
A Probabilistic Approach to Information
System and Rough Set Theory

Md. Aquil Khan

Abstract We propose a generalization of information systems which provides the
probability of an object to take an attribute-value for an attribute. Notions of dis-
tinguishability relations and corresponding notions of approximations are proposed
and studied in comparison with the existing one.
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1 Introduction

Rough set theory, introduced by Pawlak, is based on the concept of approximation
space [10] which is defined as a tuple (U, R), where R is an equivalence relation on
the setU . Any concept represented as a subset (say) X of the partitioned domainU , is
then approximated from “within” and “outside,” by its lower and upper approxima-
tions given as X R := {x : [x]R ⊆ X} and X R := {x : [x]R ∩ X �= ∅}, respectively.
Here, [x]R denotes the equivalence class of x ∈ U . With time, Pawlak’s simple
rough set model has seen many generalizations due to demands from different prac-
tical situations (e.g. [2, 6, 11–13, 17]). A useful natural generalization is where the
relation R is not necessarily an equivalence. For instance, in [3, 12], a tolerance
approximation space is considered, where R is a tolerance relation. The notion of
lower and upper approximations of a set in these generalized approximation spaces
is then defined in a natural way.

There is another way to look at generalizations of Pawlak’s rough set theory, viz.
from the point of view of information systems (e.g. [1, 7, 8, 15]). Most applications
of rough set theory are based on these attribute-value representation models.
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Definition 1 A deterministic information system (DIS) K := (U,A, {Va}a∈A, f ),
comprises a nonempty set U of objects, finite set A of attributes, finite set Va of
attribute-values for each a ∈ A, and information function f : U × A → ⋃

a∈A Va

such that f (x, a) ∈ Va .

Given a deterministic information system K := (U,A, {Va}a∈A, f ) and a set
B ⊆ A, the indiscernibility relation I ndK,B is an equivalence relation on U defined
by:

(x, y) ∈ I ndK,B, if and only if f (x, a) = f (y, a) for all a ∈ B.

Thus, given a DIS K and a set B of attributes, we obtain an approximation space
(U, I ndK,B).

From Definition 1 of DISs, it is clear that for each object of the domain, we have
information about each attribute of the system. However, we could have situation
where some attribute-values for an object may be missing. A distinguished attribute-
value ∗ is used to depict this absence of information.

Definition 2 An incomplete information system (IIS) is a tuple K := (U , A,
{Va}a∈A∪{∗}, f ), where f : U ×A → ⋃

a∈A Va ∪{∗} such that f (x, a) ∈ Va ∪{∗}.
In [4, 5], instead of an indiscernibility relation, a similarity relation (defined

below) is considered as the distinguishability relation in the context of an IIS. The
assumption here is that the real value of missing attributes is one from the attribute
domain.

(x, y) ∈ SimS,B if and only if, f (x, a) = f (y, a) or f (x, a) = ∗, or f (y, a) =
∗, for all a ∈ B.

DISs are deterministic in the sense that objects take a single value for each
attribute. Thus, a natural generalization of DISs is obtained by allowing an object to
take a set of values for an attribute.

Definition 3 A tuple K := (U,A, {V}a∈A, f ) is called a non-deterministic infor-
mation system (NIS), where f : U × A → 2

⋃
a∈A Va such that f (x, a) ⊆ Va .

One may attach different interpretations with ‘ f (x, a) = V ’, for V ⊆ Va . For
instance, one could interpret f (x, a) = V as object x takes precisely one attribute-
value from V , and under this interpretation the following similarity relations are
found to be useful.

Similarity: (x, y) ∈ SimK,B if and only if f (x, a) ∩ f (y, a) �= ∅ for all
a ∈ B.

Weak similarity: (x, y) ∈ Simw
K,B if and only if f (x, a)∩ f (y, a) �= ∅ for some

a ∈ B.

Let us consider an object x , an attribute a, and attribute-value v ∈ Va . Consider
the event

E : object x takes the attribute-value v for a.
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Under a DIS, we have precise information whether this event occurs or not. But
situation is not so simple in the case of IIS when f (x, a) = ∗. In this case, we can
at most say that the event E has a probability 1

|Va | to occur, where |X | denotes the
cardinality of the set X . Situation is similar in the case ofNIS.Under the interpretation
of f (x, a) = V given above, if v /∈ f (x, a), then we are certain that event E will not
occur, but if v ∈ f (x, a), then we do not have precise information about the event,
and again we can only assign a probability to the occurrence of this event.

