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    Abstract  

  Rumen is one of the most underutilised microbial ecosystems, harbouring 
a diverse population of microbial species. These species thrive in this eco-
system by producing an array of enzymes for digestion and utilisation of 
different plant constituents. The search for novel and effi cient fi brolytic 
cultures/enzymes will foster the development of different applications 
such as biofuel production from lignocellulosic biomass. Exploring and 
exploiting these effi cient cultures/enzymes using biotechnological inter-
ventions for enhanced production are necessary before their effi cient 
application in industries. Recent advances in molecular biology such as 
metagenomic studies with high-throughput screening methods are 
enabling the development of novel strategies for effective delivery and 
enhancement of these enzymes. This chapter takes a holistic review of 
most extensively studied enzymes produced in the rumen and their role in 
digestion of fi bre and other associated plant cell wall polymers.  
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17.1         Introduction 

 Enzymes are known to be the sustainable biocat-
alysts of high demand with continuously increas-
ing industrial sector. The application of potential 
enzymes over the conventional chemical and 
thermal methods offers additional advantages 
such as reduction in the use of hazardous chemi-
cals, creation of safer working environment, low-
ering the cost of process and product formulation, 
reduction in consumption of water and energy 
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and enhancement of effi cient use of non- 
renewable resources. 

 The rumen is an ideal habitat for the growth of 
anaerobic microorganisms encompassing bacte-
ria, fungi, protozoa, archaea and bacteriophages. 
Out of these groups, bacteria and protozoa pre-
dominate the microbial biomass. The fungi make 
up only 8–20 % of microbes and occupy an 
important niche in the rumen because of their 
specifi c affi nity towards lignin and ability to pro-
duce esterases for hydrolysing ester linkages 
between lignin and hemicelluloses or cellulose 
and thus help break down digesta particles. 
Further, their rhizoidal system causes physical 
disruption by penetrating inside recalcitrant feed 
stuff, which also allows bacteria to gain access to 
otherwise non-available sites. The bacteria being 
most abundant and diverse are further classifi ed 
into different groups based on their enzymatic 
activities such as fi brolytic, amylolytic, proteo-
lytic, etc. The diversity arises due to different 
microbial communities as well as multiplicity of 
fi brolytic enzymes produced by individual micro-
organisms when they encounter different plant 

polymers. Due to its diverse microbial popula-
tion, the rumen works as a specialised fermenta-
tion vessel facilitating the microbial degradation 
of ingested plant materials. Therefore, the rumen 
has been described as microbial cell factory for 
biorefi neries as it harbours a rich source of micro-
bial cell and could be a potential model to study 
the higher organisational levels of microbial 
communities, fi nally leading to a new concept for 
metabolic engineering (Sauer et al.  2012 ). The 
digestion is mainly affected by the plant materi-
als, its nature, components and structure as well 
as the microbial factors such as microbial load, 
communities, competition and others. The differ-
ent characteristics of microbial population in 
rumen such as survival under anaerobiosis, pred-
atory activities of rumen protozoa, recalcitrant 
plant components and toxic effects of plant sec-
ondary metabolites make it an ideal source for 
bioprospecting (Selinger et al.  1996 ; Wang and 
McAllister  2002 ). The majority of the enzymes 
discovered or studied belong to different classes 
that help to degrade different plant cell wall poly-
mers (Table  17.1 ).

   Table 17.1    Major enzyme activities required for hydrolysis of plant cell wall components   

 Substrate  Linkage  Enzyme required 

 Cellulose  β-1,4-Glucose linkage  Endo-β-1,4-glucanase 

 Cellulose (non-reducing ends)  β-1,4-Glucose linkage  Exo-β-1,4-glucanase 

 Cellobiose  β-1,4-Glucose linkage  β-1,4-Glucosidase 

 Soluble cello-oligomers  β-1,4-Glucose linkage  Cellulodextrinase 

 Cellulose/xylan  β-1,4-Glucose linkage  Xylocellulase 

 Xylan  β-1,4-Xylose linkage  Endo-β-1,4-xylanase 

 Xylobiose  β-1,4-Xylose linkage  β-1,4-Xylosidase 

 Arabinoxylan  α-1,3-Linkage  α-L-arabinofuranosidase 

 Glucuronoxylan  α-1,3 or α-1,2 linkage  α-Glucuronidase 

 Acetylxylan  Acetylester bond   O -Acetyl xylan esterase 

 Ferulic acid cross bridges  Feruloylester bond  Ferulic acid esterase 

 p-Coumaric acid cross bridge   p -Coumaryl ester bond or linkage   p -Coumaric acid esterase 

