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      Rumen Metagenomics 
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    Abstract  

  The rumen microbiome plays a critical role in normal physiology and 
nutrition of ruminants. Alterations in the rumen microbiome have impor-
tant physiological and pathological implications. The advent of next- 
generation sequencing technologies and rapid development of 
computational tools and reference databases provide powerful tools in 
rumen microbiome studies. Rumen metagenomics enables studies on the 
collective genetic structure and functional composition of the rumen 
microbial community in a culture-independent manner and can be simply 
divided into functional metagenomics and sequencing-based computa-
tional metagenomics. Recent progresses in mining the rumen microbial 
community for novel enzymes, such as fi brolytic enzymes, or other bio-
molecules for industry and biotechnology applications using functional 
screening are discussed. Rapid advances in computational metagenomic 
tools and methods are summarized. Metagenomics has provided novel 
insights into the structure and function of the rumen microbiome. Recent 
efforts suggest that the core rumen microbiome consists of 8 phyla and 15 
families, which likely contribute to the basic function of the rumen. 
Systematic investigations of the rumen microbiome, including its viral 
(virome) and plasmid (plasmidome) fractions, have revealed previously 
unrecognized biodiversity in the rumen. Resistance and resilience of the 
rumen microbial community in response to perturbation is also discussed. 
Moreover, the need for mechanistic models and applications of general 
ecological theories and principles in rumen metagenomic studies is 
emphasized.  
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16.1         Introduction 

 The rumen microbiome represents the totality of 
rumen microorganisms, their genetic elements, 
and environmental interactions. The rumen 
microbiome plays an essential role in ruminant 
physiology and nutrition and pathology as well 
as host immunity. Rumen microorganisms con-
vert plant fi ber to short-chain fatty acids (SCFA), 
which contribute up to 75 % of the total metabo-
lizable energy in ruminants. In addition to the 
fi brolytic capacity, rumen microorganisms also 
participate in ruminal nitrogen metabolism, 
including dietary protein degradation. However, 
nitrogen losses during protein degradation and 
methane produced during rumen fermentation 
are substantial contributors to water and air pol-
lution as well as global warming. Rumen micro-
organisms produce a large amount of vitamins. 
As a result, ruminants generally do not need 
dietary supplement of water-soluble vitamins and 
vitamin K. Rumen microorganisms are able to 
modulate nutrient absorption and may be among 
the major determinants of nutrient utilization 
effi ciency (Li et al.  2012a ; Jami et al.  2014 ). 
Moreover, ruminal biohydrogenation, the 
 saturation process of dietary unsaturated fatty 
acids controlled by rumen microorganisms, can 
be manipulated for healthier meat products 
(Jenkins et al.  2008 ). It is well known that rumen 
microbes play a key role in detoxifying plant sec-
ondary compounds (Wallace  2008 ). The involve-
ment of the rumen microbiome in xenobiotic 
metabolism has been well documented (Li et al., 
 2014 ). Previous studies have identifi ed rumen 
microbes responsible for the degradation of 
nitroaromatic explosive compounds, such as 
2,4,6- trinitrotoluene (De Lorme and Craig  2009 ) 
and hexahydro-1,3,5- trinitro-1,3,5-triazine 
(Eaton et al.  2011 ). 

 The complexity of the rumen microbiome has 
long been appreciated, as evidenced by the pres-
ence of myriad microbial interactions (Li et al. 
 2012a ). One of the major obstacles hindering our 
understanding of the structure and function of the 
rumen microbiome is that only approximately 
11 % of rumen bacteria appear to be culturable 
(Edwards et al.  2004 ). DNA fi ngerprinting tech-
niques widely used in earlier studies, such as 
terminal-restriction fragment length polymor-
phism (t-RFLP) and single-strand conformation 
polymorphism (SSCP), have limited throughput 
and low resolution and are therefore unable to 
provide a holistic view of the structure and func-
tion of the rumen microbiome. Furthermore, the 
rumen microbiome functions as a tightly inte-
grated system in which all resident species inter-
acts closely to contribute to its emergent 
properties. Predominant species perform all 
major microbial conversions in this ecosystem. 
Nevertheless, numerically minor species also 
play an important role in maximizing rumen eco-
system outputs. Disruption of one species could 
cause a chain reaction and result in undesired or 
unpredicted consequences. These properties call 
for a move from studies of individual rumen 
microorganisms in isolation or in pure culture to 
community-level studies, especially in their natu-
ral habitats. 

 Metagenomics has emerged in the past few 
years as a powerful tool for studying the rumen 
microbiome, thanks to the advent of next- 
generation sequencing (NGS) technologies and 
rapid progress in reference databases and bioin-
formatic tools. Metagenomics addresses the 
 collective genetic structure and functional com-
position of a microbial community without the 
bias or necessity for culturing its individual 
inhabitants (Galbraith et al.  2004 ). Rumen 
metagenomics enables comprehensive studies of 
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the structure and function of the rumen microbi-
ome using culture-independent approaches. 
Rumen metagenomics generally includes two 
major arenas: high-throughput screening of 
cloned expression libraries made from rumen 
metagenome DNA for gene products of interest 
(functional metagenomics) and sequencing- 
based characterization of the aggregate collection 
of genomes and genes present in rumen micro-
bial communities, at both DNA (metagenomics) 
and RNA levels (metatranscriptomics). 
Functional screening technology was fi rst applied 
to rumen materials to mine novel enzymes in 
2005 (Ferrer et al.  2005 ), whereas the fi rst publi-
cation using next-generation sequencing-based 
rumen computational metagenomics can be 
traced back to 2009 (Brulc et al.  2009 ). Since 
then, metagenomic technologies have been 
extensively utilized to investigate rumen micro-
bial communities. The rumen of an individual 
animal is believed to harbor hundreds and up to 
1,000 microbial species. Therefore, microarrays 
(such as PhyloChips), DNA fi ngerprinting tech-
niques, or traditional Sanger sequencing-based 
methods that are unable to provide a sequencing 
depth of greater than 1,000 sequence reads will 
be excluded for discussion in this chapter. We 
will summarize recent advances in metagenomic 
technologies and novel metagenomic insights 
into the structure and function of the rumen 
microbiome.  

16.2     Functional Metagenomics 

 Functional metagenomics is the study of the col-
lective genome of a microbial community by 
expressing it in a foreign host (Ekkers et al. 
 2012 ). The vast majority of enzymes that cata-
lyze biochemical reactions are encoded by genes 
present in microbial communities under various 
environmental conditions. For example, a 
recently developed database lists 510 commer-
cially useful enzymes used in various sectors, 
including agriculture, energy, and biomedicine 
(Sharma et al.  2010 ). Therefore, functional 
screening has become an increasingly important 

fi eld for discovering novel biomolecules for 
applications in biotechnology and medicine. This 
approach relies on cloning of vast genetic diver-
sity from a target habitat in various vectors (e.g., 
plasmids, cosmids, fosmids, or bacterial artifi cial 
chromosomes) and then expressing cloned 
metagenome libraries in foreign host systems 
(e.g.,  E. coli ) followed by detection and charac-
terization of desired functional activities in the 
expression libraries using various strategies 
(Simon and Daniel  2009 ). Functional screening 
provides direct access to largely unexploited 
microbial genetic diversity in the environment. 
Lignocellulose biomass, including cellulose, 
hemicellulose, pectin, and lignin, is the most 
abundant source of organic carbon on the planet. 
Effi cient enzymatic conversion of biomass into 
biofuel has been of great interest recently. The 
complete degradation of lignocelluloses requires 
a concerted action of dozens of enzymes from 
various families, such as endo-β-1,4-glucanases, 
cellobiohydrolases, β-glucosidases, endoxyla-
nases, β-xylosidases, α-l-arabinofuranosidases, 
acetyl xylan esterases, feruloyl esterases, and 
α-glucuronidases. Previous studies suggest that 
the rumen microbial ecosystem harbors a daz-
zling array of microbial diversity (Li et al.  2012a , 
 b ,  c ; Sparks et al.  2012 ) and is a rich source of 
effi cient fi brolytic enzymes. A relatively small 
fraction of rumen microorganisms have been suc-
cessfully cultured to date. The largely unexplored 
ruminal microbial diversity represents an 
untapped source of unique lignocellulose- 
digesting enzymes, especially those with multi-
ple functions. Numerous efforts have been made 
to isolate fi ber-digesting enzymes from the 
rumen, including various hydrolases from at least 
8 glycosyl hydrolase families, such as GH3, 
GH5, GH8, GH9, GH10, GH13, GH26, GH43, 
GH48, and GH57. Morgavi et al. ( 2013 ) summa-
rized the screening results prior to 2012. Results 
from functional screening of the rumen microbi-
ome since 2012 are listed in Table  16.1 .

