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Preface

The international conference on “Facets of Uncertainties and Applications”
(ICFUA 2013) was organized under the joint collaboration of the Operational
Research Society of India (the Calcutta chapter) and Department of Applied
Mathematics, University of Calcutta.

The conference aimed at contributing to better understanding between practi-
tioners (both the theoreticians and researchers involved in applications) dealing
with uncertainties, mainly of nonprobabilistic category. These papers, but one,
presented at the conference, focus on various types of uncertainties which are
essentially nonprobabilistic in nature. These types include vagueness, roughness,
incompleteness, ambiguity, and such other features. Various mathematical for-
malisms have emerged during the past few decades to deal with such uncertainties,
for example, fuzzy set theory, rough set theory, soft set theory, uncertainty theory.
Papers compiled here are of two categories: invited articles presented at the plenary
sessions and contributed articles read at regular sessions of the said conference.
Invited articles are from experts of high standing in the field, while contributed
articles are by senior and young researchers. The papers deal with the state of the art
of the theories as well as their applications.

The scope of the conference included the following topics:

• Modeling different types of uncertainty (nonprobabilistic)
• Logic of uncertainty (fuzzy logic and rough logic)
• Rough sets and fuzzy sets in approximate reasoning
• Rough fuzzy hybridization and applications
• Analysis of complex systems and complex network
• Applications of fuzzy sets and rough sets in optimization and decision-making
problems

• Image and speech signal processing, prediction, and control
• Robotics
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• Expert systems
• Biology and medicine
• Business and management
• Noncomputational mathematics
• Complex system analysis
• Risk management
• Environment engineering
• Data mining
• Other applications

The program of the conference was organized mainly along four tracks:

• Uncertainty modeling
• Logic of uncertainty
• Hybridization of uncertainties
• Role of uncertainties in real problems

Each track contained a plenary session followed by three concurrent parallel
sessions. Both the plenary and parallel sessions provided participants ample
opportunity to exchange ideas on further research, research collaboration, and
training.

The conference was highly interactive and intensive in nature and attracted
budding researchers and young faculties working in related disciplines. The con-
ference attracted more than 80 participants from India and abroad. The exchange
among these participants has provided them with a comprehensive overview of the
techniques and approaches being applied to uncertainty theory and applications.

The program committee for this conference consisted of:

• Didier Dubois, University Paul Sabatier, Toulouse
• Baoding Liu, Tsinghua University, China
• Andrzej Skowron, Warsaw University, Poland
• Roman Slowinski, Poznan University of Technology, Poland
• Dominik Slezak, University of Warsaw, Poland
• Piero Pagliani, Research group on Knowledge and Communication, Italy
• Davide Ciucci, Italy
• Manoranjan Maiti, Vidyasagar University, India
• Amit Konar, Jadavpur University, India
• Mohua Banerjee, IIT Kanpur, India

The conference was supported by the Department of Applied Mathematics,
University of Calcutta; Board of Research in Nuclear Science (BRNS), Department
of Atomic Energy (DAE), India; Department of Science and Technology (DST),
West Bengal; Department of Higher Education, West Bengal; and Indian Statistical
Institute (ISI), Kolkata. We are grateful to these organizations for their very gen-
erous support.
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We thank all the authors for kindly submitting their articles to the conference
proceedings. We are very thankful to all the reviewers for their constructive
comments and suggestions for the finalization of the papers and to the editorial
board of Springer for supporting the publication of the present volume.

Mihir K. Chakraborty
Andrzej Skowron
Manoranjan Maiti

Samarjit Kar
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Part I
Uncertainty Modelling



Rough Sets and Other Mathematics:
Ten Research Programs

Piero Pagliani

Abstract Since its inception, interesting connections between Rough Set Theory
and different mathematical and logical topics have been investigated. This paper is
a survey of some less known although highly interesting connections, which extend
from Rough Set Theory to other mathematical and logical fields. The survey is
primarily thought of as a guide for new directions to be explored.

Keywords Rough sets · Algebraic logic · Topology

1 Information from Data and Information as Metaphor

As is well known, the starting point of Rough Set Theory is an indiscernible space
〈U, E〉, where U is a set and E ⊆ U × U is an equivalence relation such that
〈x, y〉 ∈ E states that items x and y take exactly the same attribute-values according
to an evaluation recorded in an Information System.

Given any relational structure 〈U, R〉, with R ⊆ U × U , and X ⊆ U , the set
R(X) = {y : ∃x ∈ X (〈x, y) ∈ R)} will by named the R-neighborhood of X. If
X = {a} we shall write R(a). Thus, by means of E−neighborhoods, from any
indiscernibility space the following operators are defined on ℘(U ):

(l E)(X) = {x : E(x) ⊆ X} = {x : ∀y(〈x, y〉 ∈ E ⇒ y ∈ X)} (1)

(uE)(X) = {x : E(x) ∩ X 
= ∅} = {x : ∃y(〈x, y〉 ∈ E ∧ y ∈ X)} (2)

(l E)(X) is called the lower approximation of X (via E), while (uE)(X) is called the
upper approximation of X (via E), and 〈U, (uE), (l E)〉 is called an approximation
space. Any equivalence class modulo E is a neighborhood E(a) for some a ∈ U , and
represents a “basic property,” that is, a unique array of attribute-values, hence a subset
of U definable by means of the given evaluation. Moreover, forany X , (l E)(X) and

P. Pagliani (B)

Rome, Italy
e-mail: pier.pagliani@gmail.com

© Springer India 2015
M.K. Chakraborty et al. (eds.), Facets of Uncertainties and Applications,
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4 P. Pagliani

(uE)(X) output either an E−equivalence class or a union of equivalence classes,
which represents nonelementary definable set.

The well-known properties of (l E) and (uE) depend on the fact that E is an
equivalence relation. Particularly, it is possible to show that {(l E)(X) : X ⊆ U } =
{(uE)(X) : X ⊆ U }. This set will be denoted by D f (U ). It collects the definable
subsets of U . If X ∈ D f (U ), then X = (l E)(X) = (uE)(X): a definable set does
not need to be approximated.

All the concepts not introduced in the paper can be found in [16]1

Observation 1 The second part of definitions (1) and (2) displays the dual logical
constructions (∀,⇒) and (∃,∧). They are the backbone to a number of mathematical
concepts. Notably, (∀,⇒) is the logical core of interiorandnecessityoperators, while
(∃,∧) is that of closure and possibility operators.

We remind that an operator φ on a lattice L is an interior (resp. closure) operator if
it is (i) decreasing: φ(x) ≤ x (resp. increasing: x ≤ φ(x)), (ii) monotone: x ≤ y
implies φ(x) ≤ φ(y) and (iii) idempotent: φ(φ(x)) = φ(x). An interior (resp.
closure) operator φ is topological if it is (iv) multiplicative: φ(x ∧ y) = φ(x)∧φ(y)

(resp. additive: φ(x ∨ y) = φ(x)∨φ(y)) and (v) co-normal: φ(1) = 1 (resp. normal:
φ(0) = 0).

Indeed, (l E) and (uE) are interior and, respectively, closure topological operators.
This was one of the first results of Pawlak’s approximation spaces and it can be stated
under different points of views:

Facts 1 1. (l E) is an interior, I, and (uE) a closure, C, operator of a topological
space with a basis of clopen - closed and open - subsets.

2. AS(U ) = 〈D f (U ),∩,∪,−,∅, U 〉 is a subalgebra of the Boolean on ℘(U ).
3. 〈℘(U ),∩,∪,−,∅, U, (uE), (l E)〉 is a topological Boolean algebra.
4. 〈℘(U ),∩,∪,−,∅, U, (uE), (l E)〉 is a model for S5 modal logic, where (l E)

stands for the necessity operator �, and (uE) for the possibility operator ♦.

By extension, AS(U ) will also be called an approximation space. Since the two
approximation operators are defined by means of E-neighborhoods, straightforward
generalizations were proposed in the Rough Set literature since its inception, by
considering other types of binary relations, R. However, problems arise if definitions
(1) and (2) aremerely traced. For instance, (l R)(X) could fail to be decreasing, which
is “strange” for a lower approximation. In viewof these problems, usually generalized
approximation operators do not mechanically trace the original definitions (see for
instance [6]). Anyway, in view of Observation 1, when definitions (1) and (2) are
used, properties of generalized upper and lower approximations can be easily derived
from the literature on modal logics with Kripke models (see [16], Chap. 4.13). The
following issue arises:

1Except for [7], this book is the only work of the author’s that will be cited. The story of the results
can be found in the mentioned chapters.
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Issue A. Informational interpretation of Kripkean modal logics,

through rough sets: For any binary relation R, give (l R) and (u R) a mean-
ingful informational interpretation. That is, a concretely justified interpretation of
R, such as that of relative accessibility relation (as defined in [15]). Conversely, give
a modal interpretation to generalized approximation operators.

2 Algebras of Rough Sets

Given an approximation space AS(U ), a rough set is an equivalence class modulo
(l E) and (uE) on the powerset ℘(U ). Thus, the rough set of X can be identi-
fied by the ordered pair 〈(uE)(X), (l E)(X)〉, called decreasing representation, or
〈(l E)(X),−(uE)(X)〉, called disjoint representation. The symbol rs(X)will denote
both of these representations. However, not all the ordered pairs of decreasing (dis-
joint) elements of AS(U ) represent a rough set. In fact, if S ⊆ U is a singleton
equivalence class, then for any X ⊆ U the following equivalent conditions hold (cf.
[16], Chap. 7):

(a) S ⊆ (uE)(X) iff S ⊆ (l E)(X); (b) S ⊆ (l E)(X) or S ⊆ −(uE)(X) (3)

The informational explanation of this fact is that singletons represent completely
defined objects. Thus, U divides into two parts: an exact part, given by the union B
of all singleton equivalence classes, and an uncertain part, given by its complement
P = U ∩ −B. Indeed, a clause equivalent to conditions (3) is (uE)(X) ∩ B =
(l E)(X) ∩ B. It states a local property: on B there is no roughness because lower
and upper approximations coincide, which is the characteristic of definable sets.
Consequently, the set of all and only the rough sets of an approximation spaceAS(U )

is definable as follows.
In decreasing representation:

Dc≡J B (AS(U )) = {〈A1, A2〉 ∈ AS(U )2 : A2 ⇒ A1 = U, A1 ⇒ A2 ≡J B U } (4)

where for all X, Y ∈ AS(U ), X ⇒ Y is −X ∪ Y and X ≡J B Y if and only if
B ⇒ X = B ⇒ Y . So, the first clause just means A2 ⊆ A1, while conditions (3)
follow from the second clause.
For the disjoint representation we have:

Dj≡J B (AS(U )) = {〈A1, A2〉 ∈ AS(U )2 : A1 ∩ A2 = ∅, A1 ∪ A2 ≡J B U }. (5)

With D≡J B (AS(U )) we denote either of these collections. Now, notice that ≡J B is
a (Boolean) congruence on AS(U ). In general, given any Heyting algebra H and
a Boolean congruence ≡ on it (i.e. H/≡ is a Boolean algebra), the operations in
the following table are definable on the set Dj≡(H). If H is a Boolean algebra,
corresponding operations are definable on the set Dc≡(H). It is understood that
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a = 〈a1, a2〉, b = 〈b1, b2〉 and the operations between elements of the pairs are
those of H:

Symbol Dc≡(H) Dj≡(H) Name
0, 1 〈0, 0〉, 〈1, 1〉 〈0, 1〉, 〈1, 0〉 Bottom, resp. Top
∼ a 〈¬a2,¬a1〉 〈a2, a1〉 Strong negation
a −→ b 〈a2 ⇒ b1, a2 ⇒ b2〉 〈a1 ⇒ b1, a1 ∧ b2〉 Weak implication
a ∧ b 〈a1 ∧ b1, a2 ∧ b2〉 〈a1 ∧ b1, a2 ∨ b2〉 Inf
a ∨ b 〈a1 ∨ b1, a2 ∨ b2〉 〈a1 ∨ b1, a2 ∧ b2〉 Sup

Derived operations:

Symbol Definition Name

−�a a −→ 0 Weak negation
a ⊃ b ∼ −� ∼ a ∨ b ∨ (−�a ∧ −� ∼ b) Pre-relative pseudocomplementation
¬a a ⊃ 0 =∼ −� ∼ a Pre-pseudocomplementation
a ⊂ b ∼ (∼ a ⊃∼ b) Pre-relative co-pseudocomplementation
a

c=⇒ b ∼ −� (a ⊃ b) Pre-relative pseudosupplementation
a

c⇐= b −� ∼ (a ⊂ b) Pre-relative co-pseudosupplementation
! 1

c=⇒ a Pre-pseudosupplementation
¡ 0

c⇐= a Pre-copseudosupplementation

Facts 2 (cf. [16], Chaps. 7, 8 and 9.6) (1)∼∼ a = a; (2)∼ (a ∧b) =∼ a∨ ∼ b; (3)
∼ (a ∨b) =∼ a∧ ∼ b; (4) −� a = 〈¬a2,¬a2〉in Dc≡(H) and 〈¬a1, a1〉 in Dj≡(H),
(5) ¬a = 〈¬a1,¬a1〉 in Dc≡(H) and 〈a2,¬a2〉 in Dj≡(H). If H is a Boolean
algebra: (6) ⊃ is a relative pseudocomplementation in the lattices 〈Dc≡(H),≤〉 and
〈Dj≡(H),≤〉, where a ≤ b if and only if a ∧ b = a. Hence, for all a, b, c of these
lattices, c ∧ a ≤ b iff c ≤ a ⊃ b. As a consequence, ¬ is a pseudocomplementation.
(7) ⊂ is a relative co-pseudocomplementation, that is, c ∨ a ≥ b iff c ≥ a ⊂ b.
Since −� a = a ⊂ 1, −� is a co-pseudocomplementation; (8) ¡a =∼ ¬a = −� ∼ a =
¬¬a = −� ¬a; (9) !a =∼ −� a = ¬ ∼ a = −� −� a = ¬−� a.

In what follows we set D1 = φ1 =¡, D2 = φ2 =!, e0 = 0, e2 = 1 and e1 = 〈U, B〉
if D≡J B is Dc≡J B , while e1 = 〈B,∅〉 if D≡J B is Dj≡J B .
Since any approximation space AS(U ) is a Boolean algebra one can prove:

Facts 3 (cf. [16], Chaps. 6–10) Let B ∈ AS(U ), then:

1. 〈D≡J B (AS(U )),∧,∨,−→,∼,−� , 0, 1〉 is a semi-simple Nelson algebra.
2. 〈D≡J B (AS(U )),∧,∨,∼, φ1, φ2, 0, 1〉, is a three-valued Łukasiewicz algebra.
3. 〈D≡J B (AS(U )),∧,∨,¬,⊃, 0, 1〉, is a Heyting algebra.
4. 〈D≡J B (AS(U )),∧,∨,−� ,⊂, 0, 1〉, is a co-Heyting algebra.
5. 〈D≡JU (AS(U )),∧,∨,∼, 0, 1〉 is a Boolean algebra isomorphic to AS(U ).
6. 〈D≡J∅ (AS(U )),∧,∨,¬,⊃, D1, D2, e0, e1, e2〉, is a Post algebra of order three.
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We have enough material for a number of interesting observations.

Observation 2 Given a topological space on a set U and X ⊆ U, the boundary
B(X) of X is given by C(X)∩−I(X). In [10] William Lawvere pointed out that in co-
Heyting algebras the topological notion of a boundary is definable as ∂(x) = x∧−� x,
and observed that for all x, y:

(1) ∂(x ∧ y) = (∂(x) ∧ y) ∨ (x ∧ ∂(y)); (2) ∂(x ∧ y) ∨ ∂(x ∨ y) = ∂(x) ∨ ∂(y).

The first equation is essentially the usual Leibniz rule for differentiation of a product.
Lawvere emphasizes that though its validity for boundaries of closed sets is supported
by our space intuition, nevertheless it is virtually unknown in general topology liter-
ature. Moreover, given an element x of a co-Heyting algebra, Lawvere calls −� −� x
the regular core of x. In the context of Continuum Physics, he claimed that a part
x may be considered a sub-body (or shortly a body) if and only if −� −� x = x and
noticed that any element x is the join of its core and its boundary: x = −� −� x ∨∂(x).

In view of Lawvere’s observations and Fact 3.(4), the notion of a co-Heyting bound-
ary was exploited by the author in the context of Rough Set analysis. Given an
Approximation Space AS(U ), X ⊆ U and a = 〈(uE)(X), (l E)(X)〉, a ∧ −� a (or,
equivalently, a∧ ∼ a), is 〈B(X),∅〉. In order to obtain the rough set of B(X) it is
sufficient to compute ¬¬(a ∧−� a). Moreover, −� −� a = 〈(l E)(X), (l E)(X)〉, which
is the rough set of (l E)(X). But (l E)(X) is the internal or necessary part of X , (in
a literal sense when AS(U ) is interpreted as an S5 modal space). This part is stable
because (l E) is idempotent. This means that δ(−� −� a) = 0; that is, the boundary of
(l E)(X) is empty.

In a private communication, Lawvere said that to his knowledge this was the first
nontrivial, albeit simple, example of his algebraic characterization of topological
boundaries. A new issue arises, thus:

Issue B. More general algebraic characterization of topological

boundaries through generalized rough sets: Exhibit more general exam-
ples of rough set systems in which Lawvere’s algebraic descriptions of a “body”, a
“core” and a “boundary” can be expressed.

Rough set systems induced by pre or partial orders P = 〈U,≤〉 are natural can-
didates, because the set F(P) of order filters of P is a Heyting algebra H(P)

(for X ⊆ U the order filter ↑ X , or ↑ x if X = {x}, is nothing but the
≤ −neighborhood of X ). But, given a Heyting algebraH, and a Boolean congruence
≡ on it, N≡(H) = 〈Dj≡(H),−→,∼,−� ,∧,∨, 0, 1〉 is a Nelson algebra, which is
a model for Constructive Logic with Strong Negation, CL SN (from this result one
obtains Fact 3.(1)). But when is N≡(H) a Heyting algebra? When a bi-Heyting alge-
bra? Is it possible a characterization of these cases and, moreover, a rough set, hence
informational, interpretation as it is done in [7] for finite algebras and particular
infinite cases (see Facts 6)?

Observation 3 An operator J on a Heyting algebra H, is a Lawvere-Tierney oper-
ator if it is idempotent, increasing and multiplicative. The operator J B of definitions
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(4) and (5) is such an operator. A Lawvere-Tierney operator J on the dual Heyting
algebra H(P) of a preorder P = 〈U,≤〉 defines an association between elements p
of U and subfilters of ↑ p, in the following manner:

J[p] = {↑ p ∩ X : p ∈ J (X), X ∈ H(P)}. (6)

The family Γ = {J[p] : p ∈ U } is called a Grothendieck topology and the system
〈P, Γ 〉 an ordered site (see [16], Chap.7.3). The logical importance of ordered sites is
the following. H(P) is the set of possible evaluations �A� from intuitionistic formulas
A to the Kripke model 〈P,�〉. Given an element x ∈ U, a formula A is said to be
locally valid on x, x � 〈l〉A, if �A� ∈ J[x] for some Grothendieck topology Γ on P.

This formalizes our intuition that locally on B sets are not rough but exact (see [16],
Chap. 7).

Issue C: Rough Set Systems and Logic: Find a faithful logic for rough set
systems. The problem is that, for instance, three-valued Łukasiewicz logic, which is
often proposed as the logic of rough set systems, is not able to grasp the distinction
between the exact behaviour on B and the inexact behaviour on P . In fact, this logic
encompasses the cases in which B = U , B = ∅ and B 
= U, B 
= ∅.Maybe, Labeled
Deduction Systems could be useful (see [4] and subsequent works).

Observation 4 From Facts 2.(8)–(9), one derives ∼ ¬¬ = −� −� ∼ and ∼ −� −� =
¬¬ ∼, which suggest that the double negations ¬¬ and −� −� behave in modal
(∼ � = ♦ ∼, ∼ ♦ = � ∼) and topological (−I = C−, −C = I−) manners.

The rough set explanation of this fact is given by the following equations:

¬¬rs(X) = rs((uE)(X)); −� −� rs(X) = rs((l E)(X)) (7)

From Facts 2.(8)-(9), ¬¬ = −� ¬ and −� −� = ¬−� . Thus they are particular
cases of two more general operators definable in bi-Heyting algebras. Indeed, let
us define the following sequences in a σ−complete bi-Heyting algebra BH: (i)
�0 = ♦0 = I d; (ii)�n+1 = ¬−��n ,♦n+1 = −� ¬♦n ; (iii)�(a) = ∧n

i=1 �i (a); (iv)
�(a) = ∨n

i=1 ♦i (a), ∀a ∈ BH. In [19] it is shown that for any a,�(a) is the largest
complemented element of BH below a, while �(a) is the smallest complemented
element above a. From Facts 3.(3)-(4), a rough set system is a bi-Heyting algebra
where � = �1 and � = ♦1 (from (7), because (l E) and (uE) are idempotent or
directly from idempotency of ¬¬ and −� −� ).

This property is related to the following laws: (DM1) LetH be a Heyting algebra.
H satisfies the De Morgan law for ¬, if ∀x, y, ¬(x ∧ y) = ¬x ∨ ¬y. (DM2)
Let CH be a co-Heyting algebra. CH satisfies the De Morgan law for −� , if ∀x, y,

−� (x ∨ y) = −� x ∧ −� y. It can be shown that in bi-Heyting algebras the law for ¬
implies �(a) = ¬−� a and that the law for −� implies �(a) = −� ¬a (the reverse of
the implications does not hold). Actually, both laws hold in rough set systems. The
proof is in the following list, as well as some consequences:
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Facts 4 1. (DM1) is equivalent to the fact that Reg(H) = {x ∈ H : x = ¬¬x}
is a sublattice of H (see [8]). Dually for (DM2) and coReg(CH) = {x ∈ CH :
x = −� −� x}.

2. Since ¬¬ is a Lawvere-Tierney operator, it is multiplicative but, in general, not
additive. This means that generally Reg(H) is not a sublattice of H. Dually,
coReg(CH) is not a sublattice of a generic co-Heyting algebra CH.

3. But in rough set systems, from (7) and Facts 1.(1), ¬¬ is a topological closure,
hence additive, while −� −� is a topological interior, hence multiplicative. It fol-
lows that both Reg(D≡J B (AS(U ))) and coReg(D≡J B (AS(U ))) are sublattices
of D≡J B (AS(U )).

4. The set of the complemented elements of a lattice L is called the center of L,
Ctr(L). One can prove that Reg(D≡J B (AS(U ))) = coReg(D≡J B (AS(U ))) =
Ctr(D≡J B (AS(U ))). Of course, if a ∈ Ctr(D≡J B (AS(U ))), then δ(a) = 0.

Issue D: Informational interpretation of the situation where the

sequences �n and ♦n do not stabilize at step 2: Longer steps for stabiliza-
tion reflect the fact that new boundaries must be included after each application of
closure and smaller internal parts must be grasped after any interior application.
Informational interpretations of this situation should be provided. In Sect.4 a first
answer is suggested.

Facts 5 1. In a Heyting algebra H, an element x is called dense if ¬¬x = 1. If
H has a least dense element d, then Reg(H) is isomorphic to H/≡Jd . It can be
proved ([16] Chap.7) that in Dj≡J B (AS(U )) the least dense element is 〈B,∅〉,
while in Dc≡J B (AS(U )) is 〈U, B〉.

2. Thus, one can prove that 〈D≡J B (AS(U )),∧,∨, !, e0, e1, e2〉, is a P2-lattice of
order three, if B 
= U. Here, e0 ≤ e1 ≤ e2 is the chain of values. Moreover, if
A is a classical tautology (with ∼, ¬ or −� as negation), then e1 ≤ �A� ≤ e2,
while if A is a classical contradiction, then e0 ≤ �A� ≤ ∼e1 (see [16] Chap.9.6).
Thus, e1 is a local classical top, and ∼ e1 is a local classical bottom.

3. Eventually, 〈D≡J B (AS(U )),∧,∨,
c=⇒,

c⇐=,⊃,⊂, !, ¡, 0, 1〉, is a P-algebra. In

this case a
c=⇒ b is the largest element e of the center such that e ∧a ≤ b, while

a
c⇐= b is the least element e of the center such that e ∨ a ≥ b.

The last result leads us to a new issue:

Issue E: Rough Set Systems and Topos Theory: In [3] it is shown that a
lattice L has a stalk (etalé) space representation when for each s ∈ L, the mapping
ϕs : Ctr(L) −→ L;ϕs(e) = e∧ s is residuated, or, equivalently, if ηs : Ctr(L) −→
L; ηs(e) = e ∨ s is residuated. But from Fact 5.(3)

c=⇒ and
c⇐= are the required

residuations, respectively. Moreover, the definition of a bi-Heyting algebra in [19] is
given in terms of a topos E , a Boolean topos B, and a surjective geometric morphism
Γ : E −→ B, such that the canonical map δ : ΩE −→ ΩB has a lax adjoint.
Finally, also the construction of rough set systems through Grothendieck (Lawvere-
Tierney) topologies is a signal that these systems are some sort of topos. Therefore,
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a unitary and coherent description of (generalized) rough sets from the point of view
of etalé spaces and topos theory would be welcome (some hints: the representation
of a rough set system in terms of the dual of a set of disjoint chains of max length
2, or as a product of a Boolean algebra and a Post algebra of order three (see [16]
Chaps.10.4 and 8.3); the fact that the prime ideals of a P−algebra lie in disjoint
maximal chains ([3])).

We have seen that rough set systems induced by pre or partial orders P are well-
behaving because the dual H(P) of a preorder P is a Heyting algebra. Not only
they are useful in data-mining (cf. [5]), but in this case the construction of rough
set systems assumes an unexpected amazing meaning (see [7]) (on the topic, see
also [14]). In fact, if P is a partial order upper bounded by a set M of maximal
elements (always if it is finite), then for all m ∈ M , ↑ m is a singleton definable set.
In view of the previous discussion, the corresponding rough set system is given by
Dj≡J M (H(P)). One has, thus:

Facts 6 1. M is the least dense element of H(P) (i.e. ¬¬M = U ).
2. ≡J M is the Glivenko congruence: i.e. X ≡J M Y iff ¬X = ¬Y .
3. Dj≡J M (H(P)) belongs to the subvariety of Nelson algebras of pairs 〈a, b〉 deter-

mined by the equation ¬a = ¬¬b.
4. Dj≡J M (H(P)) is a model for the logic E0, which is CL SN plus the following

modal axioms: (∼A −→⊥) −→ T(A) and (A −→⊥) −→ ∼T(A). Logic E0
was introduced in [11] where it is proved | CL A if and only if | E0 T(A), also
in the predicative case, thus extending the well-known Gödel-Glivenko theorem
stating | CL A if and only if | INT ¬¬A, for A any classical propositional
formula, CL a classical logic system and IN T an intuitionistic system.

We arrive at a new issue:
Issue F: Rough Set Systems and substructural logics: CL SN is a sub-
structural logic ([24], but see also [23]). Is there any rough set-based informational
interpretation of this fact? (for some suggestions see [12, 13], and [25]).

3 Purely Relational Approximation Operators

Consider a structure P = 〈U, M, R〉, with U, M sets and R ⊆ U × M . We interpret
U and M as sets of objects and, respectively, properties, so that 〈g, m〉 ∈ R means
that object g fulfills property m. P will be called a property system. Let us define the
following functions, where R� is the reverse of R (see [22], cf. [16], Chap. 2.):

– 〈e〉 : ℘(M) �−→ ℘(U ); 〈e〉(Y ) = {a ∈ U : ∃b(b ∈ Y ∧ b ∈ R(a))};
– [e] : ℘(M) �−→ ℘(U ); [e](Y ) = {a ∈ U : ∀b(b ∈ R(a) ⇒ b ∈ Y )};
– 〈i〉 : ℘(U ) �−→ ℘(M); 〈i〉(X) = {b ∈ M : ∃a(a ∈ X ∧ a ∈ R�(b))};
– [i] : ℘(U ) �−→ ℘(M); [i](X) = {b ∈ M : ∀a(a ∈ R�(b) ⇒ a ∈ X)}.
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A function is decorated by ‘e’ when its application gives an extension, i.e., a set of
objects, and it is decorated by ‘i’ when it outputs an intension. From Observation
1, it is clear why two of them are ♦-shaped (possibility), and two are �-shaped
(necessity). These functions fulfill a strategic property: 〈〈i〉, [e]〉 and 〈〈e〉, [i]〉 are
Galois adjunctions: 〈i〉(X) ⊆ Y iff X ⊆ [e](Y ), 〈e〉(Y ) ⊆ X iff Y ⊆ [i](X),
for all X ⊆ G, Y ⊆ M . Exploiting this fact one immediately obtains that 〈i〉[e]
and 〈e〉[i] are pre-topological interior operators, while [i]〈e〉 and [e]〈i〉 are pre-
topological closure operators, on M and U , respectively. For this reason we set, for
all X ⊆ U, Y ⊆ M :

(a) int (X) = 〈e〉([i](X)); (b) cl(X) = [e](〈i〉(X)).
(c) A(Y ) = [i](〈e〉(Y )); (d) C(Y ) = 〈i〉([e](Y )).

A and C are the “formal” counterparts of cl and, respectively, int . One has:

int (X) ⊆ X ⊆ cl(X), any X ⊆ U. (8)

If R(U ) = M and R�(M) = U , then int is co-normal and cl is normal (in this case
we shall say that the property system is normal). It can be proved that (l R) and (uE)

are special cases of int , respectively, cl.

Issue G. Rough Set Systems from adjoint operators:What are the logico-
algebraic properties of the set of ordered pairs of the form 〈cl(X), int (X)〉 or
〈int (X),−cl(X)〉? (Some hints from [1] or [2]).

Observation 5 It is worth noticing that the above machinery can be rephrased
in the framework of Chu spaces. Since they provide models for Linear Logic
(see [17, 18]), one could add this ingredient to Issue F for a more comprehensive
description of the “substructural picture”.

4 Approximation by Means of Neighborhoods

Consider a structure N = 〈U, ℘ (U ), R〉, with R ⊆ U × ℘(U ). It can be considered
a concrete instance of a neighborhood system. If u′ ∈ N ∈ R(u), we say that u′
is a neighbor and N a neighborhood of u. We call N (U ) = {R(u) : u ∈ U } a
neighborhood system. Let us define the following operators on ℘(U ):

(a) G(X) = {u : X ∈ R(u)}; (b) (X) = −G(−X) = {u : −X /∈ R(u)}.
Consider the following conditions on N (U ), for any x ∈ U , A, N , N ′ ⊆ U :
1. U ∈ R(x); 0. ∅ /∈ R(x); Id. if x ∈ G(A) then G(A) ∈ R(x);
N1. x ∈ N , for all N ∈ R(x); N2. if N ∈ R(x) and N ⊆ N ′, then N ′ ∈ R(x);
N3. if N , N ′ ∈ R(x), then N ∩ N ′ ∈ R(x).
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They induce the following properties of the operators G and F :

Condition Equivalent properties of G Equivalent properties of F
1 G(U ) = U F(∅) = ∅
0 G(∅) = ∅ F(U ) = U
Id G(X) ⊆ G(G(X)) F(F(X)) ⊆ F(X)

N1 G(X) ⊆ X X ⊆ F(X)

X ⊆ Y ⇒ G(X) ⊆ G(Y ) X ⊆ Y ⇒ F(X) ⊆ F(Y )

N2 G(X ∩ Y ) ⊆ G(X) ∩ G(Y ) F(X ∪ Y ) ⊇ F(X) ∪ F(Y )

N3 G(X ∩ Y ) ⊇ G(X) ∩ G(Y ) F(X ∪ Y ) ⊆ F(X) ∪ F(Y )

But N is a property system, too. So it is possible to define int and cl. One can prove
that int = G and cl = F if conditions Id, N1 and N2 are satisfied. Moreover, if
N is normal, then 1 and 0 are satisfied, too. Neighborhood systems satisfying these
conditions will be classified as N2I d . A topology is a N2I d neighborhood system
which fulfills N3 in addition.

Now, we compare formal and concrete pre-topological spaces by exploiting the
formal semi-cover relation � introduced in [20]. Let b ∈ M and Y, Y ′ ⊆ M :

(basis) b � Y iff b ∈ A(Y ), (step) Y � Y ′ iff ∀y ∈ Y, y � Y ′.

Moreover, we assume M to be a monoid with a binary operation “·” and unity 1.
The operation “·” is a formal counterpart of intersection. Thenwe put for X, Y ⊆ M :

(a) X · Y = {x · y : x ∈ X & y ∈ Y }; (b) X • Y = A(X · Y ). (9)

Let us put SatA(M) = {X ⊆ M : A(X) = X} and let ⊥ be any subset of
M . Then we say that a pre-topological formal system 〈M, ·, 1,⊥,�〉 is topological
if 〈SatA(M), •,∨, M,A(⊥)〉 is a complete lattice with complete distributivity and
ordering ⊆. It can be proved that a pre-topological formal system is topological if
the following (left) and (right) properties hold:

(left)
b � Y

b · b′ � Y
; (right)

b � Y b � Y ′

b � Y · Y ′ .

Since N is a property system, we can define the operation A on ℘(U ) obtaining the
pre-topological system, τ = 〈℘(U ),∩, U,∅,�〉 which is in between a formal and
a concrete system. Thus, the question is (see [16], Chap. 14.2): given a relational
structure 〈U, ℘ (U ), R〉, is there any connection between the properties 1, 0, Id, N1,
N2, N3 and N4, of N (U ) and the properties (left) and (right) of τ? There are two
answers, for the present: (A): IfN (U ) fulfillsN3, then (right) holds in τ (the converse
does not hold). (B) N (U ) fulfills N2 if and only if (left) holds.

At this point a couple of issues arises:

Issue H. G, F , �, int and cl in partnership: Since G = int and F = cl when
conditions Id,N1 andN2 hold inN (U ), the above results provide us with a glimpse
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of the relationships between those operators and the properties of �. However, it
is worthwhile a thorough investigation of the connections which link the couples of
“concrete” operators (int, cl) and (G, F) and the abstract relation�, along with their
informational interpretations.

Issue I. SatA(M) can be made into a logical model in which � plays the role of
the sequent relation �. It happens that in such a system, (right) corresponds to the
contraction rule and (left) to the weakening rule (cf. [20, 21]). Thus an amazing
task would be to put this fact and those of Issue F and Observation 5 into a sound
comprehensive picture.

If one collects different observations about the same sets of objects and properties,
a composite system 〈U, M, {Ri }1≤i≤n〉 is obtained. If M = U , we call it a Dynamic
System (see [16], Chap. 12). In this case, one can ask what are the lower and the upper
approximations of a subset of U according to a certain number of observations. Let
us then set the following operators κ

m and εm , for 1 ≤ m ≤ n:

1. (Contraction): We say that x ∈ κ
m(A), if Ri (x) ⊆ A for at least m indices.

2. (Expansion): We say that x ∈ εm(A), if Ri (x) ∩ A 
= ∅ for at least n + 1 − m
indices.

In [16], Chap. 12.6, it is explained how to compute these operators. However an issue
arises about them:

Issue J: Algebraic and topological properties of dynamic operators:

What are the topological and algebraic properties of κ
m and εm? Do graded oper-

ators intm , clm , Gm and Fm make any sense?

A few results are available, and just for simple cases (namely if all R ∈ {Ri }1≤i≤n

are preorders, then κ
1 is a pretopological interior operator and εn is a pretopological

closure operator—see [16], Chap. 12). This topic is connected with multiple-source
approximation spaces (see [9]).

5 Conclusions

The above connections are not exhaustive. Rough Set Theory is productive of new
unexpected intersections and partnerships with surprising fields. We just mention
that it suggested a semantic interpretation of the Logic of conjectures and assertions
(see G. Bellin’s page profs.sci.univr.it/∼bellin/papers.html) and a tool for spatial
reasoning (see the works by T. Bittner and J. S. Stell at www.comp.leeds.ac.uk/jsg
and theworks on spatial reasoningby I.Düntsch andE.Orłowska). Eventually, a lot of
work is still required to understand the logico-algebraic properties of approximations
of relations (for some results in simple cases, see [16], Chap. 15.18).
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Dealing with Uncertainty: From Rough
Sets to Interactive Rough-Granular
Computing

Andrzej Jankowski, Andrzej Skowron and Roman Swiniarski

If you thought that science was certain-
well, that is just an error on your part.

—Richard P. Feynman,
The Nobel Prize in Physics (1965)

Abstract Wediscuss an approach for dealingwith uncertainty in complex intelligent
systems. The approach is based on interactive computations over complex objects
called here complex granules (c-granules, for short). C-granules are defined relative
to a given agent. Any c-granule of a given agent specifies a perceived structure
of local environment of physical objects, called hunks. There are three kinds of
such hunks: (i) hunks in the agent external environment creating the hard_suit of
c-granule, (ii) internal hunks of agent, creating the soft_suit of c-granule, some of
which can be represented by agent as infogranules, and (iii) hunks creating the
link_suit of c-granule and playing the role of links between hunks from the hard_suit
and soft_suit. This structure is used for recording by means of infogranules the
results of interactions of hunks from the local environment. We begin from the
discussion on dealing with uncertainty in the rough set approach and next we move
toward interactive computations on c-granules. In particular, from our considerations
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it follows that the fundamental issues of intelligent systems based on interactive
computations concern the efficiency management in controlling of computations
performed by such systems. Our approach is a step toward realization of theWisdom
Technology (WisTech) program. The approach was developed over years of work,
based on the work on different real-life projects.

Keywords Information granule · Physical object · Interaction · Complex
granule · Granular computing · Rough set · Complex vague concept
approximation · Adaptive judgment · Efficiency management

1 Introduction

There are quite many well-known different approaches for dealing with uncertainty
(e.g., [13, 16, 17, 23, 24, 43, 44]). We emphasize some basic issues related to
uncertainty in: (i) object perception, (ii) concept perception as well as (iii) reasoning
about concepts. In real-life applications, the objects and concepts we are dealing
with are complex. Moreover, they are often vague what causes additional problems
in coping with them.

We start from the rough set approach proposed by Professor Pawlak [23, 24, 27]
as a tool for dealing with imperfect knowledge, in particular with vague concepts.
Rough set theory has attracted the attention of many researchers and practitioners
all over the world. We discuss uncertainty issues in object and concept perception in
the rough set framework.

Granular Computing (GC) is now an active area of research [29]. Objects we
are dealing with in GC are information granules (or infogranules, for short). Such
granules are obtained as the result of information granulation [47]:

Information granulation can be viewed as a human way of achieving data compression
and it plays a key role in implementation of the strategy of divide-and-conquer in human
problem-solving.

The concept of granulation is rooted in the concept of a linguistic variable introduced
by Professor Lotfi Zadeh in 1973. Information granules are constructed starting from
some elementary ones. More compound granules are composed of finer granules that
are drawn together by distinguishability, similarity, and functionality [45].

Understanding of interactions of objects on which are performed computations
is fundamental for modeling of complex systems [3]. For example, in [21] this is
expressed in the following way:

[...] interaction is a critical issue in the understanding of complex systems of any sorts: as
such, it has emerged in several well-established scientific areas other than computer science,
like biology, physics, social and organizational sciences.

When we move to dealing with perception of interacting complex objects in
observed situations one should consider that due to resource bounds only some parts
of complex objects may be perceived at a given moment of time. These parts are per-
ceived as values of compound attributes computed on the basis of the delivered (e.g.,
by control of the agent) parameters of sensors and recorded in relevant information
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(decision) systems as the results of sensory measurements. Hence, uncertainty in
identification of the environment state often causes that results of interactions with
and within the environment cannot be predicted with certainty. As a consequence,
e.g., results of performed actions may be different than the predicted ones.

In this paper, we outline an extension of Interactive Rough-Granular Computing
(IRGC) approach (see, e.g., [29, 38, 41, 42]) by introducing complex granules (c-
granules, for short) making it possible to model interactive computations performed
by an agent. In such computations, interactions among physical objects and interac-
tions of these physical objects with information granules possessed by the agent are
represented.

In IRGC, the rough set approach in combination with other soft computing
approaches are used for inducing approximations of complex vague concepts.

Different problems related to dealing with uncertainty in IRGC are outlined in
the paper.

Let us mention here that our discussion on IRGC based on c-granules is strongly
related to the following sentences:

As far as the laws of mathematics refer to reality, they are not certain; and as far as they are
certain, they do not refer to reality. (Albert Einstein, [2])

Constructing the physical part of the theory and unifying it with themathematical part should
be considered as one of the main goals of statistical learning theory. (Vladimir Vapnik, [43]
p. 721)

This paper covers some issues presented in the invited talk at ICFUA 2013.
In Sect. 2, we discuss some basic problems related to dealing with uncertainty

in the rough set approach. Section3 outlines the approach to IRGC based on
c-granules and reports some issues concerning uncertainty in IRGC. In particular,
due to uncertainty, e.g., in identification of the global environment state, develop-
ment of the efficiencymanagement techniques for controlling by agent computations
performed over c-granules for achieving goals is crucial for intelligent systems based
on IRGC.

2 Rough Sets and Uncertainty

2.1 Uncertainty in Object Perception

The rough set philosophy [23, 24, 27] is founded on the assumption that with every
object of the universe of discourse, we associate some information (data, knowl-
edge) called the object signature. Objects characterized by the same information are
indiscernible (similar) in view of the available information about them. The indis-
cernibility relation generated in this way is the mathematical basis of rough set
theory. This understanding of indiscernibility is related to the idea of Gottfried Wil-
helm Leibniz that objects are indiscernible if and only if all available functionals take
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Fig. 1 Elementary granules
in rough sets defined by
signatures of objects and
their partial inclusion in
concepts (sets)
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on them identical values [15]. However, in the rough set approach, indiscernibility
is defined relative to a given set of functionals (attributes).

Any set of all indiscernible (similar) objects is called an elementary granule, and
forms a basic granule (atom) of knowledge about the universe. In Fig. 1, we illustrate
the elementary granules defined by the indiscernibility relation IND(A) on the basis
of the object signatures In fA(x), where

I n fA(x) = {(a, a(x)) : a ∈ A} (1)

for x ∈ U [27].
If, e.g., the results of measurements are uncertain, one should consider more

compound elementary granules (see, e.g., Fig. 2).
Many research papers on rough sets are dedicated to different issues related

to uncertainty of object perception [39], e.g., to uncertainty caused by: (i) miss-
ing attribute values, (ii) imperfect measurement of attribute values, (iii) noise,
(iv) unknown relevant structure or context of objects in hierarchical learning, and
(v) unknown relevant attributes for approximation (feature selection and construc-
tive induction problems). All the above aspects concerning uncertainty in object

Fig. 2 Examples of
elementary granules with
centers and different
uncertainty in membership
measurement: binary case,
monotonic discrete
multivalued case, monotonic
continuous fuzzy case,
non-monotonic discrete case
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perception have an impact on definitions of indiscernibility (discernibility) rela-
tions, elementary granule, granules constructed from them, and approximations of
concepts.

2.2 Uncertainty in Concept Perception

In this section, we start from an explanation how uncertainty in object perception
influences the concept perception. Next, we consider the impact of imperfect infor-
mation about concepts of their perception.

Any union of elementary granules is referred to as crisp (precise) set. If a set is
not crisp then it is called rough (imprecise, vague).

Note that due to the computational complexity of searching for relevant crisp
sets in solving problems related to concept approximation, the searching is usually
restricted to a feasible subfamily of the family of all possible unions of elementary
sets, e.g., consisting of conjunctions of descriptors only [25, 27].

Each rough set has borderline cases, i.e., objects which cannot be classified with
certainty as members of either the set or its complement. Obviously, crisp sets have
no borderline elements at all. This means that borderline cases cannot be properly
classified by employing available knowledge.

Thus, the assumption that objects can be “seen” only through the information
available about them leads to the view that knowledge has granular structure. Due
to the granularity of knowledge, some objects of interest cannot be discerned and
appear as the same (or similar). As a consequence, vague concepts in contrast to
precise concepts, cannot be characterized in terms of information about their ele-
ments. Therefore, in the proposed approach, we assume that any vague concept is
replaced by a pair of precise concepts—called the lower and the upper approximation
of the vague concept. The lower approximation consists of all objects which defi-
nitely belong to the concept and the upper approximation contains all objects which
possibly belong to the concept. The difference between the upper and the lower
approximation constitutes the boundary region of the vague concept. Approxima-
tion operations are two basic operations in rough set theory. Hence, rough set theory
expresses vagueness not by means of membership, but by employing a boundary
region of a set. If the boundary region of a set is empty it means that the set is crisp,
otherwise the set is rough (inexact). A nonempty boundary region of a set means that
our knowledge about the set is not sufficient to define the set precisely.

In the literature, one can findmore details on different aspects of rough set approx-
imations of vague concepts. In particular, discussion on vague (imprecise) concepts
in philosophy includes the following characteristic features of them [12]: (i) the pres-
ence of borderline cases, (ii) boundary regions of vague concepts are not crisp, and
(iii) vague concepts are susceptible to sorites paradoxes. The rough set approach is
consistent with this view. For example, one should consider that the set of attributes
and the set of objects and/or attributes are changing. Hence, the boundary region is
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drifting and it is only possible to construct temporary crisp definitions of boundary
region.

Theoriginal approachbyPawlak [23, 24, 27]was basedon indiscernibility defined
by equivalence relations. Any such indiscernibility relation defines a partition of
the universe of objects. Over the years many generalizations of this approach were
introduced and the most of them are based on coverings rather than partitions. In
particular, one can consider similarity (tolerance)-based rough set approach, binary
relation-based rough sets, neighborhood and covering rough sets, dominance-based
rough set approach, hybridization of rough sets and fuzzy sets, and many others [26,
39]. One should note that dealing with coverings requires solving several new algo-
rithmic problems such as selection of family of definable sets or resolving problems
with selection of relevant definition of approximation of sets among many possible
ones. For a given problem (e.g., classification problem), it is necessary to discover
the relevant covering (or partial covering) for the target classification task. In the
literature, there are numerous papers dedicated to theoretical aspects of the cover-
ing rough set approach. However, still more work should be done on algorithmic
problems concerning discovery of the relevant covering.

Another issue investigated in the rough set approach concerns (rough) inclusion
measures [26]. In particular, approximation spaces with rough inclusion measures
have been investigated [26, 35]. This approach was further extended to rough mere-
ological approach [30, 31]. More general cases of approximation spaces with rough
inclusion were also discussed in the literature including approximation spaces in
GC [38]. It is worthwhile mentioning here the approach for ontology approximation
used in hierarchical learning of complex vague concepts (see, e.g., [1, 39]). Different
rough inclusion measures and based on them quality measures are used for inducing
from dataset decision rules, dependencies of attributes, concept description, clusters,
or classifiers. They are based, e.g., on the positive region, different kinds of entropy
or relative entropy. In the case of rough set-based classifiers, often are used different
versions of the minimum length description principle [32, 33]. In searching for the
high quality classifiers, quality measures aggregating two components are used. The
first one is related to the data model quality and the second one to the model descrip-
tion length. The aggregation of such uncertainty measures is optimized for obtaining
the high quality classifiers [27, 39]. Let us also note that many known similarity
indices can be defined by rough inclusion measures [4].

Due to uncertainty in perception of concepts, the rough set approach is used for
developingmethods for inducing approximations of concepts in the formof classifiers
or clusters. This direction is strongly related to inductive reasoning and also to more
general reasoning called adaptive judgment [6–9, 11]. The general idea is as follows.
From a given decision table, a set of granules in the form of decision rules is induced
together with arguments for and against for each decision rule and decision class.
For any new object with known signature, one can select rules matching this object.
Note that the left-hand sides of decision rules are described by formulas making it
possible to check for new objects if they satisfy them assuming that the signatures of
these objects are known. In this way, one can consider two semantics of formulas: on
a sample of objectsU and on its extensionU ∗ ⊇ U . Definitely, one should consider
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a risk of such generalization in the decision rule inducing. Next, a conflict resolution
should be applied for resolving conflicts between rules matching the new object and
voting for different decisions. The whole procedure can be generalized for the case
of approximation of more compound information granules than concepts.

It is worthwhile mentioning that in the rough set approach were also developed
approaches for inducing approximate reasoning schemes [36, 39].

3 IRGC and Uncertainty

Solving under uncertainty problems concerning interactive computations require to
consider issues such as [6]: (i) changing attention in time relative to parts of complex
objects which cannot be perceived as the whole at a given moment of time, (ii)
values of compound attributes are computed on the basis of the delivered (e.g.,
by the agent control) parameters of sensors and recorded (in relevant information
systems) results of sensory measurements, and (iii) interaction with the environment
may cause different results of actions than the predicted ones.

3.1 Complex Granules and Computations Over Complex
Granules

Any c-granule of a given agent specifies a perceived structure of local environment of
portions of matter (physical objects), called hunks [5]. There are three kinds of such
hunks: (i) hunks in the agent external environment creating the hard_suit of c-granule,
(ii) internal hunks of agent, creating the soft_suit of c-granule, some of which can
be represented by agent as information granules (infogranules, for short), and (iii)
hunks creating the link_suit of c-granule and playing the role of links between hunks
from the hard_suit and soft_suit. This structure is used in recording by means of
infogranules, the results of interactions of hunks from the local environment [6, 10].

Any atomic infogranule g of c-granule can be treated as a hunk hg with states
encoded by objects such as numbers or words. Objects encoding the states of hg are
possible values of g (or hg). More formally, one can treat hg as a collection of hunks
consisting of values of hg . In the interaction of hg with the local environment of
c-granule, the hunk encoding the relevant state is selected from hg . More compound
infogranules are obtained by relevant aggregation of already defined infogranules.
This is a generalization of a notion of infogranules considered e.g., in [29, 36],
where the values are assumed to be given while here they are obtained as the result
of interaction processes in the local environment of c-granule.

One can distinguish two functionalities of each c-granule.
The first one, corresponding to the c-granule syntax frame, consists of the specifi-

cation of the local environment structure. This structure, defined in the soft_suit part
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of c-granule and represented by infogranules, consists of representations of hunks and
links, defined in link_suit part of c-granule, between the representations of hunks
and corresponding to them parts of the physical world—creating the hard_suit of
c-granule. Roughly speaking, the structure of the local environment of c-granule
describes structure of glasses of c-granule through which interactions of physical
objects in the local environment of c-granule may be perceived. We assume that any
c-granule has the ability to check if its local environment has the required structure.

The second one, corresponding to the c-granule semantics, is making it possible to
record properties of processes such as degrees of satisfiability of features or values of
compound attributes. The processes are running in the perceived local environment
with the structure of interacting hunks predefined for the c-granule by agent. Roughly
speaking, the second part of c-granule is making it possible to record and process
the relevant results of the perceived interactions, observed through the glasses of
c-granule, in the local environment and next to provide them to other c-granules.

The above two functionalities of c-granule are making it possible to perceive by
c-granule of interactions in its local environment of hunks.

We also assume that to any c-granule may be assigned pair(s) of the form (pre-
condition, post-condition). It is assumed that if c-granule is perceiving a structure
satisfying the precondition (including interaction initiation), then the results of inter-
actions of physical objects (perceived by means of properties of hunks from the local
environment of c-granule) recorded by infogranules from the c-granule are expected
(by control of agent) to satisfy the post-condition of the c-granule.One should remem-
ber that due to uncertainty, e.g., unpredictable interactions in the environment, the
real results of interactions (which may be recorded only a posteriori) may differ
from the expected ones. Roughly speaking, the pre-condition and the post-condition
of c-granule are used to describe the expected changes of properties of the local envi-
ronment of c-granule caused by interactions in this environment. The changes may
be interpreted as the result of performing an action realized by c-granule. Actions
(sensors or plans) represented by an agent in link_suits of c-granules are used by the
agent for exploration and/or exploitation of the environment on the way to achieve
the targets. Again, due to the bounds of the agent perception abilities, usually only
a partial information about the interactions in the physical world may be available
for agents. Hence, in particular, the results of performed actions by agents cannot
be predicted with certainty. This causes the necessity of adaptation of preconditions
and post-conditions by c-granule or agents.