 Laminarin  β-1,3-Glucanase  β-1,3-hexose linkage 

 Lichenin  β-1,3- and β-1,4-hexose linkages  Mixed linkage β-1,3-β-1,4-glucanase 

 Polygalacturan  α-1,4-Galacturonide linkages  Pectate lyase 

 Pectin  α-1,4-Galacturonide linkages 
methyl ester bond 

 Pectin lyase 

 Pectin methylesterase 

 Tannins  Depside linkage  Tannin acyl hydrolase 

  Modifi ed from Wang and McAllister ( 2002 )  
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17.2        Plant Cell Wall Components 

 Ruminal digestion of plant materials consists 
of numerous complex processes involving a 
number of microbial species and their enzymatic 
machinery. At the microbial level, digestion of 
plant materials is poorly understood. The major 
bacterial species associated are known; however, 
it is in the last decade that researchers began to 
isolate the pure anaerobic cultures and study the 
various enzymatic activities and physiological 
factors that infl uence the expression of these 
enzymes. 

17.2.1     Cellulose 

 Cellulose is the most important and abundant 
structural part of the plants which is a homopoly-
mer of glucose. The plant cell wall is composed 
of fi brils of cellulose which accounts for 20–30 % 
dry weight of the primary cell wall. Cellulose 
molecules associate with each other to form 
microfi brils and have crystalline formulations.  

17.2.2     Hemicellulose 

 Hemicellulose is composed mainly of xylans with 
a backbone structure of β-1,4 linkage in xylose 
residues and attachment of various side chains 
(e.g. acetic acid, arabinose, coumaric acid, ferulic 
acid, glucuronic acid, 4-O-methylglucuronic acid). 
Xylan polymers may be cross-linked to other 
hemicellulose backbones or to lignins through 
ferulic acid or 4-O-methylglucuronic acid. It may 
also be linked to cellulose fi brils forming an 
extensive network of cross-links. The varying 
branching patterns of the surrounding structures 
result in different types of hemicelluloses 
structures.  

17.2.3     Pectin 

 Pectic substances are prominent structural con-
stituents of primary cell walls and middle lamella. 
It is one of the most complex biomolecules and 

can be composed of as many as 17 different 
monosaccharides with at least seven different 
polysaccharides. The predominant structure of 
pectin consists of homogalacturonan (HG) which 
is an unbranched molecule composed of polyβ 
-1,4- D-galacturonic acid (PGA) with α-1,4- 
linked residues of D-galacturonate. The galact-
uronic acid (GA) residues can be methyl esterifi ed 
at C-6 and some of the hydroxyl groups on C2 or 
C3 can be acetylated. Blocks of more than 10 
unesterifi ed GA residues generally yield pectin 
molecules, which are sensitive to calcium cross- 
linking (Daas et al.  2001 ). The rhamnogalacturo-
nan backbone may be interspersed with either 
rhamnose or galacturonic acid residues substi-
tuted with methyl ester groups or sugar side 
chains (Jarvis  1984 ; McNeil et al.  1984 ; 
Rombouts and Pilnik  1986 ).  

17.2.4     Phytic Acid 

 Phytic acid (phytate) is a complex of calcium or 
magnesium with myo-inositol and is regarded as 
the primary storage form of phosphorus and ino-
sitol in almost all seeds. It is considered as an 
anti-nutritional constituent of plant-derived 
feeds. As a reactive anion, it forms a wide variety 
of insoluble salts with minerals including phos-
phorus, calcium, zinc, magnesium and copper. 
Phytic acid is also known to form complexes with 
protein and proteolytic enzymes.  