The above observation shows that we can have a situation where we only know
the probability of an object to take an attribute-value for an attribute. Therefore, in
this article, we propose and study a generalization of information systems called
probabilistic information system (PIS), which provides only the probability of an
object to take an attribute-value for an attribute. A few similarity relations are defined
onPIS, and it is shown that the indiscernibility relation definedonDISs, and similarity
relations defined on IISs and DISs are all originated from a single similarity relation
defined on PISs. We would like to add here that several work has been done on the
applications of probabilistic approaches to rough set theory (cf. e.g. [9, 16]), but most
of these works are based on the proposals of approximations of sets in approximation
spaces keeping in view the overlap of the equivalence classes with the set. In this
article, instead we take into account the source of approximation spaces, that is,
information systems.

The remainder of this article is organized as follows. In Sect. 2, we present the
notion of the PISs, and study the notion of approximations on PISs. In Sect. 3, we
present a comparative study of PISs with the DISs, IISs, and NISs. Section4 con-
cludes the article.

2 Probabilistic Information Systems

Let U be a set of objects, and A be a set of attributes of the objects of U . For each
a ∈ A, let Va be the set of possible attribute-values that the objects from U can
take for the attribute a. For x ∈ U, a ∈ A and v ∈ Va , let us use the tuple (x, a, v)
to denote the event that the object x takes the value v for the attribute a. In many
practical situations, we may not have the precise information for the event (x, a, v).
For instance, in an election, we may not know precisely to whom a voter x is going
to vote, but we may know the probabilities of x voting to different candidates. A
probabilistic information system with domain U , attribute setA, and attribute-value
set

⋃
a∈A Va is a structure which assigns probabilities to these events. Formally, we

have the following definition.

Definition 4 A probabilistic information system (PIS) is defined as a tuple K :=
(U,A, {Va}a∈A, F), where U,A,Va are as in Definition 1, and F : DK →
[0, 1], DK being the set {(x, a, v) : x ∈ U, a ∈ A, and v ∈ Va} such that∑

v∈Va
F(x, a, v) = 1.
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Let K := (U,A, {Va}a∈A, F) be a PIS. Corresponding to x, y ∈ U , x �= y, and
a ∈ A, we obtain a sample space E(x,y,a) defined as

E(x,y,a) := {〈(x, a, v), (y, a, u)〉 : v, u ∈ Va},

and a probability mass function P(x,y,a) : E(x,y,a) → [0, 1] such that

P(x,y,a)〈(x, a, v), (y, a, u)〉 := F(x, a, v)F(y, a, u).

One can easily verify the following property of the probability mass function.

Proposition 1
∑

β∈E(x,y,a)
P(x,y,a)(β) = 1.

The element 〈(x, a, v), (y, a, u)〉 of the sample space E(x,y,a) represents the event
that the objects x and y take the attribute-value v and u, respectively, for the attribute
a. Moreover, P(x,y,a)〈(x, a, v), (y, a, u)〉 gives the probability of this event to occur
based on the information provided by the PIS K.

Recall that an event Q of the sample space E(x,y,a) is a subset of E(x,y,a), and its
probability is given by

P(x,y,a)(Q) =
∑

β∈Q

P(x,y,a)(β).

We use this fact to define the following fuzzy relations on U .

Definition 5 LetK := (U,A, {Va}a∈A, F) be a PIS. For each a ∈ A, we define the
mappings Ra : U × U → [0, 1] as follows:

Ra(x, y) :=
{

P(x,y,a){〈(x, a, v), (y, a, v)〉 : v ∈ Va}, if x �= y

1, otherwise.

The mappings defined above are not indexed with the underlying PIS to make the
notation simple, and should not create any confusion. We note that Ra(x, y) gives
the probability of the event that the objects x and y take the same attribute-value for
the attribute a. On unfolding the definition of Ra , we obtain the following result.

Proposition 2 Ra(x, y) = ∑
v∈Va

F(x, a, v)F(y, a, v), x �= y.

For a given PIS K := (U,A, {Va}a∈A, F), we now use the relation Ra to define
the following fuzzy and crisp similarity relations on U . Let B ⊆ A, and x, y ∈ U .

Definition 6

Similarity: SK,B(x, y) :=
∏

a∈B

Ra(x, y).

Weak Similarity: Sw
K,B(x, y) := 1 −

∏

a∈B

(1 − Ra(x, y)).
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Crisp Similarity: For λ ∈ [0, 1), (x, y) ∈ Sc
K,B(λ) if and only if for all a ∈ B,

Ra(x, y) > λ.

A generalization of the above-defined crisp similarity relation Sc
K,B would be

the case where a different threshold λa is provided for different a ∈ B. But in this
article, we shall consider only the above-defined crisp similarity relation to make the
presentation simple.