The above-described extensionof c-granules bypreconditions andpost-conditions
may be interpreted as a delegation by an agent of some control functionalities to
c-granules and may take more advanced forms. For example, more compound c-
granules may have more pairs (precondition, post-condition) which lead to a pos-
sibility of realization by c-granule packages or plans of actions together with some
autonomy embedded by agent into c-granules concerning some control functionali-
ties, e.g., in the process of selection-relevant actions for realization.

Any agent operates in its local world of c-granules by generating (or elimination)
some c-granules and measuring the results of perceived interactions. The agent is
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Fig. 3 Two transition relations

aiming to control computations performed by c-granules from this local world for
achieving the target goals.

The transition relation is usually defined between configurations of agent ag at
succeeding moments of time. Any configuration of ag at time t (relative to the time
clock of ag) consists of all c-granules being at time t under the agent control. It is
worthwhile mentioning that the configuration at the time next to t cannot be defined
a priori (at time t). Due to uncertainty, in particular, unpredictable interactions with
the environment, the agent ag can only predict the next configuration and the real
one, resulting due to interactions, can be perceived by ag at time t ′ > t when the
results of interactions can be perceived by the agent using the relevant c-granules.
Hence, we obtain two transition relations: the predicted transition relation and the
real transition relation (see Fig. 3).

Note that the introduced model of interactive computations based on c-granules
differs from the Turingmodel of computations. The results of computations based on
c-granules depend on interactions of physical objects and linked to them information
granules (also represented by means of physical objects).

Agents and societies of agentsmayalso be represented as (generalized) c-granules.
For more details on IRGC based on c-granules also on the agent architecture as well
as on societies of agents and communication languages, the reader is referred to [6].
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3.2 Agent Interactions and Communication Languages

Languages of agents consist of special c-granules called (agent) expressions. A
soft_suit of expression (treated as a c-granule) includes an infogranule corresponding
to syntax of the expression as well as the specification of the local environment for
the expression. The expression value (e.g., the satisfiability degree when expression
is a formula) is computed using the functionalities of the expression (treated as a
c-granule) concerning perception of interactions of hunks in its local environment.
Note that some hunks of expression may belong to its soft_suit, e.g., may belong to
the agent memory or its “brain”.

The agents can crete new names or expressions, e.g., for new structured objects
or their indiscernibility (similarity) classes. Expressions from languages of agents
consist of partial descriptions of situations (or their indiscernibility or similarity
classes) perceived by agents using c-granules as well as description of approximate
reasoning schemes about the situations and their changes caused by actions and/or
plans. The situations may be represented in hierarchical modeling by structured
objects (e.g., relational structures over attribute value vectors and/or indiscernibility
(similarity classes) of such structures [40]).

From the point of view of dealing with uncertainty, it is important to observe that
any expression usually represents classes of hunks [5] rather than a single hunk. This
follows from the fact that the agents have bounded abilities on discerning of perceived
objects. Also more compound expressions, e.g., representing different behavioral
patterns may be indiscernible relative to the set of attributes used by the agent.
Hence, it follows that the agents perceive in the same way objects belonging to the
same indiscernibility and/or similarity class. This is an important feature allowing
agents to use generalization. For example, a new, unseen so far, situation may be
matched and classified to the perceived indiscernibility classes what allows agents
to use strategies of generalization.

In reasoning about the situation changes [37], one should take into account that
the predicted actions and/or plans may depend not only on the changes recognized
in the past situations but also on the performed actions and plans in the past. This is
strongly related to the idea of perception pointed out in [19]:

The main idea of this book is that perceiving is a way of acting. It is something we do. Think
of a blind person tap-tapping his or her way around a cluttered space, perceiving that space
by touch, not all at once, but through time, by skillful probing and movement. This is or
ought to be, our paradigm of what perceiving is.

Many challenging issues are related to the origin and evolution of communication
languages of agents (see, e.g., [20]). Here, we present only a few preliminary com-
ments on these issues. We assume that the agents can perceive behavioral patterns
of other agents or their groups, and based on this they can try to exchange some
messages [18]. It is worthwhile mentioning that at the beginning, agents do not have
common understanding of the meaning of such messages. In the consequence, this
leads to misunderstanding, uncomfortable situation for agents. However, after series
of trials in a dialogues they have a chance to set up commonmeaning of some behav-
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ioral patterns. In other words, they start to create common c-granules which use fixed
in dialogues links to other hunks or infogranules. For example, at the beginning the
messages could be linked to warning situations or to identifications of some sources
required for satisfiability of some agent needs. This kind of simplemessages could be
passed by very simple behavioral pattern.Next, based on these very simple behavioral
patterns the agents can developmore compoundmessages related to c-granules corre-
sponding to common plans of cooperation of group of agents or/and competitionwith
other groups of agents. This very general framework could be implemented in many
ways using different AI paradigms. Especially, many models from Natural Comput-
ing could be quite helpful (e.g., modification of cellular automata or evolutionary
programming). However, our proposal is to implement this general scheme by agents
(using c-granules) built up on the hierarchies of interactive information (decision)
systems linked to configurations of hunks. The approach based on rough sets is quite
convenient for implementation by computers well prepared for manipulation of data
tables.

Let us consider a simple example illustrating how the names may originate in the
environment where agents are interacting. Let us assume that an agent possesses a
metaphorically understood “brain” with the states represented by configurations of
hunks. The brain of agent ag is involved in interaction processes (IP) with the local
environment and is perceiving a hunk h in this environment. In effect, the brain of
agent ag launches an interaction process IP’ with the environment. IP’ introduces a
hunk h′ which is an image of h and constitutes a compressed form of h. The hunk
h′ can be considered as a name for the hunk h in language of agent ag. The frequent
perception by another agent of hunk structures constituting of co-occurrence of agent
ag and hunks h, h′ may lead to accepting h′ as the name for h by this agent (see
Fig. 4).

The perception by an agent of hunk structures constituting expressions in its
language and their aggregations leads to the creation of grammar rules. The agent
learns the usage rules of its language through interaction with the environment.

4 Adaptive Judgment: Toward Efficiency Management
in Interactive Computations Over Complex Granules

The reasoning making it possible to derive relevant c-granules used for obtaining
solutions of the target tasks is called adaptive judgment. Intuitive judgment and ratio-
nal judgment are distinguished as different kinds of judgment [11]. Deduction and
induction as well as abduction or analogy-based reasoning as well as reasoning for
efficiencymanagement are involved in adaptive judgment. Among the tasks for adap-
tive judgment are the following ones supporting reasoning under uncertainty toward:
searching for relevant approximation spaces, discovery of new features, selection
of relevant features, rule induction, discovery of inclusion measures, strategies for
conflict resolution, adaptation of measures based on the minimum description length
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principle, reasoning about changes, perception (action and sensory) attributes selec-
tion, adaptation of quality measures over computations relative to agents, adaptation
of object structures, discovery of relevant context, strategies for knowledge represen-
tation and interactionwith knowledgebases, ontology acquisition and approximation,
learning in dialogue of inclusionmeasures between information granules from differ-
ent languages (e.g., the formal language of the system and the user natural language),
strategies for adaptation of existingmodels, strategies for development and evolution
of communication language among agents in distributed environments, strategies for
efficiency management, e.g., risk management in distributed computational systems.
Definitely, in the language used by agents for dealing with adaptive judgment (i.e.,
intuitive and rational) some deductive systems known from logic may be applied for
reasoning about knowledge relative to closed worlds. This may happen, e.g., if the
agent languages are based on classical mathematical logic. However, if we move to
interactions in open worlds then new specific rules or patterns relative to a given
agent or group of agents in such worlds should be discovered. The process of induc-
ing such rules or patterns is influenced by uncertainty because they are induced by
agents under uncertain and/or imperfect knowledge about the environment. Hence,
considering only the absolute truth becomes unsatisfactory.

It is worthwhile mentioning that we propose to base adaptive judgment about
interactive computations on complex granules not only on risk management (in par-
ticular, on risk assessment) but on a more general approach based on efficiency
management using properly adopted well-known techniques such as SWOT anal-
ysis, Cost–Benefit Analysis (CBA) and others [6]. In the efficiency analysis, one
should consider a variety of complex vague concepts and relations between them

Fig. 4 Creating names
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Fig. 5 Games based on
complex vague concepts

actions initiated on the basis of judgment about

satisfiability (to a degree) of their guards

. . .

action guards: complex vague concepts 

as well as reasoning schemes over such concepts and relations related, e.g., to the
bow-tie diagram well known in the risk management area. To make such objects
as vague concepts, relations among them as well as reasoning schemes over vague
concepts “understandable” for agent control language, the relevant adaptive approx-
imate methods for such objects should be developed. For example, the ontology
approximation methodology was applied successfully in different real-life projects
(see [1] and also the references in this paper).

One can consider the above-mentioned tasks of approximation of vague complex
concepts initiating actions as the complex game discovery task (see Fig. 5) from data
and domain knowledge. The agents are using the discovered games for achieving
their targets in the environment. The discovery process can be based on hierarchical
learning supported by domain knowledge [1, 6]. Such games are evolving in time
(drifting in time) together with data and knowledge about the approximated concepts.
The relevant adaptive strategies for adapting the games to changes perceived by
agents are required. These adaptive strategies are used to control the behavior of
agents toward achieving by them targets. Note that also these strategies should be
learned from data and domain knowledge.

One can observe that some of the discussed tasks such as conflict resolution
among classifiers initiating actions voting for decisions or efficiency management
require an extension beyond the approaches based on ontologies. This extension
requires usage of relevant fragments of natural language. In such fragments, one can
express reasoning performed by humans based on concepts and relations from a given
ontology. The challenge is how artificial agents can learn to perform approximate
reasoning consistent to a satisfactory degree with reasoning performed by humans
in those fragments of natural language. This challenge is related to the following
sentences formulated by Pearl [28]:

Traditional statistics is strong in devising ways of describing data and inferring distributional
parameters from sample. Causal inference requires two additional ingredients:

1. a science-friendly language for articulating causal knowledge, and
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2. a mathematical machinery for processing that knowledge, combining it with data and
drawing new causal conclusions about a phenomenon.

The analogous idea was also formulated by Lotfi Zadeh in the framework of com-
puting with words (see, e.g., [46–50]).

Issues related to interactions among objects in the physical and mental worlds as
well as adaptive judgment belong to the fundamental issues in Wisdom Technology
(WisTech) [6–9] based on the following meta-equation:

WISDOM = INTERACTIONS + ADAPTIVE JUDGEMENT + KNOWLEDGE.
(2)

5 Conclusions

We discussed some basic issues related to dealing with uncertainty in the rough
set approach and in IRGC. The outlined research on the nature of interactive com-
putations is crucial for understanding complex systems. Our approach is based on
complex granules (c-granules) on which agents are performing interactive compu-
tations. More compound granules represent agents and societies of agents. Com-
putations over c-granules are controlled by the agent control. We emphasized the
role of risk management and other techniques from management theory in IRGC.
In our research, we plan to further develop the foundations of interactive computa-
tions based on c-granules toward tools for modeling and analysis of computations in
Natural Computing [34], Wisdom Web of Things [51], or Cyber-Physical Systems
[14].
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An Evolutionary Approach to Secondary
Membership Function Selection in
Generalized Type-2 Fuzzy Sets

Reshma Kar, Amit Konar, Aruna Chakraborty and Pratyusha Rakshit

Abstract Lack of knowledge about secondary membership function acts as an
impediment to using generalized type-2 fuzzy sets in real-world problems. This
chapter shows a new direction to compute secondary memberships in the settings
of a strategic optimization problem. It employs three strategies to design an opti-
mization objective as a function of secondary memberships and employs differential
evolution algorithm to determine secondary memberships as the optimal solution to
the optimization problem. The proposed method of secondary membership function
evaluation has successfully been applied to an emotion recognition problem.

Keywords Generalized type-2 fuzzy sets · Primary membership · Secondary mem-
bership · Differential evolution · Emotion recognition

1 Introduction

Fuzzy sets have widely been used over the last few decades for uncertainty man-
agement of real-world systems. Classical fuzzy set, also called type-1 fuzzy set,
represents a vague concept by a membership function. For example, the fuzzy con-
cept about “height is tall” is represented by a type-1 membership function which
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monotonically increases with “height” and saturates at a certain height, say 6 ft. Since
a number of monotonically increasing functions of “height” can be constructed to
represent the type-1 membership function, identifying the best selection of type-1
membership function to represent the given concept remained an unsolved problem.

One approach to alleviate the above problem is to consider the union of all possible
type-1 membership functions describing a concept. This union of type-1 membership
function together is often referred to as the Footprint of Uncertainty (FOU) in the
nomenclature of Interval Type-2 Fuzzy Set (IT2FS) [1]. An IT2FS thus can better
capture the uncertainty of different sources. IT2FS is nowadays widely been used
in scientific and engineering systems as a fundamental model to describe the uncer-
tainty of the measurement variables used therein. The type-1 membership function
resources used in the construction of FOU carries intrapersonal level uncertainty
of a source at each value of the fuzzy linguistic variable, for example, “height,” in
the context of “height is tall.” Moreover, at each distinct position of the linguistic
variable, the FOU provides a frame work for interpersonal uncertainty of several
sources.

Mendel and his research team took initiatives [2] to describe the degree of the inter-
personal uncertainty for each type-1 membership function. The certainty referred to
above at a given value of the linguistic variable “height” on the primary assignment
of “height is tall” is denoted by a two-dimensional membership function of “height”
and its type-1 membership (also called primary membership). The degree of certainty
thus obtained for each distinct value of the linguistic variable and its corresponding
primary membership is often referred to as the secondary membership. The resulting
system comprising a number of primary membership functions obtained from n
sources with an estimate of the secondary membership for each distinct value of the
linguistic variable is called generalized type-2 fuzzy set (GT2FS).

It is apparent that GT2FS can better capture the uncertainty of a real-world prob-
lem than its IT2FS counterpart. However, one of the primary bottlenecks to use
GT2FS is to provide the secondary memberships. Since users are unable to pro-
vide the secondary membership values corresponding to their primary assignments,
an automatic approach to determine the secondary membership from their primary
estimates is an open problem in the fuzzy literature [3].

This chapter aims at evaluating secondary memberships in GT2FS [4] by deter-
mining consistency in primary membership assignment by a given source with respect
to the composite opinion of all the users’ primary membership functions. The above
objective is realized by constructing an objective function that attempts to minimize
the sharp change in secondary membership grade. The constraint of the problem lies
in the fact that the defuzzified signal obtained from the primary membership function
should be close to that of the secondary membership distribution of the same source.
It is obvious because both characterize the same real world parameter.

Any derivative-free evolutionary optimization algorithm can be employed to min-
imize the given objective function to determine the secondary membership grade for
individual primary membership function. In this paper, we employed differential
evolution (DE) algorithm for its proven merits in global optimization [5] and our
experience of using it in solving nonconvex optimization problems [6]. Some of
the attractive features of DE, justifying its selection in the secondary membership
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evaluation, include simplicity of its structure leading to ease of coding, very few
control parameters, and faster convergence with respect to other swarm/evolutionary
algorithms.

A case study is undertaken here to evaluate the comparative performance of the
proposed approach of obtaining the secondary membership by optimizing the given
objective function with another existing approach [3, 7]. The case study in the present
context refers to the problem of emotion recognition from an unknown facial expres-
sion. Experiments undertaken to compare the relative performance of the proposed
approach with the method given in [3] reveal that the proposed technique outperforms
the method in [3] with respect to the classification accuracy.

The chapter is divided into six sections. Section 2 provides fundamental defini-
tions associated with type-2 fuzzy sets, which will be required in the rest of the paper.
Section 3 introduces the differential evolution algorithm. Section 4 deals with sec-
ondary membership evaluation procedure for a given primary membership function.
Experimental details and performance analysis are undertaken in Sect. 5. Conclusions
are listed in Sect. 6.

2 Preliminaries on Type-2 Fuzzy Sets

In this section, we define some terminologies related to type-1 (T1) and type-2 (T2)
fuzzy sets. These definitions will be used throughout the paper.

Definition 1 (Type-1 fuzzy set) A defined on a universe of discourse X , is given by a
two-dimensional membership function, and also called type-1 membership function.
The (primary) membership function, symbolized by µA(x) is a crisp number in [0, 1]
for a generic element x ∈ X. Usually, the fuzzy set A is expressed as a two tuple [8]
given by

A = {(x,µA(x))|∀x ∈ X}. (1)

An alternative representation of the fuzzy set A is also found in the literature as
given in (2).

A =
∫

x∈X
µA(x)|x (2)

where
∫

denotes union of all admissible x .

Definition 2 (A type-2 fuzzy set) Ã is represented by a three dimensional mem-
bership function, also called type-2 membership function, which itself is fuzzy. The
type-2 membership function is usually specified by µ Ã(x, u), where x ∈ X , and
u ∈ Jx ⊆ [0, 1] [3]. Usually, the fuzzy set Ã is expressed as a two tuple:

Ã = {((x, u),µ Ã(x, u))|x ∈ X, u ∈ Jx ⊆ [0, 1]} (3)

where µ Ã(x, u) ∈ [0, 1]. An optional form of representation of the type-2 fuzzy set
is given in (4).
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Ã =
∫

x∈X

∫

u∈Jx

µ Ã(x, u)|(x, u), Jx ⊆ [0, 1] (4)

=
∫

x∈X
[
∫

u∈Jx

fx (u)/u]
/

x, Jx ⊆ [0, 1] (5)

where fx (u) = µ Ã(x, u) ∈ [0, 1]. The
∫ ∫

denotes union over all admissible x
and u [2].

Definition 3 At each point of x , say x = x ′, the two-dimensional plane containing
axes u and µ(x ′, u) is named as the vertical slice of µ Ã(x, u). A secondary mem-
bership function is a vertical slice of µ Ã(x, u). Symbolically, it is represented by
µ Ã(x, u) at x = x ′ for x ′ ∈ X and ∀u ∈ Jx ′ ⊆ [0, 1].

µ Ã(x = x ′, u) =
∫

u∈Jx ′
fx ′(u)|u, Jx ′ ⊆ [0, 1] (6)

where 0 ≤ fx ′(u) ≤ 1. The amplitude of a secondary membership function is called
secondary grade (of membership). In (6) Jx ′ signifies the primary membership of x ′.

3 An Overview of Differential Evolution Algorithm

Differential evolution (DE) starts with a population of NP D-dimensional parame-
ter vectors representing the candidate solutions. We represent the i th vector of the
population at the current generation as

�Zi (G) = [
zi,1(G), zi,2(G), zi,3(G), . . . , zi,D(G)

]
(7)

The initial population (at G = 0) should cover the entire search space as much
as possible by uniformly randomizing individuals within the search space constrained
by the prescribed minimum and maximum bounds: �Zmin = [

zmin −1, zmin −2, zmin −3,

. . . , zmin −D
]

and �Zmax = [
zmax −1, zmax −2, zmax −3, . . . , zmax −D

]
.

Hence, we may initialize the jth component of the i th vector as

zi, j (0) = z j−min + randi, j (0, 1) × (z j−max − z j−min) (8)

where randi, j (0, 1) is a uniformly distributed random number lying between 0 and 1.

3.1 Mutation

After initialization, DE creates a donor vector �Vi (G) corresponding to each target
vector �Zi (G) in the current generation through mutation. Although DE has five most
frequently referred mutation strategies available online at (http://www.icsi.berkeley.
edu/storn/code.html), we here prefer to use DE/rand/1/bin, the most popular and

http://www.icsi.berkeley.edu/storn/code.html
http://www.icsi.berkeley.edu/storn/code.html
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widely used version of DE, particularly for its simplicity and computational accuracy
without sacrificing the speed.

DE/rand/1 : �Vi (G) = �Zri
1
(G) + F( �Zri

2
(G) − �Zri

3
(G)) (9)

The indices r i
1, r i

2, and r i
3 are mutually exclusive integers randomly chosen from

the range [1, NP], and all are different from the base index i. The scaling factor F is
a positive control parameter for scaling the difference vectors. �Zbest (G) is the best
individual vector with the best fitness in the population at generation G.

3.2 Crossover

In case of binomial crossover [5, 9], a trial vector �Ui (G)= [
ui,1(G), ui,2(G), ui,3(G),

. . . , ui,D(G)
]

is generated for each pair of donor vector �Vi (G) and target vector
�Zi (G) by the following operation

ui, j (G) =
{

vi, j (G) if randi j ≤ Cr or j = jrand
zi, j (G) otherwise

(10)

where randi, j (0, 1) ∈ [0, 1] is a uniformly distributed random number lying in
[0, 1]. jrand ∈ [1, D] is a randomly chosen index, which ensures that �Ui (G) gets at
least one component from �Vi (G). “Cr” is called the crossover rate and appears as a
control parameter of DE.

3.3 Selection

To keep the population size constant over subsequent generations, the next step of the
algorithm calls for selection to determine whether the target or the trial vector survives
to the next generation, i.e., at G = G + 1. The selection operation is described as

�Zi (G + 1) = �Ui (G) if f ( �Ui (G)) ≤ f ( �Zi (G))

= �Zi (G) if f ( �Ui (G)) > f ( �Zi (G))
(11)

where f (�x) is the function to be minimized.

4 Secondary Membership Evaluation in the Settings
of an Optimization Problem

In this section, we discuss type-2 membership evaluation [2, 3, 7]. Although theoret-
ically very sound, the application of type-2 fuzzy set remains confined over the last
two decades because of the users’ insufficient information about correctly assigning
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the secondary memberships. This paper, however, surmounts this problem by extract-
ing type-2 membership function from its type-1 counterpart by DE algorithm. A brief
outline to the construction of secondary membership function is given in this section.

Let the primary membership functions for a linguistic variable x from n sources are
represented as µ1

A(x),µ2
A(x), . . . ,µn

A(x). Here µi
A(x) is the primary membership

in [0, 1] of the linguistic variable x to be a member of set A, and µ(x,µi
A(x)) be the

secondary membership of the measured variable x in [0, 1] for the i th source. The
following strategies are used to construct an objective function, which is minimized
to obtain the solution of the problem.

Assumption 1 Let µi
A′(x) represents the average primary membership function

excluding µi
A(x). Then µi

A′(x) representing a special form of fuzzy aggregation
is given by

µi
A′(x) =

n∑

j=1, j �=i

µ
j
A(x)

n − 1
,∀x (12)

i.e., at each position of x = x j , the above membership aggregation is employed to
evaluate a new composite membership profile µi

A′(x). In the proposed approach, the
secondary membership of the i th subject, µ(x,µi

A(x)), at any point x, is evaluated
based on the absolute difference between µi

A(x) and µi
A′(x). This is based on the

supposition that a small value of
∣
∣µi

A(x) − µi
A′(x)

∣
∣ ,∀x symbolizes higher level

of correctness in assigning the primary membership µi
A(x) at each measurement

point x. On the other hand, if
∣
∣µi

A(x) − µi
A′(x)

∣
∣ ,∀x is too high, it indicates a lower

degree of certainty in the primary membership assignment. Based on this strategy,
the secondary membership of the ith subject at any point x is calculated as

µ(x,µi
A(x)) = exp(−ki

x |µi
A(x) − µi

A′(x)|) (13)

Here, ki
x is a parameter to be determined at each distinct value of linguistic variable x.

Assumption 2 The unknown secondary membership at two values of x separated
by a small positive δ should have a small difference. This is required to avoid sharp
changes in the secondary grade [7].

Assumption 3 Type-1 defuzzification over a given primary membership function,
µi

A(x) should return the same value as obtained by type-2 defuzzification corre-
sponding to the same primary membership function for any ith source [3, 7]. This
assumption holds because the two modalities of defuzzification, representing the
same real-world parameter, should return close values.

Using strategy 2, we construct a performance index Ji to compute secondary
membership for the ith subject.
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Ji =
xR−1∑

x=x1

∣
∣
∣µ((x + δ),µi

A(x + δ)) − µ(x,µi
A(x))

∣
∣
∣ (14)

This term is employed to prevent abrupt changes in the membership function. In
(19) x1 and xR are the smallest and the largest values of a given linguistic feature
considered over R sampled points of µi

A(x). In (14), δ = (xR − x1)/(R − 1) and
xk = x1 + (k − 1). δ for k = [1, R].

The defuzzified signal obtained by the centroid method [8] from the primary
membership function of the ith subject is given by

c̄i =

∑

∀x

x .µi
A(x)

∑

∀x

µi
A(x)

(15)

Further, the type-2 centroidal defuzzified signal [3] obtained from the i th primary
and secondary membership functions here is defined as

c̄i =

∑

∀x

x .µi
A(x).µ(x,µi

A(x))

∑

∀x

µi
A(x).µ(x,µi

A(x))
(16)

The products of primary and secondary memberships are used in (16) to refine
the primary memberships by the degree of certainty of the corresponding secondary
values. Then the constraint satisfying the Assumption 3 [3] is given by

∣
∣c̄i − ¯̄ci

∣
∣ = 0.

We now represent the optimization problem by adding the basic cost function with
the constraint. Thus, the constrained optimization problem in the present context is
given by,

Ji =
xR−1∑

x=x1

∣
∣
∣µ((x + δ),µi

A(x + δ)) − µ(x,µi
A(x))

∣
∣
∣ + λ

∣
∣c̄i − ¯̄ci

∣
∣ (17)

where λ (>0) is the Lagrangian multiplier. Using Assumption 1 [4], the present
constraint optimization problem is transformed to

Ji =
xR−1∑

x=x1

∣
∣
∣exp(−ki

x+δ|µi
A(x + δ) − µi

A′(x + δ)|) − exp(−ki
x |µi

A(x) − µi
A′(x)|)

∣
∣
∣

+ λ
∣
∣c̄i − ¯̄ci

∣
∣ (18)
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The secondary membership evaluation problem, now transforms to minimization
of Ji by selecting λ and kx at every point x. Note that, for each subject, we have to
define (13), (15), (16), and (18) and find the optimal secondary membership functions.

A pseudocode to compute the secondary membership function of a type-2 fuzzy
set from its primary counterpart using DE is given below.

Pseudo Code:

Input: Primary membership distribution )(xµi
A , for n subjects where i= [1, n], the smallest 

value x1 and the largest value xR of linguistic variable x.

Output: Secondary membership distribution ))(,( xµxµ i
A corresponding to the primary 

membership )(xµi
A for each of the i-th subject.

Begin
For subject i=1 to n
Repeat

1. Obtain the averaged primary membership function )(/ xµi

A
(corresponding to )(xµi

A ) from 

the primary membership functions )(xµ j
A of n sources, only disregarding the primary 

membership distribution, )(xµi
A of the i-the subject, i.e., j= [1, n], j i using (12).

2. Evaluate ic for the selected i-th primary membership distribution )(xµi
A using (15).

3. Call DE ( )(xµi
A , )(/ xµi

A
, ic ).

End For.
End.

Procedure DE ( )(xµi
A , )(/ xµi

A
, ic )

Begin 

1. Initialize a population of NP solutions )(GZ j , with j= [1, NP]. Here 

},,...,,{)( ,,, 21 jxj
i

xj
i

xj
i

j RkkkGZ λ= for R sample points of the linguistic variable x .

2. Obtain the secondary membership distribution encoded in )(GZ j , corresponding to

)(xµi
A for j= [1, NP] using (13).

3. Evaluate jic , for the selected i-th primary membership distribution )(xµi
A using (16) for 

each )(GZ j for j= [1, NP].

4. While termination criterion is not satisfied
Begin
a. Create trial vector using mutation and crossover schemes of DE as given in (9) and (10).
b. Evaluate fitness using (18).
c. If the trial vector is better than the target vector

Then replace the target by the trial in the next generation.
End If

End While
xxx i

A ∀)),(,( μμ

Two illustrative plots of secondary membership function for a given primary are
given in Figs. 1 and 2.
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Fig. 1 a The primary
membership function for a
given linguistic variable, b
2-D view and c 3-D view of
its corresponding secondary
membership function
obtained by minimizing Ji
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Fig. 2 a The primary
membership function for a
given linguistic variable, b
2-D view and c 3-D view of
its corresponding secondary
membership function
obtained by minimizing Ji
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5 Experiments

5.1 Experimental Environment

The secondary membership evaluation problem of GT2FS is carried out on a sim-
ulated environment on Intel Core 2 Duo processor architecture with clock speed of
2 GHz. We used the best possible parameter setting for the DE algorithm. An opti-
mal set of parameters is chosen after experimenting with many possibilities. The
crossover rate Cr is set to 0.9 and the scale factor F to 0.8. For the algorithm, the
population size NP is taken to be ten times the dimension D of the problem. We
repeat the mutation, crossover, and selection operations of DE until the terminating
condition for convergence is reached. We stop the algorithm when the number of
Function Evaluations (FEs) exceeds 106.

5.2 Optimization of Objective Function and Constraint
to Evaluate Secondary Membership

We have considered a group of 20 primary membership functions for the linguistic
variable “speed” (sp) in the context that “speed is medium (med)” as illustrated in
Fig. 3a. Figure 3b elucidates an example of evaluating the secondary membership
distribution µ(sp,µ5

med(sp)) for the 5th subject based on its primary membership
distribution µ5

med(sp) and µ5
med(sp) (obtained by taking average of all µi

med(sp),

i = [1, 20] except at i = 5 at all distinct values of the variable “speed”). It is
observed from Fig. 3c that there exist three peaks in the secondary membership dis-
tribution at the “speed” value of 55, 70, and 140 miles/h. It is apparent from Fig. 3b
that µ5

med(sp = 55) = µ5
med(sp = 55) = 0.9, µ5

med(sp = 70) = µ5
med(sp =

70) = 0.6, and µ5
med(sp = 140) = µ5

med(sp = 140) = 0, indicating the highest
level of certainty in assigning the primary membership at these three distinct value
of “speed”. The lowest value of µ(sp = 40,µ5

med(sp = 40)) is implied by the max-
imum absolute difference of

∣
∣µ5

med(sp = 40) − µ5
med(sp = 40)

∣
∣ = |0.15 − 0.8| =

0.65, which in turn signifies the high level of uncertainty in the primary membership
assignment. In Fig. 4, we have also plotted the objective function value of the best
solution for evaluation of µ(sp,µ5

med(sp)) obtained in DE-based simulations with

FEs. Here J1 =
xR−1∑

x=x1

∣
∣
∣µ((x + δ),µi

A(x + δ)) − µ(x,µi
A(x))

∣
∣
∣ , J2 = λ

∣
∣c̄i − ¯̄ci

∣
∣ and

J = J1 + J2.
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5.3 Case Study in Emotion Recognition

In this section, a case study of GT2FS based reasoning for emotion classification
[3, 7, 10, 11] is undertaken to illustrate the importance of the proposed approach.
Here we consider k = 5 distinct emotion classes: anger, fear, disgust, happiness, and
relaxation. The experiment is conducted with two sets of subjects: (a) the training
dataset of n = 20 subjects is considered for designing the fuzzy face-space and
(b) the testing data set of 10 unknown subjects is considered to validate the result
of the proposed emotion classification scheme. m = 5 facial features, (Left Eye
Opening (EOL), Right Eye Opening (EOR), Distance between the Lower Eyelid
to the Eyebrow for the Left Eye (LEEL), Distance between the Lower Eyelid to
Eyebrow for the Right Eye (LEER), and the Maximum Mouth opening (MO)) have
been used here to design the type-2 fuzzy face-space.

Let fi be the measurement of the ith feature for a subject with an unknown emo-
tion class, c. Now, by consulting the n primary membership functions that were
generated from n-subjects in the training data for a given emotion class, c, we obtain
n primary membership values (generated from n-subjects in the training data) cor-
responding to fi for emotion class c as given by µ1

Ãc
( fi ),µ

2
Ãc

( fi ), . . . ,µ
n
Ãc

( fi ).

Let the secondary membership values for each primary membership value respec-
tively beµ( fi ,µ

1
Ãc

( fi )),µ( fi ,µ
2
Ãc

( fi )), . . . ,µ( fi ,µ
n
Ãc

( fi )). In order to reduce the
intralevel uncertainty, we obtained the modified primary membership value for the
jth training subject for ith feature of class c as

modµ
j

Ãc
( fi ) = µ

j

Ãc
( fi ) × µ( fi ,µ

j

Ãc
( fi )),∀ j = [1, n] (19)

Now for all fi , i = [1, m] and for all c = [1, k], we evaluate

modµ
Ãc

( fi ) = min(modµ1
Ãc

( fi ),
modµ2

Ãc
( fi ), . . . ,

modµn
Ãc

( fi )) (20)

modµ Ãc( fi ) = max(modµ1
Ãc

( fi ),
modµ2

Ãc
( fi ), . . . ,

modµn
Ãc

( fi )) (21)

Now for m different facial features f /
i , i = [1, m] of an unknown emotion, we can

obtain
[

modµ
Ãc

( f /
1 ), modµ Ãc( f /

1 )
]
,
[

modµ
Ãc

( f /
2 ), modµ Ãc( f /

2 )
]
, . . .,

[
modµ

Ãc
( f /

m),

modµ Ãc( f /
m)

]
under the emotion class c. Thus we can say that the unknown subject is

experiencing the emotion class c at least by Smin
c = min

(
modµ

Ãc
( f /

1 ), modµ
Ãc

( f /
2 ),

. . . , modµ
Ãc

( f /
m)

)
and at most to the extent Smax

c = min
(

modµ Ãc( f /
1 ), modµ Ãc( f /

2 ),

. . . , modµ Ãc( f /
m)

)
. Then the degree of support of that unknown facial expression in
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Support of the 

GT2FS for 

Emotion Class 1 

Support of the 

GT2FS for 

Emotion Class k 

…...

If Sr • Sc for all c= [1, k], then emotion class= r. 

Defuzzified strength for 

emotion 1= S1

Defuzzified strength for 

emotion k = Sk

f1

/

fm

/

Predicted emotion of the unknown subject = Emotion class

Fig. 5 GT2FS based emotion classification

the emotional class c is given by Sc = (Smin
c +Smax

c )/2 [12]. Now to predict the emo-
tion of an unknown subject, we determine Sc for each of the k classes, i.e., c = [1, k]
and thus determine the emotion class r, for which Sr ≥ Sc for all c = [1, k].
A complete scheme for GT2FS-based emotion recognition, considering the support
of k-emotion classes is given in Fig. 5.

5.4 Relative Performance Analysis

The emotion recognition problem addressed here attempts to determine the emo-
tion of an unknown subject from his/her facial expression. The features obtained
from Fig. 6 are enlisted in Table 1. Table 2 provides the results of individual range in

LEELLEER

MO

EOL
EOR

Fig. 6 Extracted features of facial image of an unknown subject

Table 1 Extracted feature
values from Fig. 5

EOL EOR LEEL LEER MO

0.069 0.065 0.116 0.127 0.156
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Table 2 Calculated feature ranges and center value for each emotion using the proposed approach
of evaluating secondary membership

Emotion Range of modified primary membership for features Range Sc
j

after fuzzy
meet
operation
(center)

EOL EOR MO LEEL LEER

Anger 0.0361–
0.6450

0.0362–
0.6310

0.0312–
0.8125

0.0425–
0.8658

0.0382–
0.8856

0.0312–
0.6450
(0.338125)

Disgust 0.0635–
0.6625

0.0613–
0.6741

0.0020–
0.9254

0.0149–
0.8251

0.0131–
0.7855

0.0020–
0.6625
(0.332250)

Fear 0.0137–
0.3340

0.0155–
0.3410

0.0325–
0.8275

0.0539–
0.8700

0.0512–
0.8517

0.0137–
0.3340
(0.173875)

Happiness 0.0597–
0.6475

0.0633–
0.7145

0.0591–
0.8303

0.0085–
0.7757

0.0925–
0.8278

0.0085–
0.6475
(0.328000)

Relaxed 0.0517–
0.6025

0.0552–
0.5857

0.0000–
0.5125

0.0000–
0.7512

0.0000–
0.8251

0.0000–
0.5125
(0.2562500)

modified primary membership (using (19)) for each feature of the unknown emotion
experimented under different emotional conditions. This uses our proposed approach
to evaluate the secondary membership. The results of computing fuzzy meet opera-
tion over the range of individual features taken from facial expressions of the subject
under the same emotional condition are given in the last column of Table 2. The aver-
age of the ranges along with its center value is also given in the same column. It is
observed that the center has the largest value (=0.338125) for the emotion: anger.
So, we can conclude that the subject in Fig. 5 shows emotion anger.

Table 3 enlists the results for the same unknown facial expression but using the
approach as proposed in [3] to determine the secondary membership grade. Table
III shows that the emotion is misclassified as disgust with the largest center value
(=0.452). Table 4 shows the classification accuracy of our proposed approach as
well as the method proposed in [3] using three facial image databases, i.e., Japanese



48 R. Kar et al.

Table 3 Calculated feature ranges and center value for each emotion using the approach of evalu-
ating secondary membership as given in [7]

Emotion Range of modified primary membership for features Range Sj
c

after fuzzy
meet
operation
(center)

EOL EOR MO LEEL LEER

Anger 0.0661–
0.7742

0.0632–
0.7713

0.0360–
0.9231

0.0433–
0.7735

0.0401–
0.7541

0.0360–
0.7541
(0.395050)

Disgust 0.0290–
0.8750

0.0351–
0.8182

0.0349–
0.9115

0.0430–
0.9378

0.0327–
0.9452

0.0290–
0.8750
(0.452000)

Fear 0.0541–
0.6326

0.0553–
0.6531

0.0525–
0.8156

0.0522–
0.9325

0.0546–
0.9022

0.0522–
0.6326
(0.342420)

Happiness 0.0267–
0.7550

0.0278–
0.7796

0.0414–
0.8471

0.0177–
0.8666

0.0182–
0.8828

0.0177–
0.7550
(0.386380)

Relaxed 0.0654–
0.7244

0.0641–
0.7214

0.0000–
0.7000

0.0005–
0.8752

0.0005–
0.8653

0.0000–
0.7000
(0.350000)

Table 4 Percentage accuracy over three databases

GT2FS-based
emotion recognition

JAFFE
(%)

Indian Women
(Jadavpur University)
(%)

Cohn-
Kanade
(%)

Average accuracy (of
last 3 columns) (%)

Our proposed
approach

98.5 100 98 98.833

Approach given in [7] 91 94.5 91.5 92.333

Female Face Database (JAFFE), Indian Women Face Database (Jadavpur Univer-
sity), and Cohn-Kanade database (Fig. 7). Table 4 and comparison of Tables 2 and 3
indicate that our proposed approach has outperformed the method proposed in [7] to
identify the class of an unknown emotion from the extracted features.
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Fig. 7 Experiment done on different databases: a JAFFE, b Indian Women Database (Jadavpur
University), and c Cohn-Kanade database

6 Conclusion

The chapter proposed a novel approach to evaluate the secondary membership grade
from the primary membership distribution of a fuzzy linguistic variable and attempted
to demonstrate the advantage of the proposed approach in emotion classification
from facial expression. Experiments reveal that the classification accuracy in emo-
tion recognition by our method of evaluating secondary membership is 98.833 %,
while the existing approach [3] employed for the same purpose offers a classifica-
tion accuracy of 92.333 %. This 6.5 % increase in classification accuracy is obtained
without any significant loss in computational time. This indicates that our proposed
GT2FS design method can effectively deal with both intra- and interpersonal level
uncertainty associated with the assignment of primary membership values.
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Specificity Based Defuzzification
in Approximate Reasoning

Asim Pal and Swapan Raha

Abstract In this paper, an attempt ismade to introduce a newdefuzzification scheme
to be used in case there are a number of clipped fuzzy sets in the output of a fuzzy sys-
tem. Approximate reasoning with this defuzzification scheme is proposed. A number
of defuzzification methods existing in literature are reviewed here. A comparative
study with our method has been made. The results are illustrated with a DC shunt
motor for better understanding.

Keywords Fuzzy set · Specificity measure · Defuzzification · Approximate
reasoning

1 Introduction

In fuzzy logic, defuzzification is the process of producing a quantifiable result from
a number of fuzzy sets in the output of a fuzzy system. A typical fuzzy logic system
has the following components—a fuzzification procedure, a knowledge-base, an
inference mechanism, and a defuzzification procedure. The performance of a fuzzy
system depends heavily on fuzzification and the defuzzification strategies—as in
this case, the overall performance of the system under study is determined by the
controlling signal if receives.

Defuzzification procedure converts a fuzzy set into a crisp set. For a fuzzy set
A defined over the universe U , the α − cut set Aα , where 0 ≤ α ≤ 1 is a crisp
set Aα = {x |μA(x) ≥ α}. There may be situations when the output of a fuzzy
process needs to be a single scalar quantity as opposed to a set of possible quanti-
ties. Thus, defuzzification is a procedure by which, we can obtain a typical member
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from the universe of discourse of a linguistic variable if the best representative of
the fuzzy set representing the value that the linguistic variable can take. Although,
there are a number of definitions for defuzzification of a fuzzy set, there is no sys-
tematic procedure for the choice of a good defuzzification strategy. However, we will
concentrate on the following basic criteria against which one can measure the meth-
ods viz., continuity (small change in the input should not produce a large change in
the output), unambiguity (defuzzification always result in a unique value), plausi-
bility (the defuzzified value should always correspond to the center of the support
region), and simplicity (easy to compute).

In this paper, we propose a defuzzification method which is such that if the output
fuzzy set has at least two convex subregions, then the center of gravity of the most
specific subregion may be used as the defuzzified value of the output. Accordingly,
from a collection of output fuzzy sets, we select one with maximum specificity and
compute the centroid of the region determined by the point of the Universe at which
the centroid corresponds will be the defuzzified value. For example, rules designed
to decide howmuch pressure to apply might result in “Decrease Pressure by 15% or,
Increase Pressure by 72%” when fired for a typical data resulting in a fuzzy output
against the desire for a typical value of pressure. Defuzzification is interpreted as a
procedure for making the membership degrees of the elements of a fuzzy set into a
real value—a specific decision. The simplest but least useful defuzzification method
is to choose the element with the highest membership and ignore the others. The
problem with this approach is that it loses information. The rules that called for
decreasing or maintaining pressure might as well have not been there in this case.
A common and useful defuzzification technique is to find the center of gravity of
the region it defines. First, the results of the rules fired must be added together in
some way. Most typical fuzzy set membership functions have the graph of a triangle.
Now, if this triangle was to be cut in a straight horizontal line somewhere between
the top and the bottom, and the top portion was to be removed, the remaining portion
forms a trapezoid. The first step of defuzzification typically “chops off” parts of the
graph to form a trapezoid (or other shapes if the initial shapes were not triangles).
For example, if the output has “Decrease Pressure 15%”, then this triangle will be
reduced by 15% the way up from the bottom. In the most common technique, all
these trapezoids are then superimposed one upon another, forming a single geometric
shape. Then, the centroid of this shape is calculated. The Projection of the centroid
on the domain of definition gives the defuzzified value.

Choice of appropriate/suitable defuzzification procedure is an important task in
the design of a fuzzy system. Here, we study six different defuzzification proce-
dures, propose a new defuzzification procedure and call the same “Specificity based
defuzzification.” The paper is organized into five sections. After a brief introduction
in Sect. 1, a review of the different existing methods of defuzzification is presented in
Sect. 2. Section3 studies the proposed specificity-based defuzzification method. In a
subsection, the use of the proposed method in approximate reasoning methodology
has been presented. One concrete example based on actual data is presented in Sect. 4
followed by the result of a case study on DCmotor. The paper is concluded in Sect. 5
followed by a list of references.
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2 Defuzzification Procedure

We can define a set of m rules as

i f x1 is LX (k)
1 and · · · and xn is LX (k)

n then Y is LU (k) k = 1, . . . ,m.

The outcome of firing these rules with physical, crisp input values of x�
1, . . . , x

�
n will

either be m clipped fuzzy sets Fig. 1 denoted by

CLU
(1)

, . . . ,CLU
(m)

or m scaled fuzzy sets denoted by

SLU
(1)

, . . . , SLU
(m)

.

Here, we discuss the six most frequently used defuzzification methods [1]:

• Center of Area/Gravity defuzzification (COA/COG),
• Center of Sums (COS) defuzzification,
• Center of Largest-Area (COLA) defuzzification,
• First of Maxima (FOM) defuzzification,
• Middle of Maxima (MOM) defuzzification,
• Height defuzzification.

2.1 Center-of-Area/Gravity Defuzzification (COA/COG)

The Center-of-Area method or Center-of-Gravity method is a well-known defuzzifi-
cationmethod. In the discrete case, letU = {u1, . . . , un} be the universe of discourse
of a linguistic variable and let A be the fuzzy set of possible values that the linguistic

Fig. 1 Clipped fuzzy sets
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variable can assume. Then, the defuzzification value will be given in (1) for the
discrete and continuous cases respectively,

u∗ =

n∑

i=1

ui · μU (ui )

n∑

i=1

μU (ui )

and u∗ =

∫

U
u · μU (u)

∫

U
μU (u)

(1)

where
∫
is the classical integral. So, this method determines the center of the area

below the combined membership function. This defuzzification method is computa-
tionally rather complex and therefore results in quite slow inference cycles.

2.2 Center of Sums Defuzzification (COS)

This type of defuzzification method is similar to COG but computationally faster.

The idea is to consider the contribution of the area of each CLU
(k)

individually.
The motivation for using this method is to avoid the computation of Ũ . Mathemati-

cally, the COG method builds Ũ by taking the union of all CLU
(k)
. Center of Sums,

however, takes the sum of the CLU
(k)

. Thus, overlapping areas, where exists, are
considered more than once. This method of defuzzification requires only one multi-
plication as compared to n-multiplication in COG. Hence, this method is faster than
COG. Center of Sums is formally defined in (2) for discrete and continuous cases
respectively,

u� =

l∑

i=1

μi ·
l∑

k=1

μCLU (k)(ui )

l∑

i=1

·
l∑

k=1

μCLU (k)(ui ).

and u� =

∫

U
u ·

n∑

k=1

μCLU (k)(u)du

∫

U

n∑

k=1

μCLU (k)(u)du .

(2)

2.3 Height Defuzzification Method (HM)

This defuzzificationmethod uses the individual clipped outputs instead of Ũ . Accord-
ingly, this method takes the peak value of each clipped output fuzzy sets and builds
the weighted sum of these peak values. Let c(k) be the peak value and fk be the height
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of kth fuzzy set (k = 1, 2 . . . ,m). Then, the height defuzzification method for an
output from a system of m rules is formally given by

u� =

n∑

k=1

c(k) · fk

n∑

k=1

· fk
. (3)

2.4 Center of Largest Area (COLA)

The Center of Largest Area is used in the case where the fuzzy set is nonconvex,
i.e., it consists of at least two convex fuzzy subsets [1]. The method determines
the convex fuzzy subset with the largest area and defines the crisp output value u∗
to be the Center of Area of this particular fuzzy subset. It is difficult to present
this defuzzification method formally, because it involves finding the convex fuzzy
subsets, their areas, etc.

2.5 First of Maxima (FOM)

First of Maxima uses the fuzzy set Ũ of U and takes the smallest value from the
UniverseU with maximal membership degree in Ũ . Mathematically, it is understood
by the following steps. Let

hgt (U ) = supu∈UμU (u) (4)

be the highest membership degree of the elements in Ũ , and let

{u ∈ U |μU (u) = hgt (U )} (5)

be the set of elementswith degree ofmembership equal to hgt (U ). Then u�is given by

u� = in fu∈U {u ∈ U |μU (u) = hgt (U )}. (6)

An alternative method is called the Last of Maxima and is given by

u� = supu∈U {u ∈ U |μU (u) = hgt (U )}. (7)
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2.6 Middle of Maxima (MOM)

Middle of maxima is almost equal to First of Maxima or Last of Maxima. Instead of
considering u∗ to be the first or last from all values U having maximal membership
degree, this method takes the average of these two values. Formally,

u� = in fu∈U {u ∈ X |μU (u) = hgt (U )} + supu∈U {u ∈ U |μU (u) = hgt (U )}
2

(8)

3 Specificity Measure—Defuzzification

The result of rule firing, for a typical observation, is a fuzzy set. This is interpreted,
at the semantic level, as the desired output. Often, we need to determine a precise
action as output. The purpose of defuzzification is to obtain a scalar value u ∈ U ,
from the said output fuzzy set, as the action. Then, if necessary, denormalization
is performed on the output so as to obtain the corresponding action on its physical
domain. Specificity measure of a fuzzy set estimates the precision of an information
when represented by it. In order to provide a definition for a specificity measure of
a fuzzy set, a number of factors must be considered. A fuzzy set with maximum
specificity value corresponds to a precise assessment of the values of a variable.
According to Dubois and Prade, a specificity measure Sp(A) [2] should satisfy the
following properties. Let X be a linguistic variable defined on a universe of discourse
U . A and B are normalized fuzzy subsets of U .

A1. Sp(A) ∈ [0, 1].
A2. Sp(A) = 1 if and only if A is a singleton of U .
A3. If A ⊆ B then Sp(A) ≥ Sp(B).

Yager [3] introduced one such measure of specificity that satisfies the above proper-
ties. WhenU is finite, Yager proposed an expression for defining the specificity. Let
us assume that A be a fuzzy set defined over the universal setU and Aα be the α-level
set of A. The specificity associated with A is denoted as Sp(A) and is defined as

Sp(A) =
∫ αmax

0

1

Card Aα

dα (9)

where αmax = supu∈UμA(u). Let us now list some properties [3] associated with
the above definition.

P1. For all A, Sp(A) assumes its maximum value 1, when A = {1/u}, i.e., fuzzy
subset A consists of a singleton u ∈ U having membership value 1.

P2. For all A, Sp(A) ∈ [0, 1] and it assumes its minimum value 0, when A = Φ.
P3. If μA(u) = k for all u ∈ U then Sp(A) = k

n where n is the cardinality of the
ordinary set U .
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Defuzzification is a procedure applied to reduce the anxiety in a decision. Speci-
ficity estimates the precision of an information on the values of a linguistic variable
restricted by a fuzzy set. As suggested by the axioms and further properties of speci-
ficity, a crisp set can be less specific than a fuzzy set for restricting the possible values
of a variable. Accordingly, we propose a new technique for defuzzification based on
measure of precision. Let there be m clipped fuzzy sets {A(k); k = 1, 2, . . . ,m} and
let {s(k), p(k); k = 1, 2, . . . ,m} be the specificity associated with A(k) as well as, the
peak point of the consequent fuzzy set of the kth-rule. Let p(k) be the peak value of
A(k) and h(k) be the corresponding height of the clipped version of A(k). Then, using
height method the defuzzified value will be given by

u∗ =

m∑

k=1

p(k).h(k)

m∑

k=1

h(k)

. (10)

whereas, the specificity-based defuzzified value u∗ will be given by

u∗ =
∑m

k=1 p
(k).s(k)

∑m
k=1 s(k)

(11)

This definition is similar to the Height method of defuzzification which demands
strictly convex fuzzy setswhereas the proposed one is applicable to all. The individual
peak values of consequent fuzzy sets of the fired rules are used to generate the
weighted average of these peak values. It is a simple method and works faster than
theCenter-of-sumsmethod.Again,we can use the specificity, height, and peak values
simultaneously to compute a modified defuzzified value as in the following:

u∗ =

m∑

k=1

p(k).h(k).s(k)

m∑

k=1

h(k).s(k)

. (12)

3.1 Approximate Reasoning with Specificity Based
Defuzzification

In this section, we would like to validate our proposal considering defuzzification as
an important integral part of approximate reasoning methodology [4].