17.2.5     Lignins, Polyphenols and Toxic 
Components 

 Lignin is a complex polymer of aromatic com-
pounds which account for the most abundant 
polymer on earth. Instead of sugar monomers 
like cellulosic compounds, it is composed of up 
to three different phenyl propane monomers, 
namely,  p -coumaryl alcohol, coniferyl alcohol 
and sinapyl alcohol which are methoxylated to 
various degrees. The lignin degradation has been 
reported in rumen; however, so far the lignin deg-
radation has not been reported in pure rumen bac-
terial isolate. 
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 Besides lignin, the rumen microorganisms 
have been reported to detoxify various plant toxic 
components. The exposure to these components 
usually results in loss of animal productivity. The 
most widely studied toxins include mimosine T-2 
toxins, nitrotoxins, pyrrolizidine alkaloids,  trans- 
aconitate   and tannins. They reduce animal pro-
ductivity by reducing intake, feed palatability, 
enzyme activity, ruminal fermentation rates, 
nutrient availability and wool growth or by induc-
ing toxicosis. Tannins based on their molecular 
structure are classifi ed as hydrolysable (HTs) and 
condensed tannins (CTs, proanthocyanidins). 
Hydrolysable tannins contain a carbohydrate 
(generally D-glucose) as a central core with 
hydroxyl groups esterifi ed with phenolic groups 
(Haslam  1989 ). These HTs are metabolised to 
gallic acid, pyrogallol and other products by 
rumen microbes that are potentially toxic to the 
ruminants. On the other hand, CTs do not have a 
central carbohydrate core and are complexes of 
oligomers and polymers of fl avonoid units linked 
by carbon-carbon bonds with a molecular weight 
of 2,000–4,000 kDa (Hagerman and Butler  1981 ; 
Foo et al.  1986 ). Their multiple phenolic hydroxyl 
groups lead to the formation of complexes pri-
marily with proteins limiting their availability to 
the animal (Makkar  2003 ).   

17.3     Microbial Enzymes 

 Rumen is a rich source of fi brolytic enzymes 
such as cellulase, xylanase and β-glucanases. A 
large number of anaerobic bacteria, protozoa and 
fungi possess very effi cient cellulolytic machin-
ery which helps in increasing the effi ciency of 
feed conversion (Table  17.2 ). The fi brolytic 
enzymes fi nd their application in saccharifi cation 
of lignocellulosic wastes for production of biofu-
els, removing certain forms of polysaccharides 
(arabinoxylan and β-glucan) in cereals that may 
interfere with nutrient absorption and promote 
intestinal disturbances.

17.3.1       Cellulases 

 The researchers have gained interest in rumen 
bacteria and fungi for a number of biotechnologi-

cal applications, mainly for the production of cel-
lulases which are capable of hydrolysis of 1,4 
β-D-glycosidic linkages in cellulose to its mono-
mers. Based on structure and functionality, these 
cellulases have been categorised as:

•    Endocellulase which cleaves internal bonds at 
amorphous sites that create new chain ends.  

•   Exocellulase cleaves two to four units from 
the non-reducing ends of the cellulose mole-
cule produced by endocellulase.  

•   Cellobiase or β-glucosidase hydrolyses the 
exocellulase product into individual monosac-
charides (Bhat and Bhat  1997 ; Lynd and 
Zhang  2002 ).    

 In some microbes, the produced cellulases may 
exist as free enzymes, where different enzymes 
act on different parts of cellulose (Fig.  17.1 ). 
In some microbes, degradation of cellulose is 
accomplished by large multi-enzyme complex 
known as cellulosome. The attachment of this 
complex to cellulose fi bres is achieved by non- 
cellulolytic bacteria via cellulose-binding pro-
teins such as scaffolding cellulosome-integrating 
proteins and large glycosylated proteins 
(Fig.  17.2 ). Alongside the cellulosome structure, 
 Ruminococcus  also uses a cellulose-binding pro-
tein type C that involves fi mbrial structures that 
interact with cellulose. With  R. albus , the cellu-
lases appear to be organised into highly struc-
tured, high molecular weight and extracellular 
complexes whereas  B. fi brololvens  produces 
extracellular polysaccharides having complex 
sugar composition.  F. succinogenes  possesses the 
membrane-associated cellulases and xylanase 
activities. Apart from bacterial species, the cel-
lulolytic activities have also been reported in 
rumen protozoal population.    