   Despite the fact that the huge potential of 
functional screening in mining genetic diversity 
for biotechnology applications has been demon-
strated by the abovementioned case studies, 
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numerous challenges remain. First, only a small 
fraction of functional diversity is captured in 
expression libraries, partially due to the diffi culty 
in expressing target genes in a foreign host. 
Moreover, current methods to detect desired 
function or enzyme activities are less sensitive; 
and the throughput of screening methods is rela-
tively low. Novel strategies, such as fractionation 
of the microbial community using habitat biasing 
methods to reduce the complexity of the microbi-
ome or to enrich desired activities, have been 
developed to overcome these limitations (Ekkers 
et al.  2012 ). Furthermore, the potential power of 
novel technology using in vitro compartmental-
ization (IVC) in combination with fl uorescent- 
activated cell sorting (FACS) in aiding functional 
screening of complex microbial ecosystems has 
been recognized (Ferrer et al.  2009 ). It is foresee-
able that in combination with rapid advances in 
directed evolution techniques and methods 
(Dalby  2011 ), more enzymes and biomolecules 
with improved activities will be isolated using 
functional screening from the rumen microbiome 
for a wide range of applications.  

16.3     Computational 
Metagenomics: Methods 
and Approaches 

 The advent of ultrahigh-throughput next- 
generation sequencing technologies and rapid 
development of computational tools and 
resources have stimulated computational metage-
nomic studies. As a result, computational metage-
nomics provides novel insights into the structure 
and function of microbial communities of host- 
associated habitats or from environmental sam-
ples at unprecedented resolution. The approach 
targeting small subunits (SSU) of rRNA genes 
(16S or 18S) allows us to interrogate the micro-
bial composition and structure of the rumen 
microbiome. The whole-genome shotgun (WGS) 
approach provides unique opportunities to gain 
novel insights into the protein repertoire and met-
abolic potential of the microbiome, which lead to 
biological pathway reconstruction. Moreover, 
WGS approach enables taxonomical assignment 
to understand the microbial composition and 
structure of the rumen microbiota. 

   Table 16.1    Lignocellulose-digesting enzymes mined from the rumen using functional metagenomic approaches since 
2012   

 Enzyme (family)  Rumen  Reference 

 Cellulases (GH5)  Buffalo  Nguyen et al. ( 2012 ) 

 Cellulases (GH5)  Buffalo  Cheema et al. ( 2012 ) 

 Cellulases (GH5, GH9, GH45, GH48)  Yak  Dai et al. ( 2012 ) 

 Endocellulase/xylanase (GH5)  Bovine  Rashamuse et al. ( 2013 ) 

 Endoglucanase cellulases  Cow  Gong et al. ( 2012 ) 

 Endohemicellulases (GH8, GH10, GH11, GH26, GH28, GH53)  Yak  Dai et al. ( 2012 ) 

 Esterase  Cow  Kim et al. ( 2012a ) 

 Exocellulase (GH48)  Cow  Ko et al. ( 2013 ) 

 Feruloyl esterase  Calf  Ferrer et al. ( 2012 ) 

 Feruloyl esterase  Cow  Cheng et al. ( 2012a ) 

 Glycosyl hydrolases (GH43)  Calf  Ferrer et al. ( 2012 ) 

 Glycosyl hydrolases (GH5)  Reindeer  Pope et al. ( 2012 ) 

 Xylanase (GH10)  Bovine  Cheng et al. ( 2012b ) 

 Xylanase (GH10)  Bovine  Gong et al. ( 2012 ) 

 α-Glucuronidase (GH67)  Cow  Lee et al. ( 2012a ) 

 β-Glucosidase (GH3)  Bovine  Gruninger et al. ( 2014 ) 
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16.3.1     Ribosomal RNA Gene-Based 
Analysis 

 SSU ribosomal RNA genes, such as 16S rRNA 
for prokaryotes and 18S rRNA genes for eukary-
otes, can be amplifi ed from metagenomic DNA 
of various fractions of rumen materials. These 
two genes are most frequently used for phyloge-
netic analysis and microbial diversity studies in 
the rumen. Taxonomic informativeness of 9 well- 
defi ned hypervariable regions (V1 to V9) of the 
16S rRNA gene varies tremendously (Chakravorty 
et al.  2007 ). As a result, effects of various primer 
combinations on classifi cation accuracies have 
been designed and compared (Nossa et al.  2010 ; 
Soergel et al.  2012 ). The position of primers and 
amplicon length are major determinants of taxo-
nomic precision. Most importantly, taxonomic 
informativeness of primers is habitat dependent. 
No primers are truly universal and work best in 
all environments (Soergel et al.  2012 ). For exam-
ple, primer pairs 343 F and 798R, targeting on 
hypervariable regions V3 to V4, produce maxi-
mal classifi cation accuracy under the current 
limitation of NGS platforms and may be the most 
suitable for human foregut microbiome studies 
(Nossa et al.  2010 ). Primer pairs targeting on V1 
to V3, V3 to V5, and V6 to V9 generally result in 
overall similar and yet accurate classifi cation 
with minor bias (Vilo and Dong  2012 ). Indeed, 
primers targeting V1 to V3 and V3 to V5 regions 
are commonly used in rumen microbiome studies 
(Table  16.2 ).

   The amplicons from target regions of 16S 
(18S) rRNA genes are sequenced using next- 
generation sequencers, such as 454 FLX or 
Illumina sequencers. While barcoded pyrose-
quencing has been the mainstay in sequencing 
the 16S amplicons of the rumen samples (Jami 
et al.  2013 ; Li et al.  2012c ; Wu et al.  2012b ), 
Illumina-based sequencing technology is increas-
ingly gaining attention. The newly launched 
Illumina MiSeq sequencer with version 3 reagent 
kits enables generation of up to 25 million 
sequences with a length up to 2 × 300 bp (pair 
end). The reagent cost for such a run is approxi-
mately $1400. 

 Raw sequence quality needs to be checked 
and then fi ltered and trimmed. Sequencing error 
and PCR single-base substitutions from the 454 
platform can be removed using AmpliconNoise, 
a development of the PyroNoise algorithm that is 
capable of separately removing 454 sequencing 
errors and PCR single-base errors (Quince et al. 
 2011 ). The Perseus program can be used to 
remove chimeras. Processed 16S sequence reads 
are then analyzed using taxonomy-dependent 
and taxonomy-independent approaches. The 
taxonomy- dependent approach generally assigns 
16S sequences to various levels of taxa based on 
sequence similarities to annotated sequences 
deposited in public databases. The commonly 
used SSU databases include EzTaxon-e (Kim 
et al.  2012b ), Greengenes (DeSantis et al.  2006 ), 
RDP (Cole et al.  2009 ), and SILVA (Quast et al. 
 2013 ). The algorithm RDP Classifi er (Wang et al. 
 2007 ) is among the most frequently used pro-
grams for taxonomic classifi cation and has 
resulted in the publication of more than 400 arti-
cles since its launch. However, inherent limita-
tions of this approach are obvious: (1) inability to 
assign novel sequences from previously unde-
scribed species that have no matches in existing 
reference databases, (2) accuracy and robustness 
of taxonomic classifi cation that is dependent on 
the coverage and quality of the database used, 
and (3) low resolution. This approach is often 
unable to assign input query sequences to species 
or strain levels. These limitations become more 
serious for rumen microbiome studies because 
the SSU sequences of rumen origin are particu-
larly underrepresented in public databases. To 
overcome these limitations, the taxonomy- 
independent clustering approach has been devel-
oped. This approach uses various clustering 
algorithms to assign query sequences into opera-
tional taxonomic units (OTUs) based on a dis-
tance matrix at a specifi ed threshold (Chen et al. 
 2013 ). Its independence from existing databases 
allows the analysis of novel sequences. More 
than 15 taxonomy-independent algorithms, such 
as CD-HIT-OTU (Fu et al.  2012 ; Li and Godzik 
 2006 ), CROP (Hao et al.  2011 ), ESPRIT (Sun 
et al.  2009 ) and ESPRIT-tree (Cai and Sun  2011 ), 
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MOTHUR (Schloss et al.  2009 ), UClust (Edgar 
 2010 ), and UPARSE (Edgar  2013 ), have been 
published to date. A novel algorithm, TBC, incor-
porating the basic concept of taxonomy into clus-
tering has been published (Lee et al.  2012c ). 
Recently, the relative performance and parame-
ters of some of these algorithms have been 