Let there be m rules for a linguistic variable X taking values from the universe of
discourse U . For each value of j = {1, 2, . . . ,m}, A j is a fuzzy subset of U and Bj
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of V . In this case, the consequence can be obtained in two different ways. One can
first compute the conclusion from each rule consistent with the premise q and then
compose them by some rule of composition. The other approach is to first compute a
fuzzy relation from the combination of all the rules (each of them is a fuzzy relation)
conformal for firing on the product space and then use q to obtain the desired result.
Both approaches are frequently used in many rule-based systems viz., fuzzy control.
In finding a conclusion B ′ using the max-min compositional rule, the premise p is
translated first into a fuzzy relation between the inputs (rule-antecedents) and the
output (the consequent). There are different ways to obtain such a relation. The
premise q is translated into another fuzzy relation between the input variables and
then cylindrically extended over the product space of the input and output variables.
These two relations are composed together using the (min)conjunction principle and
finally, (max) projected over the universe (V ) of the output variable, for the desired
conclusion (Table1).

We propose a new scheme, for computing the final conclusion, based on ameasure
of similarity. Our method is based on first rule-selection and then rule-execution. In
both cases, we use the concept of similarity between fuzzy sets as a basis of the task.
For that, first of all, we compute si = S(A, Ai ); i = 1, 2, . . . ,m. From among them
distinct rules, we choose those rules for which si > ε. This ε can be interpreted as a
threshold in our case. We then apply algorithm APPR to generate a conclusion from
each rule conformal for firing. The output can be generated using the intersection of
the output fuzzy sets. It is important to note that the intersection operation is chosen
in order to justify the rule-selection procedure. Here, fewer rules are fired and the
output of each rule is significant.

Algorithm APPR:
Step 1. Compute si , the similarity of the input fuzzy set from the i th-rule for i =
1, 2, . . . ,m;.
Step 2. Define ε and find the rules conformal for firing.
Step 3. Translate the i th-rule, provided si > ε and compute the relation Ri using
any suitable translating rule possibly, a T-norm operator.
Step 4. Modify Ri with si to obtain the modified conditional relation R′

i .

Step 5. Use sup-projection operation on R′
i to obtain B ′

i as given in Eq. (13)

Table 1 Rule-based approximate reasoning
p1 : if X is A1 then Y is B1

p2 : if X is A2 then Y is B2

...
...

pm : if X is Am then Y is Bm

q : X is A
Conclusion Y is B
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μB′
i
(v) = sup

u1,u2,...,uk
μR(A1|Ai1,A2|Ai2,...,Ak

′|Aik ,B)(u1, u2, . . . , uk, v). (13)

Step 6. Compute spi , the specificity of the output B ′
i . Choose themost specific among

the output fuzzy sets and apply the specificity-based defuzzification as defined earlier.
Example 1 : Let us consider for an input fuzzy set A, four rules are fired by the
above algorithm and we get four output fuzzy sets such as Bi1, Bi2, Bi3, Bi4. over
V = {400, 410, . . . , 800}. where
Bi1 = 0.10/460 + 0.10/470 + 0.10/480 + 0.10/490 + 0.10/500 + 0.10/510 +
0.10/520 + 0.10/530 + 0.10/540 ;
Bi2 = 0.10/510 + 0.20/520 + 0.20/530 + 0.20/540 + 0.20/550 + 0.20/560 +
0.20/570 + 0.20/580 + 0.10/590 ;
Bi3 = 0.20/560 + 0.40/570 + 0.60/580 + 0.60/590 + 0.60/600 + 0.60/610 +
0.60/620 + 0.60/630 + 0.20/640 ;
Bi4 = 0.20/610 + 0.40/620 + 0.60/630 + 0.80/640 + 0.80/650 + 0.80/660 +
0.60/670 + 0.40/680 + 0.20/690 .

Now, Sp(Bi1) = 0.010, Sp(Bi2) = 0.014, Sp(Bi3) = 0.091, Sp(Bi4) = 0.157.
U∗ (Specificity based defuzzification) = 630
U∗ (Centroid based defuzzification) = 610
U∗ (Centroid based defuzzification of fuzzy sets where sp ≥ 0.05) = 628.330

Observation: The above-mentioned result shows that the specificity-based defuzzi-
fication technique works for fuzzy systems. It is intuitively plausible, physically
significant, and computationally efficient. In taking a decision under imprecise envi-
ronment, specificity will play an important role, particularly in defuzzification.

4 A Case Study on DC Motor

In this section, let us consider the DC Motor as in [5].
The human expert observed the behavior of the DC Motor and described the

relation between current and speed in the form of fuzzy conditional statement as in
the following (Fig. 2).
The data for the fuzzy model is given in Table2. For a particular observed value of
current, expressed in natural language, we first translate the inexact concepts into
fuzzy sets(the simple observation) or fuzzy relations(the complex rule) over the spec-
ified domain using triangular membership functions. We then perform approximate
reasoning to obtain the corresponding speed of the DCMotor using algorithmAPPR.
The defuzzified input/output are plotted for a comparative assessment of the utility of
the proposed similarity-based approximate reasoning methodology. The simulation
results are presented in the following self-explanatory diagrams.
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If I=null then N=verylarge also
If I=zero then N=medium also
If I=small then N=zero also
If I=medium then N=medium also
If I=large then N=verylarge also
If I=verylarge then N=medium

Fig. 2 Rule base of DC Motor. a Diagram of DC Motor. b A Comparison of real and proposed
inference result

Table 2 Real data of a DC Motor

I 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

N 2000 1800 1600 1400 1200 1000 800 600 400 600 800

I 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

N 1000 1200 1400 1600 1800 2000 1800 1600 1400 1200

5 Conclusion

Development of suitable mathematics for the realization of intelligent systems
becomes necessary to handle modern computer-based technologies that manage
different kinds of information and knowledge. This paper discusses one such tool
required to help in the design of solutions to difficult problems in the construction of
intelligent systems where the available information is supplied by human experts the
later at times are found to be incomplete, imprecise, or even uncertain in nature and
therefore, inherently ambiguous. It requires a logical framework which will enable
one to reason and make decisions in an environment of imprecision, uncertainty,
incompleteness of information and partiality of truth.

An imprecise/incomplete description of the input-output behavior of a system, as
obtained from human experts, containing vague concepts is represented as fuzzy if-
then rules—transforming the system into a simple fuzzy rule-basedone.Approximate
reasoning methodology has been used to predict the possible behavior of the system.
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Defuzzification process allows us to select a member from the universal set as a
representative given the fuzzy output inferred from the algorithm. The use of fuzzy
logic allows us to use different interpretation of the logical operators for flexibility.

The achievement of human-levelmachine intelligencewill have a profound impact
on the contemporary society. It is hoped that upgradation of existing methodologies
through addition of concepts and techniques drawn from fuzzy set theory will open
possibilities for a substantial enhancement of our ability to model reality. Further
research on the use of similarity and approximate reasoning is necessary for better
understanding of the effect of the same on the cognitive process involved in the mod-
eling and simulation of fuzzy systems. We have suggested relevant issues involved
in the design of fuzzy systems—introduced similarity in reasoning and the concept
of specificity measure in defuzzification.
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Abstract Since one major disadvantage of application of fuzzy formal concept
analysis is that large numbers of fuzzy concepts are generated from fuzzy context, it
is practically impossible to analyze such a large amount of concepts. Often it may be
required to consider some particular concepts. For example, one might be interested
to find out the fuzzy concepts containing all those objects which share some specific
property with a specific/required degree from a given fuzzy context. Given such a
situation, proto-fuzzy concepts may play a very useful role. This paper proposes a
proto-fuzzy concept generation technique using fuzzy graph on uncertainty data. In
this paper,webeginwith defining a fuzzygraph corresponding to theL-context (fuzzy
context). We then go on to demonstrate that t-concepts can be found to correspond
with each maximal cliques of t-level graph of the defined fuzzy graph. After that,
we determine all those cliques which corresponds to the proto-fuzzy concepts of
degree t . Finally, a demonstration has beenmade using an example with the proposed
technique.
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1 Introduction

The work on Formal Concept Analysis (FCA) by Wille and Ganter [15, 16, 31] has
introduced a new perspective and opened up new areas of its application. In present
times, FCA has been extensively applied as an effective tool for data analysis to fields
such as decision making, information retrieval, data mining, knowledge discovery,
etc. The basic setting of FCA is based on bivalent logic. However, bivalent logic
cannot be of much use as the bulk of information that encounters us is usually fuzzy
and imprecise. As far as our knowledge is concerned, Burusco and Fuentes-Ganzález
[9, 10] first introduced the theory of FCA in fuzzy setting. Later, Pollandt [27], and
independently Bělohlávek [1] proposed the L-fuzzy context to combine fuzzy logic
with FCA.

Nevertheless, the downside of FCA has been the existence of a large number
of clusters [2] combined with the fact that many of the existing approaches require
computation of awhole fuzzy concept latticewhich, often, is too large.Handling such
large amount of clusters become an unwieldy task and usually impossible. To cope
with this situation, different techniques has been proposed [3, 4, 24]. However, as the
size of data sets grows, the crisply generated fuzzy concept lattice [3] or, one-sided
fuzzy concept lattice [24] continues to grow inexorably in size. Recently, another
work has been presented by Krídlo and Krajči [25, 26]. The concepts, introduced in
their paper, are known as proto-fuzzy concepts.

In this paper, we propose a graph based technique for computing proto-fuzzy
concepts from a fuzzy context. The use of graph in FCA is not new. In [5], Berry et al.
presented a graph-theoretic approach for generating formal concepts. They showed
that a particular graph can be derived from a given formal context in a manner that
there is a one-to-one correspondence between the formal concepts and the minimal
separators of the graph. They also describe a process to determine sub-lattices of
a whole lattice by saturating the minimal separators. This process could be proved
more useful than those which consider whole lattices in applications. Onemore work
has been presented in [17]. In this work, the authors have shown a relation between
a fuzzy concept lattice and a fuzzy graph defined for a given fuzzy context.

Our present work presents another fuzzy graph theoretic approach. At the begin-
ning, by defining a fuzzy graph for a given fuzzy context, we show a one-to-one
correspondence between the t-concepts and cliques of t-level fuzzy graph. Then, we
determine all those cliques which corresponds to the proto-fuzzy concepts of degree
t ∈ L .

This paper is organized as follows. In Sect. 2 of this paper, we briefly discuss about
fuzzy sets, fuzzy graph, fuzzy contexts, fuzzy concepts and proto-fuzzy concepts.
In the Sect 3.1, for a given fuzzy context, we have defined a fuzzy graph. Then,
in Sect. 3.2, we have proved that t-concepts can be generated from the cliques of
t-level graph of fuzzy graph. After that, in Sect. 3.3, we determine all those cliques
which corresponds to the proto-fuzzy concepts of degree t . Finally, we round up and
demonstrate all these procedures using a sample example.
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2 Mathematical Background—Explanations
on the Fundamentals Applied

2.1 Basics of Fuzzy Logic and Fuzzy Graph

In this sub-section we first recall the basics of fuzzy logic [14, 19, 22, 33] and fuzzy
graph [6, 12, 21, 28, 29, 32].

Since fuzzy logic are developed using general structure of truth degree, in this
paper we use a complete residuated lattice L = 〈

L ,∧,∨,
⊗

,→, 0, 1
〉
such (see

in [19]) as a basic structure of truth degree. Operations ⊗ and → are known as
“fuzzy conjunction” and “fuzzy implication”. All elements a of L are called truth
degrees. Usually, the common choice of L is a structure with L = [0, 1], with ∨
and ∧ being maximum and minimum, respectively, ⊗ being a left-continuous t–
norm with the corresponding →. Now considering L as a structure of truth degree,
we present the notions of L-set (fuzzy set) and L-relation (fuzzy relation). The
concept of L-set was introduced by Goguen [18]. An L-set μ in a universe set X
is a mapping μ : X → L. μ(x) is called the truth value (or membership value) of
x in μ which maps X to the membership space L. Similarly, an L-relation I is a
mapping I : X × Y → L assigning to any x ∈ X and y ∈ Y a truth value I (x, y)
to which x and y is related under I . The collection of all L-sets in X is denoted by
the set LX . For every t ∈ L, μt = {x ∈ X | μ(x) ≥ t} are called level sets or t-cut
of μ. We let supp(μ) = {x ∈ X | μ(x) > 0}. We call supp(μ) the support of μ.
An L-set μ is nontrivial if supp(μ) �= φ. In this paper, we use the notation ∨ for
supremum and ∧ for infimum. Let h be the function of ℘(X) into [0, 1] defined by
h(μ) = ∨{μ(x) | x ∈ X} for all μ ∈ ℘(X). Then h(μ) is called the height of μ.
Let μ, ν be any two fuzzy subsets of X then μ ⊆ ν if μ(x) ≤ ν(x) for all x ∈ X .
The union μ ∪ ν of μ, ν is a subset of X defined by (μ ∪ ν)(x) = μ(x) ∨ ν(x)
for all x ∈ X and intersection μ ∩ ν of μ, ν is also a subset of X defined by
(μ ∩ ν)(x) = μ(x) ∧ ν(x) for all x ∈ X .

The fuzzy graphs used in this work are finite and undirected. As far as our knowl-
edge is concerned, fuzzy graph was first proposed by Rosenfield [28]. A fuzzy graph
is practically a fuzzy relation and fuzzy sets defined long ago by Chakraborty and
Das [11], i.e., a fuzzy graph G = (V, μ, ρ) is a non empty set V together with a pair
of functions μ : V → [0, 1] and ρ : V × V → [0, 1] such that for all x, y in V ,
ρ(x, y) ≤ μ(x) ∧ μ(y). μ is said to be the fuzzy vertex set of G and ρ the fuzzy
edge set of G, respectively. For P ⊆ V , H = (P, ν, τ ) is called a fuzzy subgraph
of G = (V, μ, ρ) induced by P if μ(x) = ν(x) for all x ∈ P and τ(x, y) = ρ(x, y)
for all x, y ∈ P . For the sake of simplicity, we sometimes call H a fuzzy subgraph
of G. Similarly H = (P, ν, τ ) is said to be partial fuzzy subgraph of G= (V, μ, ρ)

if ν ⊆ μ and τ ⊆ ρ. Let G = (V, μ, ρ) be a fuzzy graph. For any threshold
t ∈ [0, 1], μt = {x ∈ V |μ(x) ≥ t} and ρt = {(x, y) ∈ V × V |ρ(x, y) ≥ t}.
If μt �= φ, then the crisp graph Gt = (μt , ρt ) is said to be t-level graph of
G = (V, μ, ρ).
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2.2 Fuzzy Contexts and Fuzzy Concepts

The theory of concept lattices has been generalized from the point of view of fuzzy
logic in [1, 9, 24, 27]. In this sub-section, first we discuss the approach made by
Bělohlávek. The next sub-section gives the basics of proto-fuzzy concepts.

2.2.1 Fuzzy Concept Lattice Introduced by Bělohlávek

We start with a set X of objects, a set Y of attributes, a complete residuated lattice L
and a fuzzy relation I between X and Y. The key idea of a fuzzy context (L-context)
is as follows: it is a triplet 〈X,Y, I 〉, where I (x, y) ∈ L (the set of truth values of
complete residuated lattice L) is interpreted as the truth value of the fact, “the object
x ∈ X has the attribute y ∈ Y ”. For fuzzy sets A ∈ LX and B ∈ LY , Bělohlávek
[1] and, independently, Pollandt [27] defined the fuzzy sets A↑ ∈ LY and B↓ ∈ LX

according to the formulas

A↑(y) = ∧
x∈X {A(x) → I (x, y)}

B↓(x) = ∧
y∈Y {B(y) → I (x, y)}

One can easily interpret the element A↑(y) ∈ A↑ as the truth degree of “y is
shared by all objects from A” and B↓(x) ∈ B↓ as the truth degree of “x has all
attributes from B”.

A fuzzy concept 〈A, B〉 consists of a fuzzy set A of objects (the extent of the
concept) and a fuzzy set B of attributes (the intent of the concept) such that A↑ = B
and B↓ = A. As the size of dataset grows, the fuzzy concepts generated from fuzzy
context become larger in number. Since it is very hard to deal with a large number of
fuzzy concepts, Bělohlávek et al. [3] introduced the notion of crisply generated fuzzy
concepts. The fuzzy concept 〈A, B〉 is called crisply generated if there is a crisp set
Bc ⊆ Y such that A = B↓

c (and thus B = B↓↑
c ). If B〈X,Y, I 〉 = {〈A, B〉 |A↑ =

B, B↓ = A} denotes the set of all fuzzy concepts of the fuzzy context 〈X,Y, I 〉, then
the set B〈X,Y, I 〉 with the order relation:

〈A1, B1〉 ≤ 〈A2, B2〉 if and only if A1 ⊆ A2 (or, equivalently B1 ⊇ B2) is a
complete lattice. The lattice (B〈X,Y, I 〉 ,≤ ) is called a fuzzy concept lattice.

2.2.2 Proto-Fuzzy Concepts Introduced by Krídlo and Krajči [25, 26]

Let 〈X,Y, I 〉 be an fuzzy context, where X and Y are set of objects (X) and set of
attributes (Y ), respectively and I is a fuzzy relation between X and Y. Since the value
I (x, y) express the degree to which the object x carries the attribute y. If we set a
threshold value t ∈ L to eliminate the lower degree membership value from fuzzy
relation then the resulting relation is called t-cut of fuzzy context which is basically a
binary relation between X and Y and is denoted by It . For every confidence threshold
t ∈ L , consider two sets: A′ = {y ∈ Y | ∀x ∈ A : I (x, y) ≥ t} for A ⊆ X , i.e., the
set of all attributes from Y shared by all objects of A at least with the degree t and
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B ′ = {x ∈ X | ∀y ∈ B : I (x, y) ≥ t} for B ⊆ Y , i.e., the set of all objects from X
sharing attributes from B at least to the degree t. The pair 〈A, B〉 ∈ 2X ×2Y is called
t-concept iff A′ = B, B ′ = A. The set of all t-concept in the t-cut is denoted by Ct .

TheTriples 〈A, B, t〉 ∈ 2X×2Y ×L such that〈A, B〉 ∈ ⋃
k∈L Ck and t = sup{k ∈

L : 〈A, B〉 ∈ Ck} are called proto-fuzzy concepts. i.e., the proto-fuzzy concept is
triple of a subset of objects, a subsets of attributes and a value as a best common
degree of membership of all pairs of objects and attributes from the above-mentioned
sets to the fuzzy context. The set of proto-fuzzy concepts denoted by CP .

3 Proposed Fuzzy Graph Based Proto-Fuzzy Concepts
Generation Technique

Since one major disadvantage of application of fuzzy formal concept analysis is that
large numbers of fuzzy concepts are generated from fuzzy context, it is practically
impossible to analyze such a large amount of concepts.Given such a situation,without
generating a whole set of fuzzy concepts, it would be of use if one could develop
an useful technique to determine proto-fuzzy concepts for each t ∈ L as per users
requirement.

In this section, for a given fuzzy context 〈X,Y, I 〉, we define a fuzzy graph and we
show that t-concepts can be found corresponding to each maximal cliques of t-level
graph of the defined fuzzy graph. After that, we determine all those cliques which
corresponds to the proto-fuzzy concepts of degree t . Now we present our approach
step-by-step.

1. For a given fuzzy context a fuzzy graph has been defined.
2. Using this fuzzy graph, proto-fuzzy concepts have been derived. Detailed steps

are given below.

(a) In Theorem 1, it has been derived that each t-concept correspond to a max-
imal clique of t-level graph of fuzzy graph.

(b) In Theorem 2, it has been proved that the proto-fuzzy concepts can also be
generated as maximal cliques of t-level graph of fuzzy graph.

3.1 Fuzzy Graph Defined for a Formal Context

In this sub-section, we define an underlying fuzzy graph from a given fuzzy context
in the following way:

Let K = 〈X,Y, I 〉 be a fuzzy context where X is the set of objects and Y is the set
of properties. Let {αoi |oi ∈ X} and {βp j |p j ∈ Y } be two family of fuzzy subsets of
Y and X , respectively, where for each oi ∈ X , αoi (p j ) = I (oi , p j ) for all p j ∈ Y
and for each p j ∈ Y , βp j (oi ) = I (oi , p j ) for all oi ∈ X . We construct the fuzzy
graph GI = (μ, ρ), where μ : X ⋃

Y → [0, 1] is defined by
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μ(oi ) = h(αoi ) for all oi ∈ X and μ(p j ) = h(βp j ) for all p j ∈ Y
and ρ : (X

⋃
Y ) × (X

⋃
Y ) → [0, 1] is defined by

ρ(oi , o j ) =
{
h(αoi

⋂
αo j ) if oi , o j ∈ X, i �= j

0 if i = j

ρ(pi , p j ) =
{
h(βpi

⋂
βp j ) if pi , p j ∈ Y, i �= j

0 if i = j
ρ(oi , p j ) = I (oi , p j ) if oi ∈ X and p j ∈ Y

It is to be noticed that the computations of proto-fuzzy concepts of a specific degree
t or, computing lattice L involved in proto-fuzzy concepts of a specific degree t may
be useful in different applications. But the major disadvantage of computing such
concepts or, lattice is that we need to compute all t-concepts from t-cut of the fuzzy
context for each values of t ∈ L . In the next sub-sections, we show that how the above
defined fuzzy graph is used to compute proto-fuzzy concepts of a specific degree t or,
computing lattice L involved in proto-fuzzy concepts of a specific degree t without
generating all t-concepts from t-cut of the fuzzy context for each values of t ∈ L .

3.2 Generation of t-Concepts

The following theorem shows how the above fuzzy graph could be used to generate
all t-concepts for the fuzzy fuzzy context K = 〈X,Y, I 〉.
Theorem 1 Let K = 〈X,Y, I 〉 be a fuzzy context and GI be the corresponding
fuzzy graph. If t ∈ [0, 1], then for each clique C of t-level graph, Gt

I there always is
a unique t-concept of the fuzzy context K = 〈X,Y, I 〉. Conversely, a unique clique
of t-level graph Gt

I exists for each t-concept of K = 〈X,Y, I 〉.
Proof For each t ∈ [0, 1], let C be any maximal clique of the t-level graph Gt

I . The
vertex set C of any clique can be partitioned into two sets A = {o | o ∈ X} and B =
{p | p ∈ Y }. We claim that 〈A, B〉 is a t-concept with extent A and intent B. Since C
is a maximal clique ofGt

I . Therefore, no other vertices inG
t
I −C could be connected

to all vertices in C , and also, A = {o ∈ X | for all p ∈ B : I (o, p) ≥ t} = B ′ and
B = {p ∈ Y |I (o, p) ≥ t for all o ∈ A} = A′.

Conversely, let GI be the graph for the fuzzy context K = 〈X,Y, I 〉 and 〈A, B〉
be a t-concept of K = 〈X,Y, I 〉. By the definition of t-concept, I (o, p) ≥ t for
all o ∈ A, p ∈ B, i.e., ρ(o, p) ≥ t for all o ∈ A, p ∈ B in GI . This implies,
ρ(o, o′) = h(αo

⋂
αo′) ≥ t for o, o′ ∈ A and ρ(p, p′) = h(αp

⋂
αp′) ≥ t for

p, p′ ∈ B. Therefore, C = A
⋃

B is a maximal clique t-level graph Gt
I .
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3.3 Proto-Fuzzy Concepts Determination from the Graph
of Fuzzy Context

In this next section, we show the graph can also be used to generate proto-fuzzy
concepts.

Theorem 2 Let K = 〈X,Y, I 〉 be a fuzzy context and GI be the corresponding
underlying fuzzy graph. If Gt

I is a t-level graph of GI , then corresponding to each
clique of Gt

I , containing the vertices or the edges of degree t in GI , there exists
unique proto-fuzzy concepts of degree t.

Proof For t ∈ [0, 1], let C = A
⋃

B be any maximal clique of the t-level graph
Gt

I , where A = {oi |oi ∈ X}⊆ X and B = {p j |p j ∈ Y }⊆ Y . Also let, C contains
some vertices or some edges of which the degree in GI are t . From Theorem 1, the
t-concept of t-cut of fuzzy context corresponding to the clique C is 〈A, B〉. Since
there is one-to-one correspondence between t-concepts and cliques ofGt

I , the t-level
graph of GI . Therefore for each t ′ ∈ [0, 1] and t ′ > t , C can not be a clique of the
t ′-level graphs of GI , i.e., 〈A, B〉 can not be a t ′-concept of t ′-cut of fuzzy context.
Hence 〈A, B, t〉 is a proto-fuzzy concept of degree t .

Generating maximal cliques or maximal independent sets of a given graph is one
of the fundamental problems in the theory of graphs. There are several number of
algorithm exists for this problem [7, 8, 13, 23, 30], and time complexity of most
of these algorithms depends on the number of vertices and number of cliques of G.
In this article,our proposed methodology for computing t-concepts or proto-fuzzy
concepts involves two steps: (i) computation of a fuzzy graph from the fuzzy context,
and (ii) enumeration of all maximal cliques in t-level graph of the fuzzy graph. For
computing the fuzzy graphwe need to compute m(m−1)

2 + n(n−1)
2 number of fuzzy sets

by performing fuzzy intersection. Therefore The computational work to construct
fuzzy graph can be done in O((m + n)2) time. Also all maximal cliques can be
generated in O((m + n)3) time delay (see in [20]).

Example 3 Consider the fuzzy context given in Table1. The context Table1 presents
the marks of an interview obtained by five students, namely, Adi(o1), Bimal(o2),
Chaki(o3), Dipak(o4) Eva(o5) in five areas: Physics(p1), Mathematics(p2),
Chemistry(p3), English(p4), Statistics(p5).

Table 1 Fuzzy context of the
given example

p1 p2 p3 p4 p5

o1 0.9 0.7 0.2 0.4 1

o2 0.8 1 0.3 0.7 0.9

o3 0.2 0.2 0.2 0.1 0.3

o4 0.3 0.6 0.3 0.2 0.2

o5 0.5 0.8 0.4 0.3 0.4
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The calculation of truth values of a fuzzy context, i.e., generation of fuzzy context
from raw data depends on the nature of the real-life problem. In a real-life applica-
tions, to compute the truth values for above type of problem, one may follow the rule
introduced by Zaman et al. [34]. The rule introduced in [34] has also been executed
in matlab interface [35] on large data sets.

Now we construct the fuzzy graph GI = (μ, ρ) for the above fuzzy context as
defined in Sect. 3.1. The fuzzy graph GI is given by the incidence matrix GI below,
where for i = 1, 2, . . . 5, μ(oi ) are 1.0, 1.0, 0.3, 0.6, 0.8, respectively, and for
j = 1, 2, . . . 5, μ(p j ) are 0.9, 1.0, 0.4, 0.7, 1.0, respectively. In Fig. 1, (a) represents
G0.1

I (b) represents G0.2
I (c) represents G0.3

I (d) represents G0.4
I (e) represents G0.5

I

Fig. 1 Cut graph of the fuzzy graph GI
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(f) represents G0.6
I (g) represents G0.7

I (h) represents G0.8
I (i) represents G0.9

I (j)
representsG1

I .

o1 o2 o3 o4 o5 p1 p2 p3 p4 p5

GI =

o1
o2
o3
o4
o5
p1
p2
p3
p4
p5

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0 0.9 0.3 0.6 0.7 0.9 0.7 0.2 0.4 1.0
0.9 0.0 0.3 0.6 0.8 0.8 1.0 0.3 0.7 0.9
0.3 0.3 0.0 0.2 0.3 0.2 0.2 0.2 0.1 0.3
0.6 0.6 0.3 0.0 0.6 0.3 0.6 0.3 0.2 0.2
0.7 0.8 0.3 0.6 0.0 0.5 0.8 0.4 0.3 0.4
0.9 0.8 0.2 0.3 0.5 0.0 0.8 0.4 0.7 0.9
0.7 1.0 0.2 0.6 0.8 0.8 0.0 0.4 0.7 0.9
0.2 0.3 0.2 0.3 0.4 0.4 0.4 0.0 0.3 0.4
0.4 0.7 0.1 0.2 0.3 0.7 0.7 0.3 0.0 0.7
1.0 0.9 0.3 0.2 0.4 0.9 0.9 0.4 0.7 0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Now, using Theorem 2, we generate proto-fuzzy concepts of degree t ∈ L cor-
responding to each maximal cliques, containing the vertices or the edges of degree
t in GI , of the above t-level graphs. In order to consider only objects related to
attributes with relevant grades of membership, a threshold is fixed such that the pairs
with membership values less than the threshold are ignored. In real-life applica-
tions threshold t can be set by users, or would be selected automatically based on
user’s query according to the application or the domain knowledge. For instance,
assume that a threshold value is fixed equal to 0.3 by user for this problem. Then
〈{o1, o2, o5}, {p1, p2, p4, p5}, 0.3〉 is a proto-fuzzy concept corresponding to the
graph G0.3

I . The objects o1, o2, and o5 sharing the attributes p1, p2, p4, p5, and, vice
versa, these four attributes are shared by the objects o1, o2, and o5 with best common
membership value 0.3 which is not greater than threshold value.

In Table2, t-level graphs, each maximal clique and its corresponding proto-fuzzy
concepts of degree t ∈ L are shown.

Scalability is a real issue for FCA with fuzzy attributes, since fuzzy concepts can
be large in number in the context. The generation of proto-fuzzy concepts [25] with
the help of cuts and projections to the objects-values or attribute-values plains of a
complex data sets is also an unwieldy task. In this paper, we emphasize on the gen-
eration of all proto-fuzzy concepts by segregating them according to their degree. In
fact the segregation of proto-fuzzy concepts according to their degree may somehow
become useful in different field of applications such as information retrieval, data
mining, knowledge discovery etc. But generation of proto-fuzzy concepts by using
our proposed method is also a time consuming task for complex data set, since max-
imal clique problem of a general graph is an NP-hard problem. In our future work,
our aim is to determine the rules by which we can generate all proto-fuzzy concepts
directly from fuzzy context.
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Table 2 Proto-fuzzy concepts of the fuzzy context given in Table1

t-level
graph

Maximal cliques Proto-fuzzy concepts of degree t

G0.1
I {o1, o2, o3, o4, o5, p1, p2, p3, p4, p5} 〈{o1, o2, o3, o4, o5}, {p1, p2, p3, p4, p5}, 0.1〉

G0.2
I {o1, o2, o4, o5, p1, p2, p3, p4, p5} 〈{o1, o2, o4, o5}, {p1, p2, p3, p4, p5}, 0.2〉

{o1, o2, o3, o4, o5, p1, p2, p3, p5} 〈{o1, o2, o3, o4, o5}, {p1, p2, p3, p5}, 0.2〉
G0.3

I {o1, o2, o5, p1, p2, p4, p5} 〈{o1, o2, o5}, {p1, p2, p4, p5}, 0.3〉
{o2, o5, p1, p2, p3, p4, p5} 〈{o2, o5}, {p1, p2, p3, p4, p5}, 0.3〉
{o1, o2, o3, o5, p5} 〈{o1, o2, o3, o5}, {p5}, 0.3〉
{o2, o4, o5, p1, p2, p3} 〈{o2, o4, o5}, {p1, p2, p3}, 0.3〉
{o1, o2, o4, o5, p1, p2} 〈{o1, o2, o4, o5}, {p1, p2}, 0.3〉

G0.4
I {o1, o2, p1, p2, p4, p5} 〈{o1, o2}, {p1, p2, p4, p5}, 0.4〉

{o5, p1, p2, p3, p5} 〈{o5}, {p1, p2, p3, p5}, 0.4〉
{o1, o2, o5, p1, p2, p5} 〈{o1, o2, o5}, {p1, p2, p5}, 0.4〉

G0.5
I {o1, o2, o5, p1, p2} 〈{o1, o2, o5}, {p1, p2}, 0.5〉

G0.6
I {o1, o2, o4, o5, p2} 〈{o1, o2, o4, o5}, {p2}, 0.6〉

G0.7
I {o1, o2, p1, p2, p5} 〈{o1, o2}, {p1, p2, p5}, 0.7〉

{o2, p1, p2, p4, p5} 〈{o2}, {p1, p2, p4, p5}, 0.7〉
{o1, o2, o5, p2} 〈{o1, o2, o5}, {p2}, 0.7〉

G0.8
I {o1, o2, p1, p5} 〈{o1, o2}, {p1, p5}, 0.8〉

{o2, p1, p2, p5} 〈{o2}, {p1, p2, p5}, 0.8〉
{o2, o5, p2} 〈{o2, o5}, {p2}, 0.8〉

G0.9
I {o1, p1, p5} 〈{o1}, {p1, p5}, 0.9〉

{o2, p2, p5} 〈{o2}, {p2, p5}, 0.9〉
{o1, o2, p5} 〈{o1, o2}, {p5}, 0.9〉

G1
I {o1, p5} 〈{o1}, {p5}, 1〉

{o2, p2} 〈{o2}, {p2}, 1〉

4 Conclusion

In this paper, we begin with defining a fuzzy graph for a given fuzzy context. We
then show that t-concepts as well as proto-fuzzy concepts correspond to each maxi-
mal cliques of t-level graphs of the defined fuzzy graph. As far as our knowledge is
concerned, there is no general method to generate proto-fuzzy concepts. Therefore,
presentation of fuzzy context by a fuzzy graph and generating all proto-fuzzy con-
cepts using the fuzzy graph creates an important relationship between the two fields
of fuzzy concept lattice theory and fuzzy graph theory. Also the apparent advantage
of our approaches is that one can keep control over the values of the lattice L involved
in proto-fuzzy concepts.
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Part II
Logic of Uncertainty



Open World Models: A View from
Rough Set Theory

Mohua Banerjee, Shier Ju, Md. Aquil Khan and Liping Tang

Abstract In rough set theory, information systems are used to represent knowledge-
bases, particularly when practical applications are involved. We explore one such
use of information systems, for representing the open world model. Open world
information systems are defined, and a temporal logic, including descriptors and the
global modality, is proposed as a formal reasoning framework for these structures.

Keywords Openworldmodel ·Rough sets · Information systems ·Temporal logics

1 Introduction

Ignorance and uncertainty are part of the knowledge1 system of any community.
An ‘open world model’ is based on this premise, and thus embodies a variety of
situations. For instance, categories of concepts that applied to some members of a
community at some time point in a world model, may not apply to them any further
with the arrival of new information. Communities constituting the world may also
change, with the arrival of new members or departure of old ones. In this sense,
the world is ‘open’, subject to change.our study on this article on a specific scenario

1 In this discourse, we identify ‘knowledge’ with ‘information’.
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Fig. 1 An open world model
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Pn: pneumonia P: typical pneumonia P−: non-typical pneumonia
P∗: SARS U: unknown pneumonia Pn∗: category unknown
Pn−: non-pneumonia

illustrating an open world model. However, as we point out at the end, the framework
may easily be generalized.

Acute pneumonia, till late 2002, was clinically classified into the ‘typical’ and
‘non-typical’ types. One may thus begin with a world model (Fig. 1a) of the ‘cat-
egory’ pneumonia that consists of patients classified into the P (typical) and P−
(non-typical) regions. In 2002–2003, the disease SARS (Severe Acute Respiratory
Syndrome) was encountered. The pathogeny of this disease could not be totally fig-
ured out, although it was indicative of a kind of pneumonia that was different from
the typical and non-typical types. The previous world model thus ‘opens’ into one
given in Fig. 1b, which accommodates patients afflicted by SARS in the ‘ignorance’
region P∗.

In fact, considering that there may well be another kind of pneumonia currently
not classifiable into any of these three regions, the second model opens into the one
in Fig. 1c, having the added ‘uncertainty’ region U .

One may further enhance the world model by considering the categorial picture
in entirety, i.e. by including the region Pn− of non-pneumonia, and the region Pn∗
consisting of patients currently not classifiable into either Pn or Pn−. Thus we get
the open world model in Fig. 1d.
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With time then, this world model evolves. The classifications may get modified
with new information. New members may also enter the picture, altering some clas-
sification regions and expanding the world model at large.

Of course, a more precise model of the world at any time would include, for
instance, (i) several categories (we have only Pn here), (ii) other distinct classifica-
tions inside a category (only P and P− here), or (iii) more than one ignorance region
(only P∗ here). In this article, we address the above simple model and we shall see
that these generalizations of the model would not be hard to obtain.

In rough set theory, information about objects comes in terms of attributes and
attribute-values—the basic entities in an information system. In the following section,
we define an open world information system (OWIS) to represent the open world
model, and observe some of its features. These structures incorporate an element of
time, in order to capture the world changing with time as described earlier. Logics
of open world have been studied in the literature. In [2], a three-valued logic of
open world is defined, where the behaviour of open world is characterized by a
special Boolean negation. For formal reasoning with OWIS, we propose a temporal
logic LOW here (cf. Sect. 3). The logic contains, apart from temporal modalities,
‘descriptors’ as part of the collection of atomic formulae, and the global modality.
Descriptors represent sets of objects that take a particular value for a particular
attribute. These were first used in Pawlak’s decision logic [8], bringing ‘information’
explicitly into the syntax of a formal reasoning framework. We follow this line to
formulate LOW . Descriptors have been included in the language to obtain logics
of different kinds of information systems, e.g. in [4, 5], but none of these contain
temporal modalities. On the other hand, temporal logics for rough sets have been
studied in [1, 3], but these do not contain descriptors. The logic LOW proposed here
introduces in its syntax, a combination of (i) information as dealt with in rough set
theory (through descriptors) and (ii) time. This amalgamation appears just right for
reasoning with open world models. Section4 concludes the article, indicating future
lines of work.

2 Open World Information Systems

Let us recall the definition of an information system [8].

Definition 1 An information system S := (W,A, {Va}a∈A, f ), comprises a non-
empty set W of objects, a non-empty set A of attributes, for each a ∈ A, a non-
empty set Va of attribute-values of the attribute a, and an assignment f : W ×A →⋃

a∈A Va such that f (x, a) ∈ Va , for any x ∈ W, a ∈ A.

In [7], the notion was extended by adding the concept of time. A set T of
‘time points’ and a linear order < on T were included to define a dynamic infor-
mation system DS := (W,A, {Va}a∈A, T,<, { ft }t∈T ), where for each t ∈ T ,
(W,A, {Va}a∈A, ft ) is an information system.
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In a dynamic information system, the domain of discourse is fixed and does not
change with time. In order to get to the open world model, we consider the case
where the domain may expand with time. We make a restriction, however: objects
may be added, but not discarded. The time line is taken to be an initial segment of
N, the set of natural numbers, together with the natural ordering on it. We have the
following structure:

Definition 2 A temporal information system is a tuple

K := (W, N ,A, {Va}a∈A, {Wt }t∈N , { ft }t∈N ),

where

• N is an initial segment of N,
• for each t ∈ N , Wt ⊆ W such that Wt ⊆ Wt+1 for t, t + 1 ∈ N ,
• for each t ∈ N , (Wt ,A, {Va}a∈A, ft ) is an information system.

It is to be noted that this structure is not the one discussed in temporal databases, and
is also different from the one considered in [9].

We now define an open world information system to be an extension of the tem-
poral information system, where we provide sets of distinguished attributes and
attribute-values.

Definition 3 An open world information system (OWIS) is a tuple

S := (K, B,CB , {Dt
B}t∈N , {vb}b∈B, {v′

c, v
′′
c }c∈CB , {vd}d∈Dt

B
),

where

• K := (W, N ,A, {Va}a∈A, {Wt }t∈N , { ft }t∈N ) is a temporal information system,
• B,CB ⊆ A are non-empty sets of special attributes,
• for each t ∈ N , Dt

B ⊆ A is a set of special attributes,
• for each b ∈ B, vb is a distinguished value from Vb,
• for each c ∈ CB , v′

c, v
′′
c are distinct distinguished values from Vc,

• for each d ∈ Dt
B , vd is a distinguished value from Vd ,

• for each b ∈ B, ft (x, b) = vb implies ft ′(x, b) = vb, where t ≤ t ′,
• for each c ∈ CB , ft (x, c) = v′

c implies ft ′(x, c) = v′
c, and ft (x, c) = v′′

c implies
ft ′(x, c) = v′′

c , where t ≤ t ′.

So in an OWIS, the domain of objects also evolves with time with new objects being
added. Moreover, objects which take the values vb and v′

c, v
′′
c for the attributes b ∈ B

and c ∈ CB , respectively, continue to do so at all future time points.
Given an OWIS S as above, for each t ∈ N , we obtain the following subsets

of W .

• Pt := {x ∈ Wt : ft (x, b) = vb, for each b ∈ B, ft (x, c) = v′
c, for each c ∈ CB},

• P−
t := {x ∈ Wt : ft (x, b) = vb, for each b ∈ B, ft (x, c) = v′′

c , for each
c ∈ CB},
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• P∗
t := {x ∈ Wt : ft (x, b) = vb, for each b ∈ B, ft (x, d) = vd , for each

d ∈ Dt
B, ft (x, c1) �= v′

c1 and ft (x, c2) �= v′′
c2 , for some c1, c2 ∈ CB},

• Ut := {x ∈ Wt : ft (x, b) = vb, for each b ∈ B, ft (x, d) �= vd , for some
d ∈ Dt

B, ft (x, c1) �= v′
c1 and ft (x, c2) �= v′′

c2 , for some c1, c2 ∈ CB},
• Pn−

t := {x ∈ Wt : ft (x, b) �= vb, for each b ∈ B},
• Pn∗

t := {x ∈ Wt : ft (x, b) �= vb, for some b ∈ B, and ft (x, b′) = vb′, for some
b′ ∈ B}.

Proposition 1 For each t, t1, t2 ∈ N, we have the following.

1. The sets Pt , P
−
t , P∗

t ,Ut , Pn
−
t , Pn∗

t form a partition of Wt .
2. Pt1 ⊆ Pt2 for t1 ≤ t2.
3. P−

t1 ⊆ P−
t2 for t1 ≤ t2.

We can take the pneumonia case to illustrate again. The special attributes in B are
used to distinguish pneumonia and non-pneumonia, while CB is used to distinguish
typical pneumonia and non-typical pneumonia. Dt

B is used to classify new types of
pneumonia such as SARS, which may have come into the picture at time point t .
Therefore, in the partition {Pt , P−

t , P∗
t ,Ut , Pn

−
t , Pn∗

t }, we may interpret Pt , P
−
t

and P∗
t to be, respectively, the classes of objects (patients) with typical pneumonia,

non-typical pneumonia and a third type of pneumonia. Ut represents the class of
patients who have pneumonia, but of a kind that is currently (at time point t) not
classifiable into any of these three types. Pn−

t represents the class of patients who
do not have pneumonia, and Pn∗

t those for whom it is not known whether they have
pneumonia or not.

Note that Dt
B may be empty at some time point t , making Ut empty. The

information system at t would then, for example, represent the scenario in the second
worldmodel (cf. Fig. 1b, Sect. 1). On the other hand, it is possible that we get progres-
sively better characterization of the third type of pneumonia over time, and at some
t0, the set D

t0
B of attributes fully characterizes it. In that case, one may wish to stip-

ulate that, for all t ′ ≥ t0, D
t0
B = Dt ′

B and also that, for each d ∈ Dt0
B , ft0(x, d) = vd

implies ft ′(x, d) = vd . Another possibility is that the assignments ft of values vd
alter so that an object currently in region Ut is able to enter P∗

t ′ at some later time
point t ′. Similarly, an object currently in Pn∗

t may enter one of Pt ′ , P
−
t ′ , P∗

t ′ ,Ut ′ , or
even Pn−

t ′ , at a later t
′.

Thuswe get information systemswhich formalize the openworldmodel described
in Sect. 1. The temporal logic LOW for open world information systems is proposed
in this backdrop.

3 A Logic for Open World Information Systems

The syntax and semantics of the logic LOW are given as follows.
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3.1 Syntax

The language of LOW consists of

(i) a non-empty finite set A of attribute constants,
(ii) for each a ∈ A, a non-empty finite set Va of attribute-value constants,
(iii) non-empty subsets B,CB of A of distinguished attribute constants,
(iv) for each t ∈ N, subset Dt

B of A of distinguished attribute constants,
(v) corresponding to each b ∈ B, a distinguished attribute-value constant vb ∈ Vb,
(vi) corresponding to each c ∈ CB , two distinct distinguished attribute-value con-

stants v′
c, v

′′
c ∈ Vc,

(vii) corresponding to each d ∈ Dt
B , a distinguished attribute-value constant

vd ∈ Vd ,
(viii) a non-empty countable set PV of propositional variables, and
(ix) constants 
 and ⊥.

Atomic well-formed formulae (wffs) are the constants 
 and ⊥, propositional
variables p from PV, and descriptors, i.e. pairs (a, v) for each a ∈ A, v ∈ Va . The
set of all descriptors is denoted as D.
Using the Boolean logical connectives ¬ (negation) and ∧ (conjunction), temporal
operators U (until), S (since), ⊕ (next), � (previous), global modal operator A, wffs
of LOW are then defined recursively as:

(a, v) | p | ¬α | α ∧ β | Aα | αUβ | αSβ | ⊕ α | � α.

Apart from the usual derived connectives ∧,−→,←→, there are the following:
Eα := ¬A¬α;
Fα := 
Uα (some time in the future);
Gα := ¬F¬α (always in the future);
Pα := 
Sα (some time in the past);
Hα := ¬P¬α (always in the past).
We use the symbol LOW to denote the set of all wffs as well.

3.2 Semantics

The semantics of LOW is based on the temporal information systems. Formally, we
have the following.

Definition 4 A model, is a tuple M := (K, V ), where

• K := (W, N ,A, {Va}a∈A, {Wt }t∈N , { ft }t∈N ) is a temporal information system.
• V : PV → 2W×N .

Satisfiability of a wff α in a model M := (K, V ) as above at time point t ∈ N ,
at an object w of the domain W at time t , i.e. w ∈ Wt , denoted as M, t, w |= α, is
given as follows.
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Definition 5

• M, t, w |= 
, and M, t, w �|= ⊥, for each w ∈ Wt .
• M, t, w |= p, if and only if (w, t) ∈ V (p), for p ∈ PV.
• M, t, w |= (a, v) if and only if ft (w, a) = v, for any descriptor (a, v).
• M, t, w |= ¬α, if and only ifM, t, w �|= α.
• M, t, w |= α ∧ β, if and only ifM, t, w |= α and M, t, w |= β.
• M, t, w |= Aα, if and only ifM, t, u |= α and for all u ∈ Wt .
• M, t, w |= ⊕α, if and only if t < |N |, and M, t + 1, w |= α.
• M, t, w |= �α, if and only if t > 1, and M, t − 1, w |= α.
• M, t, w |= αUβ, if andonly if there exists j with t ≤ j ≤ |N | such thatM, j, w |=

β, and for all k such that t ≤ k < j, M, k, w |= α;
• M, t, w |= αSβ, if and only if there exists j with 1 ≤ j ≤ t such thatM, j, w |=

β, and for all k such that j < k ≤ t, M, k, w |= α;

Conditions of satisfiability of the derived connectives E , F and G are then obtained
as follows:

• M, t, w |= Eα, if and only ifM, t, u |= α and for some u ∈ Wt .
• M, t, w |= Fα if and only if there exists a j with t ≤ j ≤ |N | such that
M, j, w |= α;

• M, t, w |= Gα if and only if for all j with t ≤ j ≤ |N |,M, j, w |= α;

Satisfiability of the connectives P and H can be obtained similarly.
The extension of a wff α relative to a model M := (K, V ) and the time point t ,

denoted as [[α]]M,t , is given by the set {w ∈ Wt : M, t, w |= α}. A wff α is said
to be valid in a model M, if [[α]]M,t = Wt for all t . A wff is said to be 1-valid in
M, if [[α]]M,1 = W1. A wff α is said to be valid and 1-valid according as α is valid
and 1-valid in all models respectively. We shall use |= α to denote that the wff α is
a valid wff.

We base the semantics of LOW on temporal information systems (TIS) instead of
OWIS, for a neater presentation. This can be done without any loss, as the attribute
and attribute-value sets which generate an OWIS from a TIS are already embedded
in the language of LOW . In other words, given any TIS K := (W , N , A, {Va}a∈A,
{Wt }t∈N , { ft }t∈N ), the attribute and attribute-value constants in the language ofLOW

determine an OWIS S := (K, B,CB , {Dt
B}t∈N , {vb}b∈B, {v′

c, v
′′
c }c∈CB , {vd}d∈Dt

B
).

Now consider the following wffs in LOW .

• αP := ∧
b∈B(b, vb) ∧ ∧

c∈CB
(c, v′

c).
• αP− := ∧

b∈B(b, vb) ∧ ∧
c∈CB

(c, v′′
c ).

• αP∗ := ∧
b∈B(b, vb) ∧ ∧

d∈DB
(d, vd) ∧ (∨

c∈CB
¬(c, v′

c)
) ∧ (∨

c∈CB
¬(c, v′′

c )
)
.

• αU := ∧
b∈B(b, vb)∧∨

d∈DB
¬(d, vd)∧ (∨

c∈CB
¬(c, v′

c)
)∧ (∨

c∈CB
¬(c, v′′

c )
)
.

• αPn− := ∧
b∈B ¬(b, vb).

• αPn∗ := ∨
b∈B(b, vb) ∧ ¬∧

b∈B(b, vb).

For the sets Pt , P
−
t , P∗

t ,Ut , Pn
−
t , Pn∗

t of the OWIS S, we have
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Proposition 2

• Pt = [[αP ]]M,t = [[⊕t−1αP ]]M,1.
• P−

t = [[αP−]]M,t = [[⊕t−1αP−]]M,1.
• P∗

t = [[αP∗ ]]M,t = [[⊕t−1αP∗ ]]M,1.
• Ut = [[αU ]]M,t = [[⊕t−1αU ]]M,1.
• Pn−

t = [[αPn−]]M,t = [[⊕t−1αPn−]]M,1.
• Pn∗

t = [[αPn∗ ]]M,t = [[⊕t−1αPn∗ ]]M,1.

The following proposition lists a few valid wffs.

Proposition 3

1. |= G(αP ∨ αP− ∨ αP∗ ∨ αU ∨ αPn− ∨ αPn∗).
2. |= G¬(β1 ∧ β2),

where β1, β2 are distinct wffs from the set {αP , αP− , αP∗ , αU , αPn− , αPn∗}.
3. |= (b, vb) → G(b, vb), b ∈ B.
4. |= (c, v′

c) → G(c, v′
c), c ∈ CB.

5. |= (c, v′′
c ) → G(c, v′′

c ), c ∈ CB.
6. |= G(αP → GαP ).
7. |= G(αP− → GαP−).

The validity of the wffs in items 1 and 2 captures the fact that the sets Pt , P
−
t , P∗

t ,
Ut , Pn

−
t , Pn

∗
t form a partition of the domain Wt at time point t . Item 3 shows that

if an object takes the attribute-value vb for an attribute b ∈ B, then it takes the same
value at all future time points. Items 6 and 7 indicate that the sets Pt and P−

t cannot
shrink over time.

Observation 1 Here are some examples of what we can express through the lan-
guage of LOW , as satisfiable wffs.

• F(A(αP ∨ αP−) → PA(αP ∨ αP−)).
Thiswff can be interpreted to represent the fact that if only two types of pneumonia,
typical and non-typical, are known (i.e. there is no instance of a third type of
pneumonia) at a time point, then this is also true for all the past time points as
well.

• P(¬ ⊕ 
 → (EαP ∧ EαP−)).
This wff says that at the very beginning (first time point), the classes of typical
and non-typical pneumonia were known, as there were instances in them.

• E(αU ∧ FαP∗).
Currently we have a patient who is known to have pneumonia the type of which
is unknown, but which is classified into the third type at some future time.

• F(¬EαU ).
At some future time point, every pneumonia patient is an instance of either typical,
non-typical or a third type of pneumonia.

• E(αPn∗ ∧ FαPn−).
A patient who cannot be classified currently into the category pneumonia or non-
pneumonia, may later be found not to have the disease.
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Due to the presence of the global modal operator A and the descriptors in the
language, one can define the following modal operators capturing Pawlak’s lower
and upper approximations [8] relative to different sets of attributes.
Let S := {b1, b2, . . . , bn} be a subset ofA. LetDS be the set of all S-basic wffs [8],
i.e. wffs of the form (b1, v1) ∧ (b2, v2) ∧ . . . ∧ (bn, vn), vi ∈ Vbi , i = 1, 2, . . . n.
Then we define the operators

• �Sα := ∧
β∈DS

(β → A(β → α)).
• ♦Sα := ¬�S¬α.