17.3.2     Hemicellulases 

 The hemicellulases include a variety of different 
types of enzymes. The initial attack on hemicel-
luloses has been reported by celloxylanase which 
displays good activity either on cellulose or xylan. 
This enzyme is produced by cellulolytic bacteria 
but do not grow on xylan as substrate; therefore, 
it helps in the initial disruption of plant cell fi bre. 
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Later on the activities of xylan degraders help in 
degradation such as mannanase, arabinofuranosi-
dase, ferulic acid esterase and xylanase. The 
hemicellulase activities have been reported in 
cell free extracts for different protozoal species. 
Higher cellulolytic activity was observed in ento-

diniomorphid ciliates, whereas holotrich ciliates 
were reported to possess weak hemicellulolytic 
activity. The site of action of hemicellulases is 
shown in Fig.  17.3 . These enzymes act on the 
various structures surrounding cellulose thereby 
exposing the cellulose for microbial attack.  

   Table 17.2    Rumen microbial groups possessing fi bre degrading activities   

 Cellulolytic  Hemicellulolytic  Pectinase 

  Rumen bacteria  

  Fibrobacter succinogenes   +  + 

  Ruminococcus albus   +  + 

  R. fl avefaciens   +  + 

  Butyrivibrio fi brisolvens   +  + 

  Eubacterium cellulosolvens   +  + 

  Clostridium longisporum   +  + 

  Cl.locheadii   +  + 

  Prevotella ruminantium   +  + 

  Eubacterium xylanophilum   + 

  Ruminobacter amylophilus   + 

  Succinimonas dextrinosolvens   + 

  Selenomonas ruminantium   + 

  Selenomonas lactilytica   + 

  Lachnospira multiparus   +  + 

  Streptococcus bovis   +  + 

  Megasphaera elsdenii  

  Rumen protozoa  

  Eudiplodinium maggii   +  +  + 

  Ostracodinium dilobum   +  +  + 

  Epidinium caudatum   +  + 

  Metadinium affi ne   +  +  + 

  Eudiplodinium bovis   +  +  + 

  Ophryoscolex caudatus   +  +  + 

  Polyplastron multivesiculatum   +  +  + 

  Diplodinium pentacanthum   + 

  Endoploplastron triloricatum   + 

  Ophryoscolex tricoronatus   + 

  Ostracodinium gracile   + 

  Entodinium caudatum   +  + 

  Isotricha intestinalis   +  +  + 

  Isotricha prostoma   +  +  + 

  Rumen fungi  
  Neocallimastix frontalis   +  +  + 

  N. patriciarum   +  +  + 

  N. joyonii   +  + 

  Caecomyces communis   +  + 

  Piromyces communis   +  +  + 

  Orpinomyces bovis   +  +  + 

  Anaeromyces  sp.  +  + 

17 Rumen: An Underutilised Niche for Industrially Important Enzymes



252

Cellulose

Cellobiose
Glucose

OH

OH
OH

O

O

O

OH

OH

OH

OH

OH

OH

HO

HO

HO

HO

HO

HO

HO

HO

HO

HO

HO

HO

O

O

O

O

O

O

O

O

O

O

O

O

n

OH

OH OH

OH

OH

OH OH n

OHOHOH

HOHOHO

O

OO

O

O

O

HO

HO HO

OH
HO

HO
O

n

Cellobiohydrolase

Endocellulase

Cellulose
Crystal

Exocellulase

  Fig. 17.1    Basic cellulose structure broken down by the three types of cellulases (Anonymous  2009 )       

  Fig. 17.2    Cellulosomal complex attached to lignocellulose (Krause et al.  2003 )       

 

 

G. Goel et al.



253

17.3.2.1     Mannanase 
 Mannan is a fundamental component of hemicel-
luloses. It consists of β-1,4 linkage between man-
nose monomers forming the hemicelluloses 
cross-linkages (Hogg et al.  2003 ). The mannan 
component is degraded to β-1,4-manno- oligomers 
by β-mannanases followed by action of 
β-mannosidases which reduce them to the mono-
saccharide mannose (Shallom and Shoham  2003 ).  

