).

As we move towards the block, the fluid encounters an adverse pressure gradient
due to the geometric modification of the channel wall along with the effect of non-
homogeneous EDL. The induced ζ -potential on the upstream half of the obstacle is
nonhomogeneous but of the same sign as that of the plane surface. The nonuniformity
of the net charge density near the hurdle results in nonuniform EOF velocity, which
creates a pressure gradient along the primary flow direction. In addition, an induced
pressure gradient develops due to the momentum loss. The Debye–Huckel solution
underpredicts the computed solution in this region. The velocity is increased over
the block due to the requirement of continuity of the fluid flow.

At x = 0.25 (downstream half), the ζ -potential on the upper face of the obstacle is
in opposite sign and a flow reversal close to the upper face of the obstacle is evident.
The Debye–Huckel solution at x = 0.25 shows that the region of flow reversal is
much bigger than the computed result. In the Debye–Huckel solution, the influence
of induced pressure gradient due to the nonuniform charge density is not considered.
Thus, an EOF slip condition in this region will be incorrect. The electric body force
in this region influences the flow, which makes the Navier–Stokes equations and the
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Fig. 7 Profile for ionic species concentration at different x-stations when h = 10µm, ζ = −1,
E0 = 104 V/m, and κh varies between 10.38 to 32.84. a x = −2.5 (far upstream of the hurdle); b
x = −0.25 (top face of the hurdle where ζi < 0); c x = 0.25 (top face of the hurdle where ζi > 0).
Solid lines, g; dashed lines, f . Arrow indicates the increasing direction of κh

Nernst–Planck equations for ion transport coupled. It is clear from Fig. 6b, c that u
depends on axial location in the region above the obstacle.

The profile for cation and anion along the cross-section of the plane channel
(x = −2.5) and at two different x-stations over the obstacle upper face, i.e.,
x = −0.25, 0.25 is shown in Fig. 7a–c. The effect of fluid motion on the charge
distribution along the plane channel can be neglected if the EDL is thin. Outside the
Debye layer, the fluid is electrically neutral, i.e., g − f = 0. The ion distribution
within the Debye layer is governed by the balance of electromigration and diffusion.
Thus, the ion density for a thin EDL is governed by the Boltzmann distribution.
However, at low κh (thick EDL), the bulk fluid is not electrically neutral and hence,
the electric bodyforce outside the EDL is not negligible. For a low value of κh (e.g.,
κh = 10.38), we find that the velocity profile (Fig. 7a) does not assume a plug-like
form nor does the ion distribution (Fig. 7a) follow the Guy-Chapman type profile.
Along the upstream half of the upper face of the hurdle (x < 0), ζ -potential varies
but it is of the same sign as that of the homogeneous part of the channel walls. The
ion distribution in this region (x = −0.25) is similar to the ion distribution on the
homogeneous part of the channel (x = −2.5). Along the downstream part (x > 0)
of the hurdle, the ζ -potential is of opposite sign in the lower EDL. We find from
Fig. 7c that even for high κh, the net charge density (g − f ) is nonzero outside the
EDL. In this region, the electric body force on fluid flow is nonzero, which makes
the governing equations for fluid flow and ion transport coupled. Besides, for lower
values of κh (i.e., thick EDL), the bulk fluid is not electrically neutral and thus, the
ions do not follow the Boltzmann distribution.

4.1 Mixing of Solute

Species mixing in a plane microchannel arises primarily from diffusion mechanisms
and for that, a long mixing length is required in order to achieve a homogeneous
mixing of the two sample streams. Figure8 shows the concentration distribution
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Fig. 8 Distribution of solute concentration within the channel for nonconducting obstacle as well
as conducting obstacle when h = 10µm, κh = 32.8, ζ = −1, and E0 = 104 V/m a nonconducting;
b conducting. First row corresponds to t = 0.06s; second row, t = 0.60 s; and third row, t = 60 s

for two cases namely (a) nonconducting block with constant ζ -potential and (b)
conducting block. The transport of solute is governed by convection and diffusion.
Due to the nonhomogenous surface potential of the conducting block, flowcirculation
is increased and hence the convection effect is significant compared to diffusion. It
is evident from the results that the mixing of solute due to convection mechanism
occurs at a faster rate in the downstream region for the conducting block.

5 Conclusions

Based on the nonlinear model, the electroosmotic flow (EOF) due to a conducting
obstacle mounted on one wall of a microchannel is studied. A nonuniform, induced
surface potential develops over the conducting obstacle and the EOF in the vicinity
of the obstacle does not resemble the classical plug-like form. Recirculation vortex
develops over the block and the strength of the vortex depends on the Debye layer
thickness when the Debye layer is considered finite. In the vicinity of the block, our
computed solution for EOF differs from the analytical solution based on the Debye–
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Huckel approximation.Our result shows that the bulk fluid in the vicinity of the hurdle
is not electrically neutral even for thin EDL case, i.e., κh > 30. Thus, the distribution
of ions in this region depends on convection and imposed electric field even for the
case of thin EDL. For the case of thick EDL, the bulk fluid within the channel is not
electrically neutral and the profile for streamwise velocity assumes a parabolic form.
We find that the assumption of Boltzmann distribution of ions will be incorrect when
EDL is nonhomogeneous or it is thick (low κh). Due to the electrical nonneutrality
of the fluid, the electric bodyforce influences the flow outside the EDL. Thus, the
assumption of free-slip condition in the region where EDL is nonhomogeneous is
incorrect.
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Distribution of Primitive Polynomials Over
G F(2) with Respect to Their Weights

Prasanna Raghaw Mishra, Indivar Gupta and Navneet Gaba

Abstract In this paper, we study the distribution of primitive polynomials over
GF(2) with respect to their weights and report some interesting empirical results
which can help crypto-designers to select suitable primitive polynomials. We carry
out an exhaustive study of primitive polynomials over GF(2) for the degrees up to
30 and figure out the cases where this distribution is symmetrically placed about its
mean.We then try to address the issue of effect on variability of primitive polynomials
restricted to have certain minimum weight. Further, we propose an empirical lower
bound on variability of primitive polynomials when the polynomials are restricted
to have at least 40% taps. We also propose a conjecture on the relationship of degree
and the most probable weight of randomly generated primitive polynomials.

Keywords Primitive polynomial · LFSR · Finite fields · Crypto-primitives

1 Introduction

Primitive polynomials over finite fields are the polynomials of great interest for
cryptographers. Many of the crypto-primitives like LFSR-based generator, LFG etc.
require primitive polynomials for their feedback logic. These polynomials are used
in the designs to ensure maximum possible period. However, an arbitrarily chosen
primitive polynomial may not be suitable for cryptographic usage. For example, an
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LFSR-based system with a sparse polynomial is susceptible to fast correlation attack
[2, 3]. It is therefore, required that the polynomials are not sparse. Though taking the
nonsparse polynomial saves crypto-design from various sparseness-based attack, it
reduces the number of choices for primitive polynomials of a given degree. In other
words, doing so affects the variability of primitive polynomials. For a randomly
selected primitive polynomial of degree d, the variability (i.e., number of primitive
polynomials available under the given conditions) is φ(2d − 1)/d [4, 5]. However,
no such explicit formula is available for variability when primitive polynomials are
required to have a minimum weight.

We have carried out an empirical study of primitive polynomials of degree up to
30 and tried to find how the variability of primitive polynomials varies with the lower
bound on polynomial weight. As far as we know, this type of work has not been done
earlier. However, some work on existence of irreducible polynomials over GF(2) of
maximum weight can be found in the paper [1].

2 Mathematical Formulation

Let f (x) = ad xd + ad−1xd−1 + · · · + a1x + a0 be a polynomial in GF(2)[x].
We define support of a polynomial Supp( f ) as the set of exponents of the nonzero
terms, i.e.,

Supp( f ) = {i |ai �= 0}.

We define the weight of a polynomial f , denoted as w f as the cardinality of the
support of f . Mathematically,

w f = #Supp( f ).

For a polynomial of degree d, the polynomial xd + xd−1+· · ·+ x +1 has maximum
possible weight d + 1. Weight of the polynomial satisfies the obvious inequality
0 ≤ w f ≤ d + 1, where d is the degree of the polynomial f . We define the
percentage weight of a polynomial f , denoted as wp f as the weight of f expressed
as a percentage of d + 1, where d is the degree of f . In other words,

w p f = 100w f

d + 1
(1)

Let Sd denote the set of all primitive polynomial of degree d overGF(2). By variabil-
ity of primitive polynomials, wemean the number of primitive polynomials of degree
d available under some context. Here, we require primitive polynomials to have a
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lower bound on their weights. We define SB
d as the set of all primitive polynomials

of degree d with a weight bound B.

SB
d = { f | f is a primitive polynomial over G F(2), deg( f ) = d, w f ≥ B}.

We define variability of primitive polynomials of degree d with respect to weight
lower bound B, denoted by vB

d as the number of primitive polynomials of degree
d with a weight bound B. We have vB

d = #SB
d . On the similar lines, we define the

percentage variability of primitive polynomials of degree d with respect to percentage
weight bound b, denoted by v pb

d as the number of primitive polynomials of degree
d with a percentage weight bound b (where b = 100B

d+1 ) expressed as the percentage
of total number of primitive polynomials of degree d. As we know that there are
φ(2d − 1)/d primitive polynomials of degree d, we can write v pb

d as,

v pb
d = #S

b(d+1)
100

d × 100 × d

φ(2d − 1)
(2)

3 The Methodology

To study the distribution of primitive polynomials with respect to weight, we gen-
erate all primitive polynomials of a given degree. To do this, we apply the filtering
technique, i.e., to filter out primitive polynomials of degree d from the set of all
polynomials of degree d. For a given degree d, there are 2d polynomials but all of
them are not required to be generated. We can put some obvious checks at the onset,
e.g., for a primitive polynomial f (x) we have f (0) = f (1) = 1. This means we are
required to generate polynomials with constant term 1 and with odd weights. There

are total
∑� d

2 �−1
i=0

(d−1
2i+1

)
such polynomials. It can be shown that this number is equal

to 2d−2. We generated such 2d−2 polynomials for 2 ≤ d ≤ 30 and each set was
tested for primitivity. After filtering, we got 29 sets of polynomials corresponding

to 2 ≤ d ≤ 30, each set containing φ(2d−1)
d polynomials. For each set, the weight

distribution was calculated and the results are compiled in the form of tables. Recall
that a primitive polynomial has always odd number of terms. Therefore, frequency
of an even weight is always zero. We have, therefore, not listed the frequencies cor-
responding to even weights. One of the tables (for d = 10) is given for example
(Table1).

We have also plotted the number of primitive polynomials with respect to their
weights for degrees 2 ≤ d ≤ 30. We observe that: “the distribution is nearly
symmetric about mean when degree is of the form 4k + 1, k > 4”. Plots for degrees
28 and 29 are given in Fig. 1
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Table 1 Frequency
distribution of weights for
degree=10

S. No. Weight Frequency

1 1 0

2 3 2

3 5 20

4 7 28

5 9 10

6 11 0

Total: 60

Fig. 1 Plots of number of
primitive polynomials versus
weight, d =28 and 29

4 Primitive Polynomials with Lower Bound on Weight

As we have discussed in the introduction, for cryptographic applications, the bound
on weight of primitive polynomials should be neither be too large nor too small. We
have observed that a percentage lower bound 40% is a reasonably good choice for
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Table 2 Table for degree 10

S. No. b v pb
d S. No. b v pb

d

1 10 100.00 6 60 63.33

2 20 100.00 7 70 16.67

3 30 96.67 8 80 16.67

4 40 96.67 9 90 0.00

5 50 63.33 10 100 0.00

cryptographic applications. To demonstrate this, first we made the table of percent
weight bound (b) and the percent variability (v pb

d ) for b = 10, 20, . . . , 100 and
2 ≤ d ≤ 30.

Let us denote the frequency of primitive polynomials with weight w by f rd,w.
Corresponding to the percent lower bound onweight b the variability vB

d can be given
as:

vB
d =

d+1∑
w=B

f rd,w (3)

where, B is the corresponding lower bound on weight connected to b by relation (2).

b = 100B

d + 1
(4)

Using (3) and (4), v pb
d can be given as

v pb
d = d

∑d+1
w=�(d+1)b/100� f rd,w

φ(2d − 1)
× 100 (5)

Using formula (5), the value of v pb
d can be calculated for a given b and d from the

tables created in Sect. 3. We have tabulated the values of v pb
d against b for degrees

2 to 30. For reference, we give the table for d = 10 (Table2).
For each 2 ≤ d ≤ 30, we have plotted graph of percentage of primitive poly-

nomials v pb
d with respect to percent weight bound b and the overlapped graph1 is

shown in Fig. 2.
We draw a vertical line at 40% mark on X-axis and also draw a horizontal line at

50% mark on Y-axis . We see that all the plots remain well above 50% marks when
b = 40. Further, to see the variations more precisely, we have tabulated the values
of v pb

d for 2 ≤ d ≤ 30 when b = 40. See Table 3.