The following wffs confirm that these operators indeed give the lower and upper
approximations with respect to the equivalence relation I ndtS on Wt , that relates all
objects assigned the same attribute-value for the attributes in S by ft .

Proposition 4 Let α be a wff not involving any temporal operator. Then

• [[�Sα]]M,t = [[α]]M,t I ndtS
.

• [[♦α]]M,t = [[α]]M,t I ndtS
.

Thus using thesemodal operators, we canmake statements involving lower and upper
approximations. For instance, the language can express the statement that if an object
is in the lower approximation of a certain set X relative to a given set S of attributes,
then the object has typical pneumonia. �S p → αP captures this statement, where p
is a propositional variable representing the set X .

4 Conclusions

Wepresent certain temporal information systems that formalize an openworldmodel
with one category. A temporal logic LOW with descriptors and the global modality
is proposed for reasoning with these structures.

As observed in Sect. 1, the open world model may be generalized in a number
of ways. We may include more than one category in the OWIS by considering a
collection of special attribute sets Bi indexed over some set I . There may be more
classifications inside a category B—these may be accommodated by considering a
larger collection of distinguished values for the attributes in the setCB . Accordingly,
one can make the necessary changes in the logic LOW .

A tableaux-based proof procedure has been defined for the temporal logics for
rough sets studied in [3]. One expects to obtain a sound and complete proof procedure
for LOW in the same line. The decidability problem of the logic with respect to the
class of all LOW -models is open. However, we can see that decidability with respect
to the class of models with domain of fixed cardinality, can be proved as in [1].

A Hilbert-style axiomatization for LOW is also an open question. It is clear that
any such axiom set would include, apart from the standard axioms and rules for the
temporal and global modalities, axioms pertaining to the descriptors. For instance,
one would have the following, the last three giving the open world conditions:
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1. (a, v) → ¬(a, v′), for v �= v′,
2.

∨
v∈Va (a, v),

3. (b, vb) → G(b, vb), b ∈ B,
4. (c, v′

c) → G(c, v′
c) and

5. (c, v′′
c ) → G(c, v′′

c ), c ∈ CB .

In fact, LOW with the basic temporal modalities and without the global modality,
can be shown to have a complete axiomatization, following standard techniques.
However, the global modality helps us to refer to members of the world during
the transition in the open world over time—consider the satisfiable wffs given in
Observation 1 of Sect. 3.

More properties of open world models may be expressed if information updates
could be included in the syntax of the logic. This may be explored, in the line of the
work on dynamic logics of information systems in [5, 6].
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Approximate Reasoning Under
Type-2 Fuzzy Logics

Sudin Mandal, Namrata Bhattacharyya and Swapan Raha

Abstract In this paper, we have made a study of approximate reasoning based on
a Type-2 fuzzy set theory. We have focused upon two typical rules of inference
used mostly in ordinary approximate reasoning methodology based on Type-1 fuzzy
set theory. Similarity is inherent in approximate reasoning. The concept of similarity
between Type-2 fuzzy sets is discussed and a similarity-based approximate reasoning
technique is proposed. The proposal is illustrated with a typical artificial example.
Prediction is the causal basis for decision making. Different measures leading to
prediction under uncertainty are proposed for a better understanding of the power of
Type-2 fuzzy set theory.

Keywords Type-2 fuzzy set · Type-2 fuzzy logic · Approximate reasoning

1 Introduction

In 1965, the concept of a fuzzy set was introduced by Zadeh [13] and it has
already established its usefulness through successful applications in different fields.
Considering the importance of fuzzy logic as a basis for approximate reasoning,
a systematic development of fuzzy set theory, the deductive aspects and struc-
tures of the underlying fuzzy logics were extensively studied [2]. In dealing with
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vagueness/impreciseness using fuzzy set theory, we come across situation, where
it is difficult to find satisfactorily the degree of membership of an element of the
universal set in a particular fuzzy set is found impossible. This motivated Zadeh to
introduce a generalization of fuzzy set, a Type-2 fuzzy set, in 1975 [14]. The key
point in this generalization is that membership degrees of elements in a Type-2 fuzzy
set are the traditional fuzzy sets in [0, 1] while that for ordinary fuzzy sets are real
numbers in [0, 1]. Accordingly, any Type-2 fuzzy logic is a generalization of some
fuzzy logic as proposed by Zadeh [15].

Now, reasoning is a mental activity that allows us to derive new information on
the object of study from existing knowledge with some degree of confidence. It is a
fact that human beings are better at reasoning than machines as they have the abil-
ity to make effective decisions on the basis of imprecise information. A collection
of imprecise information given by human experts often forms the basis of a fuzzy
system which is represented by fuzzy sets, fuzzy relations, and subsequently manip-
ulated using fuzzy set theory. The task of a fuzzy system is to exploit knowledge
acquired by experts about the system. In a rule-based system, from a given rule
(antecedent–consequent condition) and an observed state of the antecedent, we con-
clude something similar to the consequent by applying a method of inference which,
we call approximate reasoning. Here, most of the reasoning is performed based on
imperfect matching, e.g., “ripe” and “very ripe.”

Approximate reasoning methodology was developed by Zadeh [16] to formu-
late complex problems of human reasoning. The main motivation of the theory of
approximate reasoning is apparently, the desire to build up a qualitative framework
that will allow one to derive an approximate conclusion from a collection of impre-
cise knowledge. Fuzzy logic is the basis of approximate reasoning. Fuzzy sets and
fuzzy relations are used to represent simple and complex fuzzy propositions in fuzzy
logic. Rules of inference are used to derive new propositions (fuzzy logical forms)
from an observed data and given knowledge on the same.

Comparison of objects is a widespread operation necessary in many frameworks.
It has been observed that relations play an important role in comparison. It is based
on the idea that if two objects are sufficiently similar (expressed as a given relation)
then, a transfer of knowledge is possible from one to the other (status of one is
induced by the observed status of the other). This comparison is frequently achieved
through a measure intended to determine the extent to which, the descriptions have
similarities or differ from each other. For that many measures of comparison have
been proposed and studied by researchers in different disciplines for different pur-
poses. It has also been observed that a basic tool for human cognition is the ability
to assess similarity. The process of thinking is dependent on a sense of sameness.
Derivation of an imprecise statement from a set of imprecise statements is efficiently
performed by humans, using analogy or similarity. For a better understanding of
how human beings assess similarity in problem-solving, categorization, information
retrieval, and reasoning, we have studied different aspects of similarity for a theory
of similarity-based approximate reasoning with fuzzy sets of Type-2.

Prediction on the nature of transformational change of state of a dynamical sys-
tem is determined by a knowledge of causation. Observation followed by rigorous
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analysis help scientists in decision making under uncertainty. The transformational
change of one set of state to another is the dynamics of the system. This dynamics
is modeled by experts using linguistic tools. Imprecision is inherent in natural lan-
guage. We propose a few measures based on Type-2 fuzzy set theory leading to the
prediction of the clinical behavior of a patient [3].

This research work is organized into six sections. In Sect. 2, we define a few terms
in order to communicate usingType-2 fuzzy sets.Approximate reasoning is discussed
in the context of Type-2 fuzzy set theory in Sect. 3. Two basic rules of inference have
been developed. The computational procedure is presented in a subsection. Examples
are considered to illustrate the problem. A few characteristic measures of the clinical
dynamics are presented in Sect. 4. The work is briefly concluded in Sect. 5. This is
followed by a list of references.

2 Definition and Basic Concepts

An attempt is made to study approximate reasoning based on Type-2 fuzzy logics.
Accordingly, a brief study on the theory of Type-2 fuzzy sets is presented. We focus
on the study of operations on Type-2 fuzzy sets. The concept of a Type-2 fuzzy rela-
tion and fuzzy connectives not (¬), and (∧), and or (∨) are also studied.Appropriate
interpretation of connectives is one of the basic problems in any fuzzy logic and its
application. Classes of negation functions (to model complement operators), contin-
uous triangular norms (to model conjunction), and triangular co-norms (t-co-norms
to model disjunction) are also examined. These classes of operations are found to be
mathematically sound and contain a wide variety of particular members.

Definition 1 A fuzzy set of Type-2 A in a setU is characterized by a fuzzy member-
ship function with the value at u being called a fuzzy grade of the point u, is a fuzzy
subset of J ⊆ [0, 1]. More explicitly, A is characterized by a membership function
μA(u, v), where u ∈ U and v ∈ J , i.e.,

A = {((u, v), μA(u, v)) | ∀u ∈ U,∀v ∈ J ⊆ [0, 1]}.

Example 1 Let us consider U ={Lotus, Marigold, Tube rose, Dahlia, Rose} to be
a set of flowers and that A is a fuzzy subset of Type-2 of beautiful flowers defined
over U . We then express the same in set theoretic notation as,

A = beautiful flowers = middle/Lotus + not low/Marigold + low/Tube rose
+ very high/Dahlia + high/Rose
where the fuzzy grades labeled middle, low, high are assumed to be fuzzy sets in
J = 0, 0.1, . . . , 0.9, 1 ⊆ [0, 1] and, for example, are expressed as in the following:

middle = 0.4/0.3 + 0.8/0.4 + 1/0.5 + 0.8/0.6 + 0.4/0.7
low = 1/0 + 0.9/0.1 + 0.6/0.2 + 0.3/0.3
high = 0.5/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1.
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Moreover, fuzzy grades for elements that belong to fuzzy sets such as not low
and very high are determined from fuzzy grades of the same as in low and high,
respectively, by using the concept of linguistic hedges as in ordinary fuzzy sets
not low = 0.1/0.1 + 0.4/0.2 + 0.7/0.3 + 1/(0.4 + 0.5 + · · · + 1).
Let A and B be fuzzy sets of Type-2 over the universe of discourse X and μA(u)

and μB(u) be the fuzzy grades of the point u in A and B, respectively, (that is, fuzzy
subsets in J ⊆ [0, 1]), represented as

μA(u) = f (v1)/v1 + f (v2)/v2 + · · · + f (vn)/vn .
= ∑

f (vi )/vi , vi ∈ J,
μB(u) = g(w1)/w1 + g(w2)/g2 + · · · + g(wm)/wm

= ∑
g(w j )/w j , w j ∈ J,

where f and g are membership functions of elements in J ⊆ [0, 1] and the values
f (ui ) and g(w j ) in [0, 1] represent the grades of ui and w j ∈ J , respectively. At
each value of u, the plane section determined by u and μA(u, v) for different values
of v is the vertical slice of A at u. Vertical slices represent secondary membership
of u in A; it is a Type-1 fuzzy set. The domain of secondary membership function is
regarded as the primary membership of u.

Now, the operations on fuzzy sets of Type-2 are expressed as in the following:

Definition 2 The union of two Type-2 fuzzy sets A and B is given as

A ∪ B ⇔ μA∪B(u) = μA(u) 	 μB(u)

=
∑

i

f (ui )/ui ∪
∑

j

g(w j )/w j

=
∑

i, j

( f (ui ) ∧ g(w j ))/(ui ∨ w j )

Definition 3 The intersection of two Type-2 fuzzy sets A and B is given as

A ∩ B ⇔ μA∩B(u) = μA(u) � μB(u)

=
∑

i

f (ui )/ui �
∑

j

g(w j )/w j

=
∑

i, j

( f (ui ) ∧ g(w j ))/(ui ∧ w j )

Definition 4 The complement of a Type-2 fuzzy set A

Ā ⇔ μA(u) = ¬μA(u)

=
∑

i

f (ui )/1 − ui ,

where
∨

and
∧

represent max and min, respectively. We call the operations for
fuzzy grades, that is, 	 as join, � as meet, and ¬ as negation hereafter.
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Example 2 Here, let J = {0, 0.1, . . . , 0.9, 1} and let fuzzy gradesμA(u) andμB(u)

be given as
μA(u) = 0.5/0 + 0.7/0.1 + 0.3/0.2,

μB(u) = 0.9/0 + 0.6/0.1 + 0.2/0.2.

Then, we have

μA(u) 	 μB(u) = (0.5/0 + 0.7/0.1 + 0.3/0.2) 	 (0.9/0 + 0.6/0.1 + 0.2/0.2)

= 0.5∧0.9
0∨0 + 0.5∧0.6

0∨0.1 + 0.5∧0.2
0∨0.2

+ 0.7∧0.9
0.1∨0 + 0.7∧0.6

0.1∨0.1 + 0.7∧0.2
0.1∨0.2

+ 0.3∧0.9
0.2∨0 + 0.3∧0.6

0.2∨0.1 + 0.3∧0.2
0.2∨0.2

= 0.5/0 + 0.5/0.1 + 0.2/0.2 + 0.7/0.1 + 0.6/0.1 + 0.2/0.2

= 0.5/0 + (0.5∧0.7∧0.6)
0.1 + (0.2∧0.2∧0.3∧0.3∧0.2)

0.2

= 0.5/0 + 0.7/0.1 + 0.3/0.2

Similarly, we have

μA(x) � μB(x) = 0.7/0 + 0.6/0.1 + 0.2/0.2
¬μA(x) = 0.5/1 + 0.7/0.9 + 0.3/0.8.

Definition 5 Let U1, U2 be two universes of discourse, and A be a Type-2 fuzzy
set defined over U1. The cylindrical extension of A to U1 × U2 is a Type-2 fuzzy
relation ce(A) defined by

ΣU1×U2μce(A)(u1, u2)/(u1, u2),where u1 ∈ U1, u2 ∈ U2 and;

μce(A)(u1, u2) = μA(u1).

Thus, the cylindrical extension clearly produces the largest fuzzy relation that is
compatible with the given projection. Such a relation is the least specific of all
relations compatible with the projection.

Definition 6 Let U1, U2 be two universes of discourse, and R be a Type-2 fuzzy
relation defined over U1 × U2. The Projection of R on U1 is a Type-2 fuzzy set
projU1

(R) defined by

ΣU1μprojU1 (R)(u1)/u1,where u1 ∈ U1;

μprojU1 (R)(u1) = sup
u2∈U2

μR(u1, u2).
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3 Approximate Reasoning

In this section, we demonstrate how conclusions can be obtained from given premises
with the help of Type-2 fuzzy set theory. According to Zadeh, approximate reasoning
using the scheme from ‘X is A’ and ‘(X,Y ) is R’ infer ‘Y is B’ is termed as the
compositional rule of inference (Table1).

Here, A is a type-2 fuzzy subset of U , B is a type-2 fuzzy subset of V , R is a
type-2 fuzzy subset of U × V . Explicitly, let

A =
∑

u∈U
μA(u)/u ; μA(u) =

∑

x∈[0,1]
μu(x)/x .

R =
∑

(u,v)∈U×V

μR(u, v)/(u, v) ; μR(u, v) =
∑

z∈[0,1]
μR(z)/z.

B = AoR =
∑

v∈V
μB(v)/v ; μB(v) = sup

u∈U
{
μce(A)

⋂
μR(u,v)(u, v)

}
.

i.e., μB(v) = sup
u∈U

{
(μA(u)

⋂
μR(u,v)(u, v))

}
.

Approximate reasoning using the scheme from ‘X is A∗’ and ‘if X is A then Y
is B’ infer ‘Y is B∗’ is termed as the Generalized modus ponens. Here, A, A′ are
fuzzy subsets of type-2 defined over the universe of discourseU ; B and B ′ are fuzzy
subsets of type-2 defined over the universe of discourse V . Interpreting (A → B) as
a type-2 binary fuzzy relation R, i.e., (A → B) = R(A, B) and using Compositional
rule of inference deduce A′oR = B ′. The scheme can be best described in Table2.

A =
∑

u∈U
μA(u)/u ; μA(u) =

∑

x∈[0,1]
μu(x)/x .

B =
∑

v∈V
μB(v)/v ; μB(v) =

∑

y∈[0,1]
μv(y)/y.

R =
∑

(u,v)∈U×V

μR(u, v)/(u, v) ; μR(u, v) =
∑

z∈[0,1]
μR(z)/z.

A′ =
∑

u∈U
μA′(u)/u ; μA′(u) =

∑

x∈[0,1]
μu(x)/x .

Table 1 Compositional rule
of inference

p : X is A

q : (X, Y) is R

r : Y is B

Table 2 Generalized modus
ponens

p : if X is A then Y is B

q : X is A′

r : Y is B′
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B = A′oR =
∑

v∈V
μB(v)/v ; μB(v) = sup

u∈U
{
μce(A′)

⋂
μR(u,v)(u, v)

}
.

i.e., μB(v) = sup
u∈U

{
(μA′(u)

⋂
μR(u,v)(u, v))

}
.

3.1 Computational Procedure

We now present computations involved in the above inference mechanisms in the
following algorithms one-by-one.

ALGORITHM OAR: Ordinary Approximate Reasoning
Step 1. Represent A as a Type-2 fuzzy subset ofU and R as a Type-2 fuzzy relation
over the universe of discourse U × V .

Step 2. Compute ce(A), the cylindrical extension of A over U × V .

Step 3. Compose ce(A) and R to form a fuzzy relation of Type-2 S using some
conjunction operation meant for fuzzy sets of Type-2.
Step4. Compute B = ProjV S, i.e., B =

∑

v∈V
μB(v)/vwhereμB(v) =

⋃

u∈U
μS(u, v),

some disjunction of a collection of fuzzy sets of type-1 over [0, 1].
Example 3 Let us consider U ={Riya, Rama, Rimi} to be a set of women and that
A is a Fuzzy Set of Type-2 of intelligent women in U. Then, we may have A =
intelligent = more or less/Riya + highly/Rama + not at all/Rimi.

= {0.6/0.4 + 1/0.5 + 0.5/0.6 + 0.2/0.7}
Riya + {0.3/0.7 + 0.6/0.8 + 0.8/0.9 + 1/1}

Rama

+{1/0.1 + 0.8/0.2 + 0.5/0.3 + 0.2/0.4}
Rimi .

Let V ={Mita,Priti,Soumi} be another set of girls and that B is a fuzzy set of
Type-2 of smart girl in V .

Then, B = smart = highly/Mita + more or less/Prity + not at all/Soumi

= {0.2/0.7 + 0.5/0.8 + 0.8/0.9 + 1/1}
Mita + {0.3/0.4 + 0.8/0.5 + 1/0.6 + 0.4/0.7}

Priti +
{1/0 + 0.8/0.1 + 0.5/0.2 + 0.2/0.3}

Soumi .

R : a fuzzy relation on U × V

Mita Priti Soumi
Riya 0.2/0.7 0.3/0.4 + 0.8/0.5 + 0.0

0.5/0.6 + 0.2/0.7
Rama 0.2/0.7 + 0.5/0.8 +

0.8/0.9 + 1.0/1.0 0.3/0.7 0.0
Rimi 0.0 0.2/0.4 0.8/0.1 + 0.5/0.2

+ 0.2/0.3
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Let A′ be an observation over the set U and represented by a fuzzy set of Type-2
as
A′ = Very intelligent

= {0.36/0.4 + 1/0.5 + 0.25/0.6 + 0.04/0.7}
Riya + {0.09/0.7 + 0.36/0.8 + 0.64/0.9 + 1.0/1.0}

Rama +
{1.0/0.1 + 0.64/0.2 + 0.25/0.3 + 0.04/0.4}

Rimi .

Now, we find the cylindrical extension of A′ and let us set
S : the cylindrical extension of A′

Mita Priti Soumi
Riya 0.36/0.4 + 1/0.5 + 0.36/0.4 + 1/0.5 + 0.36/0.4 + 1/0.5 +

0.25/0.6 + 0.04/0.4 0.25/0.6 + 0.04/0.4 0.25/0.6 + 0.04/0.4
Rama 0.09/0.7 + 0.36/0.8 + 0.09/0.7 + 0.36/0.8 + 0.09/0.7 + 0.36/0.8

0.64/0.9 + 1.0/1.0 0.64/0.9 + 1.0/1.0 0.64/0.9 + 1.0/1.0
Rimi 1.0/0.1 + 0.64/0.2 + 1.0/0.1 + 0.64/0.2 + 1.0/0.1 + 0.64/0.2 +

0.25/0.3 + 0.04/0.4 0.25/0.3 + 0.04/0.4 + 0.25/0.3 + 0.04/0.4

Next, let R1 = RoS = R � S and we obtain
B ′ = {0.09/0.7 + 0.36/0.8 + 0.64/0.9 + 1/1}/Mita +
{0.3/0.4 + 0.8/0.5 + 0.25/0.6 + 0.9/0.7}/Priti
+ {0.8/0.1 + 0.5/0.2 + 0.2/0.3}/Soumi.
Defuzzification of B ′ = 1.0/Mita + 0.5/Priti + 0.1/Soumi.

We conclude that Mita is very highly smart, Priti is more or less smart and Soumi
is not at all a smart girl.

ALGORITHM RBAR: Rule-based Approximate Reasoning
Step 1. Represent A, A′ as Type-2 fuzzy subsets of U and B as a Type-2 fuzzy
subset V .

Step 2. Compute R as a Type-2 fuzzy relation over the universe of discourseU ×V .

Step 3. Compose ce(A′) and R to form a fuzzy relation of Type-2 S using some
conjunction operation meant for fuzzy sets of Type-2.
Step4. Compute B = ProjV S, i.e., B =

∑

v∈V
μB(v)/vwhereμB(v) =

⋃

u∈U
μS(u, v),

some disjunction of a collection of fuzzy sets of type-1 over [0, 1].

3.2 Similarity Based Approximate Reasoning

Let A =
∑

u∈U
μA(u)/u and B =

∑

u∈U
μB(u)/u.

be two fuzzy subsets of Type-2 defined over the universe of discourse U (,say). The
similarity between A and B is defined as S(A, B;U ) or simply S(A, B) and is
defined as

S(A, B) = 1 −
{∑

u∈U (def{μA(u)} − def{μB(u)})2
n

} 1
2

.
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ALGORITHM SBAR: Similarity-based Approximate Reasoning
Step 1. Translate premise if X is A then Y is B and compute R(A, B) using any
suitable translating rule possibly, a T-norm operator.
Step 2. Compute S(A, A′) according to some definition.
Step 3. Modify R(A, B) with S(A, A′) to obtain the modified conditional relation
R(A | A′, B) according to some scheme C .
Step 4. Use sup-projection operation on R(A | A′, B) to obtain B ′ as

μB′(v) = sup
u

μR(A′|A,B)(u, v). (1)

Now, for a given fact, we need to deduce a schemesC for computation of themodified
conditional relation R(A | A′, B) as given in Step 3. We need to choose translating
rules and specify T-norm functions logically.

4 Measures of Prediction

Two fuzzy sets of Type-2, A and B, are defined over the universe of discourse U .
Let M(A) and Ac represent, respectively, the fuzzy cardinality and the complement
of the fuzzy set A. The fuzzy entropy of a fuzzy set is denoted by E(A).

Definition 7 The degree to which one set(,say) A belongs to the other set B is
expressed by the formula

S(A, B) = M
(
A

⋂
B

)

M(A)
.

Definition 8 The degree to which the elements of one fuzzy set(,say) A are com-
patible with that of the other set B is expressed by the formula

C(A, B) =
[(

M(A
⋂

B)

M(B)

)2 (
M(A

⋂
B)

M(A)

)2
] 1

2

.

Definition 9 The degree to which the elements of one fuzzy set(,say) A contradict
with the other is expressed by the formula

D(A, B) =
[(

M(Ac ⋂
B)

M(B)

)2 (
M(A

⋂
Bc)

M(A)

)2
] 1

2

.

The degree to which the symmetry of the elements of one fuzzy set(,say) A is
broken by that of the other is expressed by the formula [3]
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K (A, B) =
(
M(A

⋂
B)

M(B)

)2 (
M(A

⋂
B)

M(A)

)2

[(
M(A

⋂
B)

M(B)

)2 (
M(A

⋂
B)

M(A)

)2
] 1

2

.

Definition 10 Analogy is the fuzzy complement of K (A, B).

Compatibility and contrast/contradiction, taken together, define a degree of para-
dox between the pair of fuzzy sets A and B. Accordingly, considering information
as fuzzy entropy, we define

Definition 11 The degree of paradox between two pieces of information on the same
universe represented by two Type-2 fuzzy sets A and B is defined as

P(A, B) = E(compatibility, contrast).

The higher the fuzzy entropy of the fuzzy set the greater is the paradox.

Definition 12 A measure of surprise is defined as the degree of paradox per sym-
metry assimilation between two fuzzy sets of Type-2 and is given explicitly as

Surprise = E(paradox, analogy).

The higher the fuzzy entropy of the fuzzy set the greater is the surprise [3].

All these measures are, in principle, dynamic in nature—neither belong wholly
to fuzzy set A nor to fuzzy set B. Accordingly, it is expected that the dynamic
thought process could bemodeled by using some or all of these measures that change
themselves between the fuzzy sets. As a case in point, these measures carry causal
implication for the clinical state of the medical patient. It is observed that cause is the
transformative connective dynamic process between one dynamic state of measured
elements and their context to another.

5 Conclusion

Any attempt to study Type-2 fuzzy logics and the corresponding theory of Type-2
fuzzy sets is still considered to be difficult. Moreover, any study on the possibility of
usingType-2 fuzzy logic in handling uncertainties in rule-based systems is interesting
and important. It has already been established that approximate reasoning is an
important topic of research because of its scope of applications in different fields
of research particularly, in fuzzy control. This research on modeling approximate
reasoning using Type-2 fuzzy set theory will definitely help the research community.
It is hoped that withmodeling ofGeneralizedModus Ponens andCompositional Rule
of Inference using Type-2 fuzzy set theory, approximate reasoning methodology can
be made more versatile in so far as decision-making under uncertainty is concerned.
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Approximation Dialectics of Proto-Transitive
Rough Sets

A. Mani

Abstract Rough Sets over generalized transitive relations like proto-transitive ones
have been initiated by the present author in Mani (Inst. Math. Sci. ICLA’2013, 1–
12, Chennai 2013, [1]) and detailed semantics have been developed in forthcoming
papers. In this research paper, approximation of proto-transitive relations by other
relations is investigated and the relation with rough approximations is developed
toward constructing semantics that can handle fragments of structure. It is also proved
that difference of approximations induced by some approximate relations need not
induce rough structures.

Keywords Proto-transitive rough sets · Approximate relations · Nelson algebras ·
Axiomatic theory of granules · Contamination problem

1 Introduction

Proto-transitivity is one of the infinite number of generalizations of transitivity. The
structure of definite objects and knowledge interpretation in proto-transitive approxi-
mation spaces (PRAX) have been investigated by the present author in [1]. Semantics
of PRAX is hard because the representation of rough objects is involved [1]. Though
as many as five different semantic approaches have already been developed by the
present author, there is scope for further enhancement.

If R is a relation on a set S, then R can be approximated by a wide variety of
partial/quasi-order relations in both classical and rough set perspective [2]. Though
the methods are essentially equivalent for binary relations, the latter method is more
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general. When the relation R satisfies proto-transitivity, then many new properties
emerge. This aspect is developed in some detail in the present paper.

When R is a quasi-order relation, then a semantics for the set of ordered pairs of
lower and upper approximations {(Al , Au); A ⊆ S} has recently been developed in
[3, 4]. Though such a set of ordered pairs of lower and upper approximations are not
rough objects in the PRAX context, we can use the approximations for an additional
semantic approach to it. We prove that differences of consequent lower and upper
approximations suggest partial structures for measuring structured deviation. The
developed method should also be useful for studying correspondences between the
different semantics [5, 6]. Because of this we devote some space to the nature of
transformation of granules by the relational approximation process.

Rough objects as explained in [7, 8] are collections of objects in a classical
domain (Meta-C) that appear to be indistinguishable among themselves in another
rough semantic domain (Meta-R). But their representation in most RSTs in purely
order theoretic terms is not known. For PRAX, this is solved in [1]. In a PRAX,
these need not correspond to intervals (bounded by definite objects a, b) of the form
]a, b[ with b covering (in the order on definite objects) a.

Definition 1 A binary relation R on a set S is said to beweakly transitive, transitive,
or proto-transitive, respectively, on S iff S satisfies

� If whenever Rxy, Ryz and x �= y �= z holds, then Rxz. (i.e., (R◦R)\ΔS ⊆ R
(where ◦ is relation composition), or

� whenever Rxy& Ryz holds then Rxz (i.e. (R ◦ R) ⊆ R), or
� whenever Rxy, Ryz, Ryx, Rzy and x �= y �= z holds, then Rxz follows,

respectively. Proto-transitivity of R is equivalent to R ∩ R−1 = τ(R) being
weakly transitive.

Note thatweak transitivity of [9] is proto-transitivity here. Ref (S),wτ(S), pτ(S),
and EQ(S) will, respectively, denote the set of reflexive, weakly transitive, proto-
transitive, and equivalence relations on the set S, respectively.Wecanprovewτ(S) ⊆
pτ(S) and ∀R ∈ Ref (S)(R ∈ pτ(S) ↔ τ(R) ∈ EQ(S)).

Example 1 It is easy to derive PRAX from population census, medical, gender stud-
ies, and other indeterminate information systems [1]. Let I be survey data in table
form with column names being for sex, gender, sexual orientations, other personal
data, and opinions on sexist contexts with each row corresponding to a person. We
write Rab if and only if person a agrees with b’s opinions (this predicate can be
constructed empirically or from the data by a suitable heuristic). Often R is a proto-
transitive, reflexive relation and this condition can be imposed to complete partial
data as well (as a rationality condition). If a agrees with the opinions of b, then we
will say that a is an ally of b—if b is also an ally of a, then they are comrades.
Specifically, the relation P , defined by Pxy iff x thinks that y thinks that color of
object O is a maroon, is proto-transitive and not transitive.
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2 Approximations and Definite Elements in PRAX

The proofs of the results of this section can be found in [1].

Definition 2 By a Proto-Approximation Space S (PRAS for short), we will mean
a pair of the form

〈
S, R

〉
with S being a set and R being a proto-transitive relation on

it. If R is also reflexive, then it will be called a Reflexive Proto-Approximation Space
(PRAX) for short). S may be infinite.

If S is a PRAX, then we will, respectively, denote successor and symmetrized
successor neighborhoods generated by an element x ∈ S by [x] = {y; Ryx} and
[x]o = {y; Ryx & Rxy}, respectively. Taking these as granules, the associated
granulations will be denoted by G = {[x] : x ∈ S} and Go, respectively. In all that
follows, Swill be aPRAX unless indicated otherwise.Ourmotivation for considering
the following approximations are in application contexts, generative value (for other
generalized transitivity), simplicity, and granularity in foundations.

Definition 3 Definable approximations on S include (A ⊆ S):

Upper Proto: Au = ⋃
[x]∩A �=∅ [x].

Lower Proto: Al = ⋃
[x]⊆A [x].

Symmetrized Upper Proto: Auo = ⋃
[x]o∩A �=∅ [x]o.

Symmetrized Lower Proto: Alo = ⋃
[x]o⊆A [x]o.

Point-wise Upper: Au+ = {x : [x] ∩ A �= ∅}.
Point-wise Lower: Al+ = {x : [x] ⊆ A} .

Example 2 In the context of our example 1, [x] is the set of allies x , while [x]o is
the set of comrades of x . Al is the union of the set of all allies of at least one of the
members of A if they are all in A. Au is the union of the set of all allies of persons
having at least one ally in A. Al+ is the set of all those persons in A all of whose
allies are within A. Au+ is the set of all those persons having allies in A.

Proposition 1 For any subset A ⊆ S, all of the following hold:

� It is possible that Al �= Al+ and in general, Al is not comparable with Alo.
� A ⊆ S , Auo ⊆ Au.

Definition 4 If X is an approximation operator, then by a X -definite element, we
will mean a subset A satisfying AX = A. The set of all X -definite elements will
be denoted by δX (S), while the set of X and Y -definite elements (Y being another
approximation operator) will be denoted by δXY(S). In particular, we will speak of
lower proto-definite, upper proto-definite, and proto-definite elements (those that are
both lower and upper proto-definite).

Theorem 1 In a PRAX S, the following hold:

� δu(S) ⊆ δuo(S), but δlo(S) = δuo(S) and δu(S) is a complete sublattice of
℘(S) with respect to inclusion.
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� δl(S) is not comparable with δlo(S) in general.
� It is possible that δu � δuo.

Au+, Al+ like operators have been more commonly used in the literature and the
only kind of approximation studied in [10] for example.

Theorem 2 All of the following hold in PRAX:

� (∀x) xcl+ = xu+c, xcu+ = xl+c—that is l+ and u+ are mutually dual.
� u+ (l+ resp.) is a monotone ∨- (complete ∧- resp.) morphism.
� ∂(x) = ∂(xc), where partial stands for the boundary operator.
� �(u+) is an interior system while �(l+) is a closure system.
� �(u+) and �(l+) are dually isomorphic lattices.

Theorem 3 In a PRAX, (∀A ∈ ℘(S)) Al+ ⊆ Al , Au+ ⊆ Au and

Bi (∀A ∈ ℘(S)) All = Al & Au ⊆ Auu,
l-Cup (∀A, B ∈ ℘(S)) Al ∪ Bl ⊆ (A ∪ B)l ,
l-Cap (∀A, B ∈ ℘(S)) (A ∩ B)l ⊆ Al ∩ Bl ,
u-Cup (∀A, B ∈ ℘(S)) (A ∪ B)u = Au ∪ Bu,
u-Cap (∀A, B ∈ ℘(S)) (A ∩ B)u ⊆ Au ∩ Bu and
Dual (∀A ∈ ℘(S)) Alc ⊆ Acu hold.

Proof

l-Cup For any A, B ∈ ℘S, x ∈ (A ∪ B)l

⇔ (∃y ∈ (A ∪ B)) x ∈ [y] ⊆ A ∪ B.
⇔ (∃y ∈ A) x ∈ [y] ⊆ A ∪ B or (∃y ∈ B) x ∈ [y] ⊆ A ∪ B.
⇔ (∃y ∈ A) x ∈ [y] ⊆ A or (∃y ∈ A) x ∈ [y] ⊆ B or (∃y ∈ B) x ∈ [y] ⊆

A or (∃y ∈ B) x ∈ [y] ⊆ B—this is implied by x ∈ Al ∪ Bl .

l-Cap For any A, B ∈ ℘S, x ∈ (A ∩ B)l

⇔ x ∈ A ∩ B
⇔ (∃y ∈ A ∩ B) x ∈ [y] ⊆ A ∩ B and x ∈ A, x ∈ B
⇔ (∃y ∈ A) x ∈ [y] ⊆ A and (∃y ∈ B) x ∈ [y] ⊆ B—Clearly this statement

implies x ∈ Al&x ∈ Bl , but the converse is not true in general.

u-Cup x ∈ (A ∪ B)u

⇔ x ∈ ⋃
[y]∩(A∪B) �=∅[y]⇔ x ∈ ⋃
([y]∩A)∪([y]∩B) �=∅⇔ x ∈ ⋃
[y]∩A �=∅[y] or x ∈ ⋃

[y]∩B �=∅[y]⇔ x ∈ Au ∪ Bu.

u-Cap By monotonicity, (A ∩ B) ⊆ Au and (A ∩ B) ⊆ Bu, so (A ∩ B)u ⊆
Au ∩ Bu.

Dual If z ∈ Alc, then z ∈ [x]c for all [x] ⊆ A and either, z ∈ A\Al or z ∈ Ac. If
z ∈ Ac then z ∈ Acu. If z ∈ A\Al and z �= Acu \ Ac then [z] ∩ Ac = ∅. But this
contradicts z /∈ Acu\Ac. So (∀A ∈ ℘(S)) Alc ⊆ Acu.
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Theorem 4 In a PRAX S, all of the following hold:

1. (∀A, B ∈ ℘(S)) (A ∩ B)l+ = Al+ ∩ Bl+
2. (∀A, B ∈ ℘(S)) Al+ ∪ Bl+ ⊆ (A ∪ B)l+
3. (∀A ∈ ℘(S)) (Al+)c = (Ac)u+ & Al+ ⊆ Alo & Auo ⊆ Au+ &Al+ ⊆ Alo.

From the above,we have the following relation between approximations in general
(u+ −→ u should be read as the u+- approximation of a set is included in the u-
approximation of the same set):

If a relation R is reflexive and not proto-transitive on a set S, then the relation
τ(R) = R ∩ R−1 will not be an equivalence and for a A ⊂ S, it is possible that
Auol ⊆ A or Auol ‖ A or A ⊆ Auol.

Theorem 5 On the set of proto-definite elements δlu(S) of a PRAX S, we can define
the following:

1. x ∧ y
Δ= x ∩ y; x ∨ y

Δ= x ∪ y

2. 0
Δ= ∅ ; 1

Δ= S ; xc
Δ= S\x.

The resulting algebra δproto(S) = 〈δlu(S),∨,∧, c, 0, 1〉 is a Boolean lattice.

3 Approximate Relations

If R is a binary relation on a set X , then we let Ro ∂= R ∪ ΔX . The weak transitive
closure of R will be denoted by R#. If R(i) is the i-times composition R ◦ R . . . ◦ R
(i-times), then R# = ⋃

R(i). R is acyclic iff (∀x)¬R#xx . The relation R· is defined
by R·ab iff Rab&¬(R#ab& R#ba).

Definition 5 If R is a relation on a set S, then the relations R�, Rcyc, and Rh will
be defined via

– R�ab iff [b]Ro ⊂ [a]Ro & [a]i Ro ⊂ [b]i Ro .
– Rcycab iff R#ab and R#ba.
– Rhab iff R�ab and R·ab.

In case of PRAX, Ro = R, so the definition of R� would involve neighborhoods
of the form [a] and [a]i alone. R� ⊂ R and R� is a partial order.

Example 3 In our example 1, R#ab happens when a is an ally of an ally of b. R�ab
happens iff every ally of b is an ally of a and if a is ally of c, then b is an ally of
c—this can happen, for example, when b is a Marxist feminist and a is a socialist
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feminist. Rcycab happens when a is an ally of an ally of b and b is an ally of an ally
of a. R·ab happens whenever a is an ally of b, but b is not an ally of anybody who
is an ally of a.

Theorem 6 Rh = ∅.

Proof Rhab ⇔ R�ab& R·ab
⇔ τ(R)ab& (R\τ(R))ab.
But ¬(∃a)(R\τ(R))aa.
So Rh = ∅.

Proposition 2 All of the following hold in a PRAX S:

� R·ab ↔ (R\τ(R))ab.
� (∀a, b)¬(R·ab& R·ba).
� (∀a, b, c)(R·ab& R·bc −→ ¬R·ac).

Proof R·ab ↔ Rab&¬(R#ab R#ba). But ¬(R#ab R#ba) is possible only when
both Rab and Rba hold. So R·ab ↔ Rab&¬(τ (R)ab) ↔ (R\τ(R))ab.

Theorem 7

1. R#· = R#\τ(R).
2. R·# = (R\τ(R))#.
3. (R\τ(R))# ⊆ R#\τ(R).

Proof

1. R#·ab ↔ R#ab&¬(R##ab& R##ba) ↔
R#ab&¬(R#ab& R#ba). ↔ R#ab&¬τ(R)ab ↔ (R#\τ(R))ab.

2. R·#ab ↔ (R·)#ab ↔ (R\τ(R))#ab.
3. Can be checked by a contradiction or a direct argument.

We now look at possible properties that approximations of proto-transitive rela-
tions may/should possess. If < is a strict partial order on S and R is a relation, then
consider the conditions:

PO1 (∀a, b)(a < b −→ R#ab).
PO2 (∀a, b)(a < b −→ ¬R#ba).
PO3 (∀a, b)(R�ab& R·ab −→ a < b.
PO4 If a ≡R b, then a ≡< b.
PO5 (∀a, b)(a < b −→ Rab).

As per [2], < is said to be a partial order approximation POA (resp. weak partial
order approximation WPOA) of R iff PO1, PO2, PO3, PO4 (resp. PO1, PO3,
PO4) hold. A POA < is inner approximation IPOA of R iff PO5 holds. PO4 has a
role beyond that of approximation and depends on both successor and predecessor
neighborhoods. Rh, R·� are IPOA, while R·#, R#· arePOAs. By a lean quasi-order
approximation < of R, we will mean a quasi-order satisfying PO1 and PO2— the
set of such approximations of R will be denoted by LQO(R).
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Theorem 8 For any A, B ∈ LQO(R), we can define the operations &, ∨,�:

� (∀x, y)(A&B)xy iff (∀x, y)Axy& Bxy.
� (A ∨ B) = (A ∪ B)#, � = R#.

Proof If Aab then R+ab and if Bab then R+ab. But if (A&B)ab, then both Aab
and Bab. So R+ab.

Similarly it can be shown that A∨B ∈ LQO(R). It is always defined and contained
within R# as it is the transitive completion of A ∪ B. � = R# as transitive closure
is a closure operator.

Theorem 9 In a PRAX, R·#&R#·xy ↔ (R\τ(R))#xy.

3.1 Granules of Derived Relations

The behavior of approximations and rough objects corresponding to derived relations
is investigated in this subsection.

Definition 6 The relation R#· will be termed the trans ortho-completion of R. The
following granules will be associated with each x ∈ S:

[x]ot = {y ; R#·yx } (1)

[x]iot = {y ; R#·xy } (2)

[x]oot = {y ; R#·yx & R#·xy}. (3)

Let the corresponding approximations be lot, uot and so on.

Theorem 10 In a PRAX S, (∀x ∈ S) [x]oot = {x}.
Proof R#·xy& R#·yx means that the pair (x, y) is in the transitive completion of R
and not in τ(R). So y ∈ [x]oot iff

(∃a, b)Rxa&Ray& (¬Rax ∨ ¬Rya)& (Ryb&Rbx)& (¬Rby ∨ ¬Rxb).
If we assume that x �= y, then each of the possibilities leads to a contradiction

as is shown below. In the context of the above statement:

Case-1: Rxa&Ray&¬Rax&Rya& Ryb&Rbx&¬Rby&Rxb. This yields
R#xa& R#bb& R#ba& R#ab. So, R#xb& R#ya& R#ax and we have
contradicted our original assumption.
Case-2: Rxa&Ray&Rax&¬Rya&Ryb&Rbx&Rby&¬Rxb. So R#ab.
Case-3: Rxa&Ray&¬Rax&Rya&Ryb&Rbx&Rby&¬Rxb.
So R#ba& R#ab& R#aa& R#bb and R#yy&R#xy&R#yx&Rya&R#xa. But
such a R# is not possible.

Somewhat similarly the other cases can be seen to lead to contradictions.
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By the symmetric center of a relation R, we will mean the set KR = ⋃
ei (τ (R)\

ΔS)—basically the unionof elements in either component of τ(R)minus thediagonal
relation on S.

Proposition 3 (∀x) [x]�[x]ot �= ∅ as (x /∈ KR −→ [x] ⊂ [x]ot) and
(x ∈ KR −→ [x] � [x]ot& {x} ⊂ [x] ∩ [x]ot).

Proof

z ∈ [x]ot ↔ R#·zx ↔ R#zx &¬τ(R)zx

↔ (Rzx&¬Rxz) or (¬Rzx&¬Rxz& (R#\R)zx).

KR can be used to partially categorize subsets of S based on intersection.

Proposition 4 (R\τ(R))# ∪ τ(R) is not necessarily a quasi-order.

Proof (x, y) ∈ (R\τ(R))# ∪ τ(R) and (x, y) /∈ τ(R) and x ∈ KR & y /∈ KR

and ∃z ∈ KR & z �= x & Rzx do not disallow Rzy. So (R\τ(R))# ∪ τ(R) is not
necessarily a quasi-order. We leave the missing part to the reader.

Proposition 5 ((R\τ(R))# ∪ τ(R))# = R#.

Proof Clearly R ⊆ ((R\τ(R))# ∪ τ(R))# and it can be directly checked that if
a ∈ ((R\τ(R))# ∪ τ(R))#\R then a ∈ R#\R and conversely.

The main conclusion of this section is that we should select our approximate
relations and approximations based on our context (of course avoiding the redundant
ones). In case of our main example, all of R#, R#·, R·#, R� are sensible in different
perspectives.

4 Transitive Completion and Approximate Semantics

The interaction of the rough approximations in a PRAX and the rough approxima-
tions in the transitive completion can be expected to follow some order. The definite
or rough objects most closely related to the difference of lower approximations and
those related to the difference of upper approximations can be expected to be related
in a nice way. We show that this nice way is not really a rough way. But the results
proved remain relevant for the formulation of semantics that involves that of the tran-
sitive completion as in [3, 4]. A rough theoretical alternative is possible by simply
starting from sets of the form A∗ = (Al\Al# )∪(Au#\Au) and taking their lower (l#)
and upper (u#) approximations—the resulting structure would be a partial algebra
derived from a Nelson algebra over an algebraic lattice.
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Proposition 6 For an arbitrary proto-transitive reflexive relation R on a set S, (we
use # subscripts for neighborhoods, approximation operators and rough equalities
of the weak transitive completion) all of the following hold:

(∀x ∈ S) [x]R ⊆ [x]R# (Nbd)

(∀A ⊆ S) Al ⊆ Al# & Au ⊆ Au# (App)

(∀A ⊆ S)(∀B ∈ [A]≈)(∀C ∈ [A]≈# ) B
l ⊆ Cl# & Bu ⊆ Cu# (REq)

The reverse inclusions are false in general in the second assertion in a specific way.
Note that the last condition induces a more general partial order � over ℘(℘(S))

via A � B iff (∀C ∈ A)(∀E ∈ B)Cl ⊆ El# &Cu ⊆ Eu# .

Proof The first of these is direct. For simplicity, we will denote the successor neigh-
borhoods of x by [x] and [x]#, respectively. We look at the possibility tracking in
the first part of the second assertion. If z ∈ Al# then z ∈ Al as [x]# ⊆ A implies
[x] ⊆ A. If z ∈ Al then (∃x) z ∈ [x] ⊆ Al . For this x , z ∈ [x]#, but it is possible that
[x]# ⊆ A or [x]# � A. If [x]# � A, and (∃b /∈ A) R#ax &Rab&Rbx then we have
a contradiction as Rbxmeans b ∈ [x]. If [x]# � A, and (∃b ∈ A) R#ax &Rab&Rbx
all we need is a c /∈ A&Rcb that is compatible with R#cx and Al

� Al# .

Definition 7 By the l-scedastic approximation l̂ and the u-scedastic approximation
û of a subset A ⊆ S we will mean the following approximations:

Al̂ = (Al\Al# )l , Aû = (Au#\Au)u# .

The above cross-difference approximation is the best possible from closeness to
properties of rough approximations.

Theorem 11 For an arbitrary subset A ⊆ S of a PRAX S,the following statements
and diagram of inclusion (→) hold:

� Al#l = Al# = All# = Al#l#

� If Au ⊂ Au# then Auu# ⊆ Au#u# .

Al# Al

Al#u Alu

Al#u#

A Au Au#
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Proof It is clear that Al ⊆ Au ⊆ Au# . So Al
� Au#\Au.

� x ∈ (Al\Al# )l ⇒ (∃y) [y]# � A& x ∈ [y] ⊂ A& x ∈ [y]#
� ⇒ x ∈ Au# & x ∈ Au ⇒ x /∈ Au#\Au.

� But [y]# ⊂ Au# , (∃z) z ∈ Au# & z /∈ Au& z ∈ [y]#.
� So [y]# ⊂ (Au#\Au)u# and it is possible that [y]# � (Au#\Au)u.

Theorem 12 For an arbitrary subset A ⊆ S of a PRAX S,

(Al\Al# )l � (Au#\Au)u# −→ Au# = Au.

Au# �= Au −→ Al\Al# )l ⊆ (Au#\Au)u# .

Proof Let S = {a, b, c, e, f } and R be the transitive completion satisfying

Rab, Rbc, Ref. If B = {a, b}, Bl̂ = B, but Bu# = {a, b, c} = Bu. So Bû = ∅.
The second part follows from the proof of the above proposition under the restriction
in the premise.

Theorem 13 Key properties of the scedastic approximations follow:

1. (∀B ∈ ℘(S))(Bl̂ = B � Bû = B).

2. (∀B ∈ ℘(S))(Bû = B → Bl̂ = B).

3. (∀B ∈ ℘(S)) Bl̂l̂ = Bl̂ .
4. (∀B ∈ ℘(S)) Bûû �= Bû.
5. It is possible that (∃B ∈ ℘(S) Bûû ⊂ Bû).

Proof 1. The counterexample in the proof of the above theorem works for this
statement.

2. x ∈ B ↔ x ∈ (Bu#\Bu)u# ↔ (∃y ∈ Bu# )(∃z ∈ Bu#\Bu) x, z ∈ [y]# & z ∈
Bu# & z /∈ Bu. But this situation requires that elements of the form z be related
to x and so we should have Bu# = Bu.
3. Bl̂l̂ = (Bl̂l\Bl̂l# )l = ((Bl\Bl# )l\∅)l = Bl̂ . The missing step is of proving

(Bl\Bl# )ll# = ∅.
4–5. We prove the last two assertions together. We provide a counterexample and

also show the essential pattern of deviation.

Let S = {a, b, c, e, f } and R be a reflexive relation s.t. Rab, Rbc, Ref.
If A = {a, e}, then Au# = {a, b, c, e} and Au = {a, b, e}.
Therefore Aû = {c}& Aûû = ∅ & Aûû ⊂ Aû.
In general if B is some subset, then x ∈ Bû = (Au#\Au)u# ⇒ (∃y ∈
Au# )(∃z) y ∈ [z]# & y /∈ Au& y /∈ A& z ∈ A& y /∈ [z]& y ∈ [x]#.

An interesting problem can be given A for which Au# �= Au, when does there
exist a B such that

Bl = (Al\Al# )l = Al̂ & Bu = (Au#\Au)u# = Aû?
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5 Remarks

In this research, we have developed the relation between approximation of proto-
transitive relations and approximations in PRAX. The relation of transitive comple-
tions to such relations is examined in detail for further dialectical semantics relying
on Nelson algebras over algebraic lattices—this internalized semantics will appear
separately. It is shown that transitive completions of proto-transitive relations do not
happen in any uniform rough way unless we start from sets of the form A∗. The
methods will be of relevance for other RSTs as well.
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A Probabilistic Approach to Information
System and Rough Set Theory

Md. Aquil Khan

Abstract We propose a generalization of information systems which provides the
probability of an object to take an attribute-value for an attribute. Notions of dis-
tinguishability relations and corresponding notions of approximations are proposed
and studied in comparison with the existing one.

Keywords Rough sets · Approximation operators · Information system · Indis-
cernibility relation · Similarity relation

1 Introduction

Rough set theory, introduced by Pawlak, is based on the concept of approximation
space [10] which is defined as a tuple (U, R), where R is an equivalence relation on
the setU . Any concept represented as a subset (say) X of the partitioned domainU , is
then approximated from “within” and “outside,” by its lower and upper approxima-
tions given as X R := {x : [x]R ⊆ X} and X R := {x : [x]R ∩ X �= ∅}, respectively.
Here, [x]R denotes the equivalence class of x ∈ U . With time, Pawlak’s simple
rough set model has seen many generalizations due to demands from different prac-
tical situations (e.g. [2, 6, 11–13, 17]). A useful natural generalization is where the
relation R is not necessarily an equivalence. For instance, in [3, 12], a tolerance
approximation space is considered, where R is a tolerance relation. The notion of
lower and upper approximations of a set in these generalized approximation spaces
is then defined in a natural way.

There is another way to look at generalizations of Pawlak’s rough set theory, viz.
from the point of view of information systems (e.g. [1, 7, 8, 15]). Most applications
of rough set theory are based on these attribute-value representation models.
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Definition 1 A deterministic information system (DIS) K := (U,A, {Va}a∈A, f ),
comprises a nonempty set U of objects, finite set A of attributes, finite set Va of
attribute-values for each a ∈ A, and information function f : U × A → ⋃

a∈A Va

such that f (x, a) ∈ Va .