 compared (Chen et al.  2013 ; Wu et al.  2012a ). 
For the rumen data, CD-HIT-OTU performs well 
in our hands (Wu et al.  2012a ; Li et al.  2012d ). 
This algorithm, which uses a greedy incremental 
clustering process to identify OTUs from 16S 
rRNA gene sequences, is able to assign millions 
of reads in a relatively short time. Most 

    Table 16.2    A summary of metagenomic studies in ruminants using next-generation sequencing technologies   

 Sequencing  Species  Reference 

  16S hypervariable regions targeted  

 V1–V3 (and V4–V5; V6–V8)  Buffalo  Pitta et al. ( 2014 ) 

 V1–V3  Cattle (Angus heifers)  Petri et al. ( 2013a ,  b ) 

 V1–V3  Cattle (cows)  Mao et al. ( 2013 ) 

 V1–V2  Cattle (cows)  de Menezes et al. ( 2011 ) 

 V6–V8  Cattle (cows)  Hess et al. ( 2011 ) 

 V1–V3  Cattle (Friesian cows)  Sandri et al. ( 2014 ) 

 V3–V5  Cattle (Holstein calves)  Li et al. ( 2012a ) 

 V1–V3  Cattle (Holstein calves)  Malmuthuge et al. ( 2014 ) 

 V3–V5  Cattle (Holstein cows and 
Angus beef steers) 

 Wu et al. ( 2012a ) 

 V2–V3  Cattle (Holstein cows)  Jami et al. ( 2013 ) 

 V2–V3  Cattle (Holstein cows)  Jami and Mizrahi ( 2012 ) 

 V2–V3  Cattle (Holstein cows)  Jami et al. ( 2014 ) 

 V3–V5  Cattle (Holstein cows)  Li et al. ( 2012b ) 

 V1–V2  Cattle (Holstein cows)  Pinloche et al. ( 2013 ) 

 V3–V4  Cattle (Holstein cows)  Thoetkiattikul et al. ( 2013 ) 

 V6–V8  Cattle (Nellore steer)  de Oliveira et al. ( 2013 ) 

 V1–V3, V4 (archaeal V3, V6–V8), 18S, ITS1   Cervus , red deer, 
sheep, cattle 

 Kittelmann et al. ( 2013 ) 

 V1–V3  Goats  Lee et al. ( 2012b ) 

 V1–V3  Goats  Huo et al. ( 2014 ) 

 V1–V3  Reindeer  Pope et al. ( 2012 ) 

 V1–V2  Sheep  Castro-Carrera et al. ( 2014 ) 

 V6–V8  Sheep (West African 
Dwarf) 

 Omoniyi et al. ( 2014 ) 

  Whole-genome shotgun (WGS)  
 WGS  Buffalo  Singh et al. ( 2012a ,  b ) 

 WGS  Camels  Bhatt et al. ( 2013 ) 

 WGS  Cattle (Angus steers)  Brulc et al. ( 2009 ) 

 WGS  Cattle (cows)  Ferrer et al. ( 2012 ) 

 WGS  Cattle (cows)  Hess et al. ( 2011 ) 

 WGS  Cattle (Holstein calves)  Li et al. ( 2012b ) 

 WGS  Cattle (Jersey cows)  Wang et al. ( 2013 ) 

 WGS  Goats  Lim et al. ( 2013 ) 

 WGS  Reindeer  Pope et al. ( 2012 ) 

 WGS  Sheep  Ellison et al. ( 2014 ); Li et al. ( 2014 ) 
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 importantly, the program avoids overestimation 
of OTUs, a common problem associated with 
many existing programs, and results in accurate 
estimation of microbial diversity. In addition to 
these algorithms, publicly accessible pipelines, 
such as MOTHUR and QIIME (  www.qiime.org    ), 
are very popular in analyzing SSU sequences and 
have been widely used to analyze the rumen data-
sets (Castro-Carrera et al.  2014 ; Lee et al.  2012b ; 
Omoniyi et al.  2014 ; Pitta et al.  2014 ; Pope et al. 
 2012 ). QIIME also wraps other applications, 
such as FastTree, PyNAST, RDP Classifi er, and 
UClust. The microbial community structure 
between different samples can then be compared 
and visualized using UniFrac (Lozupone and 
Knight  2005 ) and Fast UniFrac (Hamady et al. 
 2010 ).  

16.3.2     Whole-Genome Shotgun 
Approach 

 WGS sequencing provides an opportunity to ana-
lyze both microbial diversity and functionality 
encoded in the genomes of rumen microbial 
communities. Driven by its application potential 
in metagenomics, numerous tools have been 
developed to analyze WGS data (Fig.  16.1 ). NGS 
technologies, such as those from Roche 454 
pyrosequencing, Illumina, Ion Torrent, and 
PacBio platforms, have signifi cantly reduced the 
time and cost of metagenome sequencing, which 
are revolutionizing metagenomic studies. Unique 
features and advantages of various NGS plat-
forms, including future DNA sequencing tech-
nologies, have been extensively reviewed (Zhang 
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et al.  2012 ). NGS generally relies on either syn-
thesis or hybridization at a massively parallel 
scale. For example, Illumina HiSeq 2500, in con-
junction with improved version 4 chemistry, gen-
erates up to 1 terabase (1 trillion base) of sequence 
data in a single run (~167 Gb per day). The 
ultralow cost, enormous throughput, and extreme 
convenience of these NGS technologies have 
directly contributed to their instant acceptance 
and utility in the metagenomic community. 
Sequences generated by NGS technologies have 
some unique characteristics, such as short read 
lengths, platform-specifi c biases, and relatively 
high error rates, which could have a signifi cant 
impact on downstream analyses. The computa-
tional challenges in handling short sequence 
reads have been extensively discussed (Pop  2009 ; 
Pop and Salzberg  2008 ). The challenges gener-
ally include diffi culties in dealing with repetitive 
sequences as well as the need to modify existing 
algorithms to solve platform-specifi c errors and 
high error rates (Pop  2009 ). Furthermore, the 
production of billions of reads in a single 
sequencing run by such as Illumina HiSeq 2500 
sequencers poses a tremendous challenge on 
computational resources.  

 Bioinformatic pipelines for NGS shotgun 
sequences generally include six steps: raw read 
quality control (QC) and trimming, assembly, 
functional annotation and metagenomic pathway 
reconstruction, taxonomy assignment, statistical 
analysis, and global network inference (Fig. 
 16.1 ). These processes have been extensively 
reviewed (Kim et al.  2013 ; Luo et al.  2013 ). The 
fi rst step in dealing with WGS sequences involves 
QC, fi ltering, and trimming processes. Host 
sequence contamination can be removed using 
DeconSeq (Schmieder and Edwards  2011 ) or 
BLAST/Blat. Sequencing errors and PCR single- 
base substitutions as well as chimeras from the 
454 platform can be removed using 
AmpliconNoise. Raw sequences generated by 
the Illumina platform can be trimmed using 
SolexaQA (Cox et al.  2010 ). 