1It was originally a color-coded graph which we have converted to monochrome. The actual color-
coded graph can be obtained from the authors.
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Fig. 2 Plot of percentage variability versus percent weight bound of primitive polynomials

Table 3 Percentage variability with respect to degree for b = 40

S. No. Degree (d) v pb
d S. No. Degree (d) v pb

d

1 2 100 16 17 84.33

2 3 100 17 18 89.81

3 4 100 18 19 93

4 5 100 19 20 94.97

5 6 100 20 21 96.86

6 7 77.78 21 22 87

7 8 100 22 23 90.57

8 9 95.83 23 24 93.29

9 10 96.67 24 25 95.33

10 11 98.86 25 26 96.8

11 12 87.5 26 27 88.53

12 13 89.52 27 28 91.55

13 14 94.44 28 29 93.9

14 15 95.11 29 30 95.64

15 16 97.46 – – –

The graphical representation of the above table is given in Fig. 3:
From table and graph it is clear that after d = 8, the oscillations of Nwp are con-

fined to the range [84.33, 98.86]. If this trend continues, the percentage of primitive
polynomials having at least 40% weight will never be less than 50%. So, the lower
bound on number of primitive polynomials of degree d having weight at least 40%
is 0.5 times the total number of primitive polynomials of degree d. Precisely, the

lower bound is φ(2d−1)
2d .
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Fig. 3 Plot of percentage
variability versus to degree
for b = 40

5 The Most Probable Weight

We tried to find the most probable weights of a randomly generated primitive poly-
nomial of degree d. The most probable weights of a randomly generated primitive
polynomial of a given degree are the weights whose probability is the maximum.
Probability of a weight w of a randomly generated polynomial f of degree d is given
as

= f rd,w × d

φ(2d − 1)
(6)

Clearly the maximum probability prmax
d occurs corresponding to the maximum fre-

quency f rmax
d , where

f rmax
d = max

w
f rd,w

Now prmax
d can be given as,

prmax
d = d × f rmax

d

φ(2d − 1)

We define the set of most frequent weight MPWd of a randomly generated prim-
itive polynomial of degree d as the set

MPWd = {wt f | f rd,wt f = f rmax
d }

We used the above relationship to compute the most probable weight for different
degree of primitive polynomials varying from 2 to 30. These weights are listed in
the following table.
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S. No. Degree (d) Most probable
weight (MPWd )

S.
No.

Degree (d) Most probable
weight (MPWd )

1 2 3 16 17 11
2 3 3 17 18 11
3 4 3 18 19 11
4 5 5 19 20 11
5 6 5 20 21 13
6 7 5 21 22 13
7 8 5 22 23 13
8 9 7 23 24 13
9 10 7 24 25 15
10 11 7 25 26 15
11 12 7 26 27 15
12 13 9 27 28 15
13 14 9 28 29 17
14 15 9 29 30 17
15 16 9

We observed that #MPWd = 1 for 2 ≤ d ≤ 30. This means that for a given
d, 2 ≤ d ≤ 30, the most probable weight is unique.

From the above table, we also deduced the relationship between degree and the
most probable weight. The relationship is tested and holds good when 2 ≤ d ≤ 30
and we believe that this holds good for all d ∈ N, d ≥ 2. So we state the conjecture:

Conjecture 1 For a given degree d of a random primitive polynomial, the most
probable weight MPWd is unique and given by the relation

MPWd = 3 + 2

⌊
d − 1

4

⌋

6 Cryptographic Significance of the Work

As discussed earlier in the first section, there is a tradeoff between the weight of a
primitive polynomial of a given degree and its variability. For choosing a primitive
polynomial, usually filtering technique is used. In this technique, a randomly gen-
erated polynomial is checked for primitivism and other desired properties like non-
sparseness etc. If the polynomial possesses the requisite properties, it is selected for
its use; otherwise, we go on generating random polynomials until we hit the desired
one. Success of such a method depends on the probability that a randomly selected
polynomial is primitive with certain desired properties for specific applications. In
other words, the success depends on the variability of primitive polynomials.

In practice, such a situation arises during formulation of a crypt design especially
stream ciphers. Primitive polynomials are used in the crypt designs to ensure maxi-
mum possible period. For security reasons, we often require primitive polynomials
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whose weights are bounded below by a practically derived value. If a filtering
algorithm is used for the purpose of selecting such primitive polynomials, it is difficult
to predict the success of filtering algorithm for generating the primitive polynomials
as no known formula or bound is available in literature which gives the variability
of primitive polynomials having a given lower bound on weight.

Results and various observation discussed in the paper will be very useful for
crypto-designers. Such formulaewill also prove helpful for analysis of designswhere
even primitive polynomials are not known to attackers. These formulae and bounds
can be used to asses the size of key space in such cases.

7 Conclusion and Future Work

We have carried out an empirical study of distribution of primitive polynomials
with respect to their weights, and reported two results and proposed one conjecture.
We have indicated the special cases when the distribution is symmetric about the
mean. We have also tried to address the query: To give a nontrivial lower bound on
number of primitive polynomials of a given degree possessing a minimum weight?
Our observations also led us to conjecture about the most probable weight of a
primitive polynomial of degree d when selected randomly. This analysis can be
useful for establishing new results related to distribution of weights of primitive
polynomials with respect to their degrees. The results given in the paper can be
useful for calculating variability of special types of primitive polynomials required
for designing a crypto-algorithm.

We are targeting to conduct a deeper analysis of the results and conjecture pro-
posed in the paper. Apart from this, we will also include study of some primitive
polynomial of a specific form with a given weight bound in our forthcoming works.
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Medial Left Bipotent Seminear-Rings

R. Perumal and P. Chinnaraj

Abstract In this paper, we introduce the concept of medial left bipotent
seminear-rings and discuss some of their properties. We have shown that any medial
seminear-ring with mate functions is a medial left bipotent seminear-ring. We also
obtain a characterization of such a seminear-ring.

Keywords Medial seminear-ring · Mate function · Left (right) ideal · Insertion of
factors property

1 Introduction

The concept of seminear-rings was introduced by Willy G. van Hoorn and B. van
Rootselaar in 1967 [14]. Seminear-rings are a common generalization of near-rings
and semi-rings. However in [14] only a very special type of seminear-rings was con-
sidered and the question arose whether it is possible to develop a more general theory
of seminear-rings. As a result, seminear-rings came into being as a common gener-
alization of near-rings and semi-rings. Right seminear-rings are algebraic systems
(R,+, .) with two binary associative operations, a zero 0 with x + 0 = 0 + x = x
and x0 = 0x = 0 for any x ∈ R and one distributive law (x + y)z = xz + yz
for all x, y, z ∈ R. This algebraic system lacks subtraction and one distributive
law. If we replace the above distributive law by x(y + z) = xy + xz, then R
is called a left seminear-ring. A natural example of a right seminear-ring is the
set M(Γ ) of all mappings on an additively written semigroup Γ with pointwise
addition and composition. More precisely, let (Γ,+) be a semigroup with zero ω
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and M(Γ ) the set of all maps from Γ into Γ with ωx = ω for any x ∈ M(Γ ).
With the definitions α(x + y) = αx + αy and α(xy) = (αx)y for all α ∈ Γ and
x, y ∈ M(Γ ), M(Γ ) is a seminear-ring. Another example of a seminear-ring that
generalizes M(Γ ) is : let

∑ ⊆ End(Γ ), the set of endomorphism on Γ , and define
M�(Γ ) = { f : Γ → Γ/ f α = α f,∀α ∈ ∑}. Then M�(Γ ) is a seminear-ring. The
theory of seminear-rings has several applications in other domains of mathematics
and it is natural that more systems will turn up, that can be subsumed under the the-
ory of seminear-rings. In fact, seminear-rings appear in a natural way in theoretical
computer science, mappings of semigroups, linear sequential machines and models
of reversible computation. Throughout this paper, by a seminear-ringwemean a right
seminear-ring with an absorbing zero. The purpose of this paper is to introduce the
concept of medial left bipotent seminear-rings and obtain some of their properties.
We write ab to denote the product a.b for any two elements a, b in R.

2 Preliminaries

In this section, we list some basic definitions and results from the theory of seminear-
rings that are used in the development of the paper.

Definition 1 (Definition 1.115, p.41, Pilz [12] and van Hoorn W.G. [14]) A non-
empty set R together with two binary operations ‘+’ (called addition) and ‘.’ (called
multiplication) is called a right seminear-ring if it satisfies the following conditions:

(i) (R,+) is a semigroup
(ii) (R, .) is a semigroup and
(iii) multiplication distributes over addition on the right, i.e., for all a, b, c ∈ R,

(a + b).c = (a.c) + (b.c)

Definition 2 (Shabir M. [13] and Weinert H.J. [15]) A right seminear-ring R is said
to have an absorbing zero if,

(i) a + 0 = 0 + a = a
(ii) a.0 = 0.a = 0, hold for all a ∈ R.

Definition 3 (Javed AHSAN [2] and Shabir M. [13]) A nonempty subset I of a
seminear-ring R is called a left (right) ideal if,

(i) for all x, y ∈ I , x + y ∈ I and
(ii) for all x ∈ I and a ∈ R, ax ∈ I (xa ∈ I )

I is said to be an ideal of R it is both a left ideal and a right ideal of R. We observe
that if I is an ideal of a seminear-ring R, then I is a subseminear-ring of R.

Definition 4 A map f from R into R is called a mate function for R if for all x in
R, x = x f (x)x . ( f (x) is called a mate of x).

Definition 5 (Weinert H.J. [16]) If S is any nonempty subset of R, then
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(i) the left annihilator of S in R is l(S) = {x ∈ R/xs = 0 for all s ∈ S}. When
S = {s}, l(S) is denoted by l(s).

(ii) the right annihilator of S in R is r(S) = {x ∈ R/sx = 0 for all s ∈ S}. When
S = {s}, r(S) is denoted by r(s).

Lemma 1 Let R be a seminear-ring. Then l(S) is a left ideal where S is any nonempty
subset of R.

Proof Let I = l(S) = {x ∈ R/xs = 0}. For s ∈ S, x, y ∈ I, (x+y)s = xs+ys = 0
implies that x + y ∈ I . Further x ∈ I, y ∈ R we have yxs = y0 = 0 which implies
yx ∈ I . Thus I is a left ideal.

Definition 6 For any two nonempty subsets A, B of R, we denote the subset {x ∈
R/x B ⊆ A} by (A : B).

Lemma 2 If A is an ideal of a seminear-ring R and B is any subset of R, then
(A : B) is always a left ideal.

Proof Let I = (A : B) = {x ∈ R/x B ⊆ A}. For b ∈ B and x, y ∈ I, (x + y)b =
xb + yb ⊆ A implies that x + y ∈ I . For x ∈ I, y ∈ R we have yxb ∈ y A ⊆ A
(since A is an ideal) which implies yx ∈ I . Thus I is a left ideal.

Definition 7 (Javed AHSAN [2]) An ideal I of R is called

(i) a prime ideal if AB ⊆ I implies A ⊆ I or B ⊆ I holds for all ideals A, B of R.
(ii) a semi prime ideal if A2 ⊆ I implies A ⊆ I holds for all ideals A of R.
(v) a strictly prime ideal if for left ideals A, B of R, AB ⊆ I implies A ⊆ I or

B ⊆ I .

Definition 8 (Definition 9.1, p.288, Pilz [12]) A seminear-ring R is said to fulfill the
Insertion of Factors Property—IFP for short—if for a, b,∈ R, ab = 0 ⇒ axb = 0
for all x ∈ R.

Definition 9 R is said to haveDCC (ACC) on left ideals if every descending (ascend-
ing) chain of left ideals of R terminates after a finite stage. Similarly, we can define
DCC (ACC) on right ideals.

Definition 10 (Definition 9.30, p.300, Pilz [12]) A seminear-ring R is called
Boolean if x2 = x for all x ∈ R.

3 Main Results

In this section, we define the concept of left bipotent and medial left bipotent
seminear-ring and furnish examples of these concepts. Also we derive some of the
properties of medial left bipotent seminear-rings.
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Definition 11 [11] We say that a seminear-ring R is left bipotent if Ra = Ra2 for
all a ∈ R.

Example 1 (i) Any Boolean seminear-ring is obviously left bipotent.
(ii) Let R = {0, a, b, c, d}. We define the semigroup operations “+” and “.” in R

as follows.

+ 0 a b c d
0 0 a b c d
a a a a a a
b b a b b b
c c a b c c
d d a b c d

. 0 a b c d
0 0 0 0 0 0
a 0 a a a a
b 0 a b b b
c 0 a b c c
d 0 a b c d

Then (R,+, .) is a left bipotent seminear-ring.
(iii) We consider the seminear-ring (R,+, .) where R = {0, a, b, c, d} and the

semigroup operations “+” and “.” are defined as follows.