Given a deterministic information system K := (U,A, {Va}a∈A, f ) and a set
B ⊆ A, the indiscernibility relation IndK,B is an equivalence relation onU defined
by:

(x, y) ∈ I ndK,B, if and only if f (x, a) = f (y, a) for all a ∈ B.

Thus, given a DIS K and a set B of attributes, we obtain an approximation space
(U, I ndK,B).

From Definition 1 of DISs, it is clear that for each object of the domain, we have
information about each attribute of the system. However, we could have situation
where some attribute-values for an object may be missing. A distinguished attribute-
value ∗ is used to depict this absence of information.

Definition 2 An incomplete information system (IIS) is a tuple K := (U , A,
{Va}a∈A∪{∗}, f ), where f : U×A → ⋃

a∈A Va∪{∗} such that f (x, a) ∈ Va∪{∗}.
In [4, 5], instead of an indiscernibility relation, a similarity relation (defined

below) is considered as the distinguishability relation in the context of an IIS. The
assumption here is that the real value of missing attributes is one from the attribute
domain.

(x, y) ∈ SimS,B if and only if, f (x, a) = f (y, a) or f (x, a) = ∗, or f (y, a) =
∗, for all a ∈ B.

DISs are deterministic in the sense that objects take a single value for each
attribute. Thus, a natural generalization of DISs is obtained by allowing an object to
take a set of values for an attribute.

Definition 3 A tuple K := (U,A, {V}a∈A, f ) is called a non-deterministic infor-
mation system (NIS), where f : U × A → 2

⋃
a∈A Va such that f (x, a) ⊆ Va .

One may attach different interpretations with ‘ f (x, a) = V ’, for V ⊆ Va . For
instance, one could interpret f (x, a) = V as object x takes precisely one attribute-
value from V , and under this interpretation the following similarity relations are
found to be useful.

Similarity: (x, y) ∈ SimK,B if and only if f (x, a) ∩ f (y, a) �= ∅ for all
a ∈ B.

Weak similarity: (x, y) ∈ Simw
K,B if and only if f (x, a)∩ f (y, a) �= ∅ for some

a ∈ B.

Let us consider an object x , an attribute a, and attribute-value v ∈ Va . Consider
the event

E : object x takes the attribute-value v for a.
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Under a DIS, we have precise information whether this event occurs or not. But
situation is not so simple in the case of IIS when f (x, a) = ∗. In this case, we can
at most say that the event E has a probability 1

|Va | to occur, where |X | denotes the
cardinality of the set X . Situation is similar in the case ofNIS.Under the interpretation
of f (x, a) = V given above, if v /∈ f (x, a), then we are certain that event E will not
occur, but if v ∈ f (x, a), then we do not have precise information about the event,
and again we can only assign a probability to the occurrence of this event.

The above observation shows that we can have a situation where we only know
the probability of an object to take an attribute-value for an attribute. Therefore, in
this article, we propose and study a generalization of information systems called
probabilistic information system (PIS), which provides only the probability of an
object to take an attribute-value for an attribute. A few similarity relations are defined
onPIS, and it is shown that the indiscernibility relation definedonDISs, and similarity
relations defined on IISs and DISs are all originated from a single similarity relation
defined on PISs. We would like to add here that several work has been done on the
applications of probabilistic approaches to rough set theory (cf. e.g. [9, 16]), but most
of these works are based on the proposals of approximations of sets in approximation
spaces keeping in view the overlap of the equivalence classes with the set. In this
article, instead we take into account the source of approximation spaces, that is,
information systems.

The remainder of this article is organized as follows. In Sect. 2, we present the
notion of the PISs, and study the notion of approximations on PISs. In Sect. 3, we
present a comparative study of PISs with the DISs, IISs, and NISs. Section4 con-
cludes the article.

2 Probabilistic Information Systems

Let U be a set of objects, and A be a set of attributes of the objects of U . For each
a ∈ A, let Va be the set of possible attribute-values that the objects from U can
take for the attribute a. For x ∈ U, a ∈ A and v ∈ Va , let us use the tuple (x, a, v)
to denote the event that the object x takes the value v for the attribute a. In many
practical situations, we may not have the precise information for the event (x, a, v).
For instance, in an election, we may not know precisely to whom a voter x is going
to vote, but we may know the probabilities of x voting to different candidates. A
probabilistic information system with domainU , attribute setA, and attribute-value
set

⋃
a∈A Va is a structure which assigns probabilities to these events. Formally, we

have the following definition.

Definition 4 A probabilistic information system (PIS) is defined as a tuple K :=
(U,A, {Va}a∈A, F), where U,A,Va are as in Definition 1, and F : DK →
[0, 1], DK being the set {(x, a, v) : x ∈ U, a ∈ A, and v ∈ Va} such that∑

v∈Va
F(x, a, v) = 1.
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Let K := (U,A, {Va}a∈A, F) be a PIS. Corresponding to x, y ∈ U , x �= y, and
a ∈ A, we obtain a sample space E(x,y,a) defined as

E(x,y,a) := {〈(x, a, v), (y, a, u)〉 : v, u ∈ Va},

and a probability mass function P(x,y,a) : E(x,y,a) → [0, 1] such that

P(x,y,a)〈(x, a, v), (y, a, u)〉 := F(x, a, v)F(y, a, u).

One can easily verify the following property of the probability mass function.

Proposition 1
∑

β∈E(x,y,a)
P(x,y,a)(β) = 1.

The element 〈(x, a, v), (y, a, u)〉 of the sample space E(x,y,a) represents the event
that the objects x and y take the attribute-value v and u, respectively, for the attribute
a. Moreover, P(x,y,a)〈(x, a, v), (y, a, u)〉 gives the probability of this event to occur
based on the information provided by the PIS K.

Recall that an event Q of the sample space E(x,y,a) is a subset of E(x,y,a), and its
probability is given by

P(x,y,a)(Q) =
∑

β∈Q
P(x,y,a)(β).

We use this fact to define the following fuzzy relations on U .

Definition 5 LetK := (U,A, {Va}a∈A, F) be a PIS. For each a ∈ A, we define the
mappings Ra : U ×U → [0, 1] as follows:

Ra(x, y) :=
{
P(x,y,a){〈(x, a, v), (y, a, v)〉 : v ∈ Va}, if x �= y

1, otherwise.

The mappings defined above are not indexed with the underlying PIS to make the
notation simple, and should not create any confusion. We note that Ra(x, y) gives
the probability of the event that the objects x and y take the same attribute-value for
the attribute a. On unfolding the definition of Ra , we obtain the following result.

Proposition 2 Ra(x, y) = ∑
v∈Va

F(x, a, v)F(y, a, v), x �= y.

For a given PIS K := (U,A, {Va}a∈A, F), we now use the relation Ra to define
the following fuzzy and crisp similarity relations on U . Let B ⊆ A, and x, y ∈ U .

Definition 6

Similarity: SK,B(x, y) :=
∏

a∈B
Ra(x, y).

Weak Similarity: SwK,B(x, y) := 1 −
∏

a∈B
(1 − Ra(x, y)).
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Crisp Similarity: For λ ∈ [0, 1), (x, y) ∈ ScK,B(λ) if and only if for all a ∈ B,
Ra(x, y) > λ.

A generalization of the above-defined crisp similarity relation ScK,B would be
the case where a different threshold λa is provided for different a ∈ B. But in this
article, we shall consider only the above-defined crisp similarity relation to make the
presentation simple.

Let us observe the following facts about these relations.

• SK,B(x, y) gives the probability of the event that the objects x and y take the same
attribute-value for each attribute in B.

• SwK,B(x, y) gives the probability of the event that the objects x and y take the same
attribute-value for some attributes in B.

• (x, y) ∈ ScK,B(λ) if and only if for all a ∈ B, the probability of the event that the
objects x and y take the same attribute-value for a is more than λ.

In Sect. 3, we shall see the close connections of the above-defined relationswith some
of the indistinguishability relations defined on information systems. But before that,
we propose the following notion of lower and upper approximations. Let K :=
(U,A, {Va}a∈A, F) be a PIS, and x ∈ U , B ⊆ A, λ ∈ [0, 1). We will use the
following notation:

[x]λSK,B
:= {y ∈ U : SK,B(x, y) > λ}; [x]λSwK,B

:= {y ∈ U : SwK,B(x, y) > λ};
[x]λScK,B

:= {y ∈ U : (x, y) ∈ ScK,B(λ)}.
Corresponding to each R ∈ {ScK,B, SK,B , SwK,B}, and λ ∈ [0, 1), we obtain the lower
and upper approximation operators LR and UR defined as follows:

LR(X,λ) := {x ∈ U : [x]λR ⊆ X};UR(X,λ) := {x ∈ U : [x]λR ∩ X �= ∅}.

Note that the relation ScK,B is a crisp tolerance relation, and hence all the results
that hold for tolerance relation based approximation operators follow automatically
for the approximation operators based on ScK,B . On the other hand, the relations
SK,B, SwK,B are fuzzy and hence the theory develop on these relations will take the
course of fuzzy-rough sets. Therefore, it seems to be interesting to see how the theory
develops for these relations. In the rest of this section, we explore a few properties
of the approximation operators defined above. In this direction, we first note that the
fuzzy relations SK,B and SwK,B satisfy the reflexivity and symmetry conditions, but
fail to satisfy transitivity condition: σ(x, y) > λ& σ(y, z) > λ ⇒ σ(x, z) > λ. As a
consequence of it, the lower and upper approximation operators defined on SK,B and
SwK,B satisfy all the standard properties of Pawlak’s lower and upper approximation
operators except the idempotence.

For each of the relation R ∈ {ScK,B, SK,B , SwK,B}, the following holds:

Proposition 3 1. LR(X,λ) = (
UR(Xc,λ)

)c
, where Xc denotes the complement

of the set X relative to U.
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Table 1 PIS K a b

v1 v2 v3 v4 u1 u2 u3

x1 1 0 0 0 1
3

1
3

1
3

x2 0 1
2

1
2 0 1

2
1
2 0

x3
1
3

1
3 0 1

3 1 0 0

2. For λ2 ≥ λ1, L R(X,λ1) ⊆ LR(X,λ2) and UR(X,λ2) ⊆ UR(X,λ1).

The following proposition gives the connection between different lower approxima-
tion operators defined above.

Proposition 4

1. LScK,B
(X, 0) = LSK,B (X, 0).

2. LScK,B
(X,λ) ⊆ LSK,B (X,λ), λ ∈ [0, 1).

3. LSwK,B
(X,λ) ⊆ LSK,B (X,λ), λ ∈ [0, 1).

Example 1 Let us consider a PIS K := (U, {a, b}, {Va,Vb}, F) with U := {x1,
x2, x3}, Va := {v1, v2, v3, v4}, Vb := {u1, u2, u3} given by the Table1. Thus
F(x1, a, v1) = 1, F(x1, a, v2) = 0 and so on. The relations Ra and Rb giving
the probability of two objects to take same attribute-value for a and b, respectively,
are obtained as follows:

Ra : (x1, x2) �→ 0 Rb : (x1, x2) �→ 1
3

(x1, x3) �→ 1
3 (x1, x3) �→ 1

3

(x2, x3) �→ 1
6 (x2, x3) �→ 1

2

This, in turn, determines the mapping SK,B and SwK,B , B = {a, b}, and are given as
follows:

SK,B : (x1, x2) �→ 0 SwK,B : (x1, x2) �→ 2
3

(x1, x3) �→ 1
9 (x1, x3) �→ 4

9

(x2, x3) �→ 1
12 (x2, x3) �→ 4

12

The Table2 gives the lower approximations of some subsets ofU , relative to different
relations corresponding to threshold λ = 0, 1

10 ,
1
3 .

Note that when we fix λ = 0 so that two objects x and y are considered to
be indistinguishable relative to the attribute set B if indistinguishability probability
SK,B(x, y) > 0. Therefore, x3 does not lie in the lower approximation of the set
{x1, x3} relative to SK,B . On the other hand, if we raise the indistinguishability
threshold, and takeλ = 1

10 , thenwe obtain x3 in this lower approximation of {x1, x3}.
This is due to the fact that the probability of x2, x3 to be indistinguishable relative

to B is 1
12 �

1
10 , so that [x3]

1
10
SK,B

= {x1, x3}.
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Table 2 Lower
approximations for different
thresholds

X

{x1, x2} {x1, x3} {x2, x3}
λ = 0 LScK,B

(X,λ) ∅ {x1} {x2}
LSK,B (X,λ) ∅ {x1} {x2}
LSwK,B

(X,λ) ∅ ∅ ∅
λ = 1

10 LScK,B
(X,λ) ∅ {x1} {x2}

LSK,B (X,λ) {x2} {x1, x3} {x2}
LSwK,B

(X,λ) ∅ ∅ ∅
λ = 1

3 LScK,B
(X,λ) {x1, x2} {x1, x3} {x2, x3}

LSK,B (X,λ) {x1, x2} {x1, x3} {x2, x3}
LSwK,B

(X,λ) {x2} {x3} ∅

3 PISs and Information Systems

In this section, we shall give a comparative study of PISs with different types of
information systems.

3.1 Deterministic Information Systems

Let K := (U,A, {Va}a∈A, f ) be a deterministic information system (DIS). Then it
can also be viewed as a PIS T (K) := (U,A, {Va}a∈A, F), where

F(x, a, v) =
{
1, if f (x, a) = v

0, otherwise.

Observe that the above defined F satisfies the required condition of probability
distribution viz.

∑
v∈Va

F(x, a, v) = 1. Moreover, as F(x, a, v) ∈ {0, 1}, it follows
that under a PIS T (S), the probability of an object x to take an attribute-value v for
an attribute a is either 0 or 1. This reflects the fact that in a DIS, we have the precise
information regarding the attribute-values of the objects.

We note the following facts about the PIS T (K).

Proposition 5 The range of the mappings Ra, ST (K),B and SwT (K),B is {0, 1}.
The Proposition 5 captures the fact that in a PIS T (K), relative to any set of attributes,
two objects will be considered as distinguishable or indistinguishable. There is no
intermediate grading of distinguishability relation.

The following proposition gives the precise connection between the approxima-
tion operators defined on DISs and PISs.
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Proposition 6 Consider a DISK and corresponding PIS T (K). Then the following
holds:

1. (x, y) ∈ I ndK,B if and only if ST (K),B(x, y) > 0.
2. I ndK,B = ScK,B(λ), for all λ ∈ [0, 1).
3. X IndK,B

= LST (K),B (X, 0) = LScT (K),B
(X, 0).

X IndK,B = UST (K),B (X, 0) = UScT (K),B
(X, 0).

3.2 Incomplete Information Systems

Recall that in an incomplete information system (IIS)K := (U,A, {Va}a∈A∪{∗}, f ),
f (x, a) = ∗ denotes the absence of information about x regarding the attribute a.
Moreover, in that case, each of the attribute-value v ∈ Va has the equal probability
to be assigned to the object x for the attribute a. Due to this fact, it is natural to
assign the probability 1

|Va | to the event of taking attribute-value v for a by the object
x . Under this observation, we can view an IIS K := (U,A, {Va}a∈A ∪ {∗}, f ) as a
PIS T (K) := (U,A, {Va}a∈A, F), where

F(x, a, v) =

⎧
⎪⎨

⎪⎩

1, if f (x, a) = v
1

|Va | , if f (x, a) = ∗
0, otherwise.

One can again easily verify that
∑

v∈Va
F(x, a, v) = 1. From the definition of F ,

it follows that under a IIS T (K), the probability of an object x to take an attribute-
value v for an attribute a is 0 or 1, or each of the attribute-value from Va has equal
probability to be assign to x for the attribute a.

The following proposition captures the relationship between the approximation
operators defined on IISs and PISs.

Proposition 7 Consider an IISK and corresponding PIS T (K). Then the following
holds:

1. (x, y) ∈ SimK,B if and only if ST (K),B(x, y) > 0.
2. X SimK,B

= LST (K),B (X, 0) = LScT (K),B
(X, 0),

X SimK,B = UST (K),B (X, 0) = UScT (K),B
(X, 0).

Observe that in an IIS K if f (x, a) = f (x, b) = ∗, it does not mean that T (K)

will assign equal probability to the events (x, a, v) and (x, b, u). This is due to the
fact that probability distribution in T (K) also depends on the size of the attribute-
value set. Moreover, PISs can also express more general situation where one does
not know the exact attribute-value, but can exclude some values. For instance, let
Va := {v1, v2, v3}, and suppose that we do not have information about the attribute-
value of x for the attribute a, but we have the information that it cannot be v1. This



A Probabilistic Approach to Information System and Rough Set Theory 121

fact cannot be captured in a IIS, but can be represented in a PIS by assigning the
probability F(x, a, v1) = 0, and F(x, a, v2) = F(x, a, v2) = 1

2 .

We would like to add here that the lower approximation operator LScT (K),B
defined

on T (S) for IIS S coincides with the one defined on IIS using valued-tolerance
relation in [14].

3.3 Nondeterministic Information Systems

Let us consider a nondeterministic information system (NIS) S := (U ,A, {Va}a∈A,
f ) under the assumption that f (x, a) = V , for V ⊆ Va , represents a situation where
we do not know what attribute-value the object x takes for the attribute a, but we
know that it is one of the member of V . Under this assumption, the probability of the
event (x, a, v) is zero for v /∈ V , and for v ∈ V , the probability of the event (x, a, v)
is 1

|V | . This observation suggests that a NIS S := (U,A, {Va}a∈A, f ) can be viewed
as a PIS T (K) := (U,A, {Va}a∈A, F), where

F(x, a, v) :=
{

1
| f (x,a)| , if v ∈ f (x, a)

0, otherwise.

We again note that F satisfies the required condition
∑

v∈Va
F(x, a, v) = 1 of a

probability distribution.
The following proposition provides the precise connection between different

indistinguishability relations and corresponding lower and upper approximation
operators defined on NISs and PISs.

Proposition 8 Consider a NIS K and corresponding PIS T (K). Then the following
holds:

1. (a) (x, y) ∈ SimK,B if and only if ST (K),B(x, y) > 0;
(b) (x, y) ∈ Simw

K,B if and only if SwT (K),B(x, y) > 0;
2. (a) X SimK,B

= LST (K),B (X, 0) = LScT (K),B
(X, 0)

XSimK,B = UST (K),B (X, 0) = UScT (K),B
(X, 0);

(b) X Simw
K,B

= LSwT (K),B
(X, 0), and X Simw

K,B
= USwT (K),B

(X, 0).

Example 2 Let us consider the nondeterministic information system K1 given by
the Table3. The corresponding PIS T (K1) is given by Table1. From Example 1,
we obtain {x1, x3}SimK1,B

= LK1,B(X, 0) = {x1}. The object x3 does not belong to

{x1, x3}SimK1,B
due to the fact that the object x3 and x2 has some possibility, although

it could be very small, to take the common value v2. But, if we also consider the
measure of this possibility, then situation could be different. For instance, as illus-
trated in Example 1, if we fix λ = 1

10 , then we obtain x3 in the lower approximation
of {x1, x3}.
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Table 3 PIS K1 a b

x1 {v1} {u1, u2, u3}
x2 {v2, v3} {u1, u2}
x3 {v1, v2, v4} {u1}

From Propositions 6–8, it follows that lower (and hence upper) approximations
defined on deterministic information systems (relative to indiscernibility relation),
nondeterministic, and incomplete information systems (relative to similarity relation)
are all actually instances of onlyonenotionof lower (upper) approximationdefinedon
PISs namely LSK,B (X, 0) corresponding to threshold λ = 0. Moreover, as illustrated
in Example 1, by assigning different values for threshold λ, we obtain approximation
operators which are different from the standard one defined on nondeterministic and
incomplete information systems.

4 Conclusions

In order to capture the situation where information regarding the attribute-values of
the objects are not precise, but given in terms of probability, we propose the notion
of probabilistic information system (PIS). Notions of distinguishability relations and
corresponding approximation operators are proposed and studied. It is shown that the
DISs, IISs, and NISs are all special instances of PISs. Moreover, the approximation
operators defined on DIS (relative to indiscernibility), IISs, and NISs (relative to
similarity relations) are all originated from a single approximation operator defined
on PISs. It may be noted here that this may not be the case for the other types of
relation defined on NISs (cf., e.g., [1, 7, 15]), and we may need to come up with a
different set of relations defined on PISs to capture these relations. We would also
like to add here that we have the proposal of a sound and complete logic for PISs
where one can express the notions of approximations defined here. But this issue is
outside the scope of the current article.
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Uncertainty Analysis of Contaminant
Transportation Through Ground Water
Using Fuzzy-Stochastic Response Surface

Subrata Bera, D. Datta and A.J. Gaikwad

Abstract The process of contaminant transportation through ground water can be
variedwith different parameters such as soil characteristics, groundwater flow veloc-
ity, longitudinal and transverse dispersion coefficients, self-degradation of contam-
inant etc. The precise definition of these parameters is very difficult due to various
factors such as measurement error, sampling error, dependence of complex physical
phenomena, etc. The analytical solution of transient advection–diffusion equation
is being used to assess the ground water contamination due to the industrial dis-
charge. The paper describes a methodology to estimate the hybrid uncertainty, i.e.,
combination of aleatory and epistemic using the fuzzy-stochastic system. Aleatory
uncertainty due to random variation of input parameter is estimated using polynomial
chaos expansion method. To take into account the effect of imprecise variation (i.e.,
epistemic uncertainty) of input parameter, a fuzzy α-cut technique has been used.
The large sample space of concentration reduction factor (CRF) have been gener-
ated using fuzzy-stochastic response surface to arrive the upper uncertainty bound
corresponds to the 95th percentile value at a specified distance from the source and
period of time. The methodology will be very useful to assess the safety margin or
discharge limit from the industry.

Keywords Uncertainty · Stochastic response surface · Polynomial chaos expan-
sion · Fuzzy set theory · Ground water contamination

1 Introduction

Ground water is being contaminated due to the industrial effluent discharge to the
environment. The process of contamination is governed by two physical phenom-
ena, viz. advection and diffusion. In the advection process, contamination is trans-
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ported due to the fluid bulk motion, whereas the transport of contaminant in diffusion
process is due to the concentration difference. Various methodologies are being used
to estimate the concentration of a contaminant, e.g., analytical solution of different
dimension, numerical solution of advection, and diffusion equation through compu-
tational fluid dynamics, etc. The complexity of problem is decided by many factors
such as steady-state, transient, consideration of uncertainty of input parameters, e.g.,
soil properties, self-decay of contaminant, dispersion coefficients along the flow, and
its perpendicular directions, etc. The nature of variation of input parameters can be
modeled using a probabilistic frame work [1–3] or a fuzzy computing framework [4–
8]. The source of uncertainty may be due to the random variation of input parameter
(aleatory) and lack of knowledge (epistemic) [1]. An innovative blending methodol-
ogy of probabilistic frameworkwith fuzzy computing framework has been developed
using formulation of stochastic response surface with fuzzy argument [9, 10]. This
fuzzy-stochastic response surface is used to create a large random sample space of
concentration reduction factors to be used for statistical analysis. The polynomial
chaos expansion methodology has been adopted to formulate the stochastic response
surface with Harmite polynomials.

In thepresent analysis, the uncertainty associatedwith the contaminant transported
through groundwater has been carried out using polynomial chaos expansionmethod
and interval Fuzzy α-cut techniques. Contaminant concentration estimation at a dis-
tance from source has been calculated using analytical solution of transient advection
and diffusion equation. Analytical solution as derived by Domenico is used for esti-
mation of contaminant concentration [11]. Two parameters, i.e., hydraulic conductiv-
ity and weighting factor for longitudinal dispersivity are considered as uncertain due
to their randomness and fuzziness. Uniform and imprecise variation is considered in
analysis for hydraulic conductivity andweighting factor for longitudinal dispersivity,
respectively. For uniform variation of hydraulic conductivity, a stochastic response
surface has been developed using polynomial chaos expansion. Uncertainty of the
fuzzy variable is selected on the basis of the lack of measurement. Measurement
process is generally addressed as mean ± standard deviation. Therefore, the least-
bounded uncertain variable can be expressed by considering the extreme bounds as
mean − standard deviation and mean + standard deviation. So, considering these
extreme bounds with the most likely value as mean value of the uncertain variable
composes a triangular imprecise variable, which we have addressed as triangular
fuzzy variable. For this reason, triangular membership functions are selected. The
results shown in this paper using the method as described are already applied for
liquid effluent discharged due to routine operation of nuclear plant. The similar kind
of results can be achieved due to the routine operation of other industry. Therefore,
obviously results are useful for real-life applications. Moreover, the method can be
applied very easily for many other process in our real-life applications, for example,
uncertainty occurred in any pharmacokintetic process can be explained by using the
same method. Moreover, these results as well as the methodology will be very useful
to assess the safety margin or discharge limit from the industry.
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2 Theoretical Model of Ground Water Transport

The Advection-dispersion process is the main physical phenomena that governs
contaminant transport process in ground water. The two-dimensional partial differ-
ential equation for advection-diffusion equation for groundwater transport is given
below [5]

∂c

∂t
= Dx

∂2c

∂x2
+ Dy

∂2c

∂y2
− v

∂c

∂x
(1)

where C is the contaminant concentration in groundwater; t is the time (day); v is the
groundwater seepage velocity (m/day); x, y are the coordinates to two dimensions
(m); Dx,Dy are the dispersion coefficients for the x and y dimension (m), respec-
tively. Analytical solution of advection-diffusion equation introduced by Domenico
(1987) has been used to evaluate transient plume behavior under conditions of a
continuous source and finite source dimensions with one-dimensional groundwater
velocity, longitudinal, transverse, and vertical dispersion and first-order degradation
rate constant.

The analytical solution [5] of the two-dimensional advection-diffusion equation
is given below:

C(x, y, t) = c0
4
exp

{
x

2αx

[
1 −

√
(1 + 4λαx

v
)

]}
erfc

⎧⎨
⎩
x − vt

√
(1 + 4λαx

v )

2
√

αx vt

⎫⎬
⎭{

erf

[
y + Y

2

2
√

αyx

]
− erf

[
y − Y

2

2
√

αyx

]}
(2)

where C(x, y, t) is the contaminant concentration (mg/l) in at time t and position
(x, y); C0 is the source concentration,; αx, αy are the longitudinal and traverse dis-
persion coefficient (m), respectively; λ is the degradation rate constant and equal to
0.693/T1/2; v is the groundwater velocity (m/day); erf(x) and erfc(x) are the error
and complementary error functions, respectively.

The calculation of groundwater velocity is given below:

v = khydroHgrad

n
(3)

where Khydro is the hydraulic conductivity (m/day); Hgrad is the hydraulic gradient
(m/m); and n is soil porosity (%).

The literature survey yields various empirical formula for longitudinal and trans-
verse dispersivity. Following empirical formulae which is commonly used is given
below:
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αx = wlx (4)

αy = wtαx (5)

where W1 is longitudinal weighting factor and as per the literature survey its value is
around 0.1;Wt is the transverse weighting factor and taken as a 33% of αx, according
to the literature survey. But, in this analysis W1 is imprecisely defined, and hence it
is considered as a fuzzy parameter with triangular membership function.

3 Polynomial Chaos Expansion (PCE) Methodology

The PCE [1–3] is the representation of a random variable, more generally a stochas-
tic process, with an infinite series of orthogonal polynomials that take a vector of
independent and identically distributed (IID) random variables as arguments. Mathe-
matically, the stochastic response surface is representedwith one uncertain parameter
with Hermite polynomial of degree n can be represented by

y =
∑n+1

i=1
ai�i (ξ) (6)

where y is the model estimation; ai is the coefficient of stochastic response surface;
ψi (ξ) is the Hermite polynomial of order I as a function of standard normal random
number (ξ ). Hermite polynomials represent the Gaussian process, which is further
represented as a normal distribution. Uncertain parameters of the environmental
models basically follow normal and normal-like distributions such as log normal
distribution, and gamma distribution. All these distributions including uniform dis-
tribution can be transformed in the domain of Hermite polynomials. This signifies
the usage of Hermite polynomial in this paper, and as far as the degree of the Hermite
polynomial is concerned, higher the degree more is the possibility of overshooting
the fitting process due to the inherent nature of inconsistency least square fitting
method. That is why more correct degree from the suitability of a response surface
for fitting is the order of three which has been chosen for the present work. The terms
of Hermite polynomial of order up to three have been given below:

�0(ξ) = 1; �1(ξ) = ξ ; �2(ξ) = ξ2 − 1;�3(ξ) = ξ3 − 3ξ (7)

An explicit representation of third-order polynomial chaos expansion for one variable
can be written as:

y = a0 + a1ξ + a2(ξ
2 − 1) + a4(ξ

3 − 3ξ) (8)

The coefficients of the stochastic response surface have been determined by
solving a set of linear equation generated with standard normal random number.
The large sample space of concentration reduction function has been generated for
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statistical analysis. Therefore, for four unknown coefficients, four model outputs are
to be generated for the specified model. Sampling points for the generation of these
outputs will be obtained from the model uncertain inputs for which inputs are to
be transformed into standard normal variables (SRV). Standard transformation of
normal probability distribution functions with mean (µ) and standard deviation (σ )
of model inputs in terms of SRVs can be written as:

Normal(µ, σ ) : μ + σξ (9)

4 Fuzzy Set Theory

Fuzzy set theory is the combination of classical set theory and proportional logic. In
contrast to the binarymembership function used in classical set theory, FST allows to
use partialmembership function. The partialmembership function can be represented
by triangular membership function with interval [l, m, r] as shown in Fig. 1. where,
l, m, and r are the left, middle, and right points of triangular membership function.
Mathematical formulation of the membership function is given in (10).

μA(x) =
{

x−l
m−l , l ≤ x ≤ m
r−x
r−m ,m ≤ x ≤ r

(10)

Alpha-cut (α-cut) technique of a fuzzy set [5–8] provides the interval range corre-
sponding to a specific value of membership function. Mathematically, α-cut tech-
niques is represented by

Cutα(A) = {x |μA(x) ≥ α} (11)
αX = [l + α(m − l), r − α(r − m)] (12)

Fig. 1 Triangular fuzzy
membership function
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In the uncertainty analysis, various nomenclatures are used to represent variation
of a fuzzy parameter depending on the value of alpha. These are “core” (α = 1.0),
“upper quartile” (α ≥ 0.75), “cross over point” (α = 0.50), “middle quartile”
(α ≥ 0.50), and “lower quartile” (α ≥ 0.25).

5 Cumulative Density Function in Fuzzy-Stochastic System

In the probabilistic space, cumulative density function is derived from the probability
density function of a random variable to estimate the portion of population with a
value less than a specified value. In the other way, it may be represented as the
probability having a value less than a specified value. CDF does not depend on the
probability density function of the input variable. If a model contains both random
and imprecise variables, CDF can be formulated with the random variable for a
specific value of imprecise parameter. Since, degree of impreciseness of the imprecise
parameter is represented by theα-cut value anduncertaintywith interval, lower bound
and upper bound of the interval for a specific α-cut value generates two CDFs, which
represent the uncertainty due to the imprecise variable in the fuzzy-stochastic system.

6 Result and Discussion

Stochastic response surface with third-order Hermite polynomial has been formed
for one uncertain parameter (hydraulic conductivity). This response surface is used
to get CDF of concentration. The CDF of concentration has been estimated for both
spatial profile with fixed time and temporal profile with fixed location from source.
Variation of CDF at a distance of 500m from source and time period of 180days has
been shown in the Fig. 2. During the estimation of CDF, the fuzzy variable, weighting
factor of longitudinal dispersion coefficient (W1) value kept at its core value at which
membership function equal to unity (α = 1.0). This variation is due to the random
variation of hydraulics conductivity alone. Various percentile values of concentration
reduction factor have been estimated and given in the Table1.

TheCDFof concentration of contaminant has been calculated for various alpha cut
value ofW1 at a distance 500m from source and time period of 180days. Calculations
are carried out for α-cut value equal to 0.05, 0.25, 0.50, 0.75, and 0.95. The nature
of variation of CDF with concentration reduction factor (CRF) for different α-cut
values has been shown in the Fig. 3.

From the Fig. 3, it is found that uncertainty in cumulative distribution of con-
centration is increasing with higher α-cut value of W1. For a single α-cut value of
W1, there are two CDFs around mean CDF. These two CDFs around the mean CDF
are the representation of uncertainty due to fuzzy variable for a specific member-
ship value. The uncertainty due fuzzy-stochastic system is confined in between two
CDFs corresponding to a particular α-cut value of W1. The uncertainty boundary
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Fig. 2 CDF of
concentration reduction
factor at distance 500m and
time 180 days CDF

Table 1 Uncertainty
estimation in terms of
percentile value

Percentile Concentration reduction
factor

5th 4.1648E-04

25th 4.3886E-04

50th (Mean value) 4.6869E-04

75th 5.1345E-04

95th 5.5821E-04

Fig. 3 Variation of CDFs
with different α-cut values of
fuzzy parameter

of CRF for various α-cut value at the 50th percentile has been shown in the inset
figure of Fig. 3. From the inset figure it is found that the uncertainty reduces with
increasing α-cut value. Uncertainty boundary becomes zero at the α-cut value equal
to 1.0 corresponding to the crisp value.
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Fig. 4 Spatial variation of
concentration reduction
factor with fuzzy uncertainty

Concentration of contaminant has been estimated at 30 locations starting from 50
to 1500m from the source with equal interval of 50m for time period of 6 months or
180days. Mean value of concentration corresponding to the 50th percentile of cumu-
lative distribution and fuzzy membership function equal to unity has been compared
with interval parameters corresponding to fuzzy α-cut value equal to 0.5 (shown in
Fig. 4).

It is found from Fig. 4, that the concentration of contaminant in groundwater is
drastically reduced to a very low value at a distance 600m from the source within
the time period of 18days. The variation of concentration reduction factor is found
to be about 10% of mean value due to the degree of impreciseness of 0.5 of W1. It
is found that uncertainty is significant up to the distance of 500m. If the degree of

Fig. 5 Variation of the
degree of uncertainty with
distance
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Fig. 6 Temporal variation of
concentration reduction
factor with fuzzy uncertainty

uncertainty at a particular distance is defined as the ratio of difference between upper
value and lower value to the addition of upper and lower value, then the variation of
the degree of uncertainty with distance up to 500m has been shown in the Fig. 5.

From the Fig. 5, it is found that the degree of uncertainty is initially increasing
with distance and then decreases from the distance around 300m. This result infers
that the maximum uncertainty arises at a distance of 300m.

The variation of concentration reduction factor with time has been carried out for
time period of one year with interval of fifteen days. Temporal variation at a distance
of 500m from the source has been shown in the Fig. 6. It is found that concentra-
tion is increasing with time. The important observation is that at a time period of
180days, fuzzy-based uncertainty band becomes zero. It is happened because of the
nature of variation of complementary error function. At that particular period of time,
complementary error function becomes unity. However, after that particular period
of time, the uncertainty boundary lines follow the continuity and become diverged
from the mean value. Analysis shows that if we increase the time of observation
beyond 400days, the concentration of the contaminant at 500m gets saturated.

7 Conclusion

Fuzzy-stochastic response surface has been developed using one normally distributed
parameter and one fuzzy parameter. Stochastic response surface has been developed
using Hermite polynomial expansion of random variable (hydraulic conductivity)
up to order of three; however, fuzzy variable is kept at a desire α-cut value. Fuzzy-
stochastic response surface has been used to get cumulative density function (CDF)
of contamination reduction factor. The CDF for contamination reduction factor for
a specific distance from source and period of time has been estimated with 100,000
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sample calculation of stochastic response surface.Various percentile value of concen-
tration reduction function has been estimated. The uncertainty due to one imprecise
parameter (weighting factor for longitudinal dispersivity) is included through imple-
mentation of Fuzzy α-cut technique. Uncertainty involved with various degree of
impreciseness of parameter has been demonstrated. Finally, the variation of mean
concentration reduction factor for various distances and time periods have been esti-
mated with fuzzy uncertainty bounds. It is found that the uncertainty associated with
the spatial variation of concentration reduction factor is significant up to the distance
of 500m for period of time of 180days. The degree of uncertainty is found to be
maximum at a distance of 300m from the source. In the time profile of concentration
reduction factor, it is found that the complementary error function plays an important
role for the quantification of uncertainty.
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Development of a Fuzzy Random Health
Risk Model

D. Datta, S. Kar and H.S. Kushwaha

Abstract This work focuses on the development of a fuzzy random health risk
model. The concept of fuzzy randomvariable is used to develop this health riskmodel.
Health risk is addressed as the risk due to exposure to uranium through ingestion
of food grown in and around a high background area which is rich in groundwater
and has a substantial amount of phosphate deposits that constitute uranium. Lack of
data about the activity concentration of uranium and its variability at many locations
of that area justifies its fuzziness and randomness. A similar reason is valid for the
consumption of food from the area. Therefore, these input parameters of the exposure
model are the fuzzy random variable. Exposure model computes the daily average
ingestion and risk is computed by multiplying this with the corresponding cancer
slope factor. Fuzziness of daily average ingestion is computed at a specified percentile
of the lower and upper fuzzy cumulative distribution of daily average ingestion.
Randomness is computed at every alpha cut of the fuzzy random daily average
ingestion. Fuzzy randomdaily average ingestion is used to compute the fuzzy random
risk. It has been shown that risk due to the consumption of naturally occurred uranium
through ingestion of food is insignificant. Support, uncertainty index, possibility,
necessity, and credibility of the fuzzy random risk are also computed to explore the
role of fuzzy random variable in uncertainty of risk estimation.

Keywords Fuzziness · Randomness · Health risk model · Ingestion · Activity
concentration
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1 Introduction

Riskmodels involve two important sources of uncertainty: randomness and fuzziness.
Randomness relates to the stochastic variability of all possible outcomes of a situ-
ation. Fuzziness, on the other hand, relates to the unstructured boundaries of the
parameters of the risk model and can be traced to incomplete knowledge of the sit-
uation. Thus, randomness is more an instrument of normative analysis that focuses
on the future, while fuzziness is an instrument of descriptive analysis reflecting the
past and its implications. Randomness and fuzziness can be merged to formulate a
fuzzy random variable (FRV), that is, a function that assigns a fuzzy subset to each
possible random outcome [1]. Therefore, it is obvious that randomness and fuzziness
are complementary. One important facet of this relationship is the FRV, which is a
measurable function from a probability space to the set of fuzzy variables. FRVs
have also been referred to as random fuzzy sets and random upper semicontinuous
functions [2].

Anecdotal evidence suggests that risk analysts are receptive to the notion of FRVs.
They generally recognize that there are sources of uncertainty that random variables
cannot capture and that fuzziness is a key component of that uncertainty. Conse-
quently, since random variables are at the core of exposure concepts and fuzziness
permeates every aspect of health risk modeling and analysis, one would expect to
see FRVs implemented often, in the literatures of risk analysis.

This article explores these FRVs. We address: distinction between fuzziness and
randomness, fundamental concepts, FRVs, a comparison of the FRVs defined by
Kawakernakk [3, 4] and Puri and Ralescu [5]. Finally, fuzzy random variable con-
cept is applied to analyze the health risk due to ingestion of contaminated or toxic
elements.

2 Fuzziness and Randomness—How They Are Different?

Before introducing the fuzzy random variable, let us recall the difference between
randomness and fuzziness. Randomness addresses the variability of the uncertain
variable, whereas fuzziness describes the ignorance of the variable. Fuzziness can be
reduced, whereas randomness cannot be reduced. Randomness is described by the
probability distribution, whereas fuzziness is represented by possibility distribution.
Therefore, it can be envisaged that there exists a distributional difference between
fuzziness and randomness. A simple example to demonstrate the distributional differ-
ences is as follows. For a representative probability distribution, based on dosimetric
survey of occupational workers in any nuclear plant, a probability of 0.94 can be
assigned as zero overexposure, a 0.06 probability as one overexposure, and a 0.004
probability as two overexposures.

In contrast, one can see that the representative possibility distribution as,
overexposure of zero and one occupational worker each have a high possibility of
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occurrence, and there is some possibility that the two occupational workers will be
overexposed. Therefore, it can be concluded that, a probable event is always possible,
while a possible event need not be probable. Zadeh [6] called this heuristic connec-
tion between possibilities and probabilities the probability/possibility consistency
principle. This informal principle may be translated as: the degree of possibility of
an event is greater than or equal to its degree of probability, which must be itself
greater than or equal to its degree of necessity [7].

3 Probability, Possibility, and Credibility

In view of the difference between randomness and fuzziness, let us define formally
the probability, possibility and credibility spaces. The basic features of these spaces
are presented in Table1 and following this we define them in the following way:

3.1 Probability

As indicated in Table1, a probability space is defined as the 3-tuple (�, A, Pr), where
� = {ω1, ω2, ω3, . . ., ωN} is a sample space. A is the σ -algebra of subsets of � and
Pr, a probability measure on �, such that it satisfies:

Pr(�) = 1,Pr{φ} = 0, 0 ≤ Pr{A} ≤ 1 for any A ∈ A
For every countable sequence of mutually disjoint events {Ai}, i = 1, 2,….

Pr

{ ∞⋃

i=1

Ai

}

=
∞∑

i=1

Pr {Ai } (1)

Probability measure satisfies the law of excluded middle (which requires that a
proposition be either true or false), the law of contradiction (which requires that
a proposition cannot be both true and false), and the law of truth conservation (which
requires that the truth values of a proposition and its negation should sum to unity) [8].

Table 1 Probability, possibility, and credibility spaces

Probability space Possibility space Credibility space

(�, A, Pr) is a probability
space

(�, P(�), Pos) is a possibility
space

(�, P(�), Cr) is a credibility
space

�: sample space �: sample space �: sample space

A: σ -algebra of subsets of � P(�): power set of � P(�): power set of �

Pr: probability measure on � Pos: possibility measure on � Cr: credibility measure on �
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3.2 Possibility

A possibility space from Table1 is defined as the 3 tuple ((�, P(�), Pos), where
� = {θ1, θ2, . . ., θN} is a sample space, P(�), also denoted as 2�, is the power set
of �, that is, the set of all subsets of �, and Pos is a possibility measure defined on
�.Pos{A}, the possibility that A will occur, satisfies:

Pos{�} = 1,Pos{φ} = 0, 0 ≤ Pos{A} ≤ 1, for any A in P(�)

Pos
{⋃

i Ai
} = supi Pos {Ai } for any collection {Ai } in P(�). The heavy red line

shown in Fig. 1 represents the possibility of a fuzzy event characterized by ζ ≥ x,
where ζ = (2, 5, 9) is a triangular fuzzy variable given by the mathematical form

Pos{ζ ≥ x} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, x ≤ 5,

9 − x

9 − 5
, 5 ≤ x ≤ 9,

0, x ≥ 9

(2)

It can be stated that the possibility of an event is determined by its most favorable
case only, in contrast to the probability of an event where all favorable cases are
accumulated. By its very nature, the possibility measure is inconsistent with the law
of excluded middle and the law of contradiction and does not satisfy the law of truth
conservation [8].

Fig. 1 Possibility that ζ is
greater than x
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3.3 Necessity

The necessity measure of a set A often is defined as the impossibility of the comple-
ment set Ac [9]. Formally, let (�, P(�), Pos) be a possibility space, and A be a set
in P(�). Then the necessity measure of A is defined as

Nec{A} = 1 − Pos{Ac}

Considering the triangular fuzzy variable ζ = (2, 5, 9), we can represent Nec
{ζ ≥ x} by the mathematical equation, (The red line in Fig. 2 shows the necessity
measure).

Nec{ζ ≥ x} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, x ≤ 2,

5 − x

5 − 2
, 2 ≤ x ≤ 5,

0, x ≥ 5

(3)

It can be noted from Fig. 2 that Nec{ζ ≥ x} = 1 − Pos{ζ < x}.

3.4 Credibility

Given the limitations of the possibilitymeasure, Liu and Liu [10] suggested replacing
it with what they termed as credibility measure. The credibility measure takes the
form

Cr{X ≤ r} = 0.5 (Pos{X ≤ r} + Nec{X ≤ r})

Fig. 2 Necessity that ζ is
greater than or equal to x
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or, equivalently,

Cr{X ≤ r} = 1

2

(
supt≤r μx (t) + 1 − supt>r μx (t)

)
(4)

Cr

{
⋃

i

Ai

}

= Sup
i

Cr{Ai }

The set Cr on the power set P is called a credibility measure if it satisfies the
following four axioms [11]:

(i) Cr{�} = 1
(ii) Cr{A} ≤ Cr{B} whenever A ⊂ B
(iii) Cr{A} + Cr{Ac} = 1 for any event A

(iv) Cr

{
⋃

i

Ai

}

= Sup
i

Cr{Ai } for any events {Ai} with Sup
i

Cr{Ai } < 0.5

It can be stated that the credibilitymeasure is a special type of nonadditivemeasure
with self-duality. In this context, a fuzzy event may fail even though its possibility
achieves 1, and may hold even though its necessity is 0. However, the fuzzy event
must hold if its credibility is 1 and fail if its credibility is 0. The mathematical
representation of the credibility of ζ ≥ x can be written with the help of the given
triangular fuzzy number (a, b, c) ≡ (2, 5, 9) as

Cr(ζ ≥ x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x ≤ a,

2b − a − x

2(b − a)
a ≤ x ≤ b,

c − x

2(c − b)
b ≤ x ≤ c,

0 x ≥ c

(5)

The solid red line shown in Fig. 3 represents the credibility value of the fuzzy
event characterized by ζ ≥ x.

4 Fundamental Concepts

Before we define the fuzzy random variable let us give a very short review of the
fundamental concepts: fuzzy numbers, α-cuts, and Borel sets.
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Fig. 3 Credibility that ζ is
greater than or equal to x
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4.1 Fuzzy Numbers

Fuzzy numbers are convex normalized paired numbers, (x,µ(x)), where x represents
the crisp numbers and µ(x) represents its membership value, in which one of the
membership values has to be unity (If the height of a fuzzy number (maximum
membership value) is one, then it is said to be a normalized fuzzy set). The general
characteristic of a fuzzy number (a1 = 1, a2 = 5, a3 = 7, a4 = 8) is as shown
in Fig. 4.

Fig. 4 Trapezoidal fuzzy
number
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The shape of this fuzzy number is referred to as trapezoidal fuzzy number. If
a2 = a3, then the fuzzy number is referred to as triangular fuzzy number (TFN).

4.2 α-cuts

The set of crisp elements of a fuzzy set having membership grade equal to or greater
than α is called the α-cut and is defined as

Aα = {(x, μ(x)|x ∈ R, μ(x) ≥ α} (6)

The importance of the α-cut is that it limits the domain under consideration to
the set of elements with degree of membership of at least alpha, that is, α-level set.
Therefore, α-cut is an interval and interval arithmetic operation can be performed
while dealing with α-level set representation of two fuzzy numbers.

4.3 Borel Sets

If F is a collection of subsets of the sample space, �, then F is said to be a σ -algebra

if the following conditions hold: � ∈ F; if A ∈ F then Ac ∈ F; and if A =
∞⋃

i=1

Ai

and Ai ∈ F for i ∈ I+, then A ∈ F. The Borel σ -algebra, B is the smallest σ -algebra
that contains the set of all open intervals in R, the set of real numbers. Elements of
B are called Borel sets and (R, B) is called Borel measurable space. An example
can be given to clear the concept of Borel set. Let us consider the conflict case of
consumption of rice in a typical family in the southern region of India. One group
gave this figure as [100, 200] kg/year and another group said [150, 300] kg/year. If
at least one of these groups is correct, the consumption of rice will fall within the
union of two, i.e., [100, 300]. But, if both the groups are correct, the consumption
of rice will fall in the intersection of their estimates, that is, the interval [150, 200].
Borel sets are used to describe such kind of data.

5 Fuzzy Random Variable Model

Two kinds of fuzzy random variables are cited in the literature [3–5]. One is due to
Kwakernaak [3, 4], who coined the term “fuzzy random variable” and interpreted
as FRVs as “random variables whose values are not real but fuzzy numbers.” The
other is due to Puri and Ralescu [5], who regarded FRVs as random fuzzy sets.
Accordingly, we have two kinds of fuzzy random variable models and we present
both the FRV models as follows:
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5.1 Kwakernaak FRV Model

In this model, an FRV is a mapping ζ : �→ F(R) such that for any α∈ [0,1] and all
ω ∈ �, the real-valued mapping is as follows:

inf ζα : � → R, satisfying: inf ζα(ω) = inf(ζ(ω))α, and

sup ζα : � → R, satisfying: sup ζα(ω) = sup(ζ(ω))α.

These real valued mappings are real valued random variables, that is, Borel-
measurable real-valued functions. Theseα-level constraints on ζ may be summarized
as ζα(ω) = [inf(ζ(ω))α, sup(ζ(ω))α]. In short, the Kwakernaak FRV takes the form
of mappings from � to the left- and right-hand sides of the fuzzy target F(R), where
the latter are real-valued random variables. If X is an FRV and
Ais the collection of
all A-measurable random variables of �, then the kth moment of Kwakernaak FRV
x, E(xk) is a fuzzy set on R with

μE(xk )(x) = sup
{
μx (U )|U ∈ 
A,EUk = x

}
, x ∈ R (7)

The fuzzy variance of X is a fuzzy set Var[k(x)] on [0, ∞) with

μvark (x)(σ
2) = sup

{
μx (U )|U ∈ 
A, D2U = σ 2

}
, σ 2 ∈ [0,∞) (8)

5.2 Puri and Ralescu FRV Model

Prior to presenting Puri andRalescu’s [5] FRVmodel, it is required to briefly describe
Banach space. Banach space is a normed linear space which is complete as a metric
space. Banach spaces are used to extend the domain of FRVs from the real line to
Euclidean n-space. Puri and Ralescu [5] conceptualized an FRV as a fuzzification
of a random set. If (B, |.|) is a separable Banach space, K(B) a nonempty compact
subset of B, this model is addressed an FRV as a mapping ζ : �→F(B) such that for
any α ∈ [0,1] the set-valued mapping ζα : � →K(B) (with ζα(ω) = (ζ(ω))α for
all ω ∈ �) is a compact random set, that is, it is Borel-measurable with the Borel
σ -field generated by the topology associated with the Hausdorff metric on K(B) [12]

dH (P, Q) = max
{
sup
p∈P

inf
q∈Q |p − q|, sup

q∈Q
inf
p∈P

|p − q|} (9)

If P and Q are bounded, then the Hausdorff metric becomes

dH (P, Q) = max {| inf p − inf q|, | sup p − sup q|} (10)
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6 Fuzzy Random Exposure and Health Risk Model

The dose evaluation for humans exposed to ionizing radiation is an important fac-
tor for risk assessment, consisting of a base criterion for decision-making in situa-
tions that may require the intervention of the regulatory agencies in many countries.
Around the world there are many areas identified as high background area due to
deposits of high concentrations of natural radionuclide such as uranium and thorium.
People living in such areas are exposed to this radionuclide. Uranium is a significant
radioactive element from a radiological point of view, particularly due to its chemical
toxicity. The entry of uranium in the human body takes place through the exposure
route of “ingestion of contaminated food grown in those areas and drinking of water.”
In order to estimate the health risk associated with the ingestion of food contami-
nated with uranium or any other naturally occurred radionuclide, it is required to first
have an exposure model. Assuming that exposure and risk are directly proportional
to each other, the exposure estimated by the model is multiplied by the cancer slope
factor or risk factor of the radionuclide for the specified exposure route to obtain the
proportional risk. Our present model dictating the exposure is due to the ingestion of
food contaminated with naturally occurred uranium. The model estimates the daily
average ingestion (DAI) of uranium in mBq/kg day.