17.3.2.2     Arabinofuranosidase 
 Arabinose is found in conjunction with xylan as 
hemicellulose component of plant cell wall. The 
arabinose units are attached to xylan via α-1,2, 

1,3, 1,5 or linked to C2 or C3 position on arabi-
noxylan. The AFase hydrolyse the terminal, non- 
reducing arabinofuranosyl. The arabinose units 
can be cleaved off the xylose backbone by arabi-
nofuranosidase activity of  B. fi brisolvens  and  B. 
ruminicola .  

17.3.2.3     Ferulic Acid Esterase 
 Ferulic acid esterase (FAEases) is a group of 
enzymes that form a subclass of carboxylic ester 
hydrolases. These enzymes hydrolyse the bond 
between hydroxycinnamates and sugars 
(Rashamuse et al.  2007 ) releasing ferulic acid 
(Fig.  17.4 ).   
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17.3.2.4     p-Coumaric Acid Esterase 
 p-Coumaric acid esterase or p-coumaroyl ester-
ase is a very crucial enzyme for effi cient degrada-
tion of lignocellulosic biomass. This enzyme 
helps in breakage of ester linkages that connect 
lignin to hemicelluloses, releasing p-coumaric 
acid. Very interestingly, none of the rumen bacte-
rial group produces this and is exclusively pro-
duced by anaerobic fungi (Borneman et al.  1990 ), 
therefore further strengthening their ecological 
role and signifi cance in rumen microbial 
ecosystem.  

17.3.2.5     Xylanases 
 The xylan consists of β-1,4 linked xylopyranosyl 
residues and contains side chains with acetyl 
group and L-arabinofuranosyl residues. The xyl-
anases are responsible for the hydrolysis of xylan 
by breaking the glycosidic linkages in xylan 
backbone (Shallom and Shoham  2003 ). Similar 

to cellulases, the xylanases are composed of three 
enzymes: endoxylanase, β-xylosidase and acetyl 
xylan esterase (Fig.  17.5 ). All the three enzymes 
hydrolyse the xylan molecule, rendering the 
D-xylan sugar usable (Kosugi et al.  2001 ).    

17.3.3     Pectinase 

 There are a few rumen microorganisms possess-
ing pectinolytic activities containing enzymes 
pectin lyase, polygalacturonase and pectin meth-
ylesterase (Fig.  17.6 ). One of the major 
 pectinolytic bacterial species inhabiting the 
rumen,  Lachnospira multiparus , produces a pec-
tin lyase and a pectin methylesterase (Silley 
 1985 ). Apart from bacterial species, the rumen 
protozoa and fungi also possess the pectinolytic 
system (Orpin  1984 ; Bonhome  1990 ; Gordon 
and Philips  1992 ; Chesson and Forsberg  1997 ).   
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17.3.4     Phytase 

 The presence of phytase in the rumen microbes 
makes them able to utilise the phosphorus in 
phytic acid (Fig.  17.7 ). However, the metabolic 
activity of phytate degradation has been thor-
oughly characterised, and the study of the genet-
ics of this process is relatively new. A recombinant 
phytase has been produced from  E. coli  by clon-
ing the gene from  Selenomonas ruminantium  
JY35 which possessed four to eight times higher 
specifi c activity (400 to 800 μmol phosphate 
released from phytate/min/mg protein) than the 
commercial preparation from  Aspergillus niger . 
The phytase production does not depend on the 
coordinated activities of the enzymes such as cel-
lulolytic enzymes; therefore, it can be genetically 
manipulated easily (Piddington et al.  1993 ; Van 
Hartingsveldt et al.  1993 ).   

17.3.5     Polyphenol Degrading 
Enzymes 

 Tannin acyl hydrolase: Tannase catalyses the 
breakdown of hydrolysable tannins such as tan-
nic acid, methyl gallate, ethyl gallate, 
n- propylgallate and isoamyl gallate. Tannase 
hydrolyses tannic acid completely to gallic acid 
and glucose through 2,3,4,6,-tetragalloyl glucose 
and two kinds of monogalloyl glucose. Tannase 
hydrolyses only those substrates that contain at 
least two phenolic hydroxyl groups in the acid 
component. The esterifi ed carboxylic group must 
be on the oxidised benzene ring and must not be 
ortho to one of the hydroxyl groups (Fig.  17.8 ). 