+ 0 a b c d
0 0 a b c d
a a a b d d
b b b b d d
c c d d c d
d d d d d d

. 0 a b c d
0 0 0 0 0 0
a 0 a a a a
b 0 a b b b
c 0 a b b b
d 0 a d d d

Obviously (R,+, .) is a left bipotent seminear-ring. It is worth noting that this
seminear-ring is not Boolean.
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Definition 12 (Pellegrini Manara.S. [7]) A seminear-ring R is said to be medial if
xyzt = xzyt for all x, y, z and t in R.

Definition 13 A seminear-ring which is both medial and left bipotent is called a
medial left bipotent seminear-ring.

We shall now give an example of a medial left bipotent seminear-ring.

Example 2 Let R = {0, a, b, c}. We define the semigroup operations “+” and “.” in
R as follows.

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

. 0 a b c
0 0 0 0 0
a 0 b c a
b 0 c a b
c 0 a b c

Obviously (R,+, .) is a medial left bipotent seminear-ring.

Proposition 1 Let R be a medial seminear-ring with a mate function f . Then R is
medial left bipotent seminear-ring.

Proof Since f is a mate function for R, we have x = x f (x)x for every x in R.
Clearly f (x)x is an idempotent. Hence x = x( f (x)x f (x)x) = x f (x)2x2 (since R
is medial). Hence x ∈ Rx2, so that Rx ⊆ Rx2. Clearly Rx2 ⊆ Rx . Thus Rx = Rx2.
Hence R is a medial left bipotent seminear-ring.

Proposition 2 Let R be a medial left bipotent seminear-ring. Then the following are
true.

( i) R satisfies IFP.
( ii) ab = 0 implies Rba = 0 for every a, b in R.

Proof (i) Suppose ab = 0 for some a, b ∈ R. Since R is left bipotent, for any
x ∈ R, axb = ax ′b2 for some x ′ ∈ R. Since R is medial we have ax ′b2 = ax ′bb =
abx ′b = 0. So that axb = 0. Thus R satisfies IFP.

(ii) Suppose ab = 0. Now (ba)2 = b(ab)a = 0. Since R is left bipotent we have,
Rba = R(ba)2 = 0. Hence Rba = 0.



456 R. Perumal and P. Chinnaraj

Proposition 3 In a medial left bipotent seminear-ring l(x) is an ideal for any x ∈ R.

Proof By Lemma 1, l(x) is a left ideal. Let us show that l(x) is a right ideal. Let
z ∈ R and let y ∈ l(x). Then by Proposition 2(i), yzx = 0. Hence yz ∈ l(x) so that
l(x)R ⊆ l(x). Hence l(x) is a right ideal. Thus l(x) is an ideal.

Proposition 4 Let R be a medial left bipotent seminear-ring. If I is any ideal of R,
then (I : S) is an ideal for any subset S of R.

Proof Clearly (I : S) is a left ideal by Lemma 2. Let x ∈ (I : S) and let s ∈ S. Then
xs ∈ I . Since R is left bipotent, Rs = Rs2. Hence for any y ∈ R, ys = y′s2 for
some y′ ∈ R. Hence xys = xy′s2. Since R is medial, xy′s2 = xy′ss = xsy′s ∈ I
as xs ∈ I . Hence xys ∈ I so that (I : S) R ⊆ (I : S). Hence (I : S) is a right ideal.
Thus (I : S) is an ideal.

Definition 14 (Groenewald N.J. [4]) An ideal I of a seminear-ring R is said to be
strongly prime if and only if for every x /∈ I , there is a finite subset F of 〈x〉 such
that for all a ∈ R, Fa ⊆ I implies a ∈ I .

Definition 15 Aseminear-ring R is called strongly prime if andonly if every nonzero
ideal I of R contains a finite subset F such that the right annihilator r (F) of F is
{0}.
Theorem 1 Let R be a medial left bipotent seminear-ring without nonzero zero
divisors. Then R is prime if and only if for a, b ∈ R, a Rb = 0 implies a = 0 or
b = 0.

Proof Assume that R is prime. Suppose that a Rb = 0. Then a ∈ (0 : Rb). Hence
〈a〉 ⊆ (0 : Rb) so that 〈a〉 Rb = 0 Hence by Proposition 2 (ii), Rb 〈a〉 = 0 so that
〈Rb〉 〈a〉 = 0. Since R is prime, we have 〈Rb〉 = 0 or 〈a〉 = 0. Hence Rb = 0 or
〈a〉 = 0. Since R has no zero divisors, we have a = 0 or b = 0. The Converse is
obvious.

Proposition 5 Let R be a medial left bipotent seminear-ring without nonzero zero
divisors. If R is prime and has D.C.C on right annihilators, then R is strongly prime.

Proof Let I be any ideal of R and consider the collection of right annihilators {r(F)}
where F runs over all finite subsets of I . Since right annihilators satisfy D.C.C, by
Zorn’s lemma there exists a minimal element M = r(F0). We claim that M = {0}.
For, if M 
= 0, then there is 0 
= m ∈ M such that F0m = 0. Since R is prime there
exists 0 
= b ∈ R such that mbm 
= 0. Hence bm 
= 0. Let S = r(F0 ∪ {b}). Clearly
S ⊆ M . Now m ∈ M , but m /∈ S. Hence S ⊂ M , a contradiction. Consequently
r(F0)(= M) = {0} and the desired result now follows.
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Subcentral Automorphisms

R.G. Ghumde and S.H. Ghate

Abstract A concept of subcentral automorphisms of group G with respect to a
characterstic subgroup M of Z(G) along with relevant mathematical paraphernalia
has been introduced. With the help of this, a number of results on central automor-
phisms have been generalized.

Keywords Central automorphisms ·Subcentral automorphisms ·Purely nonabelian
group

1 Introduction

Let G be a group. We shall denote the commutator, center, group of automorphisms,
and group of inner automorphisms of G by G ′, Z(G), Aut(G), and Inn(G), respec-
tively. Let exp(G) denote the exponent of G.

For any group H and abelian group K , let Hom(H, K ) denote the group of
all homomorphisms from H to K . This is an abelian group with binary operation
f g(x) = f (x)g(x) for f, g ∈ Hom(H, K ).
An automorphism α of G is called central if x−1α(x) ∈ Z(G) for all x ∈ G. The

set of all central automorphisms of G, which is here denoted by Autc(G), is a normal
subgroup of Aut(G). Notice that Autc(G) = CAut(G)(Inn(G)), the centralizer of the
subgroup Inn(G) in the group Aut(G). The elements of Autc(G) act trivially on G ′.

There have been number of results on the central automorphisms of a group. M.J.
Curran [2] proved that, “For any non abelian finite group G, Autzz(G) is isomor-
phic with Hom (G/G ′Z(G), Z(G)), where Autzz(G) is group of all those central
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automorphisms which preserve the centre Z(G) elementwise.” In [3], Franciosi et
al. showed that, If “Z(G) is torsion free and Z(G)/G ′ ∩ Z(G) is torsion, then
Autc(G) acts trivially on Z(G). It is an abelian and torsion free group”. They fur-
ther proved that,“Autc(G) is trivial when Z(G) is torsion free and G/G ′ is tor-
sion.” In [5], Jamali et al. proved that, “For a finite group G in which Z(G) ≤ G ′,
Autc(G) ∼= Hom(G/G ′, Z(G)).” They also proved that, “If G is a purely non-
abelian finite p-group of class two (p odd), then Autc(G) is elementary abelian if
and only if Ω1(Z(G)) = φ(G), and exp(Z(G)) = p or exp(G/G ′) = p,” where
φ(G) is Frattini subgroup of G and Ω1(Z(G)) = 〈x ∈ Z(G)|x p = 1〉 . Note that,
a group G is called purely nonabelian if it has no nontrivial abelian direct factor.
Adney [1] proved that, “If a finite group G has no abelian direct factor, then there is
a one-one and onto map between Autc(G) and Hom(G, Z(G)).”

In this article, we generalize the above results to subcentral automorphisms.

2 Subcentral Automorphisms

Let M and N be two normal subgroups of G.
By AutN (G), we mean the subgroup of Aut(G) consisting of all automorphisms

which induce identity on G/N .
By AutM (G), we mean the subgroup of Aut(G) consisting of all automorphisms

which induce identity on M .
Let AutNM (G) = AutN (G) ∩ AutM (G). From now onward, M will be a char-

acteristic central subgroup, and elements of AutM (G) will be called as subcentral
automorphisms of G (with respect to subcentral subgroup M). It can be seen that,
AutM (G) is a normal subgroup of Autc(G).

We further, let C∗ = {α ∈ AutM (G)|αβ = βα,∀β ∈ AutM (G)}.
Clearly, C∗ is a normal subgroup of Aut(G). Since every inner automorphism

commutes with elements of Autc(G), Inn(G) ≤ C∗. If we take M = Z(G), then C∗
is same as Inn(G).

Let K =< {[g,α]|g ∈ G,α ∈ C∗} >, where [g,α] ≡ g−1α(g).
If M = Z(G) then K = G ′. However, in general, G ′ is a subgroup of K for every

central subgroup M .
In the following, K and C∗ will always correspond to a central subgroup of M of

G as in the above definitions.
Our main results are given by the following theorems.

Theorem 1 For a finite group G, AutMM (G) ∼= Hom
( G

KM , M
)
.

Theorem 2 Let G be a group with M torsion free and M/M ∩ K torsion. Then
AutM (G) is a torsion-free abelian group which acts trivially on M.

Theorem 3 Let G be a purely nonabelian finite group, then |AutM (G)| = |Hom
(G, M)|.
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Theorem 4 Let G be a purely nonabelian finite p-group (p odd), then AutM (G) is
an elementary abelian p-group if and only if exp(M) = p or exp(G/K ) = p.

Following proposition shows that each element of K is invariant under the natural
action of AutM (G).

Proposition 1 AutM (G) acts trivially on K .

Proof Consider an automorphism α ∈ AutM (G). This implies x−1α(x) ∈ M ,
for all x ∈ G. So α(x) = xm for some m ∈ M . Let β ∈ C∗. By definition of
C∗, we have α([x,β]) = α(x−1β(x)) = (α(x))−1β(α(x)) = m−1x−1β(xm) =
m−1x−1β(x)m = x−1β(x) = [x,β]. Hence the results follows. �
Proof of Theorem 1 For any μ ∈ AutMM (G), define the map ψμ ∈ Hom

( G
KM , M

)
as

ψμ(gKM) = g−1μ(g).
We first show that ψμ is well defined.
Let gKM = hKM, i.e., gh−1 ∈ KM.

∴ μ(gh−1) = gh−1 ⇒ g−1μ(g) = h−1μ(h) ⇒ ψμ(gKM) = ψμ(hKM).

For proving ψμ is a homomorphism, consider ψμ(gKMhK M) = ψμ(ghKM) =
(gh)−1μ(gh) = h−1g−1μ(g)μ(h) = g−1μ(g)h−1μ(h) = ψμ(gKM).ψμ(hKM)

Now define a map ψ : AutMM (G) −→ Hom
( G

KM , M
)
, as ψ(μ) = ψμ.

We show that ψ is the required isomorphism.
For f, g ∈ AutMM (G) and h ∈ G, ψ( f g)(hKM) = ψ f g(hKM) = h−1 f g(h) =
h−1 f (hh−1g(h)) = h−1 f (h)h−1g(h) = ψ f (hKM)ψg(hKM) = ψ f .ψg(hKM).
Hence ψ( f g) = ψ( f )ψ(g).

Consider ψ(μ1) = ψ(μ2), i.e., ψμ1(gKM) = ψμ2(gKM), g ∈ G. This implies
g−1μ1(g) = g−1μ2(g) ⇒ μ1 = μ2, as g is an arbitrary element of G. Thus ψ is a
monomorphism.

We next show that ψ is onto. For any τ ∈ Hom
( G

KM , M
)
, define a map μ : G → G

as μ(g) = gτ (gKM), g ∈ G.
Now we show that μ ∈ AutMM (G). For g1, g2 ∈ G,μ(g1g2) = g1g2τ (g1g2KM)

= g1τ (g1KM)g2τ (g2KM) = μ(g1)μ(g2). ∴ μ is a homomorphism on G.
Further, let μ(g) = 1. This implies gτ (gKM) = 1 ⇒ τ (gKM) = g−1 ⇒ g−1 ∈ M
∴ gKM = KM ⇒ τ (gKM) = 1 ⇒ g = 1. Hence μ is one-one.
As G is finite, μmust be onto. So μ ∈ Aut(G). Further, as g−1μ(g) = g−1gτ (gKM)

= τ (gKM) ∈ M , so μ ∈ AutM (G). Also if g ∈ M , then μ(g) = g(τ (gKM)) =
gτ (KM) = g. Thus, μ ∈ AutMM (G) and ψ(μ) = τ .