 WGS sequences after these QC steps will gen-
erally need to be assembled into longer contigs 
for downstream applications. Assembly improves 
functional annotation. The basic framework of 

NGS assembly includes 4 stages: a preprocessing 
fi ltering, a graph construction process, a graph 
simplifi cation process, and a post-processing fi l-
tering (El-Metwally et al.  2013 ). More than a 
dozen short-read assemblers have been devel-
oped to facilitate the analysis of short WGS 
sequences (Huang et al.  2012 ; Miller et al.  2010 ). 
The de Bruijn graph-based approach is among 
the most commonly used in short-read de novo 
assemblers, such as ABySS (Simpson et al. 
 2009 ), EULER-USR (Chaisson et al.  2009 ), 
SOAP denovo  and its memory-effi cient version, 
SOAP denovo 2 (  http://soap.genomics.org.cn/
soapdenovo.html    ), and Velvet (Zerbino and 
Birney  2008 ). Recently, efforts have been made 
to understand the unique features and limitations 
of these short-read assemblers (Zhang et al.  2011 ; 
Huang et al.  2012 ; Mende et al.  2012 ; Vazquez- 
Castellanos et al.  2014 ). For 454 pyrosequencing 
data, Newbler is among the widely used assem-
blers and has been used in the analysis of rumen 
WGS sequences (Li et al.  2012b ). Genovo, a de 
novo assembler specifi cally designed for 454- 
based metagenomic sequences using a generative 
probabilistic model (Laserson et al.  2011 ), and its 
extended version, Xgenovo (Afi ahayati et al. 
 2013 ), perform well and are able to generate long 
contigs (Vazquez-Castellanos et al.  2014 ). Our 
results using simulated metagenomic datasets 
show that ABySS and SOAP denovo  produce 
higher N50 and require relatively low memory 
usage, while Velvet and SOAP denovo  produce 
higher genome coverage (Huang et al.  2012 ). 
Both Velvet and SOAP denovo  result in a lower 
percentage of contig chimerism; while not spe-
cifi cally designed for metagenomic datasets, de 
Bruijn graph-based assemblers have been proven 
appropriate for large datasets with hundreds of 
millions of short reads (Zhang et al.  2011 ) and 
have been nevertheless extensively used in 
metagenomic studies. Recently, by making use of 
abundance differences and graph connectivity for 
the decomposition of the de Bruijn graph, an 
extended version of Velvet, MetaVelvet, has been 
developed to handle metagenomic data (Namiki 
et al.  2012 ). MetaVelvet is able to generate sig-
nifi cantly higher N50 scores than other short- 
read assemblers, leading to an increased number 
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of predicted genes in our hands. Similarly, a de 
novo metagenomic assembler, Meta-IDBA (Peng 
et al.  2011 ), and its revised version, IDBA-UD 
(Peng et al.  2012 ), have been shown to generate 
longer contigs with high accuracy. 

 Genes or open reading frames (ORF) are then 
predicted from assembled contigs using a variety 
of gene prediction (gene-calling) algorithms. A 
dozen gene-calling programs have been devel-
oped for the metagenomic datasets, such as 
FragGeneScan (Rho et al.  2010 ), Glimmer-MG 
(Kelley et al.  2012 ), MetaGene (Noguchi et al. 
 2006 ) and MetaGeneAnnotator (Noguchi et al. 
 2008 ), MetaGeneTack (Tang et al.  2013 ), and 
Orphelia (Hoff et al.  2009 ). Gene prediction is an 
essential step for WGS metagenome data analy-
sis for two reasons: (1) it is necessary for func-
tional annotation and pathway reconstruction, 
and (2) gene prediction reduces the computa-
tional burden of protein similarity searches by 
nearly a factor of 6, compared to BLASTX 
(Trimble et al.  2012 ). In a direct comparison of 5 
commonly used gene-calling algorithms, it is 
found that FragGeneScan performs better than 
MetaGeneAnnotator, MetaGeneMark, or 
Orphelia, especially for short reads (<1,000 bp) 
with sequence errors (Trimble et al.  2012 ). 
FragGeneScan combines sequencing error mod-
els and codon usages in a hidden Markov model 
to predict ORF in short reads (Rho et al.  2010 ) 
and has been used in the publically available 
MG-RAST pipeline (Wilke et al.  2013 ). Recently, 
a newly improved algorithm, MGC, has been 
published (El Allali and Rose  2013 ). This pro-
gram relies on different models for different 
regions with various GC-contents and includes 
amino acid usage features to improve overall 
accuracy. It performs better in terms of sensitivity 
and specifi city than both FragGeneScan and 
Orphelia in simulated metagenomic data (El 
Allali and Rose  2013 ). 

 To gain insights into functional potentials, 
predicted genes are further annotated against var-
ious public databases using a homology-based 
approach. For example, COG (Tatusov et al. 
 2000 ) and eggNOG (Powell et al.  2014 ) data-
bases can be used to classify functional catego-
ries of predicted genes. Pfam (Punta et al.  2012 ), 
TIGRfam (Haft et al.  2003 ), and FIGfam (Meyer 

et al.  2009 ) databases can be used for protein 
family analysis. For rumen metagenomic data, 
the Carbohydrate-Active enZYmes database 
(CAZy), a database collecting and annotating the 
families of catalytic and carbohydrate-binding 
modules of enzymes that degrade, modify, or cre-
ate glycosidic bonds, has been frequently used to 
mine fi brolytic enzymes in the rumen (Brulc 
et al.  2009 ; Hess et al.  2011 ). Pfam is a widely 
used database for protein family analysis and 
includes more than 14,800 annotated protein 
families in its latest release (v27.0). These fami-
lies are also organized into groupings of related 
families (clans) based on similarity of sequences 
and structures. Furthermore, Gene Ontology 
(GO) can be extracted from these protein families 
using the Pfam2GO program (Hayete and 
Bienkowska  2005 ). The metagenomic features, 
such as COG functional profi les and metabolic 
subsystem data, between samples from two treat-
ment groups can be analyzed using statistical 
packages, such as MetaStats (White et al.  2009 ). 
Metabolic pathways can then be reconstructed 
using databases such as the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (Kanehisa  2002 ) 
and BRENDA, the enzyme database (Schomburg 
et al.  2004 ). Metabolic pathways that differ 
between samples from two treatment groups can 
then be analyzed for statistical signifi cance using 
MetaPath (Liu and Pop  2011 ) and Metagenomic 
Annotation Networks (Vey and Moreno- 
Hagelsieb  2012 ). Furthermore, network analysis 
tools and algorithms can be used to infer global 
co-occurrence patterns for the microbiome-wide 
microbial interactions (Faust and Raes  2012 ; 
Faust et al.  2012 ). The tools available for co- 
occurrence and association network analysis in 
metagenomic databases include CoNet (  http://
psbweb05.psb.ugent.be/conet/download.php    ), 
extended Local Similarity Analysis (eLSA) (Xia 
et al.  2011 ), QIIME, and a metagenome-wide 
association study (Qin et al.  2012 ). 

 Recently, using statistical distribution meth-
ods that ignore known biological processes to 
handle metagenomic data has been questioned 
(Liberles et al.  2013 ). These authors suggest that 
mechanism models based on ecological relation-
ships, such as predator–prey dynamics and com-
petitive relationships that widely exist in the 
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rumen microbial community, should be incorpo-
rated in metagenomic data analysis for ecological 
inference. 