Let us observe the following facts about these relations.

• SK,B(x, y) gives the probability of the event that the objects x and y take the same
attribute-value for each attribute in B.

• Sw
K,B(x, y) gives the probability of the event that the objects x and y take the same

attribute-value for some attributes in B.
• (x, y) ∈ Sc

K,B(λ) if and only if for all a ∈ B, the probability of the event that the
objects x and y take the same attribute-value for a is more than λ.

In Sect. 3, we shall see the close connections of the above-defined relationswith some
of the indistinguishability relations defined on information systems. But before that,
we propose the following notion of lower and upper approximations. Let K :=
(U,A, {Va}a∈A, F) be a PIS, and x ∈ U , B ⊆ A, λ ∈ [0, 1). We will use the
following notation:

[x]λSK,B
:= {y ∈ U : SK,B(x, y) > λ}; [x]λSwK,B

:= {y ∈ U : Sw
K,B(x, y) > λ};

[x]λSc
K,B

:= {y ∈ U : (x, y) ∈ Sc
K,B(λ)}.

Corresponding to each R ∈ {Sc
K,B, SK,B , Sw

K,B}, and λ ∈ [0, 1), we obtain the lower
and upper approximation operators L R and UR defined as follows:

L R(X,λ) := {x ∈ U : [x]λR ⊆ X}; UR(X,λ) := {x ∈ U : [x]λR ∩ X �= ∅}.

Note that the relation Sc
K,B is a crisp tolerance relation, and hence all the results

that hold for tolerance relation based approximation operators follow automatically
for the approximation operators based on Sc

K,B . On the other hand, the relations
SK,B, Sw

K,B are fuzzy and hence the theory develop on these relations will take the
course of fuzzy-rough sets. Therefore, it seems to be interesting to see how the theory
develops for these relations. In the rest of this section, we explore a few properties
of the approximation operators defined above. In this direction, we first note that the
fuzzy relations SK,B and Sw

K,B satisfy the reflexivity and symmetry conditions, but
fail to satisfy transitivity condition: σ(x, y) > λ& σ(y, z) > λ ⇒ σ(x, z) > λ. As a
consequence of it, the lower and upper approximation operators defined on SK,B and
Sw
K,B satisfy all the standard properties of Pawlak’s lower and upper approximation

operators except the idempotence.
For each of the relation R ∈ {Sc

K,B, SK,B , Sw
K,B}, the following holds:

Proposition 3 1. L R(X,λ) = (
UR(Xc,λ)

)c
, where Xc denotes the complement

of the set X relative to U.
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Table 1 PIS K a b

v1 v2 v3 v4 u1 u2 u3

x1 1 0 0 0 1
3

1
3

1
3

x2 0 1
2

1
2 0 1

2
1
2 0

x3
1
3

1
3 0 1

3 1 0 0

2. For λ2 ≥ λ1, L R(X,λ1) ⊆ L R(X,λ2) and UR(X,λ2) ⊆ UR(X,λ1).

The following proposition gives the connection between different lower approxima-
tion operators defined above.

Proposition 4

1. L Sc
K,B

(X, 0) = L SK,B (X, 0).
2. L Sc

K,B
(X,λ) ⊆ L SK,B (X,λ), λ ∈ [0, 1).

3. L SwK,B
(X,λ) ⊆ L SK,B (X,λ), λ ∈ [0, 1).

Example 1 Let us consider a PIS K := (U, {a, b}, {Va,Vb}, F) with U := {x1,
x2, x3}, Va := {v1, v2, v3, v4}, Vb := {u1, u2, u3} given by the Table1. Thus
F(x1, a, v1) = 1, F(x1, a, v2) = 0 and so on. The relations Ra and Rb giving
the probability of two objects to take same attribute-value for a and b, respectively,
are obtained as follows:

Ra : (x1, x2) �→ 0 Rb : (x1, x2) �→ 1
3

(x1, x3) �→ 1
3 (x1, x3) �→ 1

3

(x2, x3) �→ 1
6 (x2, x3) �→ 1

2

This, in turn, determines the mapping SK,B and Sw
K,B , B = {a, b}, and are given as

follows:
SK,B : (x1, x2) �→ 0 Sw

K,B : (x1, x2) �→ 2
3

(x1, x3) �→ 1
9 (x1, x3) �→ 4

9

(x2, x3) �→ 1
12 (x2, x3) �→ 4

12

The Table2 gives the lower approximations of some subsets ofU , relative to different
relations corresponding to threshold λ = 0, 1

10 ,
1
3 .