Hence the theorem follows. �

Corollary 1 Let G be finite group with M ≤ K , then AutM (G) ∼= Hom(G/K , M).

Proof Since M ≤ K , G
KM = G/K . The result follows directly from Theorem 1 and

Proposition 1. �



462 R.G. Ghumde and S.H. Ghate

Proof of Theorem 2 Let α ∈ AutM (G). If x is an element of M , then by the
hypothesis xn ∈ M ∩ K for some positive integer n. By Proposition 1, we have
xn = α(xn) = (α(x))n , and hence x−n(α(x))n = 1. Since x−1α(x) ∈ M , this
implies (x−1α(x))n = 1. As M is torsion free, this implies that x−1α(x) = 1, i.e.,
α(x) = x . Therefore, AutM (G) acts trivially on M .
Let α,β ∈ AutM (G) and x ∈ G. So αβ(x) = α(β(x)) = α(xx−1β(x)) =
α(x)x−1β(x) = xx−1α(x)x−1β(x) = β(x)x−1α(x) = β(x)β(x−1α(x)) =
βα(x). Thus, AutM (G) is an abelian group.
Now, consider α ∈ AutM (G), and suppose there exists k ∈ N such that αk = 1.
Since x−1α(x) ∈ M for all x ∈ G, there exists g ∈ M such that α(x) = xg. Further,
α2(x) = α(α(x)) = α(xg) = α(x)α(g) = xg2(∵ α acts trivially on M). Hence,
by induction, αn(x) = xgn . But αk = 1 ⇒ x = xgk , i.e., gk = 1. As M is torsion
free, we must have g = 1. Thus α(x) = x for every x , i.e., α = 1.
Therefore, AutM (G) is torsion free, and the theorem follows. �
Proposition 2 Let G be a group in which M is torsion free and G/K is torsion, then
AutM (G) = 1.

Proof Let α ∈ AutM (G) and x ∈ G. Then by the assumption, xn ∈ K for
some n ∈ N . As α fixes K elementwise, we have (α(x))n = α(xn) = xn . So
x−n(α(x))n = 1. But α ∈ AutM (G) and hence x−1α(x) ∈ M ≤ Z(G). This
implies that (x−1α(x))n = 1. Since M torsion free, it follows that x−1α(x) = 1,
i.e., α(x) = x,∀x ∈ G. So AutM (G) = 1. �
Proof of Theorem 3 For f ∈ AutM (G), we let α( f ) ≡ α f defined as α( f )(g) ≡
α f (g) = g−1 f (g), g ∈ G. It can be shown that α f ∈ Hom(G, M). We thus have
α : AutM (G) → Hom(G, M).
One can easily see that α is injective.
It just remains to show that α is onto.
For σ ∈ Hom(G, M), consider the map f : G → G given by f (g) = gσ(g). f is an
endomorphism and also g−1 f (g) = σ(g) ∈ M , which implies that f is subcentral
endomorphism of G, and hence f is normal endomorphism(i.e., f commutes with
all inner automorphisms). So, clearly Im( f ) is a normal subgroup of G.
It is easy to see that f n is also normal endomorphism and hence Im f n is a normal
subgroup of G, for all n ≥ 1. Since G is a finite group, the two series

Ker f ≤ Ker f 2 ≤ . . . . . .

Im f ≥ Im f 2 ≥ . . . . . .

will terminate.
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So there exists k ∈ N such that

Ker f k = Ker f k+1 = . . . = A

Im f k = Im f k+1 = . . . . . . = B

Now, we prove that G = AB.

Let g ∈ G, f k(g) ∈ Im f k = Im f 2k , and so f k(g) = f 2k(h), for some h ∈ G.
Therefore f k(g) = f k( f k(h)). This implies f k(g−1) f k(g) = f k(g−1) f k( f k(h)).
Thus ( f k(h))−1g ∈ Ker f k = A. Thus g ∈ AB and hence G = AB.
Clearly A ∩ B =< 1 > and therefore G = A × B. If f (g) = 1, then g−1σ(g) = 1.
This implies Ker f ≤ M . Similarly, if f 2(g) = 1, i.e., f ( f (g)) = 1. Thus f (g) ∈
ker f ≤ M. Therefore, gσ(g) ∈ M ⇒ g ∈ M . Hence ker f 2 ≤ M. Repetition of
this argument gives, A ≡ ker f k ≤ M ≤ Z(G). This implies A is an abelian group.
By assumption, G is purely nonabelian and hence, we must have A ≡ Ker f k = 1.
This further implies Ker f = 1, i.e., f is injective. So G = B ≡ Im f k = Im f.
Thus f surjective. Hence, f ∈ AutM (G). From the definition of α, it follows that
α( f ) = σ. α is thus surjective. Therefore, α is the required bijection. Hence the
result follows. �

Proposition 3 Let G be a purely nonabelian finite group, then for each α ∈
Hom(G, M) and each x ∈ K , we have α(x) = 1. Further Hom(G/K , M) ∼=
Hom(G, M).

Proof Whenever G is purely nonabelian group, then by Theorem 3, |AutM (G)| =
|Hom(G, M)|. For every σ ∈ AutM (G), it follows that fσ : x → x−1σ(x) is a
homomorphism from G to M . Further the map σ → fσ is one–one and thus a
bijection because |AutM (G)| = |Hom(G, M)|. So every homomorphism from G to
M can be considered as an image of some element of AutM (G) under this bijection.
Letα ∈ Hom(G, M). Since K = {[g,α]|g ∈ G,α ∈ C∗}, a typical generator of K is
given by g−1β(g) for some g ∈ G, and β ∈ C∗. So α(g−1β(g)) = fσ(g−1β(g)) =
(g−1β(g))−1σ(g−1β(g)) = β−1(g)gg−1β(g) = 1(∵ g−1β(g) ∈ K ). It follows
that α(x) = 1, for every x ∈ K .

Now consider the map φ : Hom(G, M) −→ Hom(G/K , M) such that φ( f ) = f̄ ,
where f̄ (gK ) = f (g) for all g ∈ G. Clearly this map φ is an isomorphism. �
Proposition 4 Let G be a purely nonabelian finite group, then |AutM (G)| =
|Hom(G/K , M)|.
Proof Proof follows directly from Theorem 3 and Proposition 3. �
Proposition 5 Let p be a prime number. If G is a purely nonabelian finite p-group
then AutM (G) is a p-group.
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Proof By the assumption, the subgroup M and hence Hom (G/K , M) are finite p-
groups. Hence the result follows directly from Proposition 4. �
Proposition 6 Let G be a purely nonabelian finite group
(i) If gcd(|G/K |, |M |) = 1, then AutM (G) = 1 .
(ii) If AutM (G) = 1, then M ≤ K .

Proof (i) Follows from Proposition 4.
(ii) Let |G/K | = a and |M | = b. Since AutM (G) = 1, hence by Proposition 4,
(a, b) = 1 . So there exist integers λ and μ such that λa +μb = 1. Let x ∈ M . Thus
x K = (x K )1 = (x K )λa+μb = (x K )λa(x K )μb = K ⇒ x ∈ K . �
Remark 1 From Corollary 1, and Proposition 3, we can say that, whenever M ≤ K ,
AutM (G) ∼= Hom(G, M). Evenwhen Im f ≤ K , for all f ∈ Hom(G, M), this result
holds. Thus, if G is a purely nonabelian finite group and if for all f ∈ Hom(G, M),
Im f ≤ K , then AutM (G) ∼= Hom(G/K , M).

Remark 2 For every f ∈ Hom(G, M), the map σ f : x → x f (x) is a subcentral
endomorphism of G. This endomorphism is an automorphism if and only if f (x) �=
x−1 for all 1 �= x ∈ G (G is finite).

Following lemma has been proved in [4], we shall use it to prove Theorem 4.

Lemma 1 Let x be an element of a finite p-group G and N a normal subgroup of G
containing G ′ such that o(x) = o(x N ) = p. If the cyclic subgroup < x > is normal
in G such that ht (x N ) = 1, then < x > is a direct factor of G.

In the above statement ht denotes height. Height of an element a of a group G is
defined as the largest positive integer n such that for some x in G, xn = a.

Proof of Theorem 4 For the odd prime p, let AutM (G) be an elementary abelian p-
group.Assume that the exponent of M andG/K are both strictly greater than p. Since
G/K is finite abelian, it has a cyclic direct summand 〈x K 〉 say, of order pn(n ≥ 2)
and hence G/K ∼= 〈x K 〉× L/K . For f ∈ Hom(G, M), consider f (x) = a for any
x ∈ G. So f̄ (x K ) = a. Since exp (M) is strictly greater than p, the order of a is
pm , for some m, 2 ≤ m ≤ n.
We can use the homomorphism f̄ to get corresponding homomorphism ( also denoted
by same notation ) f̄ as f̄ : 〈x K 〉 × L/K → M with (xi K , l K ) → ai . The map f̄
on < x K > ×L/K is well defined, since o(a)|o(x K ) (as m ≤ n).
If aK = (xs K , l K ) then we show that p|s. Assume p � |s, then < x K >=< xs K >

and hence G/K =< aK > L/K . Now we have o(a) ≥ o(aK ) ≥ o(xs K ) =
o(x K ) ≥ o( f̄ (x K )) = o(a). This implies that o(a) = o(aK ). Thus< a > ∩K = 1.
As o(aK ) = o(x K ), we get G/K ∼=< aK > ×L/K and hence G ∼=< a > ×L .
This is a contradiction, as G is a purely nonabelian group. Thus p|s.
By Remark 2 and Theorem 3, σ f ∈ AutM (G) and by assumption o(σ f ) = p.
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Now, we have σ f (x) = x f (x) = xa. Since f (a) = f̄ ((x K )s, l K ) = as , we have

σ2
f (x) = xas+2 = xa

(s+1)2−1
s .

Also, σ3
f (x) = xa

(
(s+1)3−1

s

)

.
Generalizing this,

we get σt
f (x) = xa

(
(s+1)t −1

s

)
, for every t ∈ N .

As the order of σ f is p, we have a
(s+1)p−1

s = 1. Since p is odd and p|s, we have

p2|(
(

(s+1)p−1
s

)
− p).

∴ qp2 + p = (s+1)p−1
s for some q ∈ Z . Thus (a p)qp+1 = 1. But o(a) = pm ⇒

o(a p) = pm−1.
Now
(1) if a p �= 1, then pm−1|(qp + 1). But this is impossible as m ≥ 2.
(2) a p = 1 is also not possible as o(a) = pm and m ≥ 2.

So, the assumption that exp(M) and exp(G/M) are stricly greater than p is wrong.
Conversly, assume that exp(G/K ) = p and f ∈ Hom(G, M). Then by proposition
3, f̄ ∈ Hom(G/K , M). So for x ∈ G, put f̄ (x K ) = a. If aK �= 1, then it follows
that o(aK (G)) = o(a) = p. Clearly < a >≤ M(G) ≤ Z(G) and hence the cyclic
subgroup < a > is normal in G. We also have ht (aK ) = 1. Now by the Lemma 1,
the cyclic subgroup < a > is an abelian direct factor of G, and this contradicts the
assumption. Therefore a ∈ K . This implies that Im( f ) ≤ K . Hence by Remark 1
AutM (G) ∼= Hom(G/K , M). But as M is abelian, Hom(G/K , M) is abelian. Thus
AutM (G) is abelian. Since exp(G/M) = p, this implies that AutM (G) is an ele-
mentary abelian p-group.

Now assume that exp(M) = p. Consider f, g ∈ Hom(G, M). We first show that
g ◦ f (x) = 1, for all x ∈ G. Assume that f̄ (x K ) = b ∈ M , for x ∈ G. Since
exp(M) = p, it implies that o(b)|p. If b = 1 then g ◦ f (x) = g( f̄ (x K (G))) = 1.
Now take, o(b) = p. If b ∈ K then we have g( f (x)) = g( f̄ (x K (G))) = g(b) = 1.
Assume b does not belong to K . As bp = 1, it follows that o(bK ) = p. Also, as
b ∈ M ≤ Z(G), < b > is normal in G. Now if ht (bK (G)) = 1, then by the Lemma
1, the cyclic subgroup < b > is an abelian direct factor of G, giving a contradiction.
So assume ht (bk(G)) = pm for some m ∈ N . By the definition of height, there
exists an element yK in G/K such that bK = (yK )pm

.But exp(M) = p. Therefore
g ◦ f (x) = g(b) = ḡ(bK ) = ḡ(yK )pm = 1. Thus, for all f, g ∈ Hom(G, M) and
each x ∈ G, g( f (x)) = 1. We can similarly show that f (g(x)) = 1 and hence
f ◦ g = g ◦ f . From Remark 2, σ f ◦ σg = σg ◦ σ f . This shows that AutM (G) is
abelian.