 In addition to the individual bioinformatic 
tools and resources described above, several pub-
licly available Web-based pipelines have been 
developed for metagenomic data analysis. These 
online platforms, such as CAMERA (  http://cam-
era.calit2.net/    ), IMG/M (  http://img.jgi.doe.gov/    ), 
METAREP (  http://jcvi.org/metarep/    ), and 
MG-RAST (  http://metagenomics.anl.gov/    ), have 
integrated various tools for gene prediction, func-
tional or protein family assignment, and protein 
interaction and metabolic pathway inference in a 
user-friendly format. For example, the latest ver-
sion of the MG-RAST server integrates data 
uploading, QC, and annotation and analysis of 
various datasets, such as 16S or amplicon 
sequences and WGS metagenome and metatran-
scriptome sequences (Wilke et al.  2013 ). 
MG-RAST relies on FragGeneScan as a gene- 
calling program and BLAT for homology-based 
similarity search. Since its launch in 2007, more 
than 108,500 datasets have been analyzed. 

 WGS metagenomic sequence data not only 
enable analysis of functionality and metabolic 
potential of the microbial community but also 
provide a means for taxonomical assignment 
(binning). Numerous tools, such as metaBEETL 
(Ander et al.  2013 ), have been developed for tax-
onomic classifi cation of WGS data from micro-
bial communities. These tools are generally 
divided into 3 major categories: homology or 
similarity-based, composition-based, and hybrid 
approach. The lowest common ancestor (LCA) 
algorithm has formed a base for many of the 
similarity- based classifi cation methods, such as 
in WebCARMA (Gerlach et al.  2009 ), CloudLCA 
(Zhao et al.  2012 ), MEGAN (Huson et al.  2007 ), 
and DiScRIBinATE (Ghosh et al.  2010 ). It is 
shown that the latter signifi cantly reduces bin-
ning time with superior assignment accuracy. 
Composition-based methods, which exploit the 
uniqueness of DNA base composition in genomes 
of different taxonomic entities, have been imple-
mented in programs such as PhyloPythia 
(McHardy et al.  2007 ), Phymm (Brady and 
Salzberg  2009 ), TACOA (Diaz et al.  2009 ), and 

TaxSOM (Weber et al.  2011 ). The hybrid 
approach for binning generally combines both 
similarity- and composition-based methods, such 
as PhymmBL (Brady and Salzberg  2009 ) and 
RITA (MacDonald et al.  2012 ), for better accu-
racy. However, these two methods tend to be 
computationally time-consuming. To overcome 
this problem, a new algorithm, MetaPhlAn, has 
been developed (Segata et al.  2012 ). MetaPhlAn 
estimates the relative abundance of microbial 
cells by mapping short reads against a set of 
400,141 clade-specifi c marker genes and allows 
for more accurate taxonomical assignment down 
to a species level in minutes of computational 
times for millions of WGS reads (Segata et al. 
 2012 ).  

16.3.3     Stable Isotope Labeling 

 Stable or “heavy” isotopes, such as  13 C and  15 N, 
can be used to label various substrates, either 
small molecules (e.g., glucose) and polysaccha-
rides (such as inulin) or even whole plants. 
Microorganisms that utilize these labeled sub-
strates will most likely incorporate the heavy or 
stable isotope more effi ciently into their biomol-
ecules, including DNA or RNA. The labeled 
DNA or RNA can be readily separated from unla-
beled, normal “light” DNA or RNA by isopycnic 
density-gradient ultracentrifugation, in combina-
tion with magnetic-bead capture techniques and 
isotope ratio mass spectrometry. The enriched 
SIP-RNA/DNA can be then studied using stan-
dard molecular technologies. For example, SIP 
has been widely used to investigate community 
function in microbial ecosystems or genes 
responsible for bioremediation (Uhlik et al. 
 2013 ). The potential of SIP technology in metage-
nomic studies is immediately recognized. The 
combined approaches not only permit the detec-
tion of low-abundance species in a complex 
microbial community but also facilitate the dis-
covery of novel enzymes and bioactive com-
pounds (Chen and Murrell  2010 ). Moreover, 
SIP-metagenomic technologies enable the 
enrichment of metabolically active fractions of 
microorganisms from environmental samples or 
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the gut microbiome, which can provide a power-
ful link between microbial phylogeny and meta-
bolic functionality and activity. Such a link is 
important in understanding the role of rumen 
microbiota in normal physiology and pathogene-
sis. SIP-RNA technology has demonstrated that 
changes in the functional activity of the human 
gut microbiota are associated with nutrient 
sources and medium types (Reichardt et al. 
 2011 ). In ruminants, compounds labeled by SIP 
have been widely used in nutrition studies. For 
example,  13 C-labeled n-alkanes of plant origin 
are used as an internal tracer to assess digesta 
passage kinetics through the gastrointestinal tract 
(Warner et al.  2013 ). In addition, a stable isotope 
tracer,  13 C-linolenic acid, has been used to inves-
tigate the biohydrogenation process of linolenic 
acid in a bovine rumen microbial community 
(Lee and Jenkins  2011 ). Using a small-scale 
repeated batch culture model of cattle fecal 
microbial communities,  13 C-labeled fructose in 
combination with a modifi ed t-RFLP molecular 
fi ngerprinting identifi es  Streptococcus bovis  as 
the most dominant and  Lactobacillus vitulinus  
and  Megasphaera elsdenii  as minor fructose fer-
menter, while several species of  Clostridium  
cluster IV are non-fermenters of fructose 
(Michinaka and Fujii  2012 ). It is conceivable that 
the importance of SIP-RNA/DNA technology in 
rumen metagenomic studies will soon be 
recognized.  

16.3.4     Gnotobiotic Rumen Models 

 Gnotobiotic, including germ-free, animals, which 
have well-defi ned microbial composition, pro-
vide an elegant model system to study myriad 
interactions between individual microbes and 
between microbes and the host. The microbial 
communities of varying complexity and origin 
can be then sequentially introduced to gnotobi-
otic animals to examine the effects of genetic 
background, dietary conditions, and physiologi-
cal stages on the microbial community structure 
and dynamics. Synthetic gut microbiota with 
known microbial composition and abundance 
can be created in germ-free animals. When the 

complete genome and transcriptome of these 
introduced microbial species become known, 
these systems can then be used to measure pertur-
bation dynamics of the entire microbial commu-
nity and to refi ne tools and algorithms using 
computational metagenomics. 

 Gnotobiotic lambs have been used to study 
rumen microbial establishment sequences and 
interactions of microbes of different functional 
groups for more than a decade (Fonty et al. 
 1989 ). The rumen of these animals harbors a 
defi ned microbial community. Rumen microbial 
species with known function can be sequentially 
added to the defi ned community. Therefore, 
gnotobiotic lambs are an ideal model to study 
the role of specifi c microorganisms and their 
interactions with other species in the rumen, 
such as the relationship between H 2 -producing 
and H 2 -consuming communities. Early results 
show that lambs lacking methanogens can be 
raised to adulthood, although their feed intake is 
lower compared to conventional lambs with 
functional methanogens (Fonty et al.  2007 ). A 
concomitant reduction in SCFA production as 
well as overall microbial complexity in these 
lambs is also observed. Moreover, acetogens 
can colonize and become rapidly established in 
the rumen of methanogen- free lambs, suggest-
ing their establishment is independent of other 
microbes, unlike cellulolytic bacteria that gen-
erally require the presence of a diverse micro-
biota for establishment. On the other hand, 
methanogen colonization in the rumen does not 
substantially affect acetogen diversity (Gagen 
et al.  2012 ). Recently, interactions between 
fi brolytic species and methanogens have been 
examined using the gnotobiotic model 
(Chaucheyras-Durand et al.  2010 ). Methane 
emission is reduced when the dominant fi bro-
lytic species in the rumen is a non-H 2  producer, 
such as  Fibrobacter succinogenes , compared to 
the rumen with H 2 -producing fi brolytic species, 
such as ruminococci and anaerobic fungi. These 
results suggest that dietary intervention strate-
gies to promote non-H 2 -producing fi brolytic 
species may represent a novel approach to miti-
gate methane production in farm animals. 
Utilization of metagenomic tools in the gnotobiotic 
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rumen model will facilitate our understanding 
of microbial establishment sequence and suc-
cession of the rumen microbiome.  