The scenario for model formulation is as follows. The region around which the
model is conceptualized is rich in groundwater and many other aquatic environments
(river, estuaries and lakes). The inhabitants consume food products grown in sev-
eral farms located in and around the zone. Body weight (BW), consumption rate
(intake) of food (I), lifetime (LF), and exposure duration (ED) are the parameters
considered for the given situation. Data for uranium activity concentration (C) are
collected by sampling foods from the affected region and processing them in a radio-
chemical laboratory. The parameter, diet fraction (DF) which indicates the amount of
contaminant transferred from the food consumed by humans after consumption of
food is considered. Our formal model can be mathematically represented as

DAI = C × I × ED × DF

BW × LF × 365
(11)

In this model, uranium activity concentration (C) and food consumption rate (I)
are considered as fuzzy random variables. Due to lack of food samples collected for
measuring activity concentration of uranium, mean value of the estimation is fuzzy
which is represented as a triangular fuzzy number. However, standard deviation of
the measurement being the same it is obviously a crisp number. But the variability of
the activity concentration of uranium from place to place over the region of interest
informs that the random nature of the same follows a lognormal distribution. So, the
conclusion is that even through the variability of the activity concentration of ura-
nium characterizes a lognormal distribution, but fuzziness exists in the mean value
of the activity concentration and hence the activity concentration of uranium is jus-
tified as a fuzzy random variable. The similar reason is valid for the parameter, food
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consumption rate, which is also a fuzzy random variable, in which mean value of the
lognormal distribution is taken as a triangular fuzzy number and standard deviation
as crisp number. Variability of the exposure duration (ED) is best fitted as normal
distribution. For every other parameter, the data collected through relevant question-
naires are best fitted by a probability distribution. Accordingly, the randomness of
the parameters, DF and LF, is presented by a lognormal distribution. Randomness
of the parameter, BW is specified by uniform distribution. The probability distrib-
utions were determined by fitting distribution functions to measured/surveyed data
with the help of goodness-of-fit tests such as Chi-square, Kolmogorov-Smirnov, and
Anderson-Darling (AD). Definition of distribution functions can be found elsewhere
(Oracle 2007) [13]. Overall, the model output DAI becomes a fuzzy random variable
and hence we call this model a fuzzy random exposure model. The next step is to
formulate the fuzzy random health risk (Cancer risk)model associatedwith ingestion
exposure [14], which is given as

FRRisk = DAI × CSF, (12)

where FRRisk, is the excess probability of developing cancer over a lifetime as a
result of exposure to a contaminant and CSF is the cancer slope factor.

7 Computational Methodology and Results

The input values of the random and fuzzy random parameters of the present model
are tabulated in Table2 and these are taken from Rajkumar and Guesgen [15].
In the computation, random parameters, BW (uniform distribution), DF (log nor-
mal distribution), LF (log normal distribution), and ED (normal distribution) are

Table 2 Randomness and fuzziness of the input variables in the formulation of Fuzzy Random
Exposure Model

Parameters Probability
distribution

L* U*

BW, Body weight (kg) Uniform 52 92

ED, Exposure Duration (day) Normal 14741 10% of (L)

DF, Diet fraction Log normal 0.2 1.2

LF, Lifetime (years) Log normal 62 1.2

C, Activity Concentration (mBq/kg) Fuzzy log normal (12,42,82) 50.4

I, Consumption of food rate (kg/day) Fuzzy log normal (10,32,54) 38.4

L* and U*: Lower and upper limit : Uniform distribution,
Mean and standard deviation : Normal distribution,
Mean and standard deviation : Lognormal distribution,
Triangular fuzzy number for mean and standard deviation : Fuzzy lognormal
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Fig. 5 Membership grade
for mean value of
consumption rate of food
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Fig. 6 Lower and upper
cumulative probability for
0.7 α-cut of fuzzy random
consumption rate of food
containing uranium
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generated by simple Monte Carlo simulation using Latin hypercube sampling of size
1,000. Fuzziness part of the fuzzy random parameter C (activity concentration) is as
shown in Fig. 5 and I (consumption rate of food) is represented by α-cut and for each
α-cut representation of the mean with standard deviation of the appropriate random
distribution is simulated by Monte Carlo simulation. Fuzzy cumulative distribution
of the parameters I and C are constructed for each α-cut levels. Lower and upper
cumulative probabilities of the parameters I and C at an α-cut of 0.7 are presented
in Figs. 6 and 7. Since α-cut is an interval, we have lower and upper bounds of the
specified probability distribution for each α-cut of the fuzzy random parameters.
Each such lower and upper bounds of the probability distribution of the fuzzy ran-
dom parameters of the model are applied in the model along with the respective
probability distribution of the remaining parameters to generate the lower and upper



Development of a Fuzzy Random Health Risk Model 147

Fig. 7 Lower and upper
cumulative probability for
0.7 α-cut of fuzzy random
activity concentration of
uranium
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Fig. 8 Probability density of
exposure Duration (ED)
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bounds of the probability distribution of the model output, which is DAI. Lower and
upper cumulative probability distribution of the model output, DAI are constructed
for each α-cut levels. The same of the daily average ingestion (DAI) for an α-cut
of 0.7 is as shown in Fig. 8. For a given α-cut level, say 0.7, corresponding lower
and upper cumulative probability distributions have been used to generate various
percentiles of the lower and upper bounds of the probability distribution of the model
output. This scheme specifies the randomness of the model output at a specified α-
cut level. On the other hand, at some specific percentiles, say 75 and 85th %le, of
the lower and upper cumulative probability bounds of the DAI, various α-cut levels
(0 to 1 with an increment of 0.1) are marginalized to obtain the membership function
of the model output, DAI (Fig. 9). This scheme provides the knowledge of fuzziness
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Fig. 9 Lower and upper
cumulative probability for
0.7 α-cut of fuzzy random
daily average ingestion

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Daily average ingestion dose (mBq/kg day)

C
u

m
u

la
ti

ve
 p

ro
b

ab
il

it
y 

co
rr

es
p

o
n

d
s 

to
 a

lp
h

a 
cu

t 
o

f 
0.

7 

Lower CDF
Upper CDF

Fig. 10 Triangular fuzzy
number for 75 and 85th
percentiles of Fuzzy CDF of
daily average ingestion
(mBq/kg day)
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of the model output at a specific percentile and by changing the order of the per-
centile we can obtain another fuzziness of the model output. Knowing the fuzziness
of the model output at a specific percentile of the randomness, we have computed the
support, uncertainty, possibility, necessity, and credibility of the model output. This
scheme then updates the knowledge toward the randomness-fuzziness consistency.
Fuzzy random risk due to exposure of uranium through ingestion of contaminated
food has been computed by multiplying DAI with cancer slope factor [16] and the
corresponding lower and upper cumulative probabilities at alpha cuts of 0.5, 0.7, 0.8,
and 1 are presented in Fig. 10. Membership function of fuzzy random risk at 75th and
85th percentiles of corresponding fuzzy CDF is as shown in Fig. 11. It can be seen
from Fig. 11 the risk from exposure to naturally occurred uranium through ingestion
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Fig. 11 Lower and upper
cumulative probability of
fuzzy random risk from
exposure to uranium through
ingestion of food
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of food grown in the region whose uranium deposits are very low. So the inhabitants
of that region are always safe (Fig. 12).

7.1 Estimation of Support, Uncertainty, Possibility,
and Necessity Measures

Two indices of uncertainty are computed in this study. The first is support that is
widely used in the fuzzy literature and the other is the uncertainty index. The support
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for membership functions for fuzzy random risk, FRRisk, is defined as the range
(spread between maximum and minimum) containing risk values with a nonzero
membership in the set FRRisk. The support contains those elements of the universe
for which μFRRisk(fr) > 0. The uncertainty index is computed by dividing the
support valuewith themost likely value of fuzzy randomrisk. For the present situation
of fuzzy random risk estimation, the support value and uncertainty index of fuzzy
random risk at 75 and 85th percentiles are tabulated in Table3. The result obtained
for fuzzy random risk can be compared with compliance guideline by the theory of
possibility. For this purpose, possibility theory uses twomeasures, namely possibility
measure and necessity measure [17]. The two measures are used to validate the
proposition “the fuzzy random risk FRRisk, is lower or equal to the compliance
guideline C.”

The possibility measure Pos is defined as [18]

Pos{FRRisk ≤ C} = sup
u

min{μFRRisk(u), μC (u)}, (13)

where μFRRisk(u) is the membership of FRRisk at any value u; μC (u) is the
membership of C at any value u; Sup = largest value; min = minimization oper-
ator. Therefore initially, minimum values between the membership function of the
risk and compliance criteria are calculated and then the largest value among them is
calculated. This value then corresponds with the possibility value that fuzzy random
risk is less than or equal to the compliance criteria C. For the present model, we have
found that the highest value representing the minimum value between the member-
ship function of risk and compliance criteria is at membership value of 0.7 which
is the required possibility measure for the given compliance criteria. The possibility
measure of 0.7 is estimated for both the 75 and 85th percentiles.

The necessity measure is defined as [18]

Nec{FRRisk ≤ C} = Inf
u
max{1 − μFRRisk(u), μC (u)} (14)

Here, the maximum values between the membership value of the complement
of the risk value and the compliance criteria are first calculated. Then we find the
minimum values among these values. This value then corresponds to the necessity
measure satisfying the condition that, FRRisk, is less than or equal to the compli-
ance criteria. We obtain the necessity measure of fuzzy random risk at 75 and 85th
percentiles of fuzzy CDF of risk near to 0.5. Thus the greater the compliance criteria
cover of both the arms of the risk profile, the higher the chance for the risk profile to
satisfy both possibility and necessity measures.
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Table 3 Support and
uncertainty index of fuzzy
random risk

Percentiles of
fuzzy CDF of risk

Support Uncertainty index

75th percentile 4.3E-9 3.31

85th percentile 7.5E-9 3.75

8 Conclusions

This paper presents the application of fuzzy random variable in formulating the fuzzy
randomhealth riskmodel. Theuse of fuzzy randomconcept does not replace the exist-
ing deterministic or probabilistic methods; however, it provides in-depth knowledge
of human health risk assessment in the framework of nonprobabilistic uncertainties.
There exist many examples of such uncertainties. One of them is the subjectivity
present in the answers in the questionnaires providing the data that represent the
fuzziness of the specific parameters. Subjectivity is due to imprecise information
about the profile of the inhabitants from the uneducated population. Support, uncer-
tainty index, possibility, and necessitymeasures have been computed. The possibility
measure was performed using the left arm of the triangular membership function,
while the necessity measure was calculated using the right arm of the triangular
membership function. Possibility can be thought of as the criteria of an optimistic
decision-maker, while necessity measure criteria can be thought of as the criteria
of the pessimistic decision-maker. A quantity satisfying possibility measure criteria
may or may not satisfy necessity measure criteria but the reverse is always true.

The results indicate that fuzzy random radiation exposure and fuzzy randomhealth
risk model give the possibility to work out the nonprobabilistic uncertainties based
on random sets. It also opens an area of research on the design of knowledge base
or rule base on the basis of fuzzy random variable. Our future work will be on the
implementation of this similar concept to assess the health risk due to inhalation of
222Rn in the uranium mining environment.
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Uncertainty Analysis of Retardation Factor
Using Monte Carlo, Fuzzy Set and Hybrid
Approach

T.K. Pal, V. Arumugam and D. Datta

Abstract Uncertainty analysis of physical parameters present in the groundwater
model is important from the point of safety measures in the field of nuclear science
and technology. Researchers have carried out this uncertainty analysis using tradi-
tional Monte Carlo simulations. However, in practice, Monte Carlo simulation may
not be possible because of lack of data obtained from field experiments. Therefore,
the demand is to investigate uncertainty using imprecise-based method. In order to
fulfill this demand, we have carried out uncertainty analysis of groundwater model
parameter using fuzzy set and hybrid methods. Monte Carlo-based uncertainty is
also presented in this paper. Overall, this paper highlights the various methodologies
of uncertainty analysis. In the hybrid approach, the concept of fuzzy random variable
and its computational details have been explored. Retardation factor is our represen-
tative groundwater model parameter on which illustration of the said methodologies
of uncertainty modeling is presented.

Keywords Uncertainty ·Monte Carlo · Fuzzy set · Fuzzy random variable · Retar-
dation factor

1 Introduction

The rate at which a chemical constituent moves through soil is determined by several
transport mechanisms. These mechanisms often act simultaneously on the chemi-
cal and may include processes such as convection, diffusion and dispersion, linear
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equilibrium adsorption, zero-order or first-order production, and decay. Because of
the many mechanisms affecting solute transport, a complete set of analytical solu-
tions should be available, not only for predicting actual solute transport in the field
but also for analyzing the transport mechanisms themselves, for example, in con-
junction with column displacement experiments. Numerous analytical solutions of
the convective dispersive solute transport equation have been published in recent
years, both in well-known and widely distributed scientific journals and in lesser
known reports and conference proceedings. A large number of physical processes
are involved in solute transport, for example, solute transport takes place by molecu-
lar diffusion wherein the phenomenon involved is due to the random thermal motion
of solute ions and/or molecules. Each process involves parameters that are uncertain
due to their variability and imprecision. Variability type of uncertainty is classified as
aleatory uncertainty, which is irreducible, whereas imprecision-based uncertainty is
classified as epistemic uncertainty, which is reducible. Aleatory uncertainty is quan-
tified by traditionalMonte Carlomethod [1, 2] and epistemic uncertainty is estimated
by Fuzzy set theory [3–5]. However, if the model presents both types of uncertain
variables, then uncertainty can be analyzed using the hybrid method. Monte Carlo
method-based uncertainty analysis is dependent on the probability density func-
tion of the uncertain parameters, while fuzzy set theoretic approach of uncertainty
quantification is based on the alpha cut value of the corresponding uncertain fuzzy
parameter and the associated interval arithmetic. Hybrid uncertainty is quantified
using the concept of fuzzy random variable [6–8].

The objective of this paper is to demonstrate the various types of uncertainty
analysis. Typical examples are given for illustration of variousmethods of uncertainty
analysis. Finally, uncertainty analysis of convective–dispersive solute transport equa-
tion is presented in detail. The remainder of the paper is organized as follows: Sect. 2
presents the Monte Carlo method-based uncertainty analysis of physical models.
Section3 presents the Fuzzy set theoretic approach of uncertainty analysis of physi-
cal models. Section4 presents the method of hybrid uncertainty analysis. Conclusion
of the paper is presented in Sect. 5.

2 Uncertainty Analysis Using Monte Carlo Method

The goal of theMonte Carlomethod in uncertainty analysis is to propagate parameter
uncertainty through the specified model. Each individual parameter of a specific
model is characterized by its probability distribution. Generation of random values
of these uncertain parameters by sampling from this probability distribution is the
basic aim of Monte Carlo method. Latin hypercube sampling scheme [9] is used
to generate samples of random parameters of a model. Parametric uncertainty is
propagated through the specific model to generate its probability density function
(PDF) and the corresponding cumulative distribution function (CDF). Uncertainty of
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the model in this case is expressed in terms of an interval, the lower bound of which
is the 5th percentile of the CDF and the upper bound of which is the 95th percentile
of the CDF.

Consider the following example as illustration.

2.1 Illustration: Uncertainty Analysis of Retardation
Factor (R)

Retardation factor [10] represents the partition of the solute between solid and liquid
phases.When soilwatermoves under steady-state flowconditions andwhendiffusion
and dispersion are zero, all of the solute moves at the same velocity and the plume
front arrives in one discontinuous jump to the final concentration. This ideal condition
is known as piston flow and the retardation factor using this piston flow can be
mathematically written as

R = 1 + (ρb/θv)
dS

dCl
(1)

where ρb = bulk density of the soil (mg/m3), θv = volumetric soil water content
(m3/m3), S is the amount of solute in the solid or adsorbed phase (kg solute/kg of soil),
and Cl is the solute concentration in solution (kg of solute per m3 of soil water). Now,
the bulk density of the soil and volumetric soil water content are random parameters
and their randomness is described by the probability density function given below:

ρb ∼ N (μ = 1.5, σ = 0.15): Normal distribution

θv ∼ U (Lower = 0.15,Upper = 0.35): Uniform distribution

The deterministic value of
dS

dCl
= 2cm3/g

Using the Latin hypercube sampling scheme we generate 1,000 samples of each
of these uncertain parameters. Histogram of the uncertainty of the parameters is as
shown in Figs. 1 and 2. PDF of Eq. (1) is constructed by the uncertain values of the
parameters (ρb and θv) and dS

dCl
. Frequency distribution and cumulative distribution

function of retardation factor as given in Eq. (1) are shown in Figs. 3 and 4.
From Fig. 4, the 5th and 95th percentiles of retardation factor are obtained as 9.46

and 19.85. Therefore, uncertainty of retardation factor, R is expressed as an interval
[9.46, 19.85]. Degree of uncertainty of R can be estimated as (19.85 − 9.46)/(19.85
+ 9.46) = 0.35 (35%) and obviously this is nothing but the degree of uncertainty at
90% confidence level.
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Fig. 1 Frequency
distribution of the bulk
density of soil
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Fig. 2 Frequency
distribution of soil water
content
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Fig. 3 Frequency
distribution of retardation
factor
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Fig. 4 Cumulative
distribution function of R
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3 Uncertainty Analysis Using Fuzzy Set Theory

In this case, imprecision or incompleteness or vagueness are the cause for uncertainty
and such uncertainty is quantified by fuzzy set theory [11]. Definition of a fuzzy set
can be found elsewhere in the literature [12, 13]. However, before its implementation
into uncertainty analysis we define a fuzzy set and its alpha cut representation as the
alpha cut representation of a fuzzy set plays an important role in quantification of
uncertainty of an imprecise system. A fuzzy set is defined as the set of a pair of
numbers, such as A = {(x, μ(x)|, x ∈ R, μ(x)∈[0,1]}, where μ(x) represents the
membership grades of the crisp value, x. Alpha cut representation of this fuzzy
set, A is defined as the set of values of x, whose membership values are greater
than or equal to alpha. Basically, alpha cut of a fuzzy set is an interval and all the
primary interval arithmetic operations {‘+’, ‘−’, ‘*’, ‘/’} are carried out depending
on the model under quest for expressing its uncertainty in terms of a fuzzy set. If
a fuzzy set is normal and bounded [13] then that fuzzy set is convex and is called
the convex normal fuzzy number. Further, if the membership values of the fuzzy set
are triangular in shape, then that fuzzy number is represented as a triangular fuzzy
number. Mathematical structure of a triangular fuzzy number is governed by Eq. (2).

μ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xL − a

b − a
, a ≤ xL ≤ b

c − xR
c − b

, b ≤ xR ≤ c

0 otherwise

(2)
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Alpha cut representation of the fuzzy set, A(x) is given as

Aα = [xα
L , xα

R] = [a + (b − a)α, c − (c − b)α] (3)

In order to have the uncertainty analysis of themodel as given in Eq. (1), all the uncer-
tain parameters are assumed as triangular fuzzy numbers for convenience of compu-
tation. However, one can also have different fuzzy numbers (trapezoidal, Gaussian,
etc.) for different parameters. Fuzzy set theory-based uncertainty analysis is demon-
strated with the same example of retardation factor.

3.1 Illustration: Uncertainty Analysis of Retardation Factor
(R) Using Fuzzy Set

Here, the uncertain parameters, the bulk density of the soil, and volumetric soil water
content are expressed as triangular fuzzynumbers and their attributes are givenbelow:

ρb ∼ TFN(1.35, 1.5, 1.65): TFN stands for triangular fuzzy number

θv ∼ TFN(0.15, 0.25, 0.35)

Membership plots of these fuzzy numbers are as shown in Figs. 5 and 6 respec-
tively. Alpha cut representation of these fuzzy numbers provide an interval; substitut-
ing these interval representations of the uncertain fuzzy numbers, bulk density of the
soil, and volumetric soil water content in Eq. (1) we obtain the corresponding inter-
val representation of the retardation factor. Membership function of the retardation
factor is as shown in Fig. 7.

Fig. 5 Triangular fuzzy
number of bulk density of
soil
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Fig. 6 Triangular fuzzy
number of volumetric soil
water content

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Volumetric soil water content (m3/m3)

m
em

b
er

sh
ip

 f
u

n
ct

io
n

Fig. 7 Triangular fuzzy
number of the retardation
factor
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Uncertainty of the retardation factor using fuzzy set theoretic approach is quan-
tified as per its alpha cut level. In order to compare the degree of uncertainty of
retardation factor by this approach and the same by probabilistic approach, we take
0.2 alpha cut representation of the retardation factor as 0.2 alpha cut value which
corresponds to the 90% confidence level as obtained in the probabilistic approach.
Figure7 indicates the 0.2 alpha cut value of the retardation factor as an interval of
[10.5, 16.75]. Now we can write the 90% confidence level for degree of uncertainty
using fuzzy set theoretic approach of uncertainty quantification of any model para-
meter as 0.41 (41%). It is also obvious that uncertainty estimate of any model using
probabilistic approach is lesser than by using fuzzy set theoretic approach.
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4 Uncertainty Analysis Using Hybrid Approach

Hybrid approach of uncertainty analysis generally proceeds with the admixture of
random and fuzzy parameters of the definedmodel. Various methodologies of hybrid
uncertainty analysis have been found elsewhere in the literature [14, 15]. We have
used the concept of fuzzy random variable in formulating the hybrid approach of
uncertainty analysis. In order to carry out the uncertainty analysis using hybrid
approach we have estimated the fuzzy cumulative distribution function (FCDF) of
the retardation factor. Algorithm of our hybrid approach of uncertainty analysis is
depicted below.

Step 1: Define the triangular fuzzy membership function for mean and standard
deviation of the normally distributed random variable, ρb. Define the triangular fuzzy
membership function for the lower and upper limits of the uniformly distributed
random variable, θv.
Step 2: Set α-cut interval as 0.5, i.e., α = [0 : 0.5 : 1]. Since the mean and standard
deviation of normal distribution and lower and upper limits of uniform distribution
are fuzzy numbers, α-cut method is used for discretization purpose. The lower and
upper bounds of the intervals for eachα-cut formean and standard deviation (μ̃α, σ̃ α)

of the PDF of ρb are represented as

μ̃α = [μα
L , μα

U ], σ̃ α = [σα
L , σα

U ] (4)

The lower and upper bounds of the intervals for each α-cut for lower and upper limits
(L B̃α,U B̃α) of the PDF of θv are represented as

L B̃ = [LBα
L , LBα

U ] andU B̃ = [UBα
L ,UBα

U ] (5)

Step 3: Discretize the random variable domain (R) as R = Rk: k = 1, 2, . . . , n,
∀F(Rn) = 1.
Step 4: Replace the random number Rk in Eq. (1) with fuzzy normal distributed
randomnumber and fuzzy uniformdistributed randomnumber using fuzzy arithmetic
and inverse transformation method.
Step 5: Calculate the lower and upper bounds of interval of fuzzy function for prob-
ability of the retardation factor. All the input variables such as mean and standard
deviation of normal distribution and lower limit and upper limit of uniform distribu-
tion are greater than zero, it is better to use restricted DSW algorithm [16]. For fuzzy
sets [a, b] and [c, d], restricted DSW algorithm states that if a, b, c, d > 0, then

[a, b] ÷ [c, d] = [a ÷ d, b ÷ c]
[a, b] × [c, d] = [a × c, b × d] (6)

The restricted DSW algorithm is employed for the calculation of upper and lower
bounds of the intervals of the fuzzy function for each α-cut level at Rk : k = 1− 11.
The substitution of restricted DSW algorithm makes possible two combinations of
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Fig. 8 Lower and upper cumulative probability distributions of retardation factor for alpha cut
of 0.2

Table 1 Percentiles of lower and upper CDF of fuzzy random variable, R

Percentiles of retardation
factor (R) at α-cut = 0.2

Lower Upper

2.5 9.58 13.17

5 9.59 13.19

50 10.94 15.75

95 13.07 21.09

97.5 13.10 21.53

lower and upper α-cut values of parameters (mean and standard deviation of normal
distribution; lower and upper limits of uniform distribution) to be sufficient to cal-
culate fuzzy CDFs of the retardation factor. Using the above procedure, the fuzzy
CDFs of the retardation factor (F(R)αL , F(R)αU ) are generated for all the lower and
upper α-cut levels of the parameters of the distributions. Results of fuzzy CDFs of
the retardation factor for α-cut value of 0.2 of the parameters of the respective distri-
butions are shown in Fig. 8. From the lower and upper fuzzy CDFs of the retardation
factor we have computed 2.5th, 5th, 50th, 95th, 97.5th percentiles and the results are
tabulated in Table1. Membership function of fuzzy CDF of the retardation factor
corresponding to the 50th percentile is as shown in Fig. 9.
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Fig. 9 Triangular
membership function of
fuzzy retardation factor
corresponds to 5th percentile
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5 Conclusions

Uncertainty analysis of any model using various methods such as Monte Carlo sim-
ulation, Fuzzy set theory and Hybrid approach has been discussed. Utility of fuzzy
random variable is presented for demonstrating the hybrid approach of uncertainty
modeling. In order to illustrate the various methods of uncertainty we have presented
the uncertainty modeling of retardation factor which is one of the most important
factors for controlling the transport of contaminant through porous medium such as
soil. In the hybrid approach of uncertainty modeling, fuzzy cumulative distribution
functions (lower and upper) of the retardation factor at various alpha cut levels are
constructed. At a specific percentile from the lower and upper fuzzy CDF, member-
ship function of the retardation factor is constructed and also shown in the paper.
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Two Person Interaction Detection Using
Kinect Sensor

Sriparna Saha, Amit Konar and Ramadoss Janarthanan

Abstract This proposed work explains a noble two-person interaction modelling
system using Kinect sensor. Here a pentagon for each person is formed taking the
three dimensional co-ordinate information with the help of Microsoft’s Kinect sen-
sor. Five Euclidean distances between two pentagon vertices corresponding to two
persons are considered as features for each frame. So the body gestures of two per-
sons are analysed employing pentagons. Based on these, eight interactions between
two persons are modelled. This system produces the best recognition rate (greater
than 90%) with the virtue of multi-class support vector machine for rotation invari-
ance case and for rotation variance phenomenon, the recognition rate is greater than
80%.

Keywords Body gesture · Euclidean distance · Kinect sensor · Pentagon

1 Introduction

Full body tracking is an emerging field of human–computer interaction. Human
bodygesture realization is highly important for surveillance, cybernetics, information
gathering from video, gaming purposes and for many more areas. In today’s era,
human body gesture [1, 2] is modelled using the skeleton structure of persons. The
human motion [3, 4] is analysed using different sensors. The rapid development in
the field of skeleton detection is possible due to Microsoft’s Kinect sensor [5–7].
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Complex body gestures, such as pushing, hugging are successfully tracked using
Kinect sensor.

Kinect sensor comprises with RGB camera [8, 9] and 3D depth sensor [10–12].
In [13], two-person interactions are simulated using Kinect sensor. This device is
feasible as it is a low-cost device with high efficiency. But the problem of [13] is that
the algorithm stated there does not incorporate view invariance interactions. All the
two-persons interactions modelled there are parallel to the Kinect sensor. But in our
novel work, each interaction is captured in three different angles (0◦, 45◦ and 135◦).

In the proposedwork, eight two-person interactions are taken into account, namely
approaching, departing, kicking, punching, hugging, shaking hands, exchanging and
pushing. We have created a pentagon for each person for each frame of a sequence.
The recognition of body gesture for each monocular frame [14–16] is the aim of this
algorithm. Due to differences in interactions of different individuals based on age,
sex and physical built, their gestures for a specific sequence vary greatly from each
other. This leads to fuzziness in the input.

As the Kinect sensor models the human body using 20 body joint co-ordinates in
three dimension, the pentagon vertices produced by the algorithm also have three-
dimensional information. The vertices are configured with the help of average values
from head, right hand, left hand, right leg and left leg for a single person. As we are
modelling interactions for two persons, for each frame two dissimilar pentagons
are configured. The Euclidean distances between similar vertices of two different
persons are taken as features for this algorithm. For each interaction, 6 s stream of
information of skeleton co-ordinates are taken and five pairs of persons have acted
for the preparation of the dataset. For the recognition purpose, multi-class support
vector machine (SVM) [17, 18] is utilised. Also a comparative study with multi-
layered perceptron [19, 20] and k-nearest neighbours (k-NN) [21, 22] algorithms are
performed. Experimentally, it is found that recognition rate for SVM outperforms
for both the rotation invariance and rotation variance cases. Total time required for
two-person interaction recognition is always less than 3s using Matlab 2011b.

In this paper, Sect. 2 overviews the fundamental ideas about Kinect sensor, SVM,
perceptron and k-NN. Section3 clearly explains the proposed algorithm, whereas
Sects. 4 and 5 illustrates the experimental results and performance analysis. Section6
concludes with idea about future work.

2 Fundamental Ideas

The subsections below explain the Kinect sensor and multi-class support vector
machine algorithm briefly.
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Fig. 1 Kinect sensor

2.1 Kinect Sensor

Kinect sensor, consisting ofRGB(red, green, blue) camera, infrared (IR) projector, IR
camera andmicrophone, is capable of full human body tracking up to two persons at a
time [5, 6]. It looks like a webcam as displayed in Fig.1. It detects 3D representation
of an object using depth sensor [10, 11], which consists of infrared laser [12]. Kinect
sensor produces RGB video as the output using 8-bit VGA resolution camera [7].
It tracks the human body using 20 body joint co-ordinates within a finite amount of
range 1.23.5m [8, 9].Voice gestures can also be recordedwith the help ofmicrophone
array. A light emitting diode (LED) is present in front of the Kinect sensor to ensure
that Kinect is running properly.

Kinect sensor brings forth 3D information about human. Thus 3D co-ordinates
of 20 body joints are also received. Figure2a demonstrates a human standing at 0◦
angle with Kinect sensor, while Fig. 2b, c clearly explains the scenario when the
human is standing at an angle 45◦ and 135◦ with respect to the Kinect sensor. In
our proposed work, we take account the interaction between two persons with 0◦
angle with respect to Kinect sensor, as well as the actions take place at two other
angles with respect to Kinect sensor. When the two-person interaction encountered
with parallel with Kinect sensor (i.e., with 0◦ angle), then the case is conducted as
rotation invariance. With the change of angle, the case leads to rotation variance. In
Fig. 2, pentagon which is created for the proposed work is marked with red dotted
lines with black star vertices. The formation of pentagon is explained in Sect. 3.1.

2.2 Multi-class Support Vector Machine

Support vector machine (SVM) [17, 18], also known as support vector networks,
is a supervised learning algorithm based on concept of dividing the set of inputs
by a hyperplane. This algorithm is widely applicable in classification, regression
analysis and pattern recognition problems. Here we have used this for classification
of multi-class data points.

The simplest form of SVM is linear SVM, which works on the principle of sepa-
rating two classes of data by constructing a hyper plane. These classes are specified
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Fig. 2 Human skeleton in
three different angles with
Kinect sensor a 0◦, b 45◦, c
135◦

by support vectors, within the training data points. The distance margin between the
support vectors are taken into account and the aim is to maximise this distance. As
linear SVM can be successfully used only where the data are linearly separable, this
limitation can be overcome bymapping the data into a larger dimensional space using
a kernel function, to make it linearly-separable. A frequently used kernel functions
is the radial basis function kernel.

3 Proposed Algorithm

In the proposed algorithm, each person is modelled using a pentagon and the skeleton
produced for the total interaction sequence is broke into frames. Thus the body
gestures are extracted for each monocular frame [14–16].

3.1 Pentagon Formation

The five vertices of the pentagon are formed using (1)–(5). The Kinect sensor is
capable of modelling human body during motion with 20 3D joint co-ordinates.
Here we require 18 body joints information, i.e. spine and hip centre joints are
neglected for this proposed work. The first vertex is formed by averaging head (H)
and shoulder centre (SC) joints. The second vertex is created using mean values of
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shoulder right (SR), elbow right (ER), wrist right (WR) and hand right (HR). In the
same way, mean values of shoulder left (SL), elbow left (EL), wrist left (WL) and
hand left (HL) are noted to produce vertex 3. Vertices 4 and 5 are due to the average
values of leg co-ordinates for right and left legs. Hip right (HR), knee right (KR),
ankle right (AR) and foot right (FR) are taken into account for representation of
vertex 4. Similarly, hip left (HL), knee left (KL), ankle left (AL) and foot left (FL)
are marked and vertex 5 is obtained using the mean value of those joints.

vertex1 = H + SC

2
(1)

vertex2 = SR + ER + WR + HR

4
(2)

vertex3 = SL + EL + WL + HL

4
(3)

vertex4 = HR + K R + AR + FR

4
(4)

vertex5 = HL + K L + AL + FL

4
(5)

As Kinect sensor creates 3D information for each skeleton joint, thus each vertex
obtained using the above equations also have three dimensions. In Fig. 2, the calcu-
lated pentagon vertices using the above equations are shown using black stars and
red dotted lines in the figure picturise the edges of the pentagons.

3.2 Calculation of Five Euclidean Distances

For each person, a definite pentagon is formed at the i th particular frame. Let the
left and right persons are represented using L and R respectively. Then the Euclidean
distance (ED) between vertex no j (which can be in between 1 and 5) is calculated
by (6).

ED = ∥∥Li, j − Ri, j
∥∥ (6)
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4 Experimental Results

All the videos are conducted for 6 s duration. As Kinect sensor captures video at 30
frames/second rate, thus total 180 frames are processed for each interaction between
two persons when the interaction is performed with 0◦ angle with respect to cam-
era. We have carried out this experiment also for rotation invariant cases, i.e. with
45◦ and 135◦ angles with Kinect sensor. Thus we have for each interaction three
different skeleton data. Five different pairs have participated in this proposed work.
The starting and ending positions are neutral. Figures3 and 4 demonstrates the eight
instructions for frame no 50, 100 and 150. Twenty body joints for each person are
marked using red stars. The skeletons of the persons are represented via blue lines,
whereas green dotted lines describe the pentagon formed for each person. Black
stars are the vertices of the pentagons. The red lines are the depiction of Euclidean
distances between the vertices of the two pentagons, which are the essence of this
paper. For all the interactions shown in Figs. 3 and 4, the right person is acting and
the left person is reacting to the situation. Total dataset is broken into 4:1 ratio for
testing and training purposes, respectively. Table1 presents the experimental values
obtained for five Euclidean distances for frame no 50, 100 and 150.

This system acquires a recognition rate of 93.7, 81.3 and 90.4%with the virtue of
multi-class support vector machine, multi-layered perceptron and k-nearest neigh-
bours algorithm, respectively, when the actions are performed with 0◦ angle with
Kinect sensor. When the angle of interaction varies with respect to kinect sen-
sor, i.e. when the angle is 45◦ or 135◦, then the average performance degrades to
81.3, 69.7 and 80.4%, respectively, for SVM, perceptron and k-nearest neighbours.

Fig. 3 Two person
interaction modelling for
approaching, departing,
kicking and punching
interactions
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Fig. 4 Two person
interaction modelling for
hugging, shaking hands,
exchanging and pushing
interactions

Table 1 The result of five Euclidean distances for frame no 50, 100 and 150

Interaction Frame no 50 Frame no 100 Frame no 150

Approaching 1.8254 1.7639 1.8385
1.8536 1.8701

1.5966 1.5704 1.6382
1.7058 1.5064

0.4663 0.5595 0.4822
0.4500 0.4758

Departing 0.5025 0.4567 0.5678
0.5227 0.5550

1.2556 1.1610 1.2340
1.1691 1.0693

1.8221 1.7328 1.9395
1.9082 1.7377

Kicking 1.1443 1.0948 1.2887
0.9518 1.2529

1.0961 1.1099 1.3010
0.7541 1.1838

1.2494 1.0866 1.4201
0.7646 1.2355

Punching 1.0687 1.2488 0.8550
1.0523 0.9950

0.8364 0.5797 0.9160
0.9285 0.8306

0.8520 0.6177 0.8544
0.8736 0.8059

Hugging 0.6978 0.6296 0.6832
0.7329 0.8629

0.5584 0.4213 0.5985
0.6992 0.6730

0.9491 0.4275 0.7425
0.7994 0.9934

Shaking Hands 0.4456 0.2101 0.5654
0.4409 0.5648

0.2841 0.1434 0.6302
0.3566 0.4889

0.5084 0.1890 0.6283
0.3732 0.6152

Exchanging 1.1194 0.8327 1.1592
1.1008 1.1855

0.8227 0.4646 0.5806
0.8967 1.0744

0.8275 0.6171 0.7957
0.8966 1.0728

Pushing 1.2713 1.2022 1.3092
1.2965 1.3638

1.2740 0.6237 0.8901
1.3449 1.3964

1.2260 1.0299 1.3138
1.2863 1.3465

Recognition rate comparison is picturised in Fig. 5. Here darker colour bars are for
rotation invariance cases and lighter colour bars are for rotation variance cases.

Average computational time for SVM, perceptron and k-NN are 2.573, 2.820 and
2.934s correspondingly in an Intel Pentium Dual Core processor running Matlab
R011b for both the two cases of rotation invariance and rotation variance.



174 S. Saha et al.

Fig. 5 Accuracy comparison between SVM, perceptron and k-NN for rotation variance and invari-
ance cases

In [13], two person interactions are modelled using Linear SVMs and multiple
instance learning (MILBoost) with achieved maximum recognition of 87.6, 91.1%.
But in this work, the rotation variance is not taken into account. The proposed work
in the paper, not only able to produce higher recognition rates than [13] for rotation
invariance purpose, but also capable to manage good results, i.e. greater than 80%
for majority of the cases. We have taken 45◦ and 135◦ angles for rotation invariance
cases. Thus the limitation of [13] is overcome with high efficiency and also with less
timing complexity.

5 Performance Analysis

McNemar′s Test [23] is used to judge two algorithms. Here, we assume multi-class
SVM to be the reference algorithm (A) and compare it with either multi-layered
perceptron and k-nearest neighbours (B) at a time using (7). n01 is number of samples
mapped to a wrong cluster by algorithmA but not by B and n10 is number of samples
mapped to a wrong cluster by algorithm B but not by A. The critical value of Z for
95% confidence interval is 3.84 for one degree of freedom. According to Table2,
for both the cases the null-hypothesis is rejected. Hence, the algorithms are not
equivalent. This validates our results.

Z = (|n01 − n10| − 1)2 /n01 + n10 (7)
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Table 2 Results of statistical
test

Classifier
used

n01 n10 Z Comment

Multi-
layered
perceptron

17 63 0.5625 Reject

k-nearest
neigh-
bours

26 79 0.4952 Reject

6 Conclusion and Future Work

The proposed work is to recognise eight interactions between two persons. As the
same gesture depicting a particular interaction varies widely across different per-
sons, thus, the input is fuzzy in nature. Hence, multi-class support vector machine is
employed.

Till date none of the papers acknowledge rotation invariance interaction mod-
elling. Also Kinect sensor is implemented, so differences in weight, height and body
types for different persons do not hamper the results. We have achieved a high accu-
racy of more than 80% for all the cases. Hence this proposed work can easily find
its place in surveillance purposes.

In future, we will concentrate on much more difficult interactions between two
persons.
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An Improved Genetic Algorithm and Its
Application in Constrained Solid TSP
in Uncertain Environments
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Abstract In this paper, we propose an improved genetic algorithm (IGA) to
solve Constrained Solid Travelling Salesman Problems (CSTSPs) in crisp, fuzzy,
rough, and fuzzy-rough environments. The proposed algorithm is a combination of
probabilistic selection, cyclic crossover, and nodes-oriented randommutation. Here,
CSTSPs in different uncertain environments have been designed and solved by the
proposed algorithm. A CSTSP is usually a travelling salesman problem (TSP) where
the salesman visits all cities using any one of the conveyances available at each city
under a constraint say, safety constraint. Here a number of conveyances are used
for travel from one city to another. In the present problem, there are some risks of
travelling between the cities through different conveyances. The salesman desires
to maintain certain safety level always to travel from one city to another and a total
safety for his entire tour. Costs and safety level factors for travelling between the
cities are different. The requirement of minimum safety level is expressed in the
form of a constraint. The safety factors are expressed by crisp, fuzzy, rough, and
fuzzy-rough numbers. The problems are formulated as minimization problems of
total cost subject to crisp, fuzzy, rough, or fuzzy-rough constraints. This problem
is numerically illustrated with appropriate data values. Optimum results for the dif-
ferent problems are presented via IGA. Moreover, the problems from the TSPLIB
(standard data set) are tested with the proposed algorithm.
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Keywords Travelling Salesman Problem (TSP) · Solid Travelling Salesman
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Algorithm (GA) · Probabilistic selection

1 Introduction

Soft Computing (SC) is an association of computing methodologies that includes
fuzzy set, fuzzy logic, neuro-computing, evolutionary computing, and probabilistic
computing. Soft computing (SC) is a term originally coined by Zadeh to denote the
systems that “…exploit the tolerance for imprecision, uncertainty, and partial truth to
achieve tractability, robustness, low solution cost, and better rapport with reality” [1].
Traditionally, SC has been comprised of four technical disciplines. The first two,
probabilistic reasoning (PR) and fuzzy logic (FL) reasoning systems, are based on
knowledge driven reasoning. The other two technical disciplines, neuro computing
(NC) and evolutionary computing (EC), are data-driven search and optimization
approaches [2]. Here we propose an IGA which is the data-driven searching SC
technique.

The Travelling Salesman Problem (TSP) is a well-known NP hard combinatorial
optimization problem [3]. In TSP, it is assumed that a salesman travels from one city
to another using only one conveyance. But in real-life TSP, a set of conveyances are
available at each city. In this case, a salesman has to design his tour for minimum
cost maintaining the TSP conditions and using the suitable different conveyances at
different cities. This problem is called Solid Travelling Salesman Problem (STSP).
Till now, except for one or two researchers [4], none has considered such type of
STSP.

In real life, travelling costs from one city to another city depend on the con-
veyances and its nature can be uncertain, i.e., fuzzy, rough, fuzzy-rough, etc. Due to
the conditions of the roads and the vehicles which the salesman chooses, travelling
costs are thus normally uncertain in the nonstochastic sense.

Nowadays, travel from one city to another always involves some risks. There
are more risks in terrorist influenced areas, hill areas, etc., and also during rainy
season. Hence, a salesman will always desire to travel from one city to another using
a particular conveyance with minimum safety and for his complete tour also, total
minimum safety is ensured. Again, it is difficult to measure the said risk/safety factor
precisely in deterministic form. Thus these values are imprecise, i.e., can be fuzzy,
rough, fuzzy-rough. Till now, even the usual TSPs have not been formulated and
solved using the said imprecise safety constraints.

The present problem under investigation is more complicated for its imprecise
costs and constraints on safety level. Fuzziness of the cost and safety level leads to
fuzzy total-cost with a fuzzy constraint. As fuzzy objective function of an optimiza-
tion problem is not well-defined, it is difficult to find optimal paths for the stated
problem. Due to this complexity, a fuzzy possibility/necessity based approach is
proposed to transfer fuzzy objective into an equivalent crisp objective. Similarly for
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rough objectives and constraints, trust measure is used following Xu and Zhao [5].
Both expectation and trust measure are applied to convert the fuzzy-rough objective
and constraints into corresponding deterministic forms following Xu and Zhao [6].

In the existing literature, there are several soft computingmethods such as Nearest
Neighborhoods Search (NNS) [7], Simulated Annealing (SA) [8], Tabu Search (TS)
[9], Ant Colony System (ACS) [10], and Genetic Algorithm (GA) [11], Particle
Swarm Optimization (PSO) [12], etc. In this paper we have developed an improved
genetic algorithm (IGA) based on probabilistic selection, cyclic crossover, and node
dependent randommutation. Here CSTSPs are formulated in crisp, fuzzy, rough, and
fuzzy-rough environments. The travelling costs and safety factors along the different
routes are crisp, fuzzy, rough, and fuzzy-rough numbers. The goal of the salesman
is to minimize the total travelling cost having a minimum total safety level for the
entire tour. Thus the models are formulated as the cost minimization problems with
constraint. Here the objectives and constraints are crisp, fuzzy, rough, or fuzzy-rough
numbers. The imprecise objectives and constraint are made deterministic using the
appropriate technique as mentioned above. The reduced optimization problems are
solved by IGA. Some test problems TSPLIB [13] are solved using the proposed
IGA and usual GA with Roulette wheel selection, arithmetic crossover, and random
mutation. The crisp, fuzzy [14], rough, and fuzzy-rough [16] CSTSPs are illustrated
with numerical examples and the optimal results obtained by IGA are presented.
Numerical results show the efficiency of our improved algorithm.

2 Mathematical Preliminaries

Let ã and b̃ be two fuzzy numbers with membership functions μã (x) and μb̃ (x)
respectively. Then according to [14],

(1) pos(ã ∗ b̃) = sup{min(μã(x), μb̃ (y)), x, y e R, x ∗ y} where the abbreviation
pos represents possibility, ∗ is any one of the relations >,<,=,<=,>=, and
R represents set of real numbers.

(2) nes(ã ∗ b̃) = 1 − pos(ã ∗ b̃) where the abbreviation nes represents necessity.
If ã, b̃ are sub set of R and c̃ = f(ã, b̃) where f : R × R → R is a binary
operation then membership function μc̃ of c̃ is defined as [13].

(3) For each z e R, μc̃ = sup{min(μã(x),μb̃(y)), x, y e R and z = f(x, y)}

2.1 Triangular Fuzzy Number (TFN)

ATFN ã = (a1, a2, a3) (cf. Fig. 1) has three parameters a1, a2, a3 where a1 < a2 < a3
and is characterized by the membership function μã , given as
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µ (x)

a0 1 a2 a3 x

Fig. 1 Triangular fuzzy number ã = (a1, a2, a3)

μã(x) =

⎧
⎪⎨

⎪⎩

x−a1
a2−a1 for a1 ≤ x ≤ a2
a3−x
a3−a2 for a2 ≤ x ≤ a3

0 otherwise

⎫
⎪⎬

⎪⎭
(1)

According to the above definitions the following lemmas can easily be derived.

Lemma 2.1.1 If ã = (a1, a2, a3) be a TFN with 0 < a1 and b is a crisp number then
pos(ã < b) ≥ α iff b−a1

a2−a1 ≥ α.

Lemma 2.1.2 If ã = (a1, a2, a3) be a TFN with 0 < a1 and b is a crisp number then
nes(ã < b) ≥ α iff a3−b

a3−a2
≤ 1 − α.

Lemma 2.1.3 If ã = (a1, a2, a3) and b̃ = (b1, b2, b3) be TFNs with 0 < a1 and
0 < b1 then pos (ã > b̃) ≥ α iff a3−b1

a3−a2+b2−b1
≥ α.

Lemma 2.1.4 If ã = (a1, a2, a3) and b̃ = (b1, b2, b3) be TFNs with 0 < a1 and
0 < b1 then nes (ã > b̃) ≥ α iff b3−a1

a2−a1+b3−b2 ≤ 1 − α.

2.2 Rough Set Theory

In this section, we will state some basic concepts and theorems which have been
cited on rough theory [5]. These results are crucial for the remainder of this paper.
Credibility theory is a branch of Mathematics that studies the behavior of fuzzy
phenomena. The fuzzy variable has been defined in many ways.

Definition 2.2.1 Let � be a nonempty set, P(�) the power set of �, and pos a
possibility measure. Then the triplet (�,P(�), pos) is called a possibility space. A
fuzzy variable is a function from a possibility space (�,P(�), pos) to the real line R.

Definition 2.2.2 Let � be a nonempty set,A a σ algebra of subsets of �, and � an
element in A, and � a trust measure. Then (�,�,A,�) is called a rough space. A
rough variable ξ is a measurable function from the rough space (�,�,A,�) to the
set of real numbers. That is, for every Borel set B of R, we have {λe�|ξ(λ) ∈ B}eA.

The lower and the upper approximations of the rough variable are defined as
follows:
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ξ
i
= {ξ(λ)|λ ∈ �}, ξ = {ξ(λ)|λ ∈ �}

ξ is the lower approximation of the rough variable ξ and ξ is the upper
approximation of the rough variable ξ .

Definition 2.2.3 Let (�,�,A,�) be a rough space . The upper trust of an event A
is defined as

Tr{A} = �{A}
�{�} ;

The lower trust of the event is defined as

Tr{A} = �{A ∩ �}
�{�} .

The trust of the event is defined as

Tr{A} = 1

2
(Tr{A} + Tr{A}) (2)

When we do not have enough information to determine the measure of � for a
real-life problem, we can assume that all elements in� are equally likely to occur. In
this case, the measure � may be viewed as the Lebesgue measure. Then we can get
the trust measure of the rough event ξ ˆ≥ t,Tr{ξ ˆ≥ t} and its function as presented
below where t is a crisp number, ξ̃ is a rough variable given by ξ ˆ = ([a, b][c, d]),
0 ≤ c ≤ a ≤ b ≤ d

Tr{ξ̃ˆ≥ δ} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for d ≤ t
(d−t)
2(d−c) for b ≤ t ≤ d

1
2

(
(d−t)
(d−c) + b−t

b−a

)
for a ≤ t ≤ b

1
2

(
(d−t)
(d−c) + 1

)
for c ≤ t ≤ a

1 for t ≤ c

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

And the rough expectation is E[ξ̃ ] = 1
4 (a + b + c + d).

2.3 Fuzzy-Rough Variable

Definition 2.3.1 A fuzzy rough variable is ameasurable function from a rough space
(�,�,A,�) to the set of fuzzy variables such that pos{ξ(λ) ∈ B} is a measurable
function of λ for any Borel set B of R. Generally speaking, a fuzzy rough variable is
a rough variable taking fuzzy values [6, 16].
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Definition 2.3.2 An n-dimensional fuzzy rough vector is a function ξ from a rough
space (�,�,A,�) to the set of n-dimensional fuzzy vectors such that Pos{ξ(λ) ∈ B}
is a measurable function of λ for any Borel set B of Rn.

Definition 2.3.3 Let f : Rn �→ R be a function, and ξ 1, ξ2, . . . , ξn be fuzzy rough
variables defined on (�,�,A,�), respectively.

Then ξ = f(ξ1,, ξ2, . . . , ξn) is a fuzzy rough variable defined as:

ξ(λ) = f(ξ1(λ1), ξ2(λ2), . . . , ξn(λn)), for any (λ1,, λ2, . . . , λn) ∈ �.

Definition 2.3.4 Let f : Rn �→ R be a function, and ξi are fuzzy rough vari-
ables defined on (�i,�i,Ai,�i), i = 1, 2, 3, . . . , n, respectively. Then ξ =
f(ξ1,ξ2, . . . ξn) is a fuzzy rough variable defined on the product rough space (�,�,

A,�) as:

ξ(λ1, λ2, . . . , λn) = f(ξ1(λ1), ξ2(λ2), . . . , ξn(λn)), for any (λ1, λ2, . . . , λn) ∈ �.

Definition 2.3.5 Let ξ = (ξ1, ξ2, . . . , ξn) be a fuzzy rough vector on the rough space
(�,�,A,�), and gk : Rn → R be continuous functions, k = 1, 2, . . . , p. Then the
primitive chance of a fuzzy rough event characterized by gk(ξ) ≤ 0, k = 1, 2, . . . , p
is a function from [0, 1] to [0, 1], defined as:

Ch{gk(ξ) ≤ 0, k = 1, 2, . . . , p}(α)

= sup{β /Tr{λ ∈ �/pos{gk(ξ) ≤ 0, k = 1, 2, . . . , p} ≥ β} ≥ α}.

Lemma 2.3.5.1 Assume that ξ is a fuzzy rough vector, i.e., with the n-tuple of fuzzy
rough variables (ξ1, ξ2, . . . , ξn) and gk are real-valued continuous functions for
k = 1, 2, . . . , p. Then the possibility pos{gk(ξ(λ)) ≤ 0, k = 1, 2, . . . , p} is a rough
variable.