Note that when we fix λ = 0 so that two objects x and y are considered to
be indistinguishable relative to the attribute set B if indistinguishability probability
SK,B(x, y) > 0. Therefore, x3 does not lie in the lower approximation of the set
{x1, x3} relative to SK,B . On the other hand, if we raise the indistinguishability
threshold, and takeλ = 1

10 , thenwe obtain x3 in this lower approximation of {x1, x3}.
This is due to the fact that the probability of x2, x3 to be indistinguishable relative

to B is 1
12 � 1

10 , so that [x3]
1
10
SK,B

= {x1, x3}.
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Table 2 Lower
approximations for different
thresholds

X

{x1, x2} {x1, x3} {x2, x3}
λ = 0 L Sc

K,B
(X,λ) ∅ {x1} {x2}

L SK,B (X,λ) ∅ {x1} {x2}
L SwK,B

(X,λ) ∅ ∅ ∅
λ = 1

10 L Sc
K,B

(X,λ) ∅ {x1} {x2}
L SK,B (X,λ) {x2} {x1, x3} {x2}
L SwK,B

(X,λ) ∅ ∅ ∅
λ = 1

3 L Sc
K,B

(X,λ) {x1, x2} {x1, x3} {x2, x3}
L SK,B (X,λ) {x1, x2} {x1, x3} {x2, x3}
L SwK,B

(X,λ) {x2} {x3} ∅

3 PISs and Information Systems

In this section, we shall give a comparative study of PISs with different types of
information systems.

3.1 Deterministic Information Systems

Let K := (U,A, {Va}a∈A, f ) be a deterministic information system (DIS). Then it
can also be viewed as a PIS T (K) := (U,A, {Va}a∈A, F), where

F(x, a, v) =
{
1, if f (x, a) = v

0, otherwise.

Observe that the above defined F satisfies the required condition of probability
distribution viz.

∑
v∈Va

F(x, a, v) = 1. Moreover, as F(x, a, v) ∈ {0, 1}, it follows
that under a PIS T (S), the probability of an object x to take an attribute-value v for
an attribute a is either 0 or 1. This reflects the fact that in a DIS, we have the precise
information regarding the attribute-values of the objects.

We note the following facts about the PIS T (K).

Proposition 5 The range of the mappings Ra, ST (K),B and Sw
T (K),B is {0, 1}.

The Proposition 5 captures the fact that in a PIS T (K), relative to any set of attributes,
two objects will be considered as distinguishable or indistinguishable. There is no
intermediate grading of distinguishability relation.

The following proposition gives the precise connection between the approxima-
tion operators defined on DISs and PISs.



120 Md. A. Khan

Proposition 6 Consider a DIS K and corresponding PIS T (K). Then the following
holds:

1. (x, y) ∈ I ndK,B if and only if ST (K),B(x, y) > 0.
2. I ndK,B = Sc

K,B(λ), for all λ ∈ [0, 1).
3. X I ndK,B

= L ST (K),B (X, 0) = L Sc
T (K),B

(X, 0).

X I ndK,B = UST (K),B (X, 0) = USc
T (K),B

(X, 0).

3.2 Incomplete Information Systems

Recall that in an incomplete information system (IIS)K := (U,A, {Va}a∈A∪{∗}, f ),
f (x, a) = ∗ denotes the absence of information about x regarding the attribute a.
Moreover, in that case, each of the attribute-value v ∈ Va has the equal probability
to be assigned to the object x for the attribute a. Due to this fact, it is natural to
assign the probability 1

|Va | to the event of taking attribute-value v for a by the object
x . Under this observation, we can view an IIS K := (U,A, {Va}a∈A ∪ {∗}, f ) as a
PIS T (K) := (U,A, {Va}a∈A, F), where

F(x, a, v) =

⎧
⎪⎨

⎪⎩

1, if f (x, a) = v
1

|Va | , if f (x, a) = ∗
0, otherwise.

One can again easily verify that
∑

v∈Va
F(x, a, v) = 1. From the definition of F ,

it follows that under a IIS T (K), the probability of an object x to take an attribute-
value v for an attribute a is 0 or 1, or each of the attribute-value from Va has equal
probability to be assign to x for the attribute a.

The following proposition captures the relationship between the approximation
operators defined on IISs and PISs.

Proposition 7 Consider an IIS K and corresponding PIS T (K). Then the following
holds:

1. (x, y) ∈ SimK,B if and only if ST (K),B(x, y) > 0.
2. X SimK,B

= L ST (K),B (X, 0) = L Sc
T (K),B

(X, 0),

X SimK,B = UST (K),B (X, 0) = USc
T (K),B

(X, 0).