16.3.5     Metatranscriptomics, 
Metaproteomics, 
and Metabolomics 

 Sequencing-based metagenomics addresses the 
collective genetic structure and functional com-
position at the DNA level of a microbial commu-
nity in a culture-independent manner. While 
vitally important, metagenome characterization 
using the DNA-based approach does not itself 
reveal how the genetic information of a given 
microbiota is actually expressed. To characterize 
how genes in the metagenome are expressed and 
regulated, metatranscriptomics, a comprehensive 
measure of mRNA transcript abundance, dynam-
ics, and regulation under a variety of environ-
mental conditions or developmental and 
physiological/pathological stages, is developed 
(Lim et al.  2013 ; Qi et al.  2011 ). While metatran-
scriptomic analysis provides insights into how 
the metagenome is expressed and regulated, 
metaproteomics allows comprehensive charac-
terization of the gene products (proteins) encoded 
in the metagenome and their posttranslational 
modifi cations and turnover. Metaproteomics has 
recently been applied to analyze the human sali-
vary supernatant (Jagtap et al.  2012 ). However, 
due to limitations in accurate detection and mass 
measurement of peptides and their annotation, 
metaproteomics currently allow characterization 
of only a relatively small fraction of the gene 
products in a complex gut microbiota (Wilmes 
and Bond  2006 ). Similarly, a comprehensive sur-
vey of metabolites in the host, diet (forage), and 
its rumen microbiome, metabolomics, has been 
conducted to provide information on key players 
responsible for the microbiome function (Lee 
et al.  2012b ; Kingston-Smith et al.  2013 ). 
Metabolomic profi ling using nuclear magnetic 
resonance spectroscopy, in combination with 454 
pyrosequencing, demonstrates uniqueness of the 
microbial composition and metabolites in the 
rumen of Korean native goats (Lee et al.  2012b ). 

Metabolic data facilitate the study of interactions 
between bacteria-specifi c metabolites and host 
proteins (Jacobsen et al.  2013 ). Together, rapid 
integrations of these OMIC technologies, includ-
ing metagenomics for metagenomic DNA, meta-
transcriptomics for RNA, metaproteomics for 
proteins and peptides, and meta-metabolomics 
for metabolites, will provide a holistic insight 
into the structure and function of the rumen 
microbiota.   

16.4     Metagenomic Insights into 
the Structure and Function 
of the Rumen Microbiome 

16.4.1     Microbial Establishment 
and Succession During Rumen 
Development 

 Microbial products, such as SCFAs, play a criti-
cal role in rumen development. As a result, 
numerous attempts have been made to under-
stand microbial establishment sequences and 
ecological succession of the developing rumen 
microbiome. It is generally accepted that the 
rumen is sterile at birth. Earlier studies demon-
strate that bacteria start colonization in the rumen 
within the fi rst 24 h of life and strictly anaerobic 
bacteria become predominant by the second day 
after birth (Fonty et al.  1989 ). Major functional 
groups of microorganisms, including fi brolytic 
bacteria and methanogens, become established in 
the rumen within the fi rst week of life, followed 
by protozoa (Morvan et al.  1994 ; Quigley et al. 
 1985 ). Our knowledge of the microbial establish-
ment and succession in the developing rumen and 
during the transition to mature rumen has been 
signifi cantly expanded (Li et al.  2012b ; Jami 
et al.  2013 ; Malmuthuge et al.  2014 ), largely due 
to the advent of metagenomic technologies. For 
example, it is generally accepted that methano-
gens start colonizing the rumen 3–4 days after 
birth (Fonty et al.  1989 ). A recent study shows 
that methanogens can be detected in the ovine 
rumen 17 h after birth (Gagen et al.  2012 ). A sys-
tematic cataloging of microbial diversity and 
functionality in the developing rumen using both 
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16S rRNA gene-based and WGS approaches has 
been attempted (Li et al.  2012a ,  b ,  c ). Sequences 
from more than 24 prokaryotic phyla and 22 
eukaryotic phyla are identifi ed in rumen micro-
bial communities of preruminant (14-day-old and 
42-day-old) calves fed the same milk diet. 
Furthermore, the rumen microbiome of prerumi-
nant calves harbors considerable functional 
diversity, as evidenced by the existence of 8,298 
Pfam protein families. A total of 156 and 120 
genera are identifi ed in the rumen microbiota of 
14-day-old and 42-day-old calves, respectively. 
Fibrolytic bacteria and glycoside hydrolase pro-
tein families are abundant in the developing 
rumen, before the calves are fed a solid diet. 
Moreover, the fi brolytic capability of the devel-
oping rumen increases as calves’ age. 
Interestingly, rumen development has a signifi -
cant impact on microbial diversity. Genus-level 
richness indices ACE and Chao1 are signifi cantly 
higher in the rumen of 14-day-old calves than 
that of 42-day-old calves. The rumen microbi-
ome of younger calves displays a more heteroge-
neous microbial composition and harbors a 
greater number of bacterial genera (many of them 
may be transient) than the older calves fed the 
same milk replacer diet (Li et al.  2012b ). This 
observation is in agreement with a general eco-
logical theory that biodiversity tends to increase 
during early succession as new species arrive but 
may decline in later succession as competition 
eliminates opportunistic species. Rumen micro-
bial composition changes from birth to adulthood 
have been monitored using pyrosequencing (Jami 
et al.  2013 ). This study shows that the fi brolytic 
species, such as  Ruminococcus albus , is detect-
able in the developing rumen as early as one day 
of age while another major fi brolytic species, 
 Fibrobacter succinogenes , appears much later. 
The observation that the presence of fi brolytic 
capacity in the developing rumen prior to expo-
sure of solid diet is in agreement with previous 
studies (Li et al.  2012b ) and in human infants 
(Koenig et al.  2011 ). Developmental stages 
appear to be one of the major determinants of the 
rumen microbial establishment as evidenced by 
the signifi cant differences observed in rumen 
microbial composition between 14-day-old and 

42-day-old calves (Li et al.  2012b ) and between 
6-month-old and 2-year-old cattle (Jami et al. 
 2013 ) that are fed the same diet. The direct com-
parison of microbial establishment sequences in 
the bovine rumen (Jami et al.  2013 ) and the hind-
gut of the human infants (Koenig et al.  2011 ) 
identifi es similar wavelike patterns, coincident 
with critical life events such as diet, development, 
and health status, suggesting that similar forces 
may drive the establishment of microbial commu-
nities in two different habitats (Jami et al.  2013 ).  

16.4.2     Rumen Microbial Diversity 
and the Core Rumen 
Microbiome 

 The collective microbial diversity in the rumen 
has been illustrated by a meta-analysis of all 
curated 16S rRNA gene sequences of rumen ori-
gin (13,478 bacterial and 3,516 archaeal 
sequences) deposited into the RDP database 
(Kim et al.  2011 ). This analysis has identifi ed a 
total of 19 phyla and 5,271 and 942 OTUs for 
rumen bacteria and archaea, respectively. 
Approximately 1,000 OTUs are likely present in 
the rumen of fi stulated cows and 587 OTUs are 
detected in all 4 samples from these two cows 
(Hess et al.  2011 ). In our studies, a total of 21 
phyla are collectively identifi ed from the rumen 
microbiome of dairy cows (Li et al.  2012c ), with 
the mean of 16 phyla for the mature rumen of 
dairy cattle (Wu et al.  2012a ). The mean number 
of genera in the rumen of individual cattle is 
79.9 ± 14.0 (± sd). In the mature rumen of dairy 
and beef cattle, the mean numbers of OTUs iden-
tifi ed are 512 and 343, respectively. Together, 
these results suggest that the number of microbial 
species in a typical rumen of individual animals 
will likely be in the range of several hundreds. 