Definition 2.3.6 Let ξ̃ˆbe a fuzzy rough variable. The expected value of the fuzzy
rough variable ξ̃ ˆ is denoted by E[ξ̃ ]̂ and defined by

E[ξ̃ ˆ] =
∫ ∞

0
Tr(λ ∈ �/E[ξ̃(λ)] ≥ r)dr −

∫ 0

−∞
Tr(λ ∈ �/E[ξ̃(λ)] ≤ r)dr

Lemma 2.3.6.1 Let ξ̃ˆ = (ξˆ− L , ξ ,̂ ξˆ+ R) be a fuzzy rough variable, where ξˆ =
([a, b][c, d]) is a rough variable. The expected value of ξ̃ˆ is E[ξ ˆ]= 1

4 [a + b + c +
d]+ρR−(1−ρ)L

2 where 0 ≤ ρ ≤ 1.

Where L, R are crisp numbers, the lower level and upper level of fuzzy variables.



An Improved Genetic Algorithm and Its Application in Constrained … 183

3 Problem Definition

3.1 General TSP with Safety Constraints

In a classical two-dimensional travelling salesman problem, a salesman has to travel
N cities usingminimumcost. In his tour salesman starts from a city, visits all the cities
exactly once, and comes to the starting city usingminimumcost. The salesman should
choose a path in which the minimum safety values are ensured. Let c(i, j) be the cost
for travelling from ith city to jth city and s(i, j) be the travel comfort in travelling
from ith city to jth city. Then the problem can be mathematically formulated as:

Minimize Z = ∑N
i=1

∑N
j=1 tij c(i, j)

Subject to
∑N

i=1 tij = 1 for j = 1, 2, . . . ,N
∑N

j=1 tij = 1 for i = 1, 2, . . . ,N
∑N

i=1
∑N

j=1 tij S(i, j) ≥ Smin

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4)

where tij = 1 if the salesman travels from city-i to city-j, otherwise tij = 0 and
Smin is the minimum safety level that should be maintained by the salesman. Let
(x1, x2, . . . , xN, x1) be a complete tour of a salesman, where xi e{1, 2, . . . , N } for
i = 1, 2, . . . ,N and all xi are distinct. Then the above problem reduces to

Determine a complete tour (x1, x2, . . . , xN, x1)

Minimize Z = ∑N−1
i=1 c(xi, xi+1) + c(xN, x1)

Subject to
∑N=1

i=1 S(xi, xi+1) + S(xN, x1) ≥ Smin

⎫
⎪⎬

⎪⎭
(5)

3.2 Solid TSP with Safety Constraints

In a solid travelling salesman problem, a salesman has to travel N cities by choosing
any one of theM conveyances available usingminimum cost. In his tour the salesman
starts froma city, visits all the cities exactly once using suitable conveyances available
at the cities, and comes to the starting city using minimum cost. Safety factors in
travelling from one city to another using different conveyances are different. The
salesman should choose such a path and conveyance that a minimum safety level
is maintained. Let c(i, j, k) be the cost for travelling from ith city to jth city using
kth type conveyance and s(i, j, k) be the safety level in travelling from ith city to
jth using kth type conveyance. Then the salesman has to determine a complete tour
(x1, x2, . . . , xN, x1) in which a particular or different combinations of conveyance
types (v1, v2, . . . , vp) are to be used for the tour, where xi e{1, 2, . . . , N } for i =
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1, 2, . . . ,N, vk e {1, 2, . . . ,P} for k = 1, 2, . . . ,P and all xi’s are distinct. Then the
problem can be mathematically formulated as:

Determine a complete tour (x1, x2, . . . , xN, x1) and corresponding conveyance
types (v1, v2, . . . , vp)

tominimize Z = ∑N−1
i=1 c(xi, xi+1,vi) + c(xN, x1,vk),

Subject to
∑N−1

i=1 S(xi, xi+1,vi) + S(xN, x1,vk) ≥ Smin,

}

(6)

where (vi, vk) e {1, 2, . . . or P},Smin is the minimum safety level attained by the
salesman.

3.3 Constrained Solid TSP with Fuzzy Costs

In the above problem if costs and safety factors are fuzzy numbers, i.e., c̃(i, j, k) and
s̃(i, j, k), respectively, and safety level limit Smin also fuzzy number S̃min, the above
problem using article 2.1 reduces to determine a complete tour (x1, x2, . . . , xN, x1)
and corresponding conveyance (v1, v2, . . . , vp)

tominimize Z = ∑N−1
i=1 c̃(xi, xi+1,vi) + c̃(xN, x1,vp), (vi, vk)e{1, 2, . . . or P}

subject to
∑N−1

i=1 s̃(xi, xi+1,vi) + s̃(xN, x1,vp) ≥ S̃min

}

As minimization of fuzzy objective as well as fuzzy constraints are not well-
defined the above problem can be rewritten in optimistic sense by article-2, respec-
tively, to determine a complete tour (x1, x2, . . . , xN, x1) and corresponding
conveyance (v1, v2, . . . , vp) to minimize F

Subject to pos
(∑N−1

i=1 c̃(xi, xi+1,vi) + c̃(xN, x1,vk) < F
)

≥ α1

pos
(∑N−1

i=1 s̃(xi, xi+1,vi) + s̃(xN, x1,vk) ≥ S̃min

)
≥ β1

⎫
⎪⎬

⎪⎭
(7)

and in pessimistic sense to determine a complete tour (x1, x2, . . . , xN, x1) and cor-
responding conveyance (v1, v2, . . . , vp) to minimize F

Subject to nes
(∑N−1

i=1 c̃(xi, xi+1,vi) + c̃(xN, x1,vi) < F
)

≥ α2

nes
(∑N−1

i=1 s̃(xi, xi+1,vi) + s̃(xN, x1,vi) ≥ S̃min

)
≥ β2

⎫
⎪⎬

⎪⎭
(8)

whereα1, β1, α2 andβ2 are predefined levels of possibility and necessity, respectively,
which are entirely determined by the salesman. The meaning of α1, β1, α2 and β2
are given in article-2, and F is any crisp parameter. It is clear that minimization of
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F implies minimization of fuzzy objective Z̃ . For this reason the above approach is
used to treat fuzzy objective Z̃ .

If we consider the fuzzy numbers as TFNs, c̃(i, j, k) = (c(i, j, k)1, c(i, j, k)2,
c(i, j, k)3), s̃(i, j, k) = (s(i, j, k)1, s(i, j, k)2, s(i, j, k)3) and S̃min = (s1, s2, s3), then
the above (7) and (8) equations can bewritten as follows to determine a complete tour
(x1, x2, . . . , xN, x1) and corresponding conveyance (v1, v2, . . . , vp) to minimize F

Subject to F−c1
c2−c1 ≥ α1

S3−s1
S3−S2+s2−s1 ≥ β1

}

(9)

Where Cj = ∑N−1
i=1 c(x1, xi+1, vi)j + c(xN, x1, vi)j, j = 1, 2, 3

Sj = ∑N−1
i=1 s(xi, xi+1, vi)j + s(xN, x1, vk)j, j = 1, 2, 3

To determine a complete tour (x1, x2, . . . , xN, x1) and corresponding conveyance
(v1, v2, . . . , vp) to minimize F

Subject to C3−F
C3−C2 ≥ (1 − α2)

s3−S1
S2−S1+s3−s2 ≤ (1 − β2)

}

(10)

Thus the condition for the fuzzy case is given to determine a complete tour
(x1, x2, . . . , xN , x1) and corresponding conveyance (v1, v2, . . . , vp)

tominimize C1 + α1(C2 − C1)

subject to S3−s1
S3−S2+s2−s1 ≥ β1

}

(11)

To determine a complete tour (x1, x2, . . . , xN, x1) and corresponding conveyance
(v1, v2, . . . , vp)

tominimize C3 − (1 − α2)(C3 − C2)

subject to s3−S1
S2−S1+s3−s2 ≤ (1 − β2)

}

(12)

If the salesman is most optimistic then he will choose value of α1, β1 nearly 0 and
in that case minimum possible cost function (C1) is minimized assuming maximum
possible safety level attained of the tour (S3) reaches the minimum possible safety
level requirement (s1). On the other hand if the salesman is least optimistic then
he/she will choose values of α1, β1 nearly 1 and in that case most feasible cost
function (C2) is minimized assuming most feasible safety level of the tour (S2)
reaches the most feasible safety level requirement (s2). The pessimistic salesman
will go for the necessity approach. If he is most pessimistic, he will choose values of
α2, β2 nearly 1 and in that case maximum possible cost function (C3) is minimized
assuming minimum possible safety level of the tour (S1) reaches the maximum
possible safety level requirement (s3). On the other hand if the salesman is least
pessimistic then he/she will choose value of α2, β2 nearly 0 and in that case the most
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feasible cost function (C2) is minimized assuming the most feasible safety level of
the tour (S2) reaches the most feasible safety level requirement (s2).

3.4 Constraint Solid TSP with Rough Costs

In CSTSP if costs and safety factors are rough numbers, i.e., c (̂i, j, k) and s (̂i, j, k),
respectively, and safety effect limit Smin also roughnumber Ŝmin, thenCSTSP reduces
to determine a complete tour (x1, x2, . . . , xN, x1) and corresponding conveyance
(v1, v2, . . . , vp)

tominimize Z ˆ= ∑N−1
i=1 c (̂xi, xi+1,vi) + c (̂xN, x1,vk), (vi, vk)e{1, 2, . . . or P}

subject to
∑N−1

i=1 s (̂xi, xi+1,vi) + s (̂xN, x1,vk) ≥ S m̂in

As minimization of rough objective as well as rough constraints are not well-defined
the above problem can be rewritten in trust measure by article-2.6, respectively,
to determine a complete tour (x1, x2, . . . , xN, x1) and corresponding conveyance
(v1, v2, . . . , vp) to minimize T

Subject to Tr
(∑N−1

i=1 c (̂xi, xi+1,vi) + c (̂xN, x1,vk) < T
)

≥ δ

Tr
(∑N−1

i=1 s (̂xi, xi+1,vi) + s (̂xN, x1,vk) ≥ S m̂in

)
≥ ω

where T, δ, ω are any crisp parameters. It is clear that minimization of T implies the
minimization of rough objective Z .̂ For this reason the above maintained approach
is used to treat rough objective Z .̂

To determine trust measure we generate the rough number from the above
problem as

c (̂i, j, k) = ([c(i, j, k)1, c(i, j, k)2][c(i, j, k)3, c(i, j, k)4]),
s (̂i, j, k) = ([s(i, j, k)1, s(i, j, k)2][s(i, j, k)3, s(i, j, k)4]),
s m̂in = ([smin1, smin2][smin3, smin4]),

Tr{cˆ≥ δ} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for c4 ≤ δ

(c4−δ)
2(c4−c3) for c2 ≤ δ ≤ c4
1
2

(
(c4−δ)
(c4−c3) + (c2−δ)

(c2−c1)

)
for c1 ≤ δ ≤ c2

1
2

(
(c4−δ)
(c4−c3) + 1

)
for c3 ≤ δ ≤ c1

1 for δ ≤ c3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)
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where c1 = c(i, j, k)1, c2 = c(i, j, k)2, c3 = c(i, j, k)3, c4 = c(i, j, k)4, now the
expected value of ĉ is E[ĉ] = 1

4 [c1 + c2 + c3 + c4].
Similarly, for safety constraints ŝmin, we derive it as follows to determine a com-

plete tour (x1, x2, . . . , xN, x1) and corresponding conveyance (v1, v2, . . . , vp) to
minimize T.

Tr{sˆ≥ ω} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for s4 ≤ ω

(s4−ω)
2(s4−s3) for s2 ≤ ω ≤ s4
1
2

(
(s4−ω)
(s4−s3) + (s2−ω)

(s2−s1)

)
for s1 ≤ ω ≤ s2

1
2

(
(s4−ω)
(s4−s3) + 1

)
for s3 ≤ ω ≤ s1

1 for ω ≤ s3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

where s1 = s(i, j, k)1, s2 = s(i, j, k)2, s3 = s(i, j, k)3, s4 = s(i, j, k)4, now the
expected value of ĉ is E[ŝ] = 1

4 [s1 + s2 + s3 + s4].

3.5 Solid TSP with Fuzzy-Rough Costs and Safety Constraints

In CSTSP if costs and safety factors are fuzzy-rough numbers, i.e., c̃ (̂i, j, k) and
ŝ(i, j, k) respectively and safety effect limit Smin also fuzzy-rough number Sˆmin, then
CSTSP reduces to determine a complete tour (x1, x2, . . . , xN, x1) and corresponding
conveyance (v1, v2, . . . , vp)

to minimize Z̃ ˆ = ∑N−1
i=1 c̃ (̂xi, xi + 1, vi) + c̃ (̂xN, x1, vk)

subject to
∑N−1

i=1 s̃ (̂xi, xi + 1, vi) + s̃ (̂xN, x1, vk) ≥ S̃ m̂in

As minimization of fuzzy-rough objective as well as fuzzy-rough constraints are
not well-defined the above problem can be rewritten in trust measure by article-2.6,
respectively, to determine a complete tour (x1, x2, . . . , xN, x1) and corresponding
conveyance (v1, v2, . . . , vp) to minimize T

Subject to Tr
{
Pos

( ∑N−1
i=1 c̃ (̂xi, xi+1,vi) + c̃ (̂xN, x1,vk) < T

)
≥ δ1

}
≥ δ

Tr
{
Pos

(∑N−1
i=1 s̃ (̂xi, xi+1,vi) + s̃ (̂xN, x1,vk) ≥ S̃ m̂in

)
≥ ω1

}
≥ ω

where T, δ, ω, δ1, ω1 are crisp parameter with predetermined confidence levels. It is
clear that minimization of T implies the minimization of fuzzy- rough objective Z̃ .̂

To determine possibility necessity and trust measure we generate the rough num-
ber from the above problem as
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c̃ (̂i, j, k) = (c̃ − L1, c̃, c̃ + R1),

where ĉ(i, j, k) = ([c(i, j, k)1, c(i, j, k)2], [c(i, j, k)3, c(i, j, k)4]),
s̃ (̂i, j, k) = (s̃ − L2, s̃, s̃ + R2),

where s (̂i, j, k) = ([s(i, j, k)1, s(i, j, k)2], [s(i, j, k)3, s(i, j, k)4]),
s̃ m̂in = (s̃ − L3, s̃, s̃ + R3), where s m̂in = ([smin1, smin2][smin3, smin4]),

Then the expected values according to article 2.3 are given by

E[c̃ˆ] = 1

4
[c1 + c2 + c3 + c4] + ρR1 − (1 − ρ)L1

2
where 0 ≤ ρ ≤ 1

E[s̃ˆ] = [s1 + s2 + s3 + s4] + ρR2 − (1 − ρ)L2

2
where 0 ≤ ρ ≤ 1

E[s̃ m̂in] = [smin1 + smin2 + smin3 + smin4] + ρR3 − (1 − ρ)L3

2
where 0 ≤ ρ ≤ 1

where c1 = c(i, j, k)1, c2 = c(i, j, k)2, c3 = c(i, j, k)3, c4 = c(i, j, k)4, s1 =
s(i, j, k)1, s2 = s(i, j, k)2, s3 = s(i, j, k)3, s4 = s(i, j, k)4,L1,L2,L3,R1,R2,R3
are crisp number.

4 Proposed Improved Genetic Algorithm (IGA)

To solve the above CSTSPs, we developed an Improved Genetic Algorithm (IGA)
which is the combination of probabilistic selection, cyclic crossover, and node-
oriented randommutation. In the natural genesis, chromosomes are the main carriers
of hereditary information from parent to offspring and those genes, which present
hereditary factors, are lined up in the chromosomes. At the time of reproduction,
crossover and mutation take place among the chromosomes of parents. In this way
hereditary factors of parents are mixed-up and carried over to their offspring. Again,
the Darwinian principle states that only the fittest can survive in nature. So a pair
of fittest parents normally reproduces better offspring. In this context we followed
to create a genetic algorithm for an optimization problem. Here potential solutions
of the problem are analogous with the chromosomes and chromosome of better off-
spring with the better solution of the problem. Here we use the probabilistic selection
(Boltzaman Probability) and cyclic crossover and node-oriented random mutation
happen among a set of potential solutions to get a new set of solutions and it contin-
ues until terminating conditions are encountered in IGA. The proposed IGA and its
procedures are presented below.
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IGA Algorithm

1. Begin
2. Initialize max generation number (s0), population size (pop size), probability of

crossover (pc) and ), probability of mutation (pm).
3. Randomly generate initial population p(n)
4. Evaluate initial population p(n)
5. While n ≤ s0 do

a. n = n + 1.
b. Select p(n) from p(n − 1).
c. Alter (crossover and mutate) p(n).
d. Evaluate p(n).

6. Update
7. End While
8. Print optimum result
9. End

4.1 Proposed IGA for Solid TSPs

4.1.1 Representation

Here a complete tour on N cities represents a solution. So an N-dimensional integer
vector Xi = (xi1, xi2, . . . , xiN) is used to represent a solution, where xi1, xi2, . . . , xiN
represent N consecutive cities in a tour. For solid TSP another integer vector Vk =
(vk1, vk2, . . . , vkN) is used to represent the conveyances types used travel between
different cities. Here vkj represents the conveyance (an integer) used to travel from
city xij to xi(j + 1) for j = 1, 2, . . . ,N − 1 and vkN represents the conveyance type
used to travel from city xiN to xi1.

4.1.2 Initialization

Population size number of such solutions Xi = (xi1, xi2, . . . , xiN), i = 1, 2, . . . , pop
size, are randomly generated by random number generator, such that each solution
satisfies the constraints of the problem.A separate subfunction check constraint S(Xi)

is used for this purpose. For STSP another integer vector Vk = (vk1, vk2, . . . , vkN)

is randomly generated corresponding to the solution Xi, to represent the conveyance
types used to travel between different cities. So in that case (Xi,Vk) represent a
solution.
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4.1.3 Evaluation Process

To find fitness of a solution Xi(Xi,Vk) for STSP, the following two steps are used—

• Calculate objective function value OBJi for the solution Xi(Xi,Vk) for CSTSP.
• As the problems are minimization type take MVAL-OBJi as fitness, FITi, of Xi

(Xi,Vk) for STSP, where MVAL is a sufficiently large value to make the fitness
positive.

4.1.4 Probabilistic Selection

Since we choose the population to solve the TSP, we know TSP always minimizes
the problem. It is better to choose that population which in the neighborhood of
the minimum solution of the entire solution space tends to convergence very fast.
From the initial population choose the best fitted population for TSP; that is choose
as most minimum fitness value (say fmin). To form the matting pool, we use the
Boltzmann-Probability as follows:

P = e
(fmin−f(xi))

T

where T = T0(1 − α)k,

k = (
1 + 100 ∗ ( g

G

))
,

T0 = [5, 100],
g = Current Generation,
G = Max Generation,
α = rand[0, 1], i = 0, 1, 2, . . . ,N

after finding the above probability, then use it in the following way:

if (P < rand[0, 1])
then select xi;

else

Select fmin in the matting pool

Here T increases and corresponding P also increases as T depends on the current
generation.
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4.1.5 Cyclic Crossover

(i) Selection for crossover: For each solution of p(n) generate a random number r
from the range [0, 1]. If r < pc then the solution is taken for crossover.
(ii) Crossover process: For simple TSP cyclic crossover process is used. The cyclic
crossover focuses on subsets of cities that occupy the same subset of positions in
both parents. Then these cities are copied from the first parent to the offspring (at the
same positions), and the remaining positions are filled with the cities of the second
parent. In this way, the position of each city is inherited from one of the two parents.
However, many edges can be broken in the process, because the initial subset of cities
is not necessarily located at consecutive positions in the parent tours. To illustrate
the process let us consider a TSP consisting of nine cities and consider two parents
PR1, PR2 as below:

PR1 : 1 2 3 4 5 6 7 8 9
PR2 : 3 4 5 1 2 9 8 7 6

Let CH1, CH2 be two children born after crossover. The mechanism of birth of CH1,
CH2 using cycle crossover is explained with the help of the following steps:

Randomly generate an integer in the range [1 . . . 9]. Let it be 3.
As PR1[3] = 3, 3rd element of CH1 is 3, i.e., CH1[3] = 3. PR2, is then searched

to check for the presence of element 3 and it has been found in the first position.
Then first element of CH1 is selected from the first element of PR1, i.e., CH1[1] =
PR1[1] = 1. PR2, is again searched for the presence of element 1 and it has occurred
at the fourth position. Thus fourth element of PR1 has been copied as the fourth
element of CH1, i.e., CH1[4] = PR1[4] = 4. Similarly, following are obtained
CH1[2] = PR1[2] = 2,CH1[5] = PR1[5] = 5.

This completes one cycle because element 5 is seen to be present at the third
position of PR2 and the corresponding third position element of PR1 is element 3,
which has already been selected as the starting element of the cycle.

The remaining elements of CH1 are selected directly from PR2 as follows:

CH1[6] = PR2[6] = 9,CH1[7] = PR1[7] = 8

CH1[8] = PR2[8] = 7,CH1[9] = PR1[9] = 6

Final forms of CH1 and CH2 are as below:

CH1 : 1 2 3 4 5 9 8 7 6
CH2 : 3 4 5 1 2 6 7 8 9

If CH1 satisfies the constraint of the problem then PR1 is replaced by CH1. Similarly,
if CH2 satisfies the constraint of the problem then PR2 is replaced by CH2.
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For STSP to made crossover on two parents (PR1, V1), (PR2, V2), the same
procedure is followed on PR1 and PR2 to obtain CH1 and CH2. To keep randomness
in selection of conveyances conveyance sets V1 and V2 remain unchanged, i.e.,
resultant child after crossover becomes (CH1, V1), (CH2, V2). If (CH1, V1) satisfies
the constraint of the problem, then (PR1, V1) is replaced by (CH1, V1). Similarly,
if (CH2, V2) satisfies the constraint of the problem then (PR2, V2) is replaced by
(CH2, V2).

4.1.6 Random Mutation

(i) Selection for mutation: For each solution of p(n) generate a random number r
from the range [0, 1]. If r < pm then the solution is taken for mutation.
(ii) Mutation process: To mutate a solution X = (x1, x2, . . . , xN) of TSP with
T number of nodes, select T number of nodes randomly from the solution and just
replace their places in the solution, i.e., if randomly two nodes xi, xj are selected then
interchange xi, xj to get a child solution. The new solution, if satisfies the constraint
of the problem, replaces the parent solution. For CSTSP to mutate a solution (X,V),
where X = (x1, x2, . . . , xN),V = (v1, v2, . . . , vp) at first an integer is randomly
selected in the range [1, 2]. If 1 is selected then another two random integers i, j
are selected in the range [1, N]. Then interchange xi, xj to get child solution. If 2
is selected then another two random integers i and j are selected in the range [1,N]
and [1,P] respectively. The value of vp is replaced by j to get a child solution. If
the child solution satisfies the constraint of the problem then it replaces the parent
solution.

5 Numerical Experiments

5.1 Verification of Proposed IGA with Standard
TSPLIB Test Problem

We use the proposed IGA in the standard TSP from the TSPLIB and compare with
classical GA in number of iteration; the result shows the efficiency of the proposed
algorithm (Table1).
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Table 1 Test with standard problems for proposed algorithm

Solution

Instance Problem
size

Available
best
solution

IGA Iteration GA Iteration

bays29 29 × 29 2020 2020 349 2020 571

bayg29 29 × 29 1610 1610 256 1610 480

fri26 26 × 26 937 937 202 937 368

dantzig42 42 × 42 699 699 245 699 986

5.2 Results of CSTSPs

5.2.1 Crisp STSP

Here we take three conveyances and the values are crisp in nature (Tables 2 and 3).

5.2.2 Fuzzy CSTSP

See Tables4 and 5.

Table 2 Costs for crisp CSTSP

i/j 1 2 3 4 5

1 ∞ 15, 16, 17 18, 19, 20 12, 13, 14 20, 21, 22

2 27, 28, 29 ∞ 20, 21, 22 48, 49, 50 35, 36, 37

3 42, 43, 44 28, 29, 30 ∞ 30, 31, 32 25, 26, 27

4 38, 39, 40 30, 31, 32 8, 9,10 ∞ 20, 21, 22

5 66, 67, 68 22, 23, 24 35, 36, 37 30, 31, 32 ∞

Table 3 Costs of safety matrix for crisp CSTSP

i/j 1 2 3 4 5

1 ∞ 0.3, 0.4, 0.5 0.5, 0.6, 0.7 0.2, 0.3, 0.4 0.1, 0.2, 0.3

2 0.6, 0.7, 0.8 ∞ 0.2, 0.3, 0.4 0.5, 0.6, 0.7 0.3, 0.4, 0.5

3 0.2, 0.3, 0.4 0.3, 0.4, 0.5 ∞ 0.2, 0.3, 0.4 0.1, 0.2, 0.3

4 0.6, 0.7, 0.8 0.4, 0.3, 0.2 0.6, 0.7, 0.8 ∞ 0.3, 0.4, 0.5

5 0.8, 0.7, 0.6 0.3, 0.2, 0.1 0.6, 0.5, 0.4 0.4, 0.5, 0.6 ∞



194 M. Maiti et al.

Table 4 Costs for fuzzy CSTSP

i/j 1 2 3 4 5

1 ∞ (14, 15, 16)
(15, 16, 17)
(16, 17, 18)

(17, 18, 19)
(18, 19, 20)
(19, 20, 21)

(11, 12, 13)
(12, 13, 14)
(13, 14, 15)

(19, 20, 21)
(20, 21, 22)
(21, 22, 23)

2 (26, 27, 28)
(27, 28, 29)
(28, 29, 30)

∞ (19, 20, 21)
(20, 21, 22)
(21, 22, 23)

(47, 48, 49)
(48, 49, 50)
(49, 50, 51)

(34, 35, 36)
(35, 36, 37)
(36, 37, 38)

3 (41, 42, 43)
(42, 43, 44)
(43, 44, 45)

(27, 28, 29)
(28, 29, 30)
(29, 30, 31)

∞ (29, 30, 31)
(30, 31, 32)
(31, 32, 33)

(24, 25, 26)
(25, 26, 27)
(26, 27,28)

4 (37, 38, 39)
(38, 39, 40)
(39, 40, 41)

(29, 30, 31)
(30, 31, 32)
(31, 32, 33)

(7, 8, 9)
(8, 9, 10)
(9, 10, 11)

∞ (19, 20, 21)
(20, 21, 22)
(21, 22, 23)

5 (65, 66, 67)
(66, 67, 68)
(67, 68, 69)

(21, 22, 23)
(22, 23, 24)
(23, 24, 25)

(34, 35, 36)
(35, 36, 37)
(36, 37, 38)

(29, 30, 31)
(30, 31, 32)
(31, 32, 33)

∞

Table 5 Fuzzy costs of safety matrix for CSTSP

i/j 1 2 3 4 5

1 ∞ (0.2, 0.3, 0.4)
(0.3, 0.4, 0.5)
(0.4, 0.5, 0.6)

(0.4, 0.5, 0.6)
(0.5, 0.6, 0.7)
(0.6, 0.7, 0.8)

(0.1, 0.2, 0.3)
(0.2, 0.3, 0.4)
(0.3, 0.4, 0.5)

(0.3, 0.4, 0.5)
(0.4, 0.5, 0.6)
(0.5, 0.6, 0.7)

2 (0.5, 0.6, 0.7)
(0.6, 0.7, 0.8)
(0.7, 0.8, 0.9)

∞ (0.1, 0.2, 0.3)
(0.2, 0.3, 0.4)
(0.3, 0.4, 0.5)

(0.4, 0.5, 0.6)
(0.5, 0.6, 0.7)
(0.6, 0.7, 0.8)

(0.2, 0.3, 0.4)
(0.3, 0.4, 0.5)
(0.4, 0.5, 0.6)

3 (0.1, 0.2, 0.3)
(0.2, 0.3, 0.4)
(0.3, 0.4, 0.5)

(0.2, 0.3, 0.4)
(0.3, 0.4, 0.5)
(0.4, 0.5, 0.6)

∞ (0.1, 0.2, 0.3)
(0.2, 0.3, 0.4)
(0.3, 0.4, 0.5)

(0.1, 0.2, 0.3)
(0.2, 0.3, 0.4)
(0.3, 0.4, 0.5)

4 (0.5, 0.6, 0.7)
(0.6, 0.7, 0.8)
(0.7, 0.8, 0.9)

(0.3, 0.2, 0.1)
(0.4, 0.3, 0.2)
(0.5, 0.4, 0.3)

(0.5, 0.6, 0.7)
(0.6, 0.7, 0.8)
(0.7, 0.8, 0.9)

∞ (0.2, 0.3, 0.4)
(0.3, 0.4, 0.5)
(0.4, 0.5, 0.6)

5 (0.9, 0.8, 0.7)
(0.8, 0.7, 0.6)
(0.7, 0.6, 0.5)

(0.4, 0.3, 0.2)
(0.3, 0.2, 0.1)
(0.2, 0.1, 0.0)

(0.7, 0.6, 0.5)
(0.6, 0.5, 0.4)
(0.5, 0.4, 0.3)

(0.3, 0.4, 0.5)
(0.4, 0.5, 0.6)
(0.5, 0.6, 0.7)

∞

5.2.3 Rough CSTSP

See Tables6 and 7.
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Table 10 Results of different models by proposed IGA

Model Path Cost Smin

Crisp CSTSP (1,1)(4,2)(3,2)(5,3)(2,3) 100 2

Fuzzy CSTSP (1,2)(4,1)(3,1)(5,1)(2,3) 110, 114, 118 1.9, 2.2, 2.5

Rough CSTSP (1,1)(4,1)(3,2)(5,1)(2,2) [85, 90][80, 95] [2.0, 2.5][1.5, 3.1]

Fuzzy-rough
CSTSP

(1,3)(4,2)(3,3)(5,3)(2,1) [91, 96][86, 101]
68.5, 93.5,118.5

[2.3, 2.8][1.8, 3.3]
2.05, 2.55, 3.05

5.2.4 Costs for Fuzzy-Rough CSTSP

Our proposed algorithm is compared with another soft computing technique GA for
standard TSPLIB [13] problems which are shown in Table1. In every test problem,
our algorithm gives the better result compared to the number of iterations. In Table2
CSTSP with three conveyances, and 5× 5 crisp cost matrix is presented. In Table3,
we have given the individual safety of the corresponding conveyances. In Table4
the fuzzy cost values of CSTSP are given, in Table5 the fuzzy values of the safety
factors are declared. In this fuzzy environment, the results obtained via different
conveyances are shown in Table10. And similarly we construct the rough CSTSP
with rough costs and safety factors which as shown in Tables6 and 7 respectively. For
the fuzzy-rough environment, we describe the cost and safety factors as fuzzy-rough
variables which are presented in Tables8 and 9 respectively. The final Table10 gives
the results of rough and fuzzy-rough CSTSPs. All these results are obtained using
IGA.

6 Conclusion

The results show the efficiency of this developed algorithm, IGA. Here for the first
time CSTSP is modeled with safety constraints. Since the travelling costs are com-
pletely uncertain, we describe these as fuzzy, rough, or fuzzy rough costs. To solve the
real-life CSTSP in crisp, fuzzy, rough, fuzzy-rough environments, here the proposed
IGA is most suitable. In future the costs may be taken as other uncertain variables,
such as random, fuzzy- random, random-fuzzy, and accordingly several uncertain
CSTSPs can be formulated and solved.
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A Novel Soft Theoretic AHP Model
for Project Management in Multi-criteria
Decision Making Problem

Tuli Bakshi, T. Som and B. Sarkar

Abstract The present paper introduces a model of decision-making problem in
multicriteria optimization domain for project management. The model is built by
combining the fuzzy soft set theory and analytical hierarchical model. The later is
the well-known method of ranking the alternatives for multicriteria decision-making
problem. The ultimate project selection is the best of many decisions associated with
project management. Here we illustrate the hybrid method by means of an application
of the new mathematical model of soft set theory.

Keywords Soft set · Analytic Hierarchy Process · Reduction · Decision Support
System · Multi-criteria Optimization

1 Introduction

In the real world, we have to deal with many complex computational problems
pertaining to the areas of engineering, medical sciences, environmental sciences,
economics, social sciences etc. which involve data that are not always crisp and pre-
cise. Therefore, most of our traditional models for formal reasoning and computing
the crisp, deterministic, and precise data fail. We cannot use the well-known classical
methods because of various inherent uncertainties present in those problems. There
are theories such as theory of probability, theory of fuzzy sets [1], and theory of
intuitionistic fuzzy sets [2, 3], vague sets [4], and rough sets [5] which can also be
taken into consideration for mathematical model formulation and for dealing with
uncertainties. But all the above theories have their inherent difficulties, including
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lack of parameterization of tools due to which they are not capable of successfully
solving such complicated problems. Reason for these difficulties being the inade-
quacy of the parameterization tool of these theories, Molodtsov [6] introduced the
concept of soft set theory as a mathematical tool for dealing with such uncertainties.
We know that Pawlak [7] first used and defined the term “soft set”. However, that
was a different concept.

According to Hwang and Yoon [8], multicriteria decision making (MCDM) is
applied preferably for decisions among available classified alternatives with multi-
ple attributes. So MCDM is one of the most widely used decision methodology in
project selection problems [9]. The MCDM is a method that follows the analysis
of several criteria, simultaneously. In this method, economic, environmental, social,
and technological factors are considered for the selection of the project and for
making the choice sustainable. Several frameworks have been proposed for solving
MCDM problems, namely Analytical Hierarchy Process [AHP] [10] and Analytical
Network Process [ANP] [11], which deal with decisions in absence of knowledge
of the independence of higher level elements from lower level elements and about
the independence of the elements within a level. Other framework available are data
envelopment analysis (DEA), technique for order performance by similarity to ideal
solution (TOPSIS) [12], VIKOR [13], COPRAS [14], with gray number [15, 16],
Simple Additive weighting (SAW) LINMAP [17] etc. With these techniques, alter-
native ratings are measured and the weight of the criteria is expressed in precise
number. The projects’ life cycle assessment is to be determined and the impact of
all elements is to be measured. There are some mandatory axioms that the criteria
describing feasible alternatives are dimensions which have relative importance to
determine the performance.

There are several decision-support system models available in the domain of
multicriteria optimization. These have been successfully used for making decisions
in multiobjective constraint satisfaction problem.

An application of AHP [18] to the project selection problem is not now in the
art. Satty’s Analytical Network Process [19] is assumed suitable for project evalua-
tion process. On the other hand, in the attempt to integrate the cardinal and ordinal
preferences using ANP/AHP for project selection, the decisions failed to give stable
models [20–22].

Bakshi et al. [23] have successfully established Fuzzy AHP-QFD model for soft-
ware project selection. Fuzzy methods are applied to the multiattributes decision
model [24, 25]. Sevkli [26] has proposed a method for project selection hybridized
with fuzzy linear programming and AHP. The weights of the project selection criteria
are measured using AHP model. Several types of integrated QFD techniques [27]
have been proposed for ranking the candidate supplier.

Pawlak [5] proposed the application of soft sets in decision-making problem with
the help of rough sets. Earlier Lin [28] and Yao [29] have presented the rough set
model for decision-making problem. Maji et al. [30] has given a soft set theoretic
model for decision-making problem and Som [31] has given a fuzzy soft matrix
model for decision-making method. However, it is noted that so far no researcher has
developed soft set theoretic hybrid model combining AHP. So it can be assumed to be
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an introductory attempt of making soft set theory a tool for deriving a mathematical
model for decision support system.

2 Theoretical Preliminaries

In this section, we present the concept of decision support system and decision-
making problem briefly. Thereafter, we introduce multicriteria decision-making
problem. In the last phase, we shall give a short introduction of fuzzy soft set and
Analytical Hierarchical Process Model.

(a)Multicriteria Decision Making Problem:

Decision making is the core area of administrative activities. By decision making, we
mean a specific type of human activities aimed to choose the best among available
alternatives [32]. This definition includes the three necessary objectives in decision-
making process. The problem to be solved can be stated as “A the decision to be
taken by a person or collective body out of several alternatives with the objective of
having the best choice among the alternatives.”

The decision-making procedure is essentially maintained by the contents, scale,
and time interval in which the problem is required to be solved. We can formulate a
decision-making problem in a logical statement of the form [33]:

“Given : V ; required : W ;” (2.1)

where V is the specified condition and W is the objective to be fulfilled. As a first
approximation, the specified condition V includes V s—the set of probable states
of some objectives. V p—set of operators transferring the object from one state to
another. Obviously, there can be a set of mappings of the subset V s into V p. The
objective W determines the state of objects.

Since the problem-solving procedure mainly depends on the statement and struc-
ture of the problem itself, we consider the general formal structure given in [33]:

“Given : Y, Z , D, S,U ; required : W” (Y, Z , D, S,U ), (2.2)

where Y is the set of input factors which is under control, Z is the set of unrestricted
input factors, S is the set of outcomes or final results, D is the set of operators d
from Y × Z to S,W is the objective of choosing subset S∗ from S (where S∗ can
consist of a single element of criterion from U ), U is the set of criteria for evaluation
of elements of S and selection of S∗.

The real-world decision problem necessitates the development of a model to con-
struct the set of admissible alternatives, from a criteria space, orders the alternatives
by aspects, and obtains the estimates under the chosen criteria. The methods for
solving the estimation problems are based on the use of expert opinion.
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The expert evaluation is applied with the idea of feedback systems when experts
obtain the result of processing their estimates by a specific algorithm. A quantitative
composition of the expert team is important in the expert evaluation.

(b) Brief introduction towards multicriterion problem of selection and
optimization:

In the problems of selecting, the set of alternatives is known and the principle of
optimality is generally unknown. In the classical mathematical programming of
optimization problem, we consider a possibility to use the theory of choice and
the theory of optimization, where set C is referred as the set of controls and the
mapping φ : C → Em are specified. The vector φ(c) ∈ Em is interpreted as the
outcome from C , where Em is the decision-making environment.

In general, we formulate the multicriteria problem as follows:
Find all or some c∗ ∈ C such that φ(c∗) ⊆ Coptimal(φ), specific types of problems
can be obtained by specifying the principle of optimality, the type of the set C and
the mapping φ.

The multicriteria decision-making problem can be represented as the triplet

〈C, φ, R〉 (2.3)

where C is the set of control variables, φ is the mapping from C in Em , R is the
binary relation on Em by which the alternative outcomes are compared.

The method of comparison of alternative outcomes should be equipped with
numerical evaluation of alternative utility and preference relations. Here, we sum-
marize the main notion of utility theory as follows [33, 34].

The set of alternatives A together with the preference relation ≺ specified on
it is called the structure or the preference space. The utility function is called the
real-valued strictly isotone function on A; if there exists function c such that

x ≺ y ⇒ c(x) ≺ c(y) (2.4)

From (2.4), we can say that the relation ≺ is acyclic. This condition is normally
supplemented with the constancy condition for function c on equivalence classes:

x ≈ y ⇒ c(x) = c(y) (2.5)

If the preference relation is not acyclic, it can no longer be represented in any sense
by the ordinary utility function. Nevertheless, any relation ≺ can be represented by
some function c defined on A × A in the sense that

x � y ⇔ u(x, y) > 0 (2.6)

where u is the comparative utility function.
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(c) Decision Making under incomplete Information:

The quality of decision-making process depends directly on the extent to which all
the control factors essential to making decisions and to decisions effects are allowed
for. The decision authority often has to perform under uncertainties where it has a
smaller amount of information than the requirement for reasonable actions during
decision making. The uncertainty can be partially minimized by the information
available or the information additionally received by the decision-making authority.

Uncertainty in decision making is characterized by the insufficient reliability
and the amount of information on the basis of which the decision-making authority
(DM) chooses a decision. We summarize the various kind of uncertainties commonly
occurring during the decision-making process as follows:

(i) Uncertainty in principle.
(ii) Uncertainty due to lack of information.

(iii) Uncertainty generated by decision authority.
(iv) Uncertainty involving constraint in decision making process.
(v) Uncertainty caused by behavior of environment.

Another important class of uncertain situation is based on Zadeh’s notion of
fuzzy set. These tools are adequate to the description of situations having a clear cut
boundary.

(d) Fuzzy Decision Making Environment:

The uncertain information situation characterizes the case where the control authority
(c) has a “Fuzzy” knowledge of states of environment (Em). We assume that the
control authority C has an exact knowledge of the complete set � of probable state
∂ j of environment, the set φ has its decision φk and the value of evaluation functional

F = {
f jk

}n,m
j,k=1

Based on the concepts of theory of fuzzy sets, we model the “behavior” of uncertain-
ties and define the decision situations as triplet {φ, Rθ,F}, where Rθ are the fuzzy sets
or fuzzy random event determined by membership function μR and the probability
distribution p in the states of environment Em .
We list the main operations of fuzzy sets as follows:

(i) Equivalence A ∼ B ⇔ μA(x) ≡ μB(x).
(ii) Inclusion A ⊂ B ⇔ μA(x) ≤ μB(x).

(iii) Complement A ⇔ μA(x) = 1 − μA(x).
(iv) Union A ∪ B ⇔ μA∪B(x) = max{μA(x), μB(x)}.
(v) Intersection A ∩ B ⇔ μA∩B(x) = min{μA(x), μB(x)}.

(vi) Product A · B ⇔ μA·B(x) = μA(x) · μB(x).
(vii) Sum A + B ⇔ μA+B(x) = μA(x) + μB(x) − μA(x).μB(x).

(viii) Multiplication of A by α ∈ [0, 1] : α ⇔ μαA(x) = αμA(x).
(ix) Exponentiation of A to α > 0 : Aα ⇔ μAα (x) = (μA(x))α .
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(x) Concentration CON (A) = Ak, k ≥ 2.
(xi) Dilation DIL(A) = A0,5.

The notion of fuzzy sets and relations defines the construction of various models
for fuzzy specification of the “behavior” of environment Em as applied to formal
scheme of definition of decision situations {φ,�, F}, which have been discussed
above previously.

(e) Introduction to Soft Set Theory:

In this subsection, we try to give a precised introduction of soft set theory and its
competence in decision making.

Let U be the initial Universal set and let Q be the set of parameters.

Definition 1 ([30]) A pair (F, Q) is called a soft set over U if and only if F is a
mapping of Q into the set of all subsets of the set U i.e., F : Q → P(U ), where
P(U ) is the power set of U .

Soft set is a parameterized family of subsets of the set U . Every set F(ε), f orε ∈
Q from this family may be considered as the set of ε-elements of the soft set (F, Q)

or as the set of ε-approximate elements of the soft set.
According to Zadeh, Fuzzy sets can be considered as a special case of soft set.

Let A be a fuzzy set of U with membership value, μA , i.e., μA is a mapping of U
into [0,1]. Let us consider the family of α-level sets for the function μA given by

F(α) = {x ∈ U ;μA(x) ≥ α} , α ∈ [0, 1] .

If we know the family F , we can find the functions μA(x) by means of the following
formulae:

μA(x) = sup(α)
α∈[0,1].x∈F(α)

Thus every fuzzy set A may be considered as the soft set (F[0,1]).

3 Proposed Fuzzy Soft AHP Hybrid Model
of Decision Making

We construct a hybrid model of decision-making problem as follows:
First, we represent the problem and convert it into equivalent binary tabular rep-

resentation. Then reduce the table of binary information into reduced soft set.
In the next step, we construct an algorithm to select the best project using choice

criteria.
In the third step, we construct the weighted table of the proposed soft set problem.

For finding the weight, fuzzy AHP method has been used. Finally, the best alternatives
are chosen.
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Schematic Diagram of Fuzzy-AHP                               Proposed Soft theoretic AHP Model

Case Study:

Let us consider four projects: P1, P2, P3 and P4.
Let E = {NPV; ROR; PB; PR; Highly Beneficial; Beneficial; Average; Poor} be

a set of parameters.
Consider the Soft Set (F, E) which describes the “Profit of the Organization”

given by
(F, E) = {Max NPV {P4, P2}, Max ROR {P3, P2}, Max PB {P1, P2, P3, P4},

Min PR {P1, P2}, Highly Beneficial {P4, P3, P1, P2}, Beneficial {P3, P2}, Average
{P4, P1}, Poor {P3, P1, P2}}.

Suppose that an organization is interested to take the project on the basis of its
choice of parameters: “Maximum ROR,” “Maximum Payback Period,” “Beneficial,”
and “Minimum Project Risk” etc. which consider the subset

P = {Max ROR; Max PB; Beneficial; Min Project Risk, Max NPV} of the set E.

This means, out of available projects in U , organization would select that the project
which qualifies with all (or with max number of) parameters of the soft set P .
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Tabular representation of a soft set (F, P) above on the basis of the set P of the
choice parameters of the organization A. We can represent this soft set in a tabular
form as shown below. This style of representation will be useful for storing a soft set
in a computer memory. If hi ∈ F(ε) then hi j= 1, otherwise hi j= 0 where hi j are the
entries in Table 1.

Reduce—Table of a Soft Set:

From the table we see that {e1, e2, e4, e5}, {e2, e3, e4, e5} are the two reduces of P =
{e1, e2, e3, e4, e5}.

Choose any one say Q = {e1, e2, e4, e5}.
Incorporating the choice values, the reduced soft set can be represented in Table 2.
Now, having the reduced table by Fuzzy AHP method, use the revised algorithm

for the selection of the best project using Fuzzy AHP Method, i.e.,

1. Input the Soft Set (F, E).
2. Input the set P of choice parameters of the organization is a subset of E .
3. Compute all reduce soft sets of (F, P).
4. Choose one reduce soft set say (F, Q) of (F, P).
5. Compute weighted table of the soft set (F, Q) according to the weights computed

by Fuzzy AHP Method.
6. Find k, for which Ck = max Ci . Then hk is the optimal choice object.

Algorithm of Fuzzy AHP Method:

The fuzzy AHP technique can be viewed as an advanced analytical method developed
from the traditional AHP. According to the method of Chang’s (1992) [35] extent
analysis, each criterion is taken into account and the extent analysis for each criterion
gi is performed on the set of criteria, respectively. Therefore,m extent analysis values
for each criterion can be obtained by using following notation:

Table 1 Initial Soft set Formation

Max ROR Max PB Beneficial Min PR Max NPV

U e1 e2 e3 e4 e5

P1 0 1 0 1 0

P2 1 1 1 1 1

P3 1 1 1 0 0

P4 0 1 0 0 1

Table 2 Reduce Soft set Formation

U e1 e2 e4 e5 Choice value

P1 0 1 1 0 C1 = 2

P2 1 1 1 1 C2 = 4

P3 1 1 0 0 C3 = 2

P4 0 1 0 1 C4 = 2
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M1
gi , M

2
gi , M

3
gi , M

4
gi , M

5
gi , . . . , M

m
gi ,where gi is the goal set (i = 1, 2, 3, 4, . . . , n)

and all M j
gi ( j = 1, 2, 3, 4, . . .m) are Triangular Fuzzy Numbers (Tfns). The steps

of the analysis can be given as follows:
Step 1: The fuzzy synthetic extent value (Si ) with respect to the i th criterion is
defined in Eq. (3.1):

Si =
m∑

j=1

M j
gi ⊗

⎛

⎝1/

⎡

⎣
n∑

i=1

m∑

j=1

M j
gi

⎤

⎦

⎞

⎠ (3.1)

(Operation ⊗ is defined as the one to one multiplication)

To obtain (2.2) as
m∑

j=1

M j
gi (3.2)

Perform the fuzzy addition operation of m extent analysis values for a particular
matrix given in Eq. (3.3) below, at the end step of calculation, new (l,m, and u) set
is obtained and used for the next:

m∑

j=1

M j
gi =

⎛

⎝
m∑

j=1

l j,
m∑

j=1

mj,
m∑

j=1

u j

⎞

⎠ (3.3)

where l is the lower limit value, m is the most promising value, and u is the upper
limit value and to obtain (3.4):

⎛

⎝1/

⎡

⎣
n∑

i=1

m∑

j=1

M j
gi

⎤

⎦

⎞

⎠ (3.4)

Perform the fuzzy addition operation of M j
gi ( j = 1, 2, 3, . . . ,m) values given as

Eq. (3.5):
n∑

i=1

m∑

j=1

M j
gi =

(
n∑

i=1

li,
n∑

i=1

mi,
n∑

i=1

ui

)

(3.5)

Then compute the inverse of the vector in the Eq. (3.5) and obtain the inverse
Eq. (3.6) as:

⎛

⎝1/

⎡

⎣
n∑

i=1

m∑

j=1

M j
gi

⎤

⎦

⎞

⎠ =
[

1
∑n

i=1 ui
,

1
∑n

i=1 mi
,

1
∑n

i=1 li

]

(3.6)
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Step 2: The degree of possibility of M2 = (l2,m2, u2) ≥M1 = (l1,m1, u1 ) is defined
as Eq. (3.7):

V (M2 ≥ M1) = sup[min(μM1(x), μM2(y))] (3.7)

y ≥ x

In addition, x and y are the values on the axis of membership function of each
criterion. This equation can be written as:

V (M2 ≥ M1) = 1, if m2 ≥ m1

= 0, if l1 ≥ u2

= l1 − u2

(m2 − u2) − (m1 − l1)
, otherwise (3.8)

Step 3: The degree possibility for a convex fuzzy number to be greater than k convex
fuzzy numbers Mi (i = 1, 2, 3, 4, 5 . . . k) can be defined by

V (M ≥ M1, M2, M3 . . . , Mk) = min V (M ≥ Mi ),

i = 1, 2, . . . , k. Assume that Eq. (3.9) is

d∗(Ai ) = min V (Si ≥ Sk) (3.9)

For k = 1, 2, 3, . . . , n; k �= i . Then the weight vector is given by Eq. (3.10):

W ∗ = (d∗(A1), d
∗(A2), . . . d

∗(An))
T (3.10)

where Ai (i = 1, 2, 3 . . . n) are n elements.
Step 4: Via normalization, the normalized weight vectors are given in Eq. (3.11) as

W = (d(A1), d(A2), d(A3) . . . d(An))
T (3.11)

where W has nonfuzzy numbers.

Case Study of Fuzzy AHP Method:

According to expert’s decision, the following matrix is formed and then by using
triangular fuzzy number the Fuzzy evaluation matrix is formed [36].

Now calculating all the values by applying Chang’s [35] theory, the following
results are obtained:

⎧
⎪⎪⎨

⎪⎪⎩

SNPV = (3.50, 5.00, 6.50) ⊗ (0.04, 0.057, 0.078) = (0.14, 0.28, 0.51)

SROR = (4.13, 6.00, 9.33) ⊗ (0.04, 0.057, 0.078) = (0.17, 0.34, 0.73)

SPB = (3.13, 3.83, 5.33) ⊗ (0.04, 0.057, 0.078) = (0.13, 0.22, 0.42)

SPR = (2.08, 2.75, 3.75) ⊗ (0.04, 0.057, 0.078) = (0.08, 0.16, 0.29)
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and ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (SNPV ≥ SROR) = 0.85, V (SNPV ≥ SPB) = 1,

V (SNPV ≥ SPR) = 1,
V (SROR ≥ SNPV) = 1, V (SROR ≥ SPB) = 1,

V (SROR ≥ SPR) = 1,
V (SPB ≥ SNPV) = 0.82 V (SPB ≥ SROR) = 0.67,

V (SPB ≥ SPR) = 1,
V (SPR ≥ SNPV) = 0.55, V (SPR ≥ SROR) = 0.4,

V (SPR ≥ SPB) = 0.73

Minimum of all values (0.85, 1, 0.67, and 0.4)
The weight W = (0.29, 0.34, 0.23, 0.14)
So in our case study, e1 denotes the Max ROR and its weight w1 = 0.34

e2 denotes the Max PB and its weight w2 = 0.23
e4 denotes the Min PR and its weight w4 = 0.14
e5 denotes the Max NPV and its weight w5 = 0.29.

Using these weighted values, Table 3 is constructed:
So P2 → P3 →P4 → P1 i.e., P2 is the best project (Tables 4 and 5).