Observe that in an IIS K if f (x, a) = f (x, b) = ∗, it does not mean that T (K)

will assign equal probability to the events (x, a, v) and (x, b, u). This is due to the
fact that probability distribution in T (K) also depends on the size of the attribute-
value set. Moreover, PISs can also express more general situation where one does
not know the exact attribute-value, but can exclude some values. For instance, let
Va := {v1, v2, v3}, and suppose that we do not have information about the attribute-
value of x for the attribute a, but we have the information that it cannot be v1. This
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fact cannot be captured in a IIS, but can be represented in a PIS by assigning the
probability F(x, a, v1) = 0, and F(x, a, v2) = F(x, a, v2) = 1

2 .

We would like to add here that the lower approximation operator L Sc
T (K),B

defined
on T (S) for IIS S coincides with the one defined on IIS using valued-tolerance
relation in [14].

3.3 Nondeterministic Information Systems

Let us consider a nondeterministic information system (NIS) S := (U ,A, {Va}a∈A,
f ) under the assumption that f (x, a) = V , for V ⊆ Va , represents a situation where
we do not know what attribute-value the object x takes for the attribute a, but we
know that it is one of the member of V . Under this assumption, the probability of the
event (x, a, v) is zero for v /∈ V , and for v ∈ V , the probability of the event (x, a, v)
is 1

|V | . This observation suggests that a NIS S := (U,A, {Va}a∈A, f ) can be viewed
as a PIS T (K) := (U,A, {Va}a∈A, F), where

F(x, a, v) :=
{

1
| f (x,a)| , if v ∈ f (x, a)

0, otherwise.

We again note that F satisfies the required condition
∑

v∈Va
F(x, a, v) = 1 of a

probability distribution.
The following proposition provides the precise connection between different

indistinguishability relations and corresponding lower and upper approximation
operators defined on NISs and PISs.

Proposition 8 Consider a NIS K and corresponding PIS T (K). Then the following
holds:

1. (a) (x, y) ∈ SimK,B if and only if ST (K),B(x, y) > 0;
(b) (x, y) ∈ Simw

K,B if and only if Sw
T (K),B(x, y) > 0;

2. (a) X SimK,B
= L ST (K),B (X, 0) = L Sc

T (K),B
(X, 0)

X SimK,B = UST (K),B (X, 0) = USc
T (K),B

(X, 0);

(b) X Simw
K,B

= L SwT (K),B
(X, 0), and X Simw

K,B
= USwT (K),B

(X, 0).

Example 2 Let us consider the nondeterministic information system K1 given by
the Table3. The corresponding PIS T (K1) is given by Table1. From Example 1,
we obtain {x1, x3}SimK1,B

= LK1,B(X, 0) = {x1}. The object x3 does not belong to

{x1, x3}SimK1,B
due to the fact that the object x3 and x2 has some possibility, although

it could be very small, to take the common value v2. But, if we also consider the
measure of this possibility, then situation could be different. For instance, as illus-
trated in Example 1, if we fix λ = 1

10 , then we obtain x3 in the lower approximation
of {x1, x3}.
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Table 3 PIS K1 a b

x1 {v1} {u1, u2, u3}
x2 {v2, v3} {u1, u2}
x3 {v1, v2, v4} {u1}

From Propositions 6–8, it follows that lower (and hence upper) approximations
defined on deterministic information systems (relative to indiscernibility relation),
nondeterministic, and incomplete information systems (relative to similarity relation)
are all actually instances of onlyonenotionof lower (upper) approximationdefinedon
PISs namely L SK,B (X, 0) corresponding to threshold λ = 0. Moreover, as illustrated
in Example 1, by assigning different values for threshold λ, we obtain approximation
operators which are different from the standard one defined on nondeterministic and
incomplete information systems.

4 Conclusions

In order to capture the situation where information regarding the attribute-values of
the objects are not precise, but given in terms of probability, we propose the notion
of probabilistic information system (PIS). Notions of distinguishability relations and
corresponding approximation operators are proposed and studied. It is shown that the
DISs, IISs, and NISs are all special instances of PISs. Moreover, the approximation
operators defined on DIS (relative to indiscernibility), IISs, and NISs (relative to
similarity relations) are all originated from a single approximation operator defined
on PISs. It may be noted here that this may not be the case for the other types of
relation defined on NISs (cf., e.g., [1, 7, 15]), and we may need to come up with a
different set of relations defined on PISs to capture these relations. We would also
like to add here that we have the proposal of a sound and complete logic for PISs
where one can express the notions of approximations defined here. But this issue is
outside the scope of the current article.
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