Now we show that each nontrivial element of AutM (G) has order p. So if α ∈
AutM (G), then by Remark 2, there exists a homomorphism f ∈ Hom(G, M) such
that α = σ f . Therefore, we have to show that o(σ f )|p. Clearly, taking f = g
and using f ( f (x)) = 1, x ∈ G, we have x ∈ G, we have σ2

f (x) = σ f (x f (x))
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= x( f (x))2. In general for n ≥ 1, σn
f (x) = x( f (x))n . As exp (M) = p and

f (x) ∈ M we have, σ p
f (x) = x which implies σ

p
f = 1AutM (G).

Hence o(σ f )|p. Thus, o(α)|p ∀α ∈ AutM (G). ∴AutM (G) is an elementary abelian
group.

�
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On Symmetric Laplace Integral of Order n

S. Ray and A. Garai

Abstract A symmetric integral of Perron type is defined using symmetric Laplace
derivative, which is more general than other symmetric integrals like SCP integral of
Burkill (Proc. Lond. Math. Soc. 3:46–57, 1951, [2]), T n integral of Mukhopadhyay
(Real Anal. Exch. 30:451–494, 2004–2005, [7]). The properties of this symmetric
integral are studied.

Keywords Laplace derivative · Symmetric laplace derivative · Laplace smooth ·
Symmetric integral

1 Introduction

Laplace derivative is a generalization of the Peano derivative. This is a new type
of derivative first introduced by Sevtic in [15] in 2000 and the properties of this
derivative were recently explored in the articles [8, 10–13], and in the book [6]. The
symmetric version of this derivative is studied in [3] and [4] (see also [6] and [9]).

Generally, symmetric integral is a Perron-type integral defined using symmetric
derivative. Symmetric integral is a useful tool to handle trigonometric series. In this
article we have defined a symmetric integral using symmetric Laplace derivative.
This integral is a generalization of the T n integral introduced in [7]. We study the
properties of this integral.
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2 Definition and Notation

Let a function f : R → R be integrable in some neighborhood of x ∈ R. If there
are real numbers α0, α2, .... α2k such that

lim
s→∞ s2k+1

∫ δ

0
e−st

[
f (x + t) + f (x − t)

2
−

k∑
i=0

t2i

(2i)!α2i

]
dt = 0,

for some δ > 0, then α2k is called the symmetric Laplace derivative of f at x of order
2k and is denoted by SL D2k f (x). Also, if there are real numbers α1, α3, .... α2k+1
such that

lim
s→∞ s2k+2

∫ δ

0
e−st

[
f (x + t) − f (x − t)

2
−

k∑
i=0

t2i+1

(2i + 1)!α2i+1

]
dt = 0,

for some δ > 0 then α2k+1 is called the symmetric Laplace derivative of f at x
of order 2k + 1 and is denoted by SL D2k+1 f (x). These definitions do not depend
on δ, [3]. If SL D2k f (x) exists then SL D2i f (x) exists for 0 < i < k also if f is
continuous at x then SL D0 f (x) = f (x) (see Theorem 2.3 of [3]). If SL D2k f (x0)
exists we define

SL D
2k+2

f (x0) = lim sup
s→∞

s2k+3
∫ δ

0
e−stθ2k+2( f, x0, t)dt,

where

θ2k+2( f, x0, t) =
[

f (x0 + t) + f (x0 − t)

2
−

k∑
i=0

t2i

(2i)! SL D2i f (x0)

]
.

The definition of SL D2k+2 f (x0) is analogous. Suppose SL D2k−2 f (x) exists, then
f is said to be Laplace smooth at x of order 2k if

lim
s→∞ s2k

∫ δ

0
e−st

[
f (x + t) + f (x − t)

2
−

k−1∑
i=0

t2i

(2i)! SL D2i f (x)

]
dt = 0.

The definitions for odd cases are similar. It is easy to verify that if SL D
2k

f (x) and
SL D2k f (x) exist and finite, then f is Laplace smooth of order 2k at x (see [6]).
Suppose f : R → R be integrable in a right neighborhood of x (respectively left
neighborhood of x) if there are real numbers α0, α1, ..... αr such that

lim
s→∞ sr+1

∫ δ

0
e−st

[
f (x + t) −

r∑
i=0

t i

i !αi

]
dt = 0
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(respectively,

lim
s→∞ sr+1

∫ δ

0
e−st

[
f (x − t) −

r∑
i=0

(−t)i

i ! αi

]
dt = 0),

then αr is called the right-hand (left hand) Laplace derivative of f at x of order r
and denoted by L D+

r f (x)[L D−
r f (x)]. If L D+

r f (x) exists it is easy to verify that
L D+

i f (x) exists and αi = L D+
i f (x) for 0 ≤ i ≤ r . Similar result holds for the

left derivative also. If L D+
r f (x) and L D−

r f (x) exist and L D+
i f (x) = L D−

i f (x)

for i = 0, 1, ......r, then f is said to have Laplace derivative at x of order r and is
denoted by L Dr f (x). If L Dr f (x) exists then SL Dr f (x) exists with equal value
(Theorem 2.4 [3]).

3 Preliminaries

Lemma 3.1 Let F : [a, b] → R. If F (r) exists and is convex in (a, b), then F is
r + 2 convex in (a, b). If moreover F ∈ D in [a, b], then F is r + 2 convex in [a, b].
This is Lemma 3.5 of [5].

Theorem 3.2 Let f : [a, b] → R be such that
(i) f is continuous in [a, b],
(ii) SL Dn f exists in (a, b) and SL Dl f ∈ D ∩B∗

1 in (a, b) for l = n −2, n −4, ...,
(iii) SL Dn f ∈ D ∩ B∗

1 in (a, b),

(iv) SL D
n+2

f (x) ≥ 0 a.e. in (a, b),

(v) SL D
n+2

f (x) ≥ −∞ in (a, b) except on a countable subset E ⊂ (a, b),
(vi) f ∈ Sn+2(x) for x ∈ E.
Then SL Dn f is convex in (a, b) and it is the continuous derivative f (n) in (a, b).

The proof of this theorem follows from Theorem 3.22 of [4] by using standard
argument used to prove Theorem 1.1 of [2] or Theorem 16 of [1].

Lemma 3.3 Let f : [a, b] → R be such that
(i) f is continuous in [a, b],
(ii) SL Dn−2 f exists finitely in (a, b) and SL Dl f ∈ D in (a, b) for l = n − 2, n −
4, ...,
(iii) SL D

n
f (x) ≥ 0 a.e in (a, b) ,

(iv) f is Laplace smooth of order n for all x ∈ (a, b)

(v) SL D
n

f (x) > −∞ except on a countable set in (a, b), Then f (n−2) exists, is
continuous and convex in [a, b].
Proof ByCorollary 3.3 of [3], SL Dl f ∈ B∗

1(a, b) for l = n−2, n−4, ..., and hence
by Theorem 3.2, SL Dn−2 f is convex in (a, b) and it is the continuous derivative
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f (n−2) in (a, b). Hence by Lemma 3.1, f is n- convex in [a, b]. Hence the (n − 2)
th order Peano derivative f(n−2) of f exists and is convex in [a, b] (by [1]). Hence
lim

x→a+ f(n−2)(x) and lim
x→b− f(n−2)(x) exists and since f(n−2)(x) ∈ D in [a, b] (by

[14]), f(n−2)(x) is continuous in [a, b]. Therefore by [14], f(n−2) is the ordinary
derivative f (n−2) and the result is proved.

Definition 3.4 Let f be an extended real valued function on [a, b]. A function Q is
said to be an LT n major function of f if
(i) Q is continuous in [a, b],
(ii) L Dn−2Q exists finitely in [a, b],
(iii) L Dn−1Q exists finitely in [a, b] except on a set of measure zero in (a, b),
(iv) L Dr Q(a) = 0 for r = 0, 1, ....., n − 1,
(v) SL Dn Q ≥ f a.e in (a, b),
(vi) SL Dn Q > −∞ except on a countable set in (a, b),
(vii) Q is Laplace smooth of order n in (a, b).

Similarly, a function q : [a, b] → R is said to be a LT n minor function of f if (−q)

is an LT n major function of (− f ). For LT n major or LT n minor function we simply
write major or minor function when there is no confusion.

4 Main Results

Lemma 4.1 If Q and q are, respectively, major and minor functions of f , then for
each r, 1 < r ≤ n, (Q − q)(n−r) exists and is k- convex, 0 ≤ k ≤ r , in [a, b] and so
L Dn−r Q − L Dn−r q is k- convex in [a, b].
Proof Let φ = Q − q, then φ is continuous and L Dn−2φ exists in [a, b]. So by
Theorem 17 of [8] L Dkφ ∈ D for 1 ≤ k ≤ n − 2. Also, φ is Laplace smooth
of order n in (a, b) and SL Dnφ ≥ SL Dn Q − SL D

n
q ≥ 0 a.e in (a, b), and

SL Dnφ > −∞ except on a countable set in (a, b). Hence by Theorem 3.3, φ(n−2)

exists, is continuous and convex in [a, b]. So the right-hand derivative ofφ(n−2) exists
in [a, b) and left-handderivative ofφ(n−2) exists in (a, b] and thefirst order derivative,
i.e., φ(n−1) exists except on a countable set in (a, b) and φ(n−1) is nondecreasing on
the set where it exists. Since φ(n−1)(a) = L Dn−1Q(a) − L Dn−1q(a) = 0, φ(n−1)

is also nonnegative on the set where it exists. Also, φ(n−2)(x) =
∫ x

a
φ(n−1)(t)dt ,

x ∈ [a, b]. Since φ(n−1) is nonnegative a.e, φ(n−2) is nonnegative, nondecreasing,
and convex in [a, b]. So L Dn−2Q − L Dn−2q is nonnegative, nondecreasing, and
convex in [a, b]. Thus the result is true for r = 2. Suppose the result is true for
any r , 1 < r < n. Then by induction hypothesis φ(n−r) exists and is k-convex for
0 ≤ k ≤ r in [a, b], and so



On Symmetric Laplace Integral of Order n 471

φ(n−r−1)(x) =
∫ x

a
φ(n−r)(t)dt, x ∈ [a, b].

Hence φ(n−r−1) is k-convex, 0 ≤ k ≤ r + 1 in [a, b], i.e., L Dn−r−1Q − L Dn−r−1q
is k-convex, 0 ≤ k ≤ r + 1. So the result is true for r + 1. Therefore the proof is
completed by induction.

Definition 4.2 Let {Q} and {q} be the collection of all major and minor functions
of f in [a, b]. Let
u = inf

Q∈{Q} L Dn−1Q(b) and v = sup
q∈{q}

L Dn−1q(b).

By Lemma 4.1, (Q − q)(n−2) exists and is k- convex, 0 ≤ k ≤ 2, in [a, b] for
any Q ∈ {Q} and any q ∈ {q} . So the left-hand derivative of (Q − q)(n−2) exists
at b and the right-hand derivative of (Q − q)(n−2) exists at a and (Q − q)(n−1)

exists except on a countable set in (a, b) and is nondecreasing on a set where it
exists. Hence L Dn−1Q − L Dn−1q is nondecreasing on a set S ⊂ [a, b], such that
a, b ∈ S and μ(S) = b − a. Therefore, L Dn−1Q(b) ≥ L Dn−1q(b). Since this is
for arbitrary Q ∈ {Q} and q ∈ {q}, u ≥ v. If u = v 
= ±∞, then f is said to be
LT n integrable on [a, b] and the common value is called LT n integral of f and is

denoted by (LT n)

∫ b

a
f (x)dx . If there is no confusion we simply write integrable

and integral in place of LT n- integrable and LT n- integral.

Let f be integrable in [a, b] and let ε > 0 be arbitrary. Then there are Q ∈ {Q}
and q ∈ {q} such that for almost all x ∈ [a, b],

0 ≤ L Dn−1Q(x) − L Dn−1q(x) ≤ L Dn−1Q(b) − L Dn−1q(b) < ε (1)

Since (Q − q)(n−2) = L Dn−2Q − L Dn−2q is convex,

L Dn−2Q(x) − L Dn−2q(x) = (Q − q)(n−2)(x) =
∫ x

a
(Q − q)(n−1)(t)dt

=
∫ x

a
[L Dn−1Q(t) − L Dn−1q(t)]dt

for x ∈ [a, b]. Hence from (1) and Lemma 4.1,

0 ≤ L Dn−2Q(x) − L Dn−2q(x) ≤ L Dn−2Q(b) − L Dn−2q(b) < ε(b − a), x ∈ [a, b]
(2)

So for each x ∈ [a, b], since ε is arbitrary,

inf
Q∈{Q} L Dn−2Q(x) = sup

q∈{q}
L Dn−2q(x) = F2(x)(say).