Tannase activity has been reported mainly in 
 Streptococcus gallolyticus ,  Selenomonas rumi-
nantium  and other inhabitants of gastrointestinal 
tract of ruminants such as  Enterococcus faecalis  
and some other unidentifi ed Gram-negative bac-
teria as reviewed by Goel et al. ( 2005 ).   

17.3.6     Enzymes Involved 
in Biohydrogenation 

 The role of fatty acids in human health is very 
well documented. Conjugated linoleic acid 
(CLA) is one such polyunsaturated fatty acid that 
has attracted a substantial attention from the sci-
entists from all around the world, because of its 
possible health effects. CLA comprises a group 
of positional and geometric isomers of linoleic 
acid and is produced as an intermediate during 
biohydrogenation of polyunsaturated fatty acids 
in the rumen of animals. Since these dietary 
unsaturated fatty acids are toxic to rumen micro-
organisms, as a defence mechanism, they secrete 
various enzymes to hydrolyse and hydrogenate 
these unsaturated fatty acids (Harfoot and 
Hazlewood  1988 ). In rumen, bacteria play the 
primary role in biohydrogenation (Jenkins et al. 
 2008 ). Mainly two types of bacteria, i.e. group A 
and group B, are involved in the biohydrogena-
tion process (Fig.  17.9 ). Group A bacteria can 
hydrogenate linoleic acid (LA) or linolenic acid 
(LNA) to trans-Vaccenic acid (TVA) and are not 
able to hydrogenate the last step, i.e. conversion 
of TVA to stearic acid (SA), for example,  B. fi bri-
solvens  MDT5 (Fukuda et al.  2006 ),  Micrococcus  
spp.,  Ruminococcus  spp. and  Lactobacillus  spp. 
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On the other hand, group B bacteria can complete 
all steps of biohydrogenation, i.e. conversion of 
LA/LNA and even oleic acid (OA) to SA, for 
example,  B. proteoclasticum  (Paillard et al. 
 2007 ). Many strains of  Megasphaera elsdenii  can 
also produce signifi cant amounts of  trans -10,  cis- 
12   CLA (Kim et al.  2002 ). Rumen protozoa are 
not involved in biohydrogenation (Boeckaert 
et al.  2010 ). The biohydrogenation activity of 
anaerobic fungi is reported to be very slow than 
rumen bacteria. Among different genera, 
 Orpinomyces  sp. is described as chief CLA pro-
ducer (Nam and Garnsworthy  2007 ).    

17.4     Application of Molecular 
Techniques in the Screening 
of Rumen Enzymes 

 From the last decade, the research has been 
focussed on identifying the genes encoding 
unique feed degradative enzymes which can be 
used to fortify the existing livestock production 
systems or to deliver novel enzymes for other 
industrial applications. Few ruminal microorgan-
isms have been exploited for identifi cation of 
genes and studying the expression of those genes 
in different microbial expression systems such as 
 E. coli  or  Pichia pastoris  (Table  17.3 ).

   With the advancement in application of 
molecular techniques, the research has been 
focussed on metagenomics of the rumen micro-
bial community. It is a method to study the DNA 
of entire population of microorganisms 
(Handelsman  2004 ). The metagenomics for dif-
ferent enzyme discovery involves creating of a 
metagenomic library from rumen sample and 
screening the library clones for specifi c enzymes. 
The advantage of metagenomics over conven-
tional way is that it allows screening of thousands 
of clones in a relatively short time and enable the 
potential discovery of a large number of different 
enzymes from a sample. 