 The rumen microbiome is highly responsive 
to diet (Ellison et al.  2014 ), developmental stage 
(Li et al.  2012b ; Jami et al.  2013 ), genetics, and 
numerous environmental factors. Substantial 
variations exist in microbial compositions and 
functionality among individual rumen samples 
within a species and between ruminant species 
(Jami and Mizrahi  2012 ). It is probable that a set 
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of core taxa or OTUs (species) are shared by the 
rumen microbiome of individual animals in all 
ruminant species within the large context of vari-
ation. The core rumen microbiome, consisting of 
a common set of microbial taxa that are shared by 
all individual samples, may contribute to basic 
rumen function. Defi ning the core rumen micro-
biome is of signifi cance in understanding basic 
structure and function of the rumen microbiome 
and has been recently attempted (Li et al.  2012b ,  c ; 
Wu et al.  2012a ; Petri et al.  2013b ). The core 
rumen microbiome of the bovine rumen microbi-
ome, both the developing and mature rumen of 
dairy and beef cattle, consists of 8 phyla, 11 
classes, and 15 families (Wu et al.  2012a ). These 
8 phyla, accounting for 99.5 % of input 16S 
sequences, are  Bacteroidetes ,  Firmicutes , 
 Proteobacteria ,  Spirochaetes ,  Fibrobacteres , 
 Verrucomicrobia ,  Synergistetes , and 
 Actinobacteria , in descending order of relative 
abundance. The core bovine rumen microbiome 
likely represents minimal components of the 
rumen microbial community. As Table  16.2  
shows, only a small number of approximately 
150 ruminant species have been systematically 
studied for rumen microbial diversity using 
metagenomic tools. The rumen microbiome 
composition between ruminant species has been 

investigated (Kittelmann et al.  2013 ). Recently, 
we have compared microbial community compo-
sitions of the bovine ( N  = 8), caprine ( N  = 10), and 
ovine ( N  = 10) rumen in order to defi ne the core 
rumen microbiome using deep 16S sequencing. 
The mean number of 16S rRNA gene sequences 
per sample is 79,213.0 ± 11,682.2 (mean ± SD; 
 N  = 28; the mean read length = 300 bp), a sequenc-
ing depth estimated to reach 99.9 % coverage 
(Kim et al.  2011 ). Our preliminary results show 
that collectively, 22 phyla and 94 families are 
detected in the rumen microbiome of cattle 
(cows), goats, and sheep. The mean number of 
the phyla per animal in the rumen microbiome of 
cattle, goats, and sheep is 16.8, 11.8, and 16.9, 
respectively. The caprine rumen has a signifi -
cantly smaller number of phyla than the bovine 
and ovine rumen ( P  <10 −5 ) in this study. The fam-
ily-level composition follows the similar trend. 
The core rumen microbiome consists of 8 phyla, 
 Actinobacteria ,  Bacteroidetes , Euryarchaeota, 
 Firmicutes ,  Proteobacteria ,  Spirochaetes , 
 Synergistetes , and  Verrucomicrobia , which is 
consistent with our previous study of the core 
bovine microbiome (Wu et al.  2012a ). 

 The 15 families consisting of the core rumen 
microbiome (Table  16.3 ), representing >95 % of 
assigned 16S sequences in each sample, will 

   Table 16.3    The relative abundance of the 15 families consisting of the core rumen microbiome   

 Family 

 Cattle  Goats  Sheep 

 ( N  = 8)  ( N  = 10)  ( N  = 10) 

  Prevotellaceae   51.12 (±5.99)  24.36 (±16.68)  35.16 (±11.56) 

  Lachnospiraceae   22.01(±3.56)  24.35 (±13.25)  23.97 (±11.87) 

  Ruminococcaceae   8.18 (±3.18)  4.43 (±4.83)  19.74 (±9.60) 

  Veillonellaceae   4.33 (±3.90)  13.51(±14.96)  10.09 (±6.78) 

  Acidaminococcaceae   4.21 (±1.26)  0.73 (±0.64)  2.39 (±1.37) 

  Porphyromonadaceae   1.76 (±1.28)  0.90 (±1.33)  1.21 (±0.99) 

  Spirochaetaceae   1.40 (±0.44)  0.45 (±0.65)  0.73 (±0.65) 

  Succinivibrionaceae   1.26 (±0.68)  29.84 (±20.46)  0.36 (±0.30) 

  Erysipelotrichaceae   0.88 (±0.32)  0.24 (±0.32)  1.73 (±1.05) 

  Synergistaceae   0.07 (±0.04)  0.03 (±0.02)  0.09 (±0.06) 

  Coriobacteriaceae   0.06 (±0.02)  0.05 (±0.06)  0.24 (±0.15) 

  Desulfobulbaceae   0.06 (±0.04)  0.00 (±0.00)  0.21 (±0.12) 

  Moraxellaceae   0.03 (±0.03)  0.02 (±0.01)  0.02 (±0.06) 

  Clostridiales incertae sedis  XIII  0.03 (±0.02)  0.05 (±0.04)  0.16 (±0.11) 

  Campylobacteraceae   0.01 (±0.01)  0.05 (±0.04)  0.12 (±0.08) 

  The number represents the percentage of the abundance (± SD). The abundance = the number of 16S sequences assigned 
to this particular family / the total number of 16S sequences assigned to all families at 80 % confi dence cutoff using RDP 
Classifi er  
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likely contribute to the basic function of the 
rumen microbial ecosystem. However, the rela-
tive abundance of 15 families consisting of the 
core rumen microbiome varies signifi cantly 
among the 3 host species, despite their high prev-
alence. For example, the abundance of the family 
 Prevotellaceae , the most abundant family in the 
rumen of all 3 species, in the caprine rumen 
(24.26 %) is signifi cantly lower than in the bovine 
(51.12 %) and ovine (35.16 %) rumen, while the 
abundance of 4 families,  Acidaminococcaceae , 
 Desulfobulbaceae ,  Campylobacteraceae , and 
 Succinivibrionaceae , is signifi cantly different 
between species. The abundance of 
 Ruminococcaceae  is signifi cantly higher in the 
ovine rumen (19.74 %) than in the bovine 
(8.18 %) and the caprine (4.43 %) rumen. On the 
other hand, the abundance of  Lachnospiraceae  is 
relatively stable in the rumen of the 3 species 
(between 22.00 and 24.35 %).

16.4.3        Rumen Virome 
and Plasmidome 

 Previous studies have focused on bacterial and 
archaeal diversity in the rumen. Lack of con-
served proteins and genes, such as 16S rRNA 
genes, among viruses or phages has hindered 
their discovery. The advent of computational 
metagenomics has made possible systematically 
cataloging viruses in the rumen and surveying the 
phage diversity. A recent study shows that more 
than 20,000 viral genotypes exist in the rumen of 
2 of the 3 cattle analyzed (Berg Miller et al. 
 2012 ). While over 70 % of viral sequences have 
no signifi cant matches to sequences in public 
databases, sequences associated with prophages 
outnumber those lytic phages approximately 2:1. 
Moreover, rumen viral sequences carry func-
tional genes; and the majority of these genes 
belong to phages, prophages, transportable ele-
ments, and plasmid subsystem according to the 
SEED database, as expected. In another study, 14 
putative viral sequences over 30 kb are identifi ed 
(Ross et al.  2013 ). Cows housed together and fed 
the same diet display similar taxonomical virome 
profi les than those housed separately. Intriguingly, 

these two cohorts have similar functional charac-
terizations, suggesting the rumen virome appears 
to be functionally conserved (Ross et al.,  2013 ). 
Together, these results provide further evidence 
that viruses play an important role in horizontal 
gene transfer between various microorganisms, 
spreading antibiotic resistance genes, controlling 
bacterial population dynamics, and affecting ani-
mal nutrition and protein metabolism in the 
rumen. 