The function F2 is called second primitive of f .
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Suppose the r th primitive Fr , 2 ≤ r < n is defined and the relation

0 ≤ L Dn−r Q(x) − L Dn−r q(x) ≤ L Dn−r Q(b) − L Dn−r q(b) < ε(b − a)r−1, x ∈ [a, b],
(3)

is obtained. Since L Dn−r−1Q(x)− L Dn−r−1q(x) is convex, by Lemma 4.1, we get

L Dn−r−1Q(x)−L Dn−r−1q(x) =
∫ x

a
[L Dn−r Q(t)−L Dn−r q(t)]dt, x ∈ [a, b].

Hence from (3) and Lemma 4.1 we get

0 ≤ L Dn−r−1Q(x) − L Dn−r−1q(x) ≤ L Dn−r−1Q(b) − L Dn−r−1q(b) < ε(b − a)r , x ∈ [a, b].
(4)

and so for fixed x ∈ [a, b],

inf
Q∈{Q} L Dn−r−1Q(x) = sup

q∈{q}
L Dn−r−1q(x) = Fr+1(x)(say).

The function Fr+1 is called the (r + 1) th primitive of f . Thus all the primitive Fr ,
2 ≤ r ≤ n of f are defined.

Theorem 4.3 If f are integrable and if Fk is the k th primitive, k = 2, . . . , n,
then there are sequence of major functions {Qα} and minor functions {qα} such that
{L Dr Qα} and {L Dr qα} converge uniformly to Fn−r in [a, b], r = 0, 1, . . . , n − 2.

Proof If ε > 0 be given, then there is a major function Q and a minor function q
such that

0 ≤ L Dr Q(x) − L Dr q(x) < ε(b − a)n−r−1.

Hence for each positive integer α, there is a major function Qα and minor functions
qα such that

0 ≤ L Dr Qα(x) − L Dr qα(x) <
1

α
(b − a)n−r−1.

From the definition of Fn−r we have

0 ≤ L Dr Qα(x) − Fn−r (x) ≤ L Dr Qα(x) − L Dr qα(x) <
1

α
(b − a)n−r−1.

This shows that {L Dr Qα} converges uniformly to Fn−r on [a, b]. The proof for
minor functions is similar.

Theorem 4.4 Let f be integrable on [a, b] and Fr be the r th primitive of f for 2 ≤
r ≤ n. Then for any major function Q and for any minor function q, L Dn−r Q(x) −
Fr (x) and Fr (x) − L Dn−r q(x) are k-convex, 0 ≤ k ≤ r , in [a, b].
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Proof Let {qα} be a sequence of minor functions such that {L Dn−r qα} converges
uniformly to Fr on [a, b]. So for any major function Q, {L Dn−r Q − L Dn−r q}
converges uniformly to {L Dn−r Q − Fr } on [a, b]. Since for each α , {L Dn−r Q −
L Dn−r qα} is k-convex, {L Dn−r Q − Fr } is k-convex in [a, b] for 0 ≤ k ≤ r . The
proof for Fr (x) − L Dn−r q(x) is similar.

Theorem 4.5 Let f be integrable in [a, b] and Fn be its n th primitive. L Dn−2Fn

exists finitely in [a, b] and there is a measurable set B ⊂ [a, b] with a, b ∈ B and
μ(B) = b − a such that L Dn−1Fn exists finitely in B and L Dn−1Fn(b) equal to the
integral of f in [a, b] and L Dn−1Fn(a) = 0.

Proof Let Q be any major function. Then by Theorem 4.4, the function φ = Q − Fn

is k-convex, 0 ≤ k ≤ n in [a, b] and so the (n − 2) th Peoano derivative φ(n−2) and
hence L Dn−2φ exists everywhere in [a, b], is convexnondecreasing andnonnegative.
Since L Dn−2Q exists finitely in [a, b] , L Dn−2Fn exists finitely in [a, b].Also,φ(n−1)
exists in [a, b] except on a countable set in (a, b) and φ(n−1) is nondecreasing and
nonnegative on the set where it exists. Since L Dn−1Q exists finitely in [a, b] except
on a set of measure zero in (a, b), L Dn−1Fn exists finitely in [a, b] except on a set
of measure zero in (a, b). Let

B = {x : x ∈ [a, b]; L Dn−1Fn exists finitely}.

Then B is the required set. Also, φ(n−1) being nondecreasing and nonnegative

L Dn−1Q(x) − L Dn−1Fn(x) ≥ 0 (5)

for those x ∈ B for which L Dn−1Q(x) exists. Similarly,

L Dn−1Fn(x) − L Dn−1q(x) ≥ 0 (6)

for those x ∈ B for which L Dn−1q(x) exists. Since f is integrable, for any ε > 0
there are Q and q such that L Dn−1Q(b) − L Dn−1q(b) < ε. Since L Dn−1Q(x) −
L Dn−1q(x) is nondecreasing on the set where it exists, we have

0 ≤ L Dn−1Q(x) − L Dn−1q(x) < ε (7)

whenever L Dn−1Q(x) and L Dn−1q(x) exist.
We have from (5)–(7) there is Q ∈ {Q} such that

0 ≤ L Dn−1Q(x) − L Dn−1Fn(x) < ε (8)

whenever L Dn−1Q(x) and L Dn−1Fn(x) exist.
From (5) and (8) we get

inf
Q

{L Dn−1Q(x)} = L Dn−1Fn(x) (9)
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whenever L Dn−1Q(x) and L Dn−1Fn(x) exist.
Since L Dn−1Q(b) and L Dn−1Fn(b) exist, L Dn−1Fn(b) is equal to the integral

of f on [a, b]. Also, (5) and (6) hold for x = a and hence L Dn−1Fn(a) = 0.

Definition 4.6 The set B = {x : x ∈ [a, b]; L Dn−1Fn exists finitely} defined in
the proof of the above Theorem is called the base of the integral of f and L Dn−1Fn ,
which exists finitely in B is called the first primitive of f and will be denoted by F1.

Theorem 4.7 If Q and q are major and minor functions, then L Dn−1Q and L Dn−1q
exist at each point of B.

Proof By Theorem 4.4, Q − Fn is n-convex where Fn is the n th primitive. Let
η ∈ B. Then the one-sided derivatives (Q − Fn)

(n−1),+(η) and (Q − Fn)(n−1),−(η)

exist finitely. Again since L Dn−1Fn(η) exists, L D+
n−1Q(η) and L D−

n−1Q(η) exist
finitely. Since Q is Laplace smooth of order n at η so L Dn−1Q(η) exists. Similarly,
L Dn−1q(η) exists on B.

Theorem 4.8 If f is integrable on [a, b] and Fn is its nth primitive, then
(i) L Dn−r Fn = Fr in [a, b],
(ii) SL Dn Fn = f a.e. in (a, b),

Proof (i) If r = n the case is trivial and if r = 1 the proof follows from Theorem
4.5, we suppose 1 < r < n. By Theorem 4.4 Q − Fn and Fn − q are k convex for
0 ≤ k ≤ n and so (Q − Fn)(n−r) and (Fn − q)(n−r) are k convex for 0 ≤ k ≤ r .
Hence for x ∈ [a, b] and for all major functions Q and all minor functions q, we
have

L Dn−r Q(x) − L Dn−r (Fn)(x) ≥ 0 and L Dn−r (Fn)(x) − L Dn−r q(x) ≥ 0.
(10)

Let ε > 0 be arbitrary. By (4) there is a major function Q and a minor function q
of f such that

0 ≤ L Dn−r Q(x) − L Dn−r q(x) ≤ ε(b − a)r−1 f or all x ∈ [a, b]. (11)

From (10) to (11) we get

0 ≤ L Dn−r Q(x) − L Dn−r Fn(x) ≤ ε(b − a)r−1 f or all x ∈ [a, b]. (12)

From (10) to (12) we get
inf

Q∈{Q} L Dn−r Q(x) = L Dn−r Fn(x) for all x ∈ [a, b].
From definition inf

Q∈{Q} L Dn−r Q(x) = Fr (x), so the proof is completed.

(ii)For any positive integer k define Ek = {x : x ∈ (a, b); f (x) > SL Dn Fn(x)+ 1
k }.

Suppose Ek has positive outer measure p. Choose 0 < ε <
p
2k . Let Q be a major

function such that L Dn−1Q(b)− L Dn−1Fn(b) < ε, [by (9)]. Let A ⊂ [a, b] be the
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set where L Dn−1Q(x) exists. Let R(x) = L Dn−1Q(x) − L Dn−1Fn(x) on A ∩ B,
where B is base of the integral of f . Since Q − Fn is n-convex , L Dn−1Q(x) −
L Dn−1Fn(x) is nondecreasing on A ∩ B. Extend R on whole of [a, b] such that R
remains nondecreasing on [a, b]. By Theorem 4.5 , R(a) = 0. So

∫ b

a
R′ ≤ R(b) < ε (13)

Let Gk = {x : x ∈ A ∩ B ∩ Ek; 0 ≤ R′(x) ≤ 1
2k } and Hk = {x : x ∈ A ∩

B; R′(x) > 1
2k }. Then Hk is measurable and by (13) μ(Hk) < p. Since μ(A ∩ B) =

b − a, A ∩ B ∩ Ek has outer measure p and since R′ exists almost everywhere,
almost all the points of A ∩ B ∩ Ek are points of Gk ∪ Hk and so Gk has positive
outer measure. Since Q − Fn is n- convex, (Q − Fn)(n) and hence L Dn(Q − Fn)

exists finitely a.e in (a, b) and (Q − Fn)(n) = L Dn(Q − Fn) = R′ a.e in (a, b).
So SL Dn(Q − Fn) = R′ since R is monotone. Hence almost everywhere in Gk we
have

f ≤ SL Dn Q = SL Dn Fn + SL Dn(Q − Fn) = SL Dn Fn + R′ ≤ SL Dn Fn + 1

2k
.

But this is a contradiction since Gk ⊂ Ek . So μ(Ek) = 0. Since

{x : x ∈ (a, b); f (x) > SL Dn Fn(x)} = ∪∞
k=1Ek,

we have f ≤ SL Dn Fn(x) a.e in (a, b). Similarly f ≥ SL D
n

Fn(x) a.e in (a, b).
Hence SL Dn Fn exists and equals to f a.e in (a, b).

Theorem 4.9 If f is integrable, then f is measurable and finite almost everywhere.

Proof Let Fn be the n th primitive of f , then SL Dn Fn = f a.e. Since

SL Dn Fn = lim
m→∞ s2k+1

m

∫ δ

0
e−sm t

[
Fn(x + t) + Fn(x − t)

2
−

k−1∑
i=0

t2i

(2i)!α2i

]
dt,

when n(= 2k) is even and

= lim
m→∞ s2k+2

m

∫ δ

0
e−sm t

[
Fn(x + t) − Fn(x − t)

2
−

k−1∑
i=0

t2i+1

(2i + 1)!α2i+1

]
dt,

when n(= 2k + 1) is odd.
So SL Dn Fn is measurable. Hence f is measurable. Suppose that f = ∞ on a set of
positivemeasure. So by Theorem 4.8 (ii) SL Dn Fn = ∞ on a set of positivemeasure.
Letq be anyminor functionof f . Then Fn−q isn- convex and so SL Dn(Fn−q) exists
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finitely almost everywhere in (a, b). Since SL Dn Fn = SL Dnq + SL Dn(Fn − q),
we have SL Dnq = ∞ on a set of positive measure, which is a contradiction. Thus
f < ∞ almost everywhere. Similarly, f > −∞ almost everywhere.

5 Generality of LT n Integral Over Tn integral

For the definitions of d.l.V.P. derivative and ordinary smoothness of a function we
refer [7].

Theorem 5.1 If f is Tn integrable in the sense of [7], then it is LT n integrable for
all n ≥ 2 and the integrals are equal.

Proof Let f be Tn integrable in the sense of [7] and M be any major function in
the sense of [7]. Then M is also LT n major function for the following facts: (i)
Dn M ≤ SL Dn M [by Theorem 2.5 of [3]]. (ii) If f is ordinary smooth of order n
then it is Laplace smooth of order n.[by Theorem 3.2 of [9]]. The case for LT n minor
function is similar.

Theorem 5.2 If f is integrable and f ≥ 0 then f is Lebesgue integrable.

Proof Let Q be anymajor function. Then SL Dn Q ≥ f ≥ 0 a.e. The other properties
of Q implies that Q is n- convex. So by Theorem 4.3, Fn is n-convex and F1 is
nondecreasing on B where B is the base of the integral of f . Therefore, F ′

1 = L D1F1
is Lebesgue integrable. By [1] (Fn)(n) exists a.e. and by Theorem 4.26 of [16];
(Fn)(n) = (F1)

′ a.e. By Theorem 4.8, f is Lebesgue integrable.

Theorem 5.3 If f is integrable in [a, b] and c ∈ B, then f is integrable in [a, c]
and in [c, b] and ∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Again if f is integrable in [a, c] and in [c, b] and if L D−
n−1(Gn(c)) and L D+

n−1
(Hn(c)) exist, where Gn and Hn are the n th primitives of f on [a, c] and [c, b]
respectively, then f is integrable in [a, b] and

∫ c

a
f +

∫ b

c
f =

∫ b

a
f.