 Worldwide research groups are working 
towards the development of metagenomic 
approaches to characterise the structure and func-
tion of rumen microbiota in order to identify the 

factors that may improve the functioning of the 
rumen and limit undesirable environmental 
effects (Table  17.4 ). Metagenomics is the appli-
cation of modern genomic techniques to the 
study of communities of microbes directly in 
their natural environments, bypassing the need 
for isolation and lab cultivation of individual spe-
cies. Metagenomics represents a strategy for dis-
covering diverse enzymes encoded in nature. In 
Table  17.4 , a few studies done on metagenomics 
of rumen towards the identifi cation of new 
enzymes which have potential biotechnological 
applications are listed. The metagenomic research 
has generated genetic information on the entire 
microbial community, which is important 
because 90 % of microbes cannot be isolated or 
cultured. The metagenomic method provides a 
global microbial gene pool without the need to 
culture of the microorganisms.

   The major laboratories working in the area of 
rumen metagenomics include DOE Joint Genome 
Institute – Genome Technology, USA; USDA, 
USA; INRA, France; CSIRO, Australia; and 
AgResearch, New Zealand. From India, Anand 
Agricultural University has recently used Ion 
Torrent PGM next-generation sequencing tech-
nology to characterise general microbial diver-
sity and the repertoire of microbial genes present, 
including genes associated with dormancy and 
sporulation in Mehsani buffalo rumen metage-
nome (Singh et al.  2014 ). An European project on 
rumenomics is underway between European 
partners from UK, Sweden, France, Italy, Finland 
and Switzerland.  

17.5     Conclusions 

 Although rumen contains various kinds of 
microbes that can be used for various purposes, 
microbes/enzymes for lignocellulose-based bio-
refi nery can play a crucial role in the present 
environment. Plant biomass being most abun-
dant and mostly unused provides us a valuable 
renewable natural resource that can be exploited 
for various purposes ranging from production of 
fuels, chemicals, food or feed. However, due to 
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   Table 17.3    Genetic characterisation of rumen microorganisms for different enzymes   

 Enzyme  Organism  Gene  Reference 

 Endoglucanase   B. fi brisolvens  H17c   endI   Berger et al. ( 1989 ) 

  F. succinogenes  AR1   endAFS   Cavicchioli et al. ( 1991 ) 

  F. succinogenes  BL2   endC   B’era et al. ( 1996 ) 

  F. succinogenes  SD35   end-1   Ozcan et al. ( 1996 ) 

  F. succinogenes  S85   endB   Broussolle et al. ( 1994 ) 

  P. ruminicola  AR20   celA   Vercoe and Gregg ( 1992 ) 

  P. ruminicola  23  Matsushita et al. ( 1991 ) 

  R. albus  F-40   Egl   Ohmiya et al. ( 1989 ), 
Duguchi et al. ( 1991 ) 

  R. albus  F-40   egIV   Karita et al. ( 1993 ) 

  R. albus  SY3   celA, celB   Poole et al. ( 1990 ) 

  R. albus  8   celA   Attwood et al. ( 1996 ) 

  R. albus  AR67   celA   Vercoe and Gregg ( 1993 ) 

  R. fl avefaciens  FD-1   celE   Wang et al. ( 1993 ) 

  celB   Vercoe and Gregg. ( 1993 ) 

  N. frontalis  MCH3   celA   Fujino et al. ( 1995 ) 

  N. patriciarum    celB   Zhou et al. ( 1994 ) 

  Orpinomyces joyonii    celA ,  Liu et al. ( 1996 ) 

  celB2   Ye et al. ( 2001 ) 

  F. succinogenes  S85   Cel9B, Cel5H and Cel8B   Qi et al. ( 2007 ) 

 Xylanase   B. fi brisolvens  49   xynA   Mannarelli et al. ( 1990 ) 

  B. fi brisolvens  H17c   xynB   Lin and Thomson 
( 1991 ) 

  F. succinogenes  S85   xynC   Paradis et al. ( 1993 ), 
Zhu et al. ( 1994 ) 

  P. ruminicola  23   xynA   Whitehead ( 1993 ) 

  P. ruminicola  B 1 4   xynB   Gasparic et al. ( 1995 ) 

  R. fl avefaciens  17   xynA, xynB, xyn D   Zhang and Flint ( 1992 ), 
Zhang et al. ( 1994 ), 
Flint et al. ( 1993 ) 

  N. patriciarum    xynA   Gilbert et al. ( 1992 ) 

  xynB   Zhou et al. ( 1994 ) 