 Due to a relatively low copy number per bac-
terial cell and diffi culty in distinguishing them 
from chromosomal DNA, rumen plasmids have 
not been systematically studied until recently 
(Brown Kav et al.  2012 ; Mizrahi  2012 ). Brown 
Kav et al. ( 2013 ) recently reported a method to 
enrich plasmid DNA from the rumen. The method 
takes advantage of an exonuclease that is able to 
digest chromosomal DNA that is sheared and lin-
earized during extraction procedures. The resul-
tant circular plasmid DNA is amplifi ed using a 
phi29 DNA polymerase and further sequenced 
using an Illumina sequencer. This study provides 
a fi rst glimpse of the diversity and function of the 
rumen plasmidome (i.e., the collective plasmid 
population of rumen origin). Notably, while the 
rumen microbial hosts can be assigned to the 
three major phyla,  Firmicutes ,  Bacteroidetes , and 
 Proteobacteria , using rumen plasmid sequences, 
a signifi cant difference in the relative abundance 
is evident compared to the phylogenetic assign-
ment based on the 16S sequences from the very 
same rumen source. For example,  Proteobacteria  
account for approximately 20 % of rumen plas-
mid sequences, whereas its abundance appears to 
be signifi cantly lower (~5 %) according to the 
16S approach (Brown Kav et al.  2012 ). Functional 
analysis using the SEED database suggests that, 
in addition to the intrinsic plasmid-coding func-
tions, the rumen plasmidome shares similarities 
with the rumen metagenomes and displays a sig-
nifi cantly higher representation of the functional 
categories, such as “amino acids,” “cell wall and 
capsule,” “cofactors, vitamins, etc.,” and “protein 
metabolism.” These results demonstrate that 
rumen plasmids may play an important role in 
lateral gene transfer between rumen 
microorganisms.  

16 Rumen Metagenomics



238

16.4.4     Resistance and Resilience 
of the Rumen Microbiome 

 One of the primary functions of the rumen is to 
degrade lignocellulosic fi ber to produce short- 
chain fatty acids for energy. The relative stability 
of structure and composition of the rumen micro-
biome becomes a prerequisite for such functions. 
The stability can be defi ned as (1) the ability to 
return to an equilibrium state following perturba-
tion and (2) the ability to resist changes (resis-
tance) or the rate of return to an equilibrium 
following perturbation or overall system variabil-
ity (Robinson et al.  2010 ). Therefore, the stability 
of the rumen microbiome imparts resilience to 
perturbation, ensuring continued rumen 
function. 

 The rumen microbiome is susceptible to both 
natural and anthropogenic stresses and is highly 
responsive to changes in environmental condi-
tions and host factors, such as critical physiologi-
cal or pathological events, resulting in the 
creation of novel niche for other microbial spe-
cies. The microbial diversity of the rumen is a 
refl ection of the coevolution between microbial 
communities and their host and represents equi-
librium between functional redundancy of a sta-
ble community and niche specialization. 
Although a few dominant microorganisms are 
likely to be responsible for the majority of the 
metabolic activity and energy infl ux in the rumen, 
it is well known that uncommon species often 
serve as a reservoir of genetic and functional 
diversity, playing key roles in microbial ecosys-
tems. These species can become numerically 
important if environmental conditions change. 
Recently, scientifi c communities have begun to 
study the extent of temporal and spatial shifts in 
functionality and phylogenic composition of the 
rumen microbiome in response to various 
stresses, such as diet, critical life events (such as 
weaning and acidosis), and antibiotic usage, as 
well as their ecological and physiological impli-
cations (Li et al.  2012b ,  c ; Jami et al.  2013 ; Petri 
et al.  2013a ,  b ). 

 We have characterized temporal changes of 
the rumen microbiome of dairy cows in response 
to an exogenous butyrate disturbance (Li et al. 

 2012c ). We reanalyzed the raw data using 
improved bioinformatic tools for this chapter. 
Our results indicate that in the rumen microbi-
ome of dairy cows in their mid-lactation, the fi ve 
most abundant phyla,  Bacteroidetes ,  Firmicutes , 
 Proteobacteria ,  Fibrobacteres , and  Spirochaetes  
in this order, account for >99 % of observed 16S 
sequences. A 168-h exogenous butyrate perturba-
tion results in signifi cant changes in abundance 
of 4 of the 5 most abundant phyla. The relative 
abundance of  Bacteroidetes  and  Fibrobacteres  is 
signifi cantly decreased, from 68.20 % to 56.74 % 
(at the basal level to after perturbation) and 
1.43 % to 0.82 %, respectively. On the other 
hand, the abundance of  Firmicutes  and 
 Spirochaetes  is signifi cantly increased, from 
23.34 % to 30.32 % and 0.98 % to 2.17 %, respec-
tively. The phylum  Firmicutes  includes a major-
ity of butyrate- producing bacteria. The 
observation of exogenous butyrate increasing the 
relative abundance of  Firmicutes  suggests that 
butyrate itself may be butyrogenic. Indeed, a 
readily available energy source (exogenous 
butyrate) reduces the need of fi brolytic capacity 
of the rumen, resulting in a decreased abundance 
of  Fibrobacteres . The abundance of these 5 phyla 
returns to a pre- disturbance level 168 h after per-
turbation, suggesting the resilient nature of the 
rumen microbiome. The rumen microbiome is 
also recovered 1 week after diet-induced acidosis 
challenge (Petri et al.  2013a ). The analysis at 
family level demonstrates the same trend. The 
perturbation with exogenous butyrate signifi -
cantly impacts 7 of the 20 most abundant families 
(accounting for 99.8 % of the sequences), includ-
ing the 3 most abundant families,  Prevotellaceae , 
 Lachnospiraceae , and  Ruminococcaceae . After 
the perturbation withdrawal, the abundance of 
these families returns to their pre-disturbed 
 levels. Among the 20 top families, the long-last-
ing impact of the disturbance is observed for only 
2 minor families:  Anaeroplasmataceae  remains 
elevated, while  Acetobacteraceae  is further 
repressed, 168 h after perturbation withdrawal. 
Our data demonstrate that the rumen microbial 
ecosystem displays substantial resilience to 
short-term disturbances. Furthermore, consider-
able hysteresis of the rumen microbiome is 
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observed. The ecological role and consequences 
of the two families,  Anaeroplasmataceae  and 
 Acetobacteraceae , in the new established rumen 
microbial community are worthy of further sci-
entifi c attention.   

16.5     Conclusions 

 Metagenomics has signifi cantly expanded our 
knowledge of the rumen microbial diversity and 
the structure and function of the rumen microbi-
ome, thanks to rapid advances in next-generation 
sequencing technologies and computational tools 
and resources. The rumen microbiome, consist-
ing of hundreds of microbial species and myriad 
microbial interactions, plays a critical role in 
nutrition and normal physiology of ruminants. It 
is highly responsive to changes in diet, develop-
ment, environmental factors, and host genetics. 
Alterations in the rumen microbiome have impor-
tant implications for animal well-being and pro-
duction effi ciency. While metagenomics has 
proven to be a powerful tool in rumen microbi-
ome studies, numerous challenges remain. 
Temporal and spatial fl uctuations as well as intra- 
and interindividual variations of ruminal micro-
bial composition have yet to be assessed. Current 
development of bioinformatic tools and resources 
that cope with fragmental and voluminous next- 
generation sequencing data is still in its infancy. 
Notably, the lack of fully assembled and anno-
tated reference genomes of rumen origin in pub-
lic databases has hindered functional annotation 
of metagenomic data. The lack of commonly 
accepted data analysis pipelines and standardized 
report formats makes direct comparisons of vari-
ous metagenomic studies diffi cult, if not impos-
sible. Most importantly, general theories and 
principles of microbial ecology have yet to be 
fully applied to rumen metagenomic studies. 
Mechanistic models are still needed to aid the 
interpretation of biological relevance of metage-
nomic data. The recent launch of the Hungate1000 
community sequencing project, which aims to 
sequence up to 1,000 microbial genomes of 
rumen origin (  http://www.hungate1000.org.nz/    ), 
representing a broad spectrum of rumen micro-

bial taxa, will undoubtedly facilitate the assem-
bly and annotation of WGS metagenomic data. It 
is conceivable that comprehensive studies of the 
rumen microbiome using metagenomic tools will 
broaden our understanding of the structure and 
function of the rumen microbiome and its role in 
normal physiology and pathology of ruminants, 
which in turn should guide our efforts to develop 
optimal rumen manipulation strategies for more 
effi cient fi ber digestion as well as mitigation of 
environmental footprints of animal farming.     
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