Proof Let f is integrable in [a, b] and let {Q} be the collection of all major functions
and let Fn be its n th primitive. Then for each Q ∈ {Q} the restriction of Q on [a, c]
is a major function of f on [a, c]. Then from (8)

inf
Q∈{Q} L Dn−1Q(c) = L Dn−1Fn(c) (14)
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Similarly, sup
q∈{q}

L Dn−1q(c) = L Dn−1Fn(c). Hence f is integrable in [a, c] and

∫ c

a
f = L Dn−1Fn(c) (15)

Since c ∈ B, by Theorem 4.7, L Dn−1Q(c) and L Dn−1q(c) exist. For each Q ∈ {Q},
let

Q(x) = Q(x) −
n−1∑
i=0

(x − c)i

i ! L Di Q(c).

Then Q(x) is a major function of f in [c, b].
Also, L Dn−1Q(b) + L Dn−1Q(c) = L Dn−1Q(b), and hence

inf
u∈{u} L Dn−1u(b) + inf

Q∈{Q} L Dn−1Q(c) ≤ inf
Q∈{Q} L Dn−1Q(b) + inf

Q∈{Q} L Dn−1Q(c)

≤ inf
Q∈{Q}

[
L Dn−1Q(b) + L Dn−1Q(c)

] = inf
Q∈{Q} L Dn−1Q(b) = L Dn−1Fn(b),

where {u} is the class of all major functions of f on [c, b]. So by (14)

inf
u∈{u} L Dn−1u(b) ≤ L Dn−1Fn(b) − L Dn−1Fn(c). Similarly,

sup
v∈{v}

L Dn−1v(b) ≥ L Dn−1Fn(b) − L Dn−1Fn(c), where {v} is the class of all minor

functions of f on [c, b]. Therefore f is integrable in [c, b] and
∫ b

c
f = L Dn−1Fn(b) − L Dn−1Fn(c).

Hence from (15)

∫ b

a
f = L Dn−1Fn(b) = L Dn−1Fn(c) +

∫ b

c
f =

∫ c

a
f +

∫ b

c
f.

For the converse part, let Q, q, and u,v be the major and minor functions of f on
[a, c] and [c, b], respectively, such that
L Dn−1Q(c) − L Dn−1q(c) < ε

2 and L Dn−1u(b) − L Dn−1v(b) < ε
2 . Since Gn is

n th primitive of f in [a, c], Q − Gn is n convex and so (Q − Gn)(n−2) is convex
and continuous in [a, c]. So L D−

n−1(Q −Gn)(c) exists. Since L D−
n−1(Gn)(c) exists,

L D−
n−1Q(c) exists, and also finite. Since Q is major function, L Dn−1Q(c) is finite.

Let
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Q(x) = Q(x) for x ∈ [a, c]
= u(x) −

n−1∑
i=0

(x − c)i

i ! L Di Q(c) for x ∈ [c, b].

Then Q is a major function of [a, b]. Similarly, q is a minor function of f on [a, b]
where

q(x) = q(x) for x ∈ [a, c]
= v(x) −

n−1∑
i=0

(x − c)i

i ! L Di q(c) for x ∈ [c, b].

Since
[
L Dn−1Q(b) − L Dn−1q(b)

] ≤ [
L Dn−1u(b) − L Dn−1v(b)

]+[
L Dn−1Q(c)

−L Dn−1q(c)
] ≤ ε. So f is integrable in [a, b]. The rest is clear.

Theorem 5.4

(LT n)

∫ b

a
f = L Dn−1F(b) − L Dn−1F(a).

Proof Let the function φ(x) = F(x) −
n−1∑
i=0

(x − a)i

i ! L Di F(a) for a ≤ x ≤ b, is

both a LT n major and LT n minor function of f on [a, b]. So f is LT n integrable
on [a, b] and

(LT n)

∫ b

a
f = L Dn−1φ(b) = L Dn−1F(b) − L Dn−1F(a).

Theorem 5.5 If f is integrable on [a, b] and k is a finite constant then k f is inte-
grable in [a, b] and ∫ b

a
k f = k

∫ b

a
f.

Proof Case-I
Let k ≥ 0 and let {Q} and {q} be the collection of all major and minor functions of
f in [a, b]. Let Fn be the n th primitive of f in [a, b]. Since f is integrable

inf
Q∈{Q} L Dn−1Q(b) = L Dn−1Fn(b) and sup

q∈{q}
L Dn−1q(b) = L Dn−1Fn(b).

(16)

It is clear that {k Q} and {kq} be the collection of all major and minor functions of
k f in [a, b]. Now

inf
k Q∈{k Q} L Dn−1k Q(b) = k inf

Q∈{Q} L Dn−1Q(b) = kL Dn−1Fn(b),
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and

sup
kq∈{kq}

L Dn−1kq(b) = k inf
q∈{q} L Dn−1q(b) = kL Dn−1Fn(b).

Hence k f is integrable and

∫ b

a
k f = inf

k Q∈{k Q} L Dn−1k Q(b) = kL Dn−1Fn(b) = k
∫ b

a
f.

Case-II
Let k < 0 and if {Q} and {q} be the collection of all major and minor functions of f
in [a, b], then {k Q} and {kq} be the collection of all minor and major functions of
k f in [a, b]. The proof is completed by case I.

Theorem 5.6 Let f and g be integrable on [a, b]. If the sum f + g is defined on
[a, b] then f + g is integrable in [a, b] and

∫ b

a
( f + g) =

∫ b

a
f +

∫ b

a
g.

Proof If {Q1}, {q1} and {Q2}, {q2} be the collection of all major and minor functions
of f and g in [a, b]. Then {Q1 + Q2} and {q1 + q2} be the collection of all major
and minor functions of f + g in [a, b]. Then the proof is same as the above proof.
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A Sequence Space and Uniform
(A,ϕ)—Statistical Convergence

Ekrem Savaş

Abstract In this, we introduce and study some properties of the new sequence
space that is defined using the ϕ—function and de la Valée-Poussin mean. We also
study some connections between Vλ((A,ϕ))—strong summability of sequences and
λ—strong convergence with respect to a modulus.

Keywords Modulus function · ϕ-function · λ—strong convergence · Matrix
transformations · Sequence spaces · Statistical convergence

1 Introduction and Background

Let s denote the set of all real and complex sequences x = (xk). By l∞ and c, we
denote the Banach spaces of bounded and convergent sequences x = (xk) normed
by ||x || = supn|xn|, respectively. A sequence x ∈ l∞ is said to be almost convergent
if all of its Banach limits coincide. Let ĉ denote the space of all almost convergent
sequences. Lorentz [6] has shown that

ĉ =
{

x ∈ l∞ : lim
m

tm,n(x) exists uniformly in n
}

where
tm,n(x) = xn + xn+1 + xn+2 + · · · + xn+m

m + 1
.

The space [ĉ] of strongly almost convergent sequenceswas introduced byMaddox
[7] and also independently by Freedman et al. [3] as follows:
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482 E. Savaş

[ĉ] =
{

x ∈ l∞ : lim
m

tm,n(|x − L|) = 0, uniformly in n, for some L
}

.

Let λ = (λi ) be a nondecreasing sequence of positive numbers tending to∞ such
that

λi+1 ≤ λi + 1,λ1 = 1.

The collection of such sequence λ will be denoted by Δ.

The generalized de la Valée-Poussin mean is defined as

Ti (x) = 1

λi

∑
k∈Ii

xk

where Ii = [i − λi + 1, i]. A sequence x = (xn) is said to be (V,λ)—summable to
a number L , if Ti (x) → L as i → ∞ (see [9]).

Recently, Malkowsky and Savaş [9] introduced the space [V,λ] of λ—strongly
convergent sequences as follows:

[V,λ] =
⎧⎨
⎩x = (xk) : lim

i

1

λi

∑
k∈Ii

|xk − L| = 0, for some L

⎫⎬
⎭ .

Note that in the special case where λi = i , the space [V,λ] reduces the space w

of strongly Cesàro summable sequences which is defined as

w =
{

x = (xk) : lim
i

1

i

i∑
k=1

|xk − L|) = 0, for some L

}
.

More results on λ- strong convergence can be seen from [12, 20–24].
Ruckle [16] used the idea of a modulus function f to construct a class of FK

spaces

L( f ) =
{

x = (xk) :
∞∑

k=1

f (|xk |) < ∞
}

.

The space L( f ) is closely related to the space l1, which is an L( f ) space with
f (x) = x for all real x ≥ 0.
Maddox [8] introduced and examined some properties of the sequence spaces

w0( f ), w( f ), and w∞( f ) defined using a modulus f , which generalized the well-
known spaces w0, w and w∞ of strongly summable sequences.

Recently, Savas [19] generalized the concept of strong almost convergence using
a modulus f and examined some properties of the corresponding new sequence
spaces.
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Waszak [26] defined the lacunary strong (A,ϕ)—convergence with respect to a
modulus function.

Following Ruckle [16], a modulus function f is a function from [0,∞) to [0,∞)

such that

(i) f (x) = 0 if and only if x = 0,
(ii) f (x + y) ≤ f (x) + f (y) for all x, y ≥ 0,
(iii) f increasing,
(iv) f is continuous from the right at zero.

Since | f (x) − f (y)| ≤ f (|x − y|), it follows from condition (iv) that f is con-
tinuous on [0,∞).

If x = (xk) is a sequence and A = (ank) is an infinite matrix, then Ax is the
sequence whose nth term is given by An(x) = ∑∞

k=0 ank xk . Thus we say that x is
A-summable to L if limn→∞ An(x) = L . Let X and Y be two sequence spaces and
A = (ank) an infinite matrix. If for each x ∈ X the series An(x) = ∑∞

k=0 ank xk

converges for each n and the sequence Ax = An(x) ∈ Y we say that A maps X into
Y . By (X, Y ) we denote the set of all matrices which maps X into Y , and in addition
if the limit is preserved then we denote the class of such matrices by (X, Y )reg .

A matrix A is called regular , i.e., A ∈ (c, c)reg. if A ∈ (c, c) and limn An(x) =
limk xk for all x ∈ c.

In 1993, Nuray and Savas [14] defined the following sequence spaces:

Definition 1 Let f be a modulus and A a nonnegative regular summability method.
We let

w( Â, f ) =
{

x : limn

∞∑
k=1

ank f (|xk+m − L|) = 0, for some L, uniformly in m

}

and

w( Â, f )0 =
{

x : limn

∞∑
k=1

ank f (|xk+m |) = 0, uniformly in m

}
.

If we take A = (ank) as

ank := {
1
n , if n ≥ k,

0, otherwise.

Then the above definitions are reduced to [ĉ( f )] and [ĉ( f )]0 which were defined
and studied by Pehlivan [15].

If we take A = (ank) is a de la Valée poussin mean, i.e.,

ank := {
1
λn

, if k ∈ In = [n − λn + 1, n],
0, otherwise.



484 E. Savaş

Then these definitions are reduced to the following sequence spaces which were
defined and studied by Malkowsky and Savas [9].

w(V̂ ,λ, f ) =
⎧⎨
⎩x : lim j

1

λ j

∑
k∈I j

f (|xk+m − L|) = 0, for some L, uniformly in m

⎫⎬
⎭

and

w(V̂ ,λ, f )0 =
⎧
⎨
⎩x : lim j

1

λ j

∑
k∈I j

f (|xk+m |) = 0, uniformly in m

⎫
⎬
⎭

When λ j = j the above sequence spaces become [ĉ( f )]0 and [ĉ( f )].
By aϕ-function we understand a continuous nondecreasing functionϕ(u) defined

for u ≥ 0 and such that ϕ(0) = 0,ϕ(u) > 0, for u > 0 and ϕ(u) → ∞ as u → ∞,
(see, [26]).
A ϕ-function ϕ is called non-weaker than a ϕ-function ψ if there are constants
c, b, k, l > 0 such that cψ(lu) ≤ bϕ(ku), (for all large u) and we write ψ ≺ ϕ.
A ϕ-function ϕ and ψ are called equivalent and we write ϕ ∼ ψ if there are positive
constants b1, b2, c, k1, k2, l such that b1ϕ(k1u) ≤ cψ(lu) ≤ b2ϕ(k2u), (for all large
u ), (see, [26]).
A ϕ-function ϕ is said to satisfy (Δ2)-condition, (for all large u) if there exists
constant K > 1 such that ϕ(2u) ≤ Kϕ(u).

In this paper, we introduce and study some properties of the following sequence
space that is defined using the ϕ- function and de la Valée-Poussin mean and some
known results are also obtained as special cases.