  N. patriciarum  27   xynC   Tamblyn et al. ( 1993 ), 
Selinger et al. ( 1995 ) 

  N. patriciarum    xynCDBFV   Liu et al. ( 2005 ) 

  Orpinomyces  sp. PC-2   xynA   Chen et al. ( 1995 ) 

 β-Glucosidase   R. albus  F-40   pRA201   Takano et al. ( 1992 ), 
Ohmiya et al. ( 1985 ) 

  B. fi brisolvens  H17c   Bg1A   Lin et al. ( 1990 ) 

 β-Glucanase   F. succinogenes    –   Liu et al. ( 2005 ) 

  P. rhizinfl ata    eglA   Liu et al. ( 2005 ) 

 Peptidase   Prevotella albensis M384    DPP-IV   Walker et al. ( 2003 ) 

 Cellodextrinase   B. fi brisolvens  H17c   cedI   Berger et al. ( 1990 ) 

  Modifi ed from Selinger et al. ( 1996 )  
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the recalcitrant nature of biomass, its hydrolysis 
and further degradation are very diffi cult, hence 
also limiting industrial exploitation. Since the use 
of different pretreatment methods is time con-
suming and costly, the use of lignocellulolytic 
microbes of rumen can be an excellent way for-

ward for applications in various industries includ-
ing agriculture, chemicals, ethanol, animal feed, 
biofuel, food, paper and textiles. Furthermore, 
being anaerobic in nature, these microbes unlike 
their aerobic counterparts do not present any 
problems for bioprocess development.     

    Table 17.4    Metagenome studies on rumen enzymes   

 Enzyme/enzyme family  Source 
 Screening 
method  Sequencing method  Reference 

 Cyclodextrinases  Cow  Function based  –  Ferrer et al. ( 2005 ) 

 Cow  Sequential and 
functional 
screening 

 Shotgun sequencing  Hess et al. ( 2011 ) 

 Feruloyl esterase  Function based  –  Wong et al. ( 2013 ) 

 Endoglucanase  Cow  Function based  Pyrosequencing 454 
GS FLX 

 Pozo et al. ( 2012 ) 

 Bovine  Function based 
(BAC vector) 

 Sanger sequencing  Gong et al. ( 2012 ) 

 Swamp Buffalo  Function based  –  Cheema et al. ( 2012 ) 

 Buffalo  Function based  –  Rungrattanakasin et al. 
( 2011 ) 

 Bovine  Function based 
(fosmid vector) 

 –  Rashamuse et al. ( 2013 ) 

 Buffalo  Function based 
(cosmid vector) 

 –  Liu et al. ( 2009 ) 

 Cow  Function based  –  Shedova et al. ( 2009 ) 

 Goat  Sequence based  Shot gun sequencing  Lim et al. ( 2013 ) 

 α-Glucuronidase  Cow  Function based  –  Lee et al. ( 2012 ) 

 Glycoside hydrolases  Bovine 
Ruminal 
Protozoan 

 Function based  –  Findley et al. ( 2011 ) 

 Yak  Function based  –  Zhou et al. ( 2012 ) 

 Yak  Function based 
(BAC vector) 

 Pyrosequencing  Dai et al. ( 2012 ) 

 Bovine  Sequence based  Pyrosequencing 454 
GS FLX 

 Brulc et al. ( 2009 ) 

 Yak  Function based 
(cosmid vector) 

 –  Bao et al. ( 2011 ) 

 Cow  Function based  Sanger sequencing  Zhao et al. ( 2010 ) 

 Carbohydrate active 
enzymes 

 Buffalo  Sequential 
screening 

 Ion torrent PGM 
next-generation 
sequencing 

 Patel et al. ( 2014 ) 

 Cow  Function based  Pyrosequencing  Wang et al. ( 2013 ) 

 Mannanase-xylanase- 
glucanase  

 Cow  Function based  Sanger sequencing  Palackal et al. ( 2007 ) 

 Xylanase  Sheep  Function based 
(fosmid vector) 

 –  Wang et al. ( 2012 ) 

 Lipases  Cow  Function and 
sequence based 

 –  Liu et al. ( 2009 ) 
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