2 Main Results

Let Λ = (λ j ) be the same as above, ϕ be given ϕ-function, and f be given mod-
ulus function, respectively. Moreover, let A = (ank(i)) be the generalized three-
parametric real matrix. Then we define

V 0
λ ((A, ϕ), f ) =

⎧
⎨
⎩x = (xk) : lim

j

1

λ j

∑
n∈I j

f
(

∣∣∣∣∣∣
∞∑

k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣∣
)

= 0, uniformly in i

⎫
⎬
⎭ .

If λ j = j, we have

V 0
λ ((A,ϕ), f ) =

⎧⎨
⎩x = (xk) : lim

j

1

j

j∑
n=1

f
(

∣∣∣∣∣∣
∞∑

k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣∣
)

= 0, uniformly in i

⎫⎬
⎭ .
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If x ∈ V 0
λ ((A,ϕ), f ), the sequence x is said to be λ—strong (A,ϕ)—convergent

to zero with respect to a modulus f . When ϕ(x) = x for all x , we obtain

V 0
λ ((A), f ) =

⎧
⎨
⎩x = (xk) : lim

j

1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)(|xk |)
∣∣∣∣∣
)

= 0, uniformly in i

⎫
⎬
⎭ .

If f (x) = x , we write

V 0
λ (A, ϕ) =

⎧⎨
⎩x = (xk) : lim

j

1

λ j

∑
n∈I j

( ∣∣∣∣∣
∞∑

k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

= 0, uniformly in i

⎫⎬
⎭ .

If we take A = I and ϕ(x) = x respectively, then we have

V 0
λ (I, f ) =

⎧⎨
⎩x = (xk) : lim

j

1

λ j

∑
k∈I j

f
(

|xk |
)

= 0

⎫⎬
⎭ .

If we take A = I , ϕ(x) = x and f (x) = x respectively, then we have

V 0
λ ((I )) =

⎧⎨
⎩x = (xk) : lim

j

1

λ j

∑
k∈I j

|xk | = 0

⎫⎬
⎭ ,

which was defined and studied by Savaş and Savaş [18].
If we define the matrix A = (ank(i)) as follows: for all i

ank(i) := {
1
n , if n ≥ k,

0, otherwise.

then we have,

V 0
λ (C, ϕ, f ) =

⎧
⎨
⎩x = (xk) : lim

j

1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

1

n

n∑
k=1

ϕ(|xk |)
∣∣∣∣∣
)

= 0

⎫
⎬
⎭ .
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If we define

ank(i) := {
1
n , if i ≤ k ≤ i + n − 1,
0, otherwise.

then we have,

V 0
λ (ĉ, ϕ, f ) =

⎧
⎨
⎩x = (xk) : lim

j

1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

1

n

i+n∑
k=i

ϕ(|xk |)
∣∣∣∣∣
)

= 0, uniformly in i

⎫
⎬
⎭ .

We now have:

Theorem 1 Let A = (ank(i)) be the generalized three parametric real matrix and
let the ϕ—function ϕ(u) satisfy the condition (Δ2). Then the following conditions
are true:

(a) If x = (xk) ∈ w((A,ϕ), f ) and α is an arbitrary number, then αx ∈
w((A,ϕ), f ).

(b) If x, y ∈ w((A,ϕ), f ) where x = (xk), y = (yk) and α,β are given numbers,
then αx + βy ∈ w((A,ϕ), f ).

The proof is a routine verification by using standard techniques and hence is
omitted.

Theorem 2 Let f be a modulus function.

V 0
λ (A,ϕ) ⊆ V 0

λ ((A,ϕ), f ).

Proof Let x ∈ V 0
λ (A,ϕ). For a given ε > 0we choose 0 < δ < 1 such that f (x) < ε

for every x ∈ [0, δ]. We can write for all i

1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

= S1 + S2,

where S1 = 1
λ j

∑
n∈I j

f
( ∣∣∑∞

k=1 ank(i)ϕ(|xk |)
∣∣ ) and this sum is taken over

∞∑
k=1

ank(i)ϕ(|xk |) ≤ δ
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and

S2 = 1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

and this sum is taken over ∞∑
k=1

ank(i)ϕ(|xk |) > δ.

By definition of the modulus f we have S1 = 1
λ j

∑
n∈I j

f
(
δ
)

= f (δ) < ε and
moreover

S2 = f (1)
1

δ

1

λ j

∑
n∈I j

∞∑
k=1

ank(i)ϕ(|xk |).

Thus we have x ∈ V 0
λ ((A,ϕ), f ).

This completes the proof.

3 Uniform (A,ϕ)—Statistical Convergence

The idea of convergence of a real sequence was extended to statistical convergence
by Fast [2] (see also Schoenberg [25]) as follows: If N denotes the set of natural
numbers and K ⊂ N then K (m, n) denotes the cardinality of the set K ∩ [m, n], the
upper and lower natural densities of the subset K are defined as

d(K ) = lim
n→∞ sup

K (1, n)

n
and d(K ) = lim

n→∞ inf
K (1, n)

n
.

If d(K ) = d(K ) then we say that the natural density of K exists and it is denoted

simply by d(K ). Clearly d(K ) = lim
n→∞

K (1, n)

n
.

A sequence (xk) of real numbers is said to be statistically convergent to L if for
arbitrary ε > 0, the set K (ε) = {k ∈ N : |xk − L| ≥ ε} has natural density zero.
Statistical convergence turned out to be one of the most active areas of research in
summability theory after the work of Fridy [4] and Šalát [17].

In another direction, a new type of convergence called λ-statistical convergence
was introduced in [13] as follows.

A sequence (xk) of real numbers is said to be λ- statistically convergent to L
(or, Sλ-convergent to L) if for any ε > 0,

lim
j→∞

1

λ j
|{k ∈ I j : |xk − L| ≥ ε}| = 0
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where |A| denotes the cardinality of A ⊂ N. In [13] the relation between λ-statistical
convergence and statistical convergence was established among other things.

Recently, Savas [20] defined almost λ-statistical convergence using the notion of
(V,λ)-summability to generalize the concept of statistical convergence.

Assume that A is a nonnegative regular summability matrix. Then the sequence
x = (xn) is called statistically convergent to L provided that, for every ε > 0, (see,
[5])

lim j

∑
n:|xn−L|≥ε

a jn = 0.

LetA = (ank(i)) be the generalized three parametric real matrix and the sequence
x = (xk), the ϕ-function ϕ(u) and a positive number ε > 0 be given. We write, for
all i

K j
λ((A,ϕ), ε) = {n ∈ I j :

∞∑
k=1

ank(i)ϕ(|xk |) ≥ ε}.

The sequence x is said to be uniform (A,ϕ)—statistically convergent to a number
zero if for every ε > 0

lim j
1

λ j
μ(K j

λ((A,ϕ), ε)) = 0, uniformly in i

whereμ(K j
λ((A,ϕ), ε)) denotes the number of elements belonging to K j

λ((A,ϕ), ε).
We denote by S0

λ((A,ϕ)), the set of sequences x = (xk)which are uniform (A,ϕ)—
statistical convergent to zero.

If we take A = I and ϕ(x) = x respectively, then S0
λ((A,ϕ)) reduce to S0

λ
which was defined as follows, (see, Mursaleen [13]).

S0
λ =

{
x = (xk) : lim j

1

λ j
|{k ∈ I j : |xk | ≥ ε}| = 0

}
.

Remark 1 (i) If for all i ,

ank := {
1
n , if n ≥ k,

0, otherwise.

then Sλ((A,ϕ)) reduce to S0
λ((C,ϕ)), i.e., uniform (C,ϕ)—statistical convergence.

(ii) If for all i , (see, [1]),

ank := {
pk
Pn

, if n ≥ k,

0, otherwise.
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then Sλ((A,ϕ)) reduce to S0
λ((N , p),ϕ)), i.e., uniform ((N , p),ϕ)—statistical con-

vergence, where p = pk is a sequence of nonnegative numbers such that p0 > 0
and

Pi =
n∑

k=0

pk → ∞(n → ∞).

We are now ready to state the following theorem.

Theorem 3 If ψ ≺ ϕ then S0
λ((A,ψ)) ⊂ S0

λ((A,ϕ)).

Proof By our assumptions we have ψ(|xk |) ≤ bϕ(c|xk |) and we have for all i ,

∞∑
k=1

ank(i)ψ(|xk |) ≤ b
∞∑

k=1

ank(i)ϕ(c|xk |) ≤ K
∞∑

k=1

ank(i)ϕ(|xk |)

for b, c > 0, where the constant K is connected with properties of ϕ. Thus, the
condition

∑∞
k=1 ank(i)ψ(|xk |) ≥ ε implies the condition

∑∞
k=1 ank(i)ϕ(|xk |) ≥ ε

and in consequence we get

μ(K j
λ((A,ϕ), ε)) ⊂ μ(K j

λ((A,ψ), ε))

and

lim j
1

λ j
μ
(

K j
λ((A,ϕ), ε)) ≤ lim j

1

λ j
μ(K j

λ((A,ψ), ε))
)
.

This completes the proof.

Theorem 4 (a) If the matrix A, functions f , and ϕ are given, then

V 0
λ ((A,ϕ), f ) ⊂ S0

λ(A,ϕ).

(b) If the ϕ- function ϕ(u) and the matrix A are given, and if the modulus function
f is bounded, then

S0
λ(A,ϕ) ⊂ V 0

λ (A,ϕ), f ).

(c) If the ϕ- function ϕ(u) and the matrix A are given, and if the modulus function
f is bounded, then

S0
λ(A,ϕ) = V 0

λ (A,ϕ), f ).

Proof (a) Let f be a modulus function and let ε be a positive number. We write the
following inequalities:
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1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

≥ 1

λ j

∑

n∈I 1j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

≥ 1

λ j
f (ε)

∑

n∈I 1j

1

≥ 1

λ j
f (ε)μ(K j

λ(A,ϕ), ε),

where

I 1j =
{

n ∈ I j :
∞∑

k=1

ank(i)ϕ(|xk |) ≥ ε

}
.

Finally, if x ∈ V 0
λ ((A,ϕ), f ) then x ∈ S0

λ(A,ϕ).
(b) Let us suppose that x ∈ S0

λ(A,ϕ). If the modulus function f is a bounded
function, then there exists an integer M such that f (x) < M for x ≥ 0. Let us take

I 2j =
{

n ∈ I j :
∞∑

k=1

ank(i)ϕ(|xk |) < ε

}
.

Thus we have

1

λ j

∑
n∈I j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

≤ 1

λ j

∑

n∈I 1j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

+ 1

λ j

∑

n∈I 2j

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk |)
∣∣∣∣∣
)

≤ 1

λ j
Mμ(K j

λ((A,ϕ), ε) + f (ε).

Taking the limit as ε → 0, we obtain that x ∈ V 0
λ (A,ϕ, f ).

The proof of (c) follows from (a) and (b).
This completes the proof.
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In the next theorem we prove the following relation.

Theorem 5 If a sequence x = (xk) is S(A,ϕ)—convergent to L and

lim in f j

(λ j

j

)
> 0

then it is Sλ(A,ϕ) convergent to L, where

S(A,ϕ) = {x = (xk) : lim j
1

j
μ(K (A,ϕ, ε)) = 0}.

Proof For a given ε > 0, we have, for all i

{n ∈ I j :
∞∑

k=0

ank(i)ϕ(|xk − L|) ≥ ε} ⊆ {n ≤ j :
∞∑

k=0

ank(i)ϕ(|xk − L|) ≥ ε}.

Hence we have,
Kλ(A,ϕ, ε) ⊆ K (A,ϕ, ε).

Finally the proof follows from the following inequality:

1

j
μ(K (A,ϕ, ε)) ≥ 1

j
μ(Kλ(A,ϕ, ε)) = λ j

j

1

λ j
μ(Kλ(A,ϕ, ε)).

This completes the proof.

Theorem 6 If λ ∈ � be such that lim j
λ j
j = 1 and the sequence x = (xk) is

Sλ(A,ϕ)—convergent to L then it is S(A,ϕ) convergent to L,

Proof Let δ > 0 be given. Since lim j
λ j
j = 1, we can choose m ∈ N such that

|λ j
j − 1| < δ

2 , for all j ≥ m. Now observe that, for ε > 0

1

j

∣∣∣∣∣

{
n ≤ j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣

= 1

j

∣∣∣∣∣

{
k ≤ j − λ j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣

+ 1

j

∣∣∣∣∣

{
n ∈ I j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣

≤ j − λ j

j
+ 1

j

∣∣∣∣∣

{
n ∈ I j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣
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≤ 1 − (1 − δ

2
) + 1

j

∣∣∣∣∣

{
n ∈ I j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣

= δ

2
+ 1

j

∣∣∣∣∣

{
n ∈ I j :

∞∑
k=0

ank(i)ϕ(|xk − L|) ≥ ε

}∣∣∣∣∣ ,

This completes the proof.
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statistical core of double sequences. Acta Math. Sin. (Engl. Ser.) 26, 2131–2144 (2010)
13. Mursaleen, M.: λ-statistical convergence. Math. Slovaca 50, 111–115 (2000)
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