Table 3 Evaluation matrix

Criteria NPV ROR PB PR

NPV 1 1 2 1

ROR 1 1 2 2

PB 0.5 1 1 1.33

PR 0.5 0.5 0.75 1

Table 4 Fuzzy evaluation matrix

Criteria NPV ROR PB PR

NPV (1, 1, 1) (0.75, 1, 1.25) (1, 2, 3) (0.75, 1, 1.25)

ROR (0.8, 1, 1.33) (1, 1, 1) (1, 2, 3) (1.33, 2, 4)

PB (0.33, 0.5, 1) (0.8, 1, 1.33) (1, 1, 1) (1, 1.33, 2)

PR (0.25, 0.5, 0.75) (0.33, 0.5, 1) (0.5, 0.75, 1) (1, 1, 1)
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Table 5 Final Matrix with weighted Value

Weight 0.34 0.23 0.14 0.29 Choice value

U e1· w1 e2· w2 e4· w4 e5· w5

P1 0 1 1 0 C1 = 0.37

P2 1 1 1 1 C2 = 1

P3 1 1 0 0 C3 = 0.57

P4 0 1 0 1 C4 = 0.52

4 Conclusion

In the present paper, we modeled an application of fuzzy soft theory in decision sup-
port system. In this context, we have introduced the soft theoretic model of analytic
hierarchical process (AHP) to have a better decision. This proposed decision support
strategy for an intended project manager helped to take decision in the perspective
environment. The dataset used in this paper is collected from experts’ opinion. The
algorithm, evolved from the resultant soft set theoretic AHP; it lead us to maximize
the proper choice in the environment of imprecise information. The main advantage
of this method, when compared to others, is that this hybrid method is very simple
in terms of calculation and the computational complexity of the proposed algorithm
is very low.
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An Application of Weighted Neutrosophic
Soft Sets in a Decision-Making Problem

Pabitra Kumar Maji

Abstract Decision-making problems in an imprecise environment are of paramount
importance in recent years. Here we consider an object recognition problem in an
imprecise environment. In this paper we study the concept of weighted neutrosophic
soft sets. A multiobserver decision-making problem has been considered here as an
application ofweighted neutrosophic soft sets.We have considered here a recognition
strategy based on multiobserver input parameter data set.

Keywords Soft sets · Neutrosophic set · Neutrosophic soft set · Weighted neutro-
sophic soft set

1 Introduction

Works on soft set theory is growing rapidly since its initiation [1]. The novel concept
of soft set theory plays an important role as a mathematical tool for dealing with
uncertainties. The basic properties of the theory may be found in [2]. Ali et al. [3]
presented some new algebraic operations on soft sets. Chen et al. [4] presented a
new definition of soft set parameterization reduction and compared this definition
with the related concept of knowledge reduction in the rough set. Feng et al. [5]
introduced the concept of semirings and we can also find the concept of soft groups
in [6]. Xu et al. [7] introduced vague soft sets which is a combination of soft sets and
vague sets. Some applications of soft sets may be found in [4, 8–10].

The problem of object recognition has received paramount importance in recent
years. The recognition problem may be viewed as a multiobserver decision-making
problem, where the final identification of the object is based on set of inputs from dif-
ferent observers who provide the overall object characterization in terms of diverse
sets of choice parameters. In this paper we present the concept of weighted neu-
trosophic soft sets. A multiobserver decision-making problem has been considered
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here as an application of weighted neutrosophic soft set theoretic approach toward
the solution of the above decision-making problem.

In Sect. 2 of this paper we briefly recall some relevant preliminaries centered
around our problem. Some basic definitions on weighted neutrosophic soft set rel-
evant to this work are available in Sect. 3. A decision-making problem has been
discussed and solved in Sect. 4. Conclusions are drawn in the concluding Sect. 5.

2 Preliminaries

In most real-life problems in the fields of medical sciences, economics, engineering,
etc., the data involved are imprecise in nature. The classical mathematical tools are
not capable to handle such problems. The novel concept ‘soft set theory’ initiated
by Molodtsov [1] is a new mathematical tool to deal with such problems. For better
understanding we now recapitulate some preliminaries relevant to the work.

Definition 2.1 [1] Let U be an initial universe set and E be a set of parameters. Let
P(U) denote the power set of U. Consider a nonempty set A, A ⊂ E.

A pair (F, A) is called a soft set over U, where F is a mapping given by F: A
→ P (U).

A soft set over U is a parameterized family of subsets of the universe U. For ε ∈
A, F(ε) may be considered as the set of ε- approximate elements of the soft set (F, A).

Definition 2.2 [2] For two soft sets (F, A) and (G, B) over a common universe U,
we say that (F, A) is a soft subset of (G, B) if

(i) A ⊂ B, and
(ii) ∀ ε ∈ A, F(ε) and G(ε) are identical approximations.

We write (F, A) ⊂̃ (G, B).
(F, A) is said to be a soft superset of (G, B), if (G, B) is a soft subset of (F, A). We

denote it by (F, A) ⊃̃ (G, B).
Let A and B be two subsets of E, the set of parameters. Then A × B ⊂ E × E.

Now we are in the position to define ‘AND’, ‘OR’ operations on two soft sets.

Definition 2.3 [2] If (F, A) and (G, B) be two soft sets then “(F, A) AND (G, B)”
denoted by (F, A) ∧ (G, B) is defined by (F, A) ∧ (G, B) = (H, A × B), where H(α,
β) = F(α)

⋂
G(β), ∀ (α, β) ∈ A × B.

Definition 2.4 [2] If (F, A) and (G, B) are two soft sets then “(F, A) OR (G, B)”
denoted by (F,A) ∨ (G, B) is defined by (F, A) ∨ (G, B) = (O, A × B), where, O(α,
β) = F(α)

⋃
G(β), ∀ (α, β) ∈ A × B.

In 1960 Abraham Robinson developed the nonstandard analysis, a formalization
of analysis and a branch of mathematical logic that rigorously defines the infini-
tesimals. Informally, an infinitesimal is an infinitely small number. Formally, x is
said to be infinitesimal if and only if for all positive integers n one has |x | < 1

n .
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Let ε > 0 be a such infinitesimal number. Let us consider the nonstandard finite
numbers 1+ = 1+ ε, where ‘1’ is its standard part and ‘ε’ its nonstandard part, and
−0 = 0 − ε, where ‘0’ is its standard part and ‘ε’ its nonstandard part.

Definition 2.5 [11] A neutrosophic set A on the universe of discourse X is defined
as A= {< x, TA(x), IA(x), FA(x) >, x ∈ X}, where TA, IA, FA : X →]−0, 1+[
and −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+. Here TA, IA, FA are, respectively, the
true membership, indeterministic membership, and false membership function of an
object x ∈ X .

From a philosophical point of view, the neutrosophic set takes the value from real
standard or nonstandard subsets of ]−0, 1+[. But in real-life application in scientific
and engineering problems it is difficult to use neutrosophic set with value from real
standard or nonstandard subset of ]−0, 1+[. Hence we consider the neutrosophic soft
set which takes the value from the subset of [0, 1].

Definition 2.6 [12] Let U be an initial universe set and E be a set of parameters.
Consider A ⊂ E. Let P(U) denote the set of all neutrosophic sets of U.

The collection (F , A) is termed to be the neutrosophic soft set (N S S) over U,
where F is a mapping given by F: A → P (U).

For illustration we consider the following example.

Example 1 LetUbe the set of houses under consideration andE the set of parameters.
Each parameter is a neutrosophic word or sentence involving neutrosophic words.
Consider E= {beautiful, large, very large, small, average, costly, cheap, brick build}.
In this case, to define a neutrosophic soft setmeans to point out beautiful houses, large
houses, very large houses, and so on. Suppose there are five houses in the universe
U given by, U = {h1, h2, h3, h4, h5} and the set of parameters A = {e1, e2, e3, e4},
where e1 stands for the parameter ‘large’, e2 stands for the parameter ‘very large’, e3
stands for the parameter ‘small’, and e4 stands for the parameter ‘average’. Suppose,

F(large) = {< h1, 0.6, 0.4, 0.7 >,< h2, 0.5, 0.6, 0.8 >,< h3, 0.8, 0.7, 0.7 >,

< h4, 0.6, 0.4, 0.8 >,< h5, 0.8, 0.6, 0.7 >},
F(very large) = {< h1, 0.5, 0.3, 0.6 >,< h2, 0.8, 0.5, 0.7 >,< h3, 0.9, 0.7,

0.8 >,< h4, 0.7, 0.6, 0.7 >,< h5, 0.6, 0.7, 0.9 >},
F(small) = {< h1, 0.3, 0.8, 0.9 >,< h2, 0.4, 0.6, 0.8 >,< h3, 0.6, 0.8,

0.4 >,< h4, 0.7, 0.7, 0.6 >,< h5, 0.6, 0.7, 0.9 >},
F(average) = {< h1, 0.8, 0.3, 0.4 >,< h2, 0.9, 0.6, 0.8 >,< h3, 0.8, 0.7,

0.8 >,< h4, 0.6, 0.7, 0.5 >,< h5, 0.7, 0.6, 0.8 >}.
For the purpose of storing a neutrosophic soft set in a computer, we could rep-

resent it in the form of a table as shown below (corresponding to the neutrosophic
soft set in the above example). In this table, the entries are ci j corresponding to
the house hi and the parameter e j , where ci j = (true-membership value of hi ,
indeterminacy-membership value of hi , falsity-membership value of hi ) in F(e j ).
The tabular representation of the neutrosophic soft set (F, A) is as follows (Table1).
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Table 1 Tabular form of the NSS (F, A)

U e1 = large e2 = very large e3 = small e4 = average

h1 (0.6, 0.4, 0.7) (0.5, 0.3, 0.6) (0.3, 0.8, 0.9) (0.8, 0.3, 0.4)

h2 (0.5, 0.6, 0.8) (0.8, 0.5, 0.7) (0.4, 0.6, 0.8) (0.9, 0.6, 0.8)

h3 (0.8, 0.7, 0.7) (0.9, 0.7, 0.8) (0.6, 0.8, 0.4) (0.8, 0.7, 0.8)

h4 (0.6, 0.4, 0.8) (0.7, 0.6, 0.7) (0.7, 0.7, 0.6) (0.6, 0.7, 0.5)

h5 (0.8, 0.6, 0.7) (0.6, 0.7, 0.9) (0.6, 0.7, 0.9) (0.7, 0.6, 0.8)

Definition 2.7 [12] Let (F, A) and (G, B) be two neutrosophic soft sets over the
common universeU. (F, A) is said to be a neutrosophic soft subset of (G, B) if A ⊂ B,

and TF(e)(x) ≤ TG(e)(x), IF(e)(x) ≤ IG(e)(x), FF(e)(x) ≥ FG(e)(x),∀e ∈ A.

We denote it by (F, A) ⊆ (G, B). (F, A) is said to be neutrosophic soft superset
of (G, B) if (G, B) is a neutrosophic soft subset of (F, A). We denote it by (F, A) ⊇
(G, B).

Definition 2.8 [12] AND operation on two neutrosophic soft sets. Let (H, A) and
(G, B) be two NSSs over the same universe U. Then the ‘AND’ operation on them
is denoted by ‘(H, A)

∧
(G, B)’ and is defined by (H, A)

∧
(G, B) = (K, A × B),

where the truth-membership, indeterminacy-membership, and falsity-membership of
(K, A×B) are as follows: TK (α,β)(m) = min(TH(α)(m), TG(β)(m)), IK (α,β)(m) =
IH(α)(m)+IG(β)(m)

2 , FK (α,β)(m) = max(FH(α)(m), FG(β)(m)),∀α ∈ A,∀β ∈ B.

An application of NSS may be foundin [13]. The decision maker may not have
equal choice for all the parameters. He may impose some conditions to choose the
parameters for which the decision will be taken. The conditions may be imposed in
terms of weights (Positive real numbers less than 1). This condition motivates us to
define weighted neutrosophic soft set.

3 Weighted Neutrosophic Soft Sets

Definition 3.1 A neutrosophic soft set is termed to be a weighted neutrosophic soft
set if the weights (wi , a real positive number) are imposed on its parameters. The
entries of the weighted neutrosophic soft set, di j = wi × ci j , where ci j is the i j th
entry in the table of neutrosophic soft set.
For illustration we consider the following example.

Example 2 Consider the Example1. Suppose the decision maker has no equal pref-
erence for each of the parameters. He may impose the weights of preference for the
parameters ‘e1 = large’ as ‘w1 = 0.8’, ‘e2 = very large’ as ‘w2 = 0.4’, ‘e3 = small’
as ‘w3 = 0.5’, ‘e4 = average large’ as ‘w4 = 0.6’. Then the weighed neutrosophic
soft set obtained from (F, A) be (H, A) and its tabular representation are as in Table2.
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Table 2 Tabular form of the weighted NSS (H, A)

U e1, w1 = 0.8 e2, w2 = 0.4 e3, w3 = 0.5 e4, w4 = 0.6

h1 (0.48, 0.32, 0.56) (0.20, 0.12, 0.24) (0.15, 0.40, 0.45) (0.48, 0.18, 0.24)

h2 (0.40, 0.48, 0.64) (0.32, 0.20, 0.28) (0.20, 0.30, 0.40) (0.54, 0.36, 0.48)

h3 (0.64, 0.56, 0.56) (0.36, 0.28, 0.32) (0.30, 0.40, 0.20) (0.48, 0.42, 0.48)

h4 (0.48, 0.32, 0.64) (0.28, 0.24, 0.28) (0.35, 0.35, 0.30) (0.36, 0.42, 0.30)

h5 (0.64, 0.48, 0.56) (0.24, 0.28, 0.36) (0.30, 0.35, 0.45) (0.42, 0.36, 0.48)

Definition 3.2 WeightedComparisonMatrix It is amatrix whose rows are labeled
by the object names h1, h2, . . . , hn and the columns are labeled by the weighted
parameters p1, p2, . . . , pm , where pi = ei × wi , for i = 1, . . ., m. The entries ci j
of the weighted comparison matrix are evaluated by ci j = a + b − c, where ‘a’ is
the positive integer calculated as ‘how many times Thi (p j ) exceeds or is equal to
Thk (p j )’, for i = k, ∀k = 1, 2, . . . , n, ‘b’ is the integer calculated as ‘how many
times Ihi (p j ) exceeds or is equal to Ihk (p j )’, i = k, ∀k = 1, 2, . . . , n and ‘c’
is the integer ‘how many times Fhi (p j ) exceeds or is equal to Fhk (p j )’, i = k,
∀k = 1, 2, . . . , n.

Definition 3.3 Weighted Choice Value Score of an Object The weighted choice
value score of an object hi is Si and is calculated as Si =

∑
j ci j .

Here we consider a problem to choose an object from a set of given objects with
respect to a set of choice parameters P. We follow an algorithm to identify an object
based on multiobserver (considered here three observers with their own choices)
input data characterized by colors (F, A), size (G, B) and surface textures (H, C)
features. The algorithm to choose an appropriate object depending on the choice
parameters is given below.

3.1 Algorithm

1. Input the neutrosophic soft sets (H, A), (G, B) and (H, C) (for three observers)
2. Input the parameter set P as preferred by the decision maker
3. Compute the corresponding NSS (S, P) from the NSSs (H, A), (G, B) and (H, C)

and place in tabular form
4. Compute the NSS (S, Q) which is the weighted NSS obtained from he NSS (S,

P), the weights (wi > 0) depend on the decision maker
5. Compute the weighted comparison matrix of the NSS (S, Q)
6. Compute the score Si of hi ,∀i
7. The decision is hk if Sk = maxi Si
8. If k has more than one value then any one of hi may be chosen.

As indeterministic part of data involved in a decision-making problem plays an
important role we cannot use the so-called classical methods. Neutrosophic soft
set approach considers the membership, nonmembership, and indeterministic part
of data to make a decision. So, this approach is better than any other traditional
methods.
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4 Application in a Decision-Making Problem

Let U = {h1, h2, h3, h4, h5}, be the set of objects characterized by different sizes,
texture, and colors. Consider the parameter set, E= {blackish, dark brown, yellowish,
reddish, large, small, very small, average, very large, coarse, moderately coarse, fine,
extra fine}. Also consider A (⊂ E) to represent the size of the objects and B (⊂ E)
represents the texture granularity while C (⊂ E) represents different colors of the
objects. Let A ={average, small, large}, B = {coarse, fine, moderately coarse, extra
fine} and C = {whitish, reddish, blackish} be three subsets of the set of parameters
E. Now, suppose the NSS (F, A) describes the ‘objects having size’, the NSS (G,
B) describes the ‘surface texture of the objects,’ and the NSS (H, C) describes the
‘objects having color space.’ The problem is to identify an unknown object from the
multiobservers neutrosophic data, specified by different observers (we consider here
three observers), in terms of NSSs (F, A), (G, B), and (H, C) as described above.
TheseNSSs as computed by the three observersMr. X,Mr. Y, andMr. Z, respectively,
given below in their respective tabular forms (Tables3, 4, and 5).

Consider the above two NSSs (F, A) and (G, B) given above if we evaluate ‘(F,
A) AND (G, B)’ then we will have 3 × 4 = 12 parameters of the form ei j , where
ei j = ai ∧ b j , for i = 1, 2, 3 and j = 1, 2, 3, 4. If we consider the NSS for the
parameters R = {e13, e23, e31, e24, e33}, (depending on the choice of the decision
maker) then the resultant NSS obtained from the NSSs (F, A) and (G, B) is (K, R).
Computing ‘(F, A) AND (G, B)’ for the choice parameters R, we have the tabular
representation of the resultant NSS (K, R) as in Table6.

Table 3 Tabular form of the NSS (F, A)

U a1 = average a2 = small a3 = large

h1 (0.5, 0.4, 0.6) (0.7, 0.8, 0.7) (0.6, 0.4, 0.4)

h2 (0.6, 0.7, 0.8) (0.8, 0.7, 0.6) (0.7, 0.6, 0.8)

h3 (0.8, 0.2, 0.9) (0.5, 0.6, 0.8) (0.8, 0.8, 0.9)

h4 (0.7, 0.3, 0.6) (0.4, 0.3, 0.6) (0.6, 0.7, 0.4)

h5 (0.8, 0.7, 0.8) (0.8, 0.2, 0.3) (0.7, 0.8, 0.9)

Table 4 Tabular form of the NSS (G, B)

U b1 = coarse b2 = fine b3 = moderately coarse b4 = extra fine

h1 (0.7, 0.6, 0.8) (0.8, 0.6, 0.7) (0.6, 0.8, 0.5) (0.6, 0.7, 0.8)

h2 (0.8, 0.5, 0.6) (0.9, 0.6, 0.8) (0.7, 0.6, 0.8) (0.4, 0.3, 0.5)

h3 (0.7, 0.6, 0.8) (0.8, 0.4, 0.6) (0.6, 0.8, 0.8) (0.7, 0.4, 0.8)

h4 (0.6, 0.8, 0.4) (0.7, 0.5, 0.8) (0.7, 0.6, 0.7) (0.8, 0.5, 0.6)

h5 (0.7, 0.6, 0.8) (0.6, 0.8, 0.5) (0.6, 0.8, 0.8) (0.7, 0.6, 0.8)
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Table 5 Tabular form of the NSS (H, C)

U c1 = whitish c2 = reddish c3 = blackish

h1 (0.8, 0.6, 0.6) (0.6, 0.7, 0.9) (0.8, 0.9, 0.5)

h2 (0.7, 0.5, 0.8) (0.8, 0.6, 0.7) (0.6, 0.3, 0.8)

h3 (0.6, 0.4, 0.9) (0.5, 0.6, 0.8) (0.6, 0.6, 0.8)

h4 (0.9, 0.6, 0.5) (0.6, 0.8, 0.7) (0.7, 0.8, 0.9)

h5 (0.8, 0.5, 0.8) (0.7, 0.8, 0.5) (0.9, 0.6, 0.8)

Table 6 Tabular form of the NSS (K, R)

U e13 e23 e31 e24 e33

h1 (0.5, 0.6, 0.6) (0.6, 0.8, 0.7) (0.6, 0.5, 0.8) (0.6, 0.75, 0.8) (0.6, 0.6, 0.5)

h2 (0.6, 0.65, 0.8) (0.7, 0.65, 0.8) (0.7, 0.55, 0.8) (0.4, 0.50, 0.6) (0.7, 0.6, 0.8)

h3 (0.6, 0.5, 0.9) (0.5, 0.7, 0.8) (0.7, 0.7, 0.9) (0.5, 0.5, 0.8) (0.6, 0.8, 0.9)

h4 (0.7, 0.45, 0.7) (0.4, 0.45, 0.7) (0.6, 0.75, 0.4) (0.4, 0.4, 0.6) (0.6, 0.65, 0.7)

h5 (0.6, 0.75, 0.8) (0.6, 0.5, 0.8) (0.7, 0.7, 0.9) (0.7, 0.4, 0.8) (0.6, 0.8, 0.9)

We now compute the NSS (S, P) from the NSSs (K, R) and (H, C) for the specified
parameters P = {e13 ∧ c2, e23 ∧ c2, e31 ∧ c1, e33 ∧ c3}. Then the tabular form of the
NSS (S, P) is as in Table7.

Suppose the decision maker imposes the weights w1 = 0.8, w2 = 0.6, w3 =
0.3, w4 = 0.7 for the parameters p1 = e13 ∧ c2, p2 = e23 ∧ c2, p3 = e31 ∧ c1 and
p4 = e33 ∧ c3 respectively. Then the tabular form of the weighted NSS (S, Q) is as
in Table8.

Then the tabular form of the comparison matrix for the weighted NSS (S, Q) is
as in Table9.

Computing the score for each of the objects we have the scores as below.

U Score
h1 13
h2 11
h3 0
h4 16
h5 14

Clearly, the maximum score is 16 and is scored by the object h4. The selection
will be in favor of h4. In case the decision maker does not choose it then his next
choice will go for the object having the next score, i.e., 14. So his next choice will
be h5.
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Table 7 Tabular form of the NSS (S, P)

U e13 ∧ c2 e23 ∧ c2 e31 ∧ c1 e33 ∧ c3

h1 (0.5, 0.65, 0.9) (0.6, 0.75, 0.9) (0.6, 0.55, 0.8) (0.6, 0.75, 0.5)

h2 (0.6, 0.625, 0.8) (0.7, 0.625, 0.8) (0.7, 0.525, 0.8) (0.6, 0.45, 0.8)

h3 (0.5, 0.55, 0.9) (0.5, 0.65, 0.8) (0.6, 0.55, 0.9) (0.6, 0.7, 0.9)

h4 (0.6, 0.625, 0.7) (0.4, 0.625, 0.7) (0.6, 0.675, 0.5) (0.6, 0.725, 0.9)

h5 (0.6, 0.725, 0.8) (0.6, 0.65, 0.8) (0.7, 0.6, 0.9) (0.6, 0.7, 0.9)

Table 8 Tabular form of the weighted NSS (S, Q)

U p1, w1 = 0.8 p2, w2 = 0.6 p3, w3 = 0.3 p4, w4 = 0.7

h1 (0.4, 0.52, 0.72) (0.36, 0.45, 0.54) (0.18, 0.165, 0.24) (0.42, 0.525, 0.35)

h2 (0.48, 0.5, 0.64) (0.42, 0.375, 0.48) (0.21, 0.158, 0.24) (0.42, 0.315, 0.56)

h3 (0.40, 0.44, 0.72) (0.30, 0.39, 0.48) (0.18, 0.165, 0.27) (0.42, 0.49, 0.63)

h4 (0.48, 0.5, 0.56) (0.24, 0.375, 0.42) (0.18, 0.202, 0.15) (0.42, 0.508, 0.63)

h5 (0.48, 0.62, 0.64) (0.36, 0.39, 0.48) (0.21, 0.18, 0.27) (0.42, 0.49, 0.63)

Table 9 Tabular form of the comparison matrix of the weighted NSS (S, Q)

U p1, w1 = 0.8 p2, w2 = 0.6 p3, w3 = 0.3 p4, w4 = 0.7

h1 0 3 2 8

h2 4 2 2 3

h3 −3 1 0 2

h4 6 1 6 3

h5 6 3 3 2

5 Conclusion

Since its introduction the soft set theory has played an important role as a mathemat-
ical tool for dealing with problems involving uncertain, vague data. In this paper we
present an application of weighted neutrosophic soft set in object recognition prob-
lem. The recognition strategy is based on multiobserver input data set. We introduce
an algorithm to choose an appropriate object from a set of objects depending on some
specified parameters.
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Approximate Reasoning in Management
of Hypertension

Banibrata Mondal and Swapan Raha

Abstract In this paper, we propose a concrete application of similarity-based
approximate reasoning (SAR) to the management of hypertension. It is one of the
silent killer diseases that threatens the lives of millions of people in developed and
developingnations. Theneed to optimize themanagement of hypertensionusingSAR
may improve the medicine diagnostic support system. It diagnoses the possibility of
the disease and its severity. Systolic blood pressure (SBP), diastolic blood pressure
(DBP), age and body mass index (BMI) are taken as input parameters of the fuzzy
expert system and hypertension risk is the output parameter. SAR is the inference
mechanism. Based on the result obtained, fuzzy diagnosis resembles human decision
making with its ability to work using similarity-based approximate reasoning and
ultimately find a precise solution.

Keywords Similarity-based reasoning · Hypertension management

1 Introduction

Hypertension (HTN) or high blood pressure, sometimes called arterial hypertension,
is a chronic medical condition in which the blood pressure in the arteries is elevated.
This requires the heart to work harder than in normal conditions to circulate blood
through the blood vessels. Blood pressure is summarized by two measurements,
systolic and diastolic, which depend on whether the heart muscle is contracting (sys-
tole) or relaxed between beats (diastole). Normal blood pressure at rest is within the

This research has been partially supported by the UGC SAP (DRS) Phase-II programme of the
Department of Mathematics, Visva-Bharati. Authors appreciate UGC’s financial support.

B. Mondal (B) · S. Raha
Department of Mathematics, Visva-Bharati, Santiniketan 731235, West Bengal, India
e-mail: mbanibrata@gmail.com

S. Raha
e-mail: swapan.raha@visva-bharati.ac.in

© Springer India 2015
M.K. Chakraborty et al. (eds.), Facets of Uncertainties and Applications,
Springer Proceedings in Mathematics & Statistics 125,
DOI 10.1007/978-81-322-2301-6_17

225



226 B. Mondal and S. Raha

range of 100–140mmHg systolic (top reading) and 60–90mmHg diastolic (bottom
reading). High blood pressure is said to be present if it is persistently at or above
140/90mmHg. Hypertension is rarely accompanied by any symptoms and its iden-
tification is usually through screening or when seeking health care for an unrelated
problem. In people aged 18years or older, hypertension is defined as a systolic and/or
a diastolic blood pressure measurement consistently higher than an accepted normal
value (currently 139mmHg systolic, 89mmHg diastolic). Lower thresholds are used
(135mmHg systolic or 85mmHg diastolic) if measurements are derived from 24-h
ambulatory or home monitoring. Overweight and obese individuals are at increased
risk for many diseases and health conditions, including hypertension. BMI provides
a simple numeric measure of person’s thickness or thinness. A BMI of 18.5–25
may indicate optimal weight; a BMI lower than 18.5 suggests a person underweight
while a number above 25 may indicate the person is overweight. A number above
30 suggests the person is obese. It is calculated as given by

BMI = mass (kg)

[height (m)]2
.

These recommended distinctions along the linear scale may vary from age to age,
time to time, and country to country. Recent international hypertension guidelines
have also created categories below the hypertensive range to indicate a continuum
of risk with higher blood pressures in the normal range. Complication arising from
hypertension could lead to stroke or heart failure. Such complications may be caused
by improper diagnosis and/or improper management of the disease. The latter may
be due to inaccessibility to proper medical care at the time of need. One way to
deal with this problem is to build an intelligent decision support system which can
mimic the reasoning of medical experienced doctors in diagnosis of hypertension.
Fuzzy logic technology provides a simple way to arrive at a definite conclusion from
vague, ambiguous, imprecise, or noisy data (as found in medical data) using linguis-
tic variables that are not necessarily precise [1, 2]. Till date, many well-known expert
systems in medicine such as MYCIN—a computer-based medical consultation [3],
INTERNIST 1—a computer-based diagnostic consultant for general internal medi-
cine [4], CADIAG-2—Computer-Assisted Medical Diagnosis Using Fuzzy Subsets
[5], LDDS—A fuzzy rule-based lung diseases diagnostic system combining positive
and negative knowledge [6], MEDDIAG—aMedical Diagnostic Support System for
the Management of Hypertension [7], etc., have already been built and applied in
clinical applications. However, none can apply similarity in diagnostic systems to
make a conclusion.

In this paper, we take the knowledge base in terms of fuzzy IF-THEN rules in
MEDDIAG [7] and use the concept of similarity [8, 9] in approximate reasoning
(call it, SAR) as inference mechanism along with fuzzification and defuzzification
processes.

The study is aimed to design a medical diagnostic support system for the manage-
ment of hypertension. Its uses can assist medical experts in the tedious and compli-
cated task of diagnosing hypertension and the designed system can provide scheme
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that will assist medical personnel especially in rural areas, where there is shortage
of doctors, in the process of offering primary health care to the patients.

2 Fuzzy Logic and Hypertension

Fuzzy logic allows nonlinear input/output relationships to be expressed by a set of
qualitative IF-THEN rules. Behavior of many nonlinear processes may be expressed
in the form of a set of fuzzy rules. Such systems are mostly hand-crafted by human
experts to capture some desired input/output relationship that the expert has in mind.
However, often an expert cannot express his or her knowledge explicitly; and, for
many applications, an expert may not even exist. Hence, there is considerable interest
in being able to automatically extract fuzzy rules fromexperimental input/output data.
The key motivation for capturing data behavior in the form of fuzzy rules instead
of polynomials is that the fuzzy rules are easy to understand, verify, and extend. A
system designer can check the automatically extracted rules against intuition, check
the rules for completeness, and easily fine-tune or extend the system by editing the
rule base.

A fuzzy expert system is a form of artificial intelligence that uses a collection
of membership functions and rules to reason about data. Systolic blood pressure
(SBP), diastolic blood pressure (DBP), age, and body mass index (BMI) are taken as
input parameters and “hypertension risk” is the output parameter to the fuzzy expert
system.

The linguistic valuesMild, Moderate, Severe and Very Severe were used for SBP
and DBP, the linguistic values Young, Middle Age, Old and Very Old for AGE, and
Low, Normal, High and Very High for BMI.

The knowledge was elicited from the expert through interview and literature
search. The knowledge was represented in the system using the rule-based approach.
The fuzzy expert system underwent three transformational stages such as Fuzzifica-
tion, Rule base, and Defuzzification processes.

Membership functions of Input and output Parameters:

The various membership functions for both input and output parameters with their
linguistic values are shown in Figs. 1a, b and 2a, b (Fig. 3).

Fuzzification:

Fuzzification is a process that determines the degree of membership to the fuzzy
set based on fuzzy membership function. Given a fuzzy equivalence relation and a
crisp point “a” in the domain, we can define (generate) a fuzzy set about the point
“a.” This is called fuzzification and plays an important role in the design of fuzzy
systems. We show this fuzzification by the following algorithm.
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Fig. 1 Membership function for SBP and DBP. a Membership function for SBP. b Membership
function for DBP
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ALGORITHM: FUZZ-Fuzzification

Step 1. Given n fuzzy sets A1, A2, . . . , An defined over some universe of discourse
U and for u ∈ U ; μAi (u), i = 1, . . . , n are the corresponding membership degrees
of given fuzzy sets Ai .

Step 2. Construct a fuzzy equivalence relation E(u1, u2) from A1, A2, . . . , An on
U using

E(u1, u2) = 1 −
√

�i (μi (u1) − μi (u2))
2

n
, (1)

Step3.Set δ > 0.Define a fuzzy set about the pointa ∈ U from the fuzzy equivalence
relation E(u1, u2) by

μa(u1) = E(u1, a), a − δ ≤ u1 ≤ a + δ, δ > 0
= 0, otherwise.

Sample data collected from patients by some physical medical test shown in
Table1 are fuzzified into the fuzzy value range by the domain expert given in Table2.

Rule Base:

Rule Base is the nucleus of the fuzzy logic expert system. Rules are predefined and
evaluated by combining degrees of membership to form output strengths. The Rule
Base consists of a set of fuzzy propositions and is derived from knowledge base of
medical experts.A fuzzypropositionor a statement establishes a relationship between
different input and output fuzzy sets. Fuzzy Logic offers possibility to update the
knowledge base continuously and by this improves previous diagnosis. The fuzzy

Table 1 Sample data
collected from 5 patients

Sl SBP
(mmHg)

DBP
(mmHg)

BMI
(kg/m2)

AGE

1 70 60 35 28

2 78 30 30 55

3 68 110 41 36

4 90 47 30 57

5 66 80 47 65

Table 2 Fuzzification of
sample patient’s data

Sl SBP DBP BMI AGE

1 Mild Mild High Young

2 Moderate Mild Normal Middle

3 Mild Severe High Young

4 Moderate Moderate Normal Middle

5 Mild Severe Very high Old
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Table 3 Sample Rules for the proposed fuzzy expert system

Rule no. IF THEN

SBP DBP AGE BMI Hypertension
risk

1 Mild Severe Young Low Mild

2 Moderate Moderate Middle age Normal Mild

3 Severe Mild Old High Moderate

4 Severe Mild Very old Very high Moderate

5 Mild Mild Very old Normal Mild

6 Moderate Moderate Old Very high Moderate

7 Mild Severe Middle age High Severe

8 Moderate Mild Young Low Severe

9 Severe Mild Middle age Low Mild

10 Moderate Moderate Young Normal Moderate

11 Mild Severe Old High Moderate

12 Mild Severe Very old Very high Mild

13 Moderate Moderate Young Low Moderate

14 Severe Mild Middle age Normal Severe

15 Severe Mild Old Normal Severe

16 Moderate Moderate Very old Low Mild

17 Mild Severe Old Normal Mild

18 Mild Moderate Young High Severe

19 Severe Mild Middle age Very high Severe

20 Moderate Moderate Very old Normal Mild

rules for this research were developed with the assistance of domain experts (five
medical doctors) in the field of internal medicine, which was proposed in [7, 10].
Sample rules base for hypertension diagnosis is shown in Table3.

3 Implementation and System Performance

The process of drawing conclusion from exiting data is called inference. The fuzzy
inference mechanism employed in this research is the Similarity-based approximate
reasoning (SAR) proposed by us in [11]. The fuzzy inference engine uses the rules
in the knowledge base and derives conclusion base on the rules. A mathematical
formulation of the above information on medical diagnosis is provided as in the
following:

Let us consider a generalized model as presented in Table 4. This form of reason-
ing is used in many rule-based fuzzy systems. Let there be mn-linguistic variables
associated with another linguistic variable Y according to the following m-fuzzy
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Table 4 Applicable form of approximate reasoning

IF X11 is A11 and X12 is A12 · · · X1n is A1n THEN Y is B1

ELSE IF X21 is A21 and X22 is A22 · · · X2n is A2n THEN Y is B2

.

.

.
.
.
.

ELSE IF Xm1 is Am1 and Xm2 is Am2 · · · Xmn is Amn THEN Y is Bm

X1 is A1 and X2 is A2 · · · Xn is An

Conclusion Y is B

rules. The problem is to find the linguistic value of the variable Y as suggested by
the rules, when the values of some of the mn-variables are given.

The scheme proposed here, for computing the final conclusion, is based on a
measure of similarity. Themethod is based on rule-selection and then rule-execution.
In both cases,we use the concept of similarity between fuzzy sets as a basis of the task.
Let X1, X2, . . . , Xn corresponds to Xi1, Xi2, . . . , Xin of the i th fuzzy rule. Let there
be m such rules in the rule base satisfying the same. Now, the similarity between the
antecedent fuzzy set and the corresponding observed fuzzy set is computed, i.e., we
compute S(Ai j , Ai ); i = 1, 2, . . . ,m and perform the same operation for different
j = 1, 2, . . . , n. Let si j denote the different similarity values. Next, we compute the
overall rule matching index from the above data as

si = min
j

si j (2)

From among the m distinct rules, we choose those rules for which si > ε. This ε

can be interpreted as a threshold in our case. Then, we apply algorithm SAR-HTN
to generate a conclusion from each rule conformal for firing. Here, fewer rules are
fired and the output of each rule is significant.

ALGORITHM : SAR-HTN

Step 1. Compute si j = S(Ai j , Ai ) for i = 1, 2, . . . ,m; j = 1, 2, . . . , n and then si

according to Eq. (2).
Step 2. Set ε and find the rules conformal for firing.
Step 3. If si > ε go to Step 4.
Step 4. Translate i th rule, as obtained in Step 3 and compute the relation Ri using
any T-norm operator.
Step 5.Modify Ri to obtain R′

i by R
′
i = si → Ri where→ is an implication operator.

Step 6. Obtain B ′
i by B ′

i = proj R′
i .

Step 7. Compute B =
⋃

i

B ′
i .

Defuzzification:

The defuzzifier translates the output from the inference engine into crisp output. This
is due to the fact that the output from the inference engine is usually a fuzzy set, while
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Table 5 Hypertension risk of
sample patients

Sl Hypertension risk Crisp output %

1 Moderate 58

2 Mild 27

3 Moderate 63

4 Severe 70

5 Very severe 97

for most real life applications, crisp values are often required. The defuzzification
technique employed in this research is a specificity-based defuzzification method
[11]. B ′

k ,(1 ≤ k ≤ m)may be the output fuzzy sets on the universe V .The specificity
measure [12] of a fuzzy set B ′

k denoted by spk is defined as

spk =
∫ ᾱ

0

1

|(B ′
k)α|dα (3)

where ᾱ = max
v∈V μB′

k (v); (B
′
k)α = {v ∈ V |μB′

k (v) ≥ α} and |.| denote the cardinality.
Let there be l clipped fuzzy sets B(p)

k , p = 1, . . . , l and let {sp(p)
k , pk(p), p =

1, . . . , l} be the specificity associated with B(p)
k as well as the peak of B(p)

k . Then
defuzzified value will be given by

v∗ =

l∑

p=1

pk(p).sp(p)
k

l∑

p=1

sp(p)
k

. (4)

Result and Discussion:

Based on the Algorithm SAR-HTN, the hypertension risks of the sample of five
patients shown in Table2 are calculated. The result is given in the following Table5.

The computed value for hypertension risk for the first sample of patient’s data
is 58%. The crisp output of 58% shows that the patient has a moderate risk of
hypertension. Thus, the patient needs close monitoring and possible indication for
treatment of it.
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4 Conclusion

Our result, based on real patient data, confirms that the fuzzy logic expert system
can represent the expert’s thinking in a satisfactory manner in handling complex
tradeoffs. We have to work on more real data and have to update the rule base.
Comparison with other diagnostic system is yet to be done. In the end, we hope to
formulate a physical diagnostic support system to help the medical practitioner.
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The Hesitant Fuzzy Soft Set and Its
Application in Decision-Making

Sujit Das and Samarjit Kar

Abstract This article introduces the concept of hesitant fuzzy soft set (HFSS)
by combining Torra’s (2010) hesitant fuzzy set and Molodtsov’s (1999) soft set
theory. In order to handle uncertain and imprecise situation especially in medical
diagnosis hesitant fuzzy soft sets are found to bemore useful. This article investigates
a couple of distance measurements procedures and aggregation operators applicable
for HFSS. An algorithmic approach is proposed to solve multiple attribute decision-
making (MADM) problems using HFSS with the help of aggregation operators and
hesitant fuzzy soft matrix (HFSM). Finally, an illustrative example is presented to
analyze the proposed approach.

Keywords Hesitant fuzzy set · Soft set ·Hesitant fuzzy soft set ·Multiple attribute
decision making

1 Introduction

Zadeh initiated fuzzy set [1] in 1965 which started a new dimension to handle impre-
cise and uncertain information. Based on Zadeh’s fuzzy set several extensions and
generalizations were developed such as intuitionistic fuzzy set [2], type-2 fuzzy
set [3, 4], type-n fuzzy set [3], fuzzy multiset [5, 6], and hesitant fuzzy set [7,
8]. Many researchers have been contributed on the first four types of fuzzy sets.
But only a few contributions can be found in hesitant fuzzy sets (HFSs). Hesitant
fuzzy sets as generalization of fuzzy set were first introduced by Torra [7] and Torra
and Narukawa [8] which permits the membership having a set of possible values.
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They discussed the relationship between hesitant fuzzy set and intuitionistic fuzzy
set and showed that the envelope of hesitant fuzzy set is an intuitionistic fuzzy set.
They introduced the extension principle to apply it in decision-making and uncer-
tain situations. Since then, hesitant fuzzy set theory has been applied to several
practical problems, primarily in the area of decision-making. Xia and Xu [9] devel-
oped a series of aggregation operators for hesitant fuzzy information and applied to
multi-criteria decision-making (MCDM) problems with anonymity. Some ordered
aggregation operators and induced ordered aggregation operators based on Quasi
arithmetic were discussed byXia et al. [10]. Authors applied these operators in group
decision-making. Xu and Xia [11, 12] proposed a variety of distance measures for
hesitant fuzzy sets and discussed their properties and relations as their parameters
change. Wei et al. [13] developed two hesitant fuzzy Choquet integral aggregation
operators: hesitant fuzzy choquet ordered averaging (HFCOA) operator and hesitant
fuzzy choquet ordered geometric (HFCOG) operator and applied these operators to
multiple attribute decision-making (MADM) with hesitant fuzzy information. Wei
[14] developed some prioritized aggregation operators for aggregating hesitant fuzzy
information and applied them for hesitant fuzzy multiple attribute decision-making
problems inwhich the attributeswere in different priority level. Zhu et al. [15] defined
the hesitant fuzzy geometric Bonferroni mean (HFGBM). Gu et al. [16] investigated
the evaluation model for risk investment with hesitant fuzzy information and utilized
the hesitant fuzzy weighted averaging (HFWA) operator to aggregate the hesitant
fuzzy information.

In real world, decision-making with uncertain and vague information has been
found to be very much complex task as decision-makers experience and knowledge
might not be sufficient to deal with. Often decision-makers may hesitate to put their
opinions for some attributes with respect to the alternatives as they might suffer from
lack of skills or information in that domain. For example, when a board of medical
experts diagnose a patient for better treatment, this might be the case that opinions
of some experts are missing in some set of symptoms. Also opinions of different
experts may be found to be different for different symptoms. Some set of experts
may think a subset of symptoms is very much important for diagnosing the patient,
while others may be silent on those symptoms as they think other subset of symptoms
to be crucial for diagnosing purpose. Often decision-makers are keen to investigate
a subset of attributes rather than the entire set for evaluating the alternatives. This
kind of situation has led us to consider a variation of hesitant fuzzy set, i.e., hesitant
fuzzy soft set. Soft set theory was originally proposed by Molodtsov [17] as a gen-
eral mathematical tool for dealing with uncertainty in 1999. This theory has proven
useful in many different fields such as decision-making [18–22], data analysis [23],
forecasting [24], and simulation [25].

In this paper we extend the concept of hesitant fuzzy set with soft set to intro-
duce hesitant fuzzy soft set. Hesitant fuzzy soft sets are specifically useful in com-
plex and uncertain situations where one hesitate to forward his opinion due to
lack of experience or knowledge. HFSS is more flexible to represent a group of
decision-makers’ judgment in multiple attribute decision-making problems main-
taining anonymity using membership values. HFSS allows decision-makers to select
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a subset of attributes as per their own intuition in an unbiased manner. We have
developed hesitant fuzzy soft matrix (HFSM) to represent a hesitant fuzzy soft set.
Motivated by the distancemeasurements approach for hesitant fuzzy sets proposed by
Xu and Xia [11], we have investigated HFSS-based Hamming distance and Euclid-
ean distance measurements with necessary examples. This paper presents mainly
two types of aggregation operators such as Hesitant Fuzzy Soft Weighted Averag-
ing (HFSWA) Operator and Hesitant Fuzzy Soft Weighted Geometric (HFSWG)
Operator which we have used in the proposed multiple attribute decision-making
approach. The proposed approach simulates the membership values obtained from
different decision-makers on various attributes over a set of alternatives to yield a
ranking among the alternatives.

This paper is organized in five sections. Section2 provides the preliminaries and
useful definitions which sets the background for presenting the concepts. Section3
introduces the concept of hesitant fuzzy soft set. This section also investigates basic
distance measurements techniques, score functions, and aggregation operators based
on HFSS. Section4 presents the proposed approach to solve a multiple attribute
decision-making problem with an illustrative example. Finally, Sect. 5 concludes the
paper.

2 Preliminaries

This section recalls some preliminaries that are used throughout this work. Here we
briefly describe some basic concepts and operational laws related to hesitant fuzzy
sets and soft sets.

Definition 1 ([17]) Let U refers to an initial universe set, E is a set of parameters,
P(U ) is the power set of U , and A ⊂ E . A pair (F, A) is called a soft set over U ,
where F is a mapping given by F : A → P(U ). In other words, a soft set over U is
a mapping from parameters to P(U ), and it is not a set, but a parameterized family
of subsets of U . For any parameter e ∈ A, F(e) may be considered as the set of
e-approximate elements of the soft set (F, A).

Definition 2 ([21]) Suppose U and E are same as Definition 1. Let P̃(U ) denotes
the set of all fuzzy subsets of U , A pair

(
F̃, A

)
is called a fuzzy soft set (FSS) over

U , where F̃ is a mapping given by F̃ : A → P̃ (U ).

Definition 3 ([7, 8]) Let X be a fixed set, a HFS onX is defined in terms of a function
hM (x) that returns a subset of [0, 1] when it is applied to X. This can be represented
using the following mathematical expression: M = {< x, hM (x) > |x ∈ X} where
hM (x) is a set of values in [0, 1], denoting the possible membership degrees of the
element x ∈ X to the set M. For convenience Xia and Xu [9] called h = hM (x) a
hesitant fuzzy element (HFE) and H is the set of all HFEs.

It is noted that the number of values in different HFEs may be different. A HFE
hM (x)with k number of values can be defined as hkM (x)where k is a positive integer.
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Here the membership degree of an element for a set can be represented by several
possible values between 0 and 1. HFSs are mainly used in situations where one has
hesitation in giving his/her preferences over objects in a decision-making process.

Torra [7, 8] defined some operations onHFEs h1 and h2 which can be described as

(1) hc =
⋃

γ∈h {1 − γ }, (2) h1 ∪ h2 =
⋃

γ1∈h1,γ2∈h2
max{γ1, γ2},

(3) h1 ∩ h2 =
⋃

γ1∈h1,γ2∈h2
min{γ1, γ2}

Xia and Xu [9] defined some operations on the HFEs h, h1 and h2.

(1) hλ = ∪γ∈h{γ λ}, λ > 0, (2) λh = ∪γ∈h{1 − (1 − γ )λ}, λ > 0,
(3) h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{γ1 + γ2 − γ1γ2}, (4) h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{γ1γ2}.

Remark 1 A hesitant fuzzy element of dimension 1 is a Zadeh fuzzy set and a
hesitant fuzzy element of dimension 2 with h1M (x) + h2M (x) ≤ 1 is an Atanassov
intuitionistic fuzzy set.

Remark 2 If
k∑

i=1
hiM (x) ≤ 1,∀x ∈ X , then the HFE of dimension k is called a

normalized HFE.

Remark 3 If for the hesitant membership values {h1M (x), h2M (x), . . . , hkM (x)},
k∑

i=1
hiM (x) = l > 1,∀x ∈ X , then the membership values can be normalized as

1
l {(h1M (x), h2M (x), . . . , hkM (x)}.
Example 1 Let X = {x1, x2, x3} be a fixed set. hM (x1) = {0.2, 0.4, 0.5}, hM (x2) =
{0.3, 0.4}, and hM (x3) = {0.3, 0.2, 0.5, 0.6} be the HFEs of xi (i = 1, 2, 3) to
the set M. Then the hesitant fuzzy set M is given by M = {(x1, {0.2, 0.4, 0.5}),
(x2, {0.3, 0.4}), (x3, {0.3, 0.2, 0.5, 0.6})} and the corresponding normalized hesitant
fuzzy set is given by Mn = {(x1, {0.18, 0.36, 0.46}), (x2, {0.3, 0.4}), (x3, {0.19,
0.12, 0.32, 0.37})}
Remark 4 It is noticed that the number of values in different HFEs may be different.
Suppose that k be the number of elements in hkM (x), x ∈ X . To have a correct

comparison, two HFEs should have same length. If fewer elements are in hk1M1
(x)

than in hk2M2
(x) where k1< k2, then an extension of hk1M1

(x) should be considered

optimistically by repeating its final element until it has the same length with hk2M2
(x),

i.e., k1= k2.

Definition 4 ([9]) For a HFE h, s(h) = 1
#h

∑
γ∈h γ is called the score function of h,

where #h is the number of elements in h. For two HFEs h1 and h2 if s(h1) > s(h2),
then h1 > h2; if s(h1) = s(h2) then h1 = h2.
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Definition 5 ([11]) The score function of HFS M = {< x, hM (x) > |x ∈ X} is
given by

Score(M) = 1

n

n∑

i=1

(
1

k

∑

k

hkM (xi )

)

where n be the number of HFEs and k be the dimension of i th HFE in the HFS M .

Definition 6 ([9]) Let h j ( j = 1, 2, . . . , n) be a collection of HFEs. A hesitant fuzzy
weighted averaging (HFWA) operator is a mapping Hn → H such that

HFWA(h1, h2, . . . , hn) =
n∑

j=1

wjh j = ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧
⎨

⎩
1 −

n∏

j=1

(1−γ j )
wj

⎫
⎬

⎭

where w = (w1,w2, . . . ,wn)
T is the weight vector of h j ( j = 1, 2, . . . , n) with

wj ∈ [0, 1] and ∑n
j=1 wj = 1.

Definition 7 ([9]) Let h j ( j = 1, 2, . . . , n) be a collection of HFEs. A hesitant fuzzy
weighted geometric (HFWG) operator is a mapping Hn → H such that

HFWG(h1, h2, . . . , hn) =
n∏

j=1

h
wj
j = ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧
⎨

⎩

n∏

j=1

(γ j )
wj

⎫
⎬

⎭

where w = (w1,w2, . . . ,wn)
T is the weight vector of h j ( j = 1, 2, . . . , n) with

wj ∈ [0, 1] and ∑n
j=1 wj = 1.

3 Hesitant Fuzzy Soft Set with Distance Measurements,
Score Functions, and Aggregation Operators

This section describes hesitant fuzzy soft set, score functions, a couple of distance
measurement techniques and aggregation operators on hesitant fuzzy soft sets.

3.1 Hesitant Fuzzy Soft Set

Definition 8 Let H̃(X) be the set of all hesitant fuzzy sets of XwhereX is a fixed set.
Let E be a set of parameters and A ⊆ E . A hesitant fuzzy soft set over X is defined by
the set of ordered pairs (F̃A, E) where F̃A is a mapping given by, F̃A : E → H̃(X).
For any parameter e ∈ A, F̃(e) is a hesitant fuzzy subset of X andmay be considered
as e-elements or e-approximate elements in the HFSS. Clearly, F̃(e) can be written
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Table 1 Tabular representation of HFSM

e1 e2 · · · en

x1 hkM (x1, e1) hkM (x1, e2) · · · hkM (x1, en)

x2
.
.
.

xm

hkM (x2, e1)
.
.
.

hkM (xm , e1)

hkM (x2, e2)
.
.
.

hkM (xm , e2)

· · ·
. . .

· · ·

hkM (x2, en)
.
.
.

hkM (xm , en)

as a hesitant fuzzy set such that F̃(e) = {< x, hM (x) > |x ∈ X} where hM (x) is a
set of values in [0, 1].

Definition 9 HFSS set can be well represented by HFSM. If X = {x1, x2, . . . , xm}
and E = {e1, e2, . . . , en}, then HFSM could be defined as F = ( fi j )m×n, where
fi j = hkM (xi , e j ), i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Here k > 0 be the number of
values which may be different for different HFE. Table1 presents a HFSM.

Example 2 Let X be a set of three shirts, i.e., X = {x1, x2, x3}. Let E = {e1, e2, e3},
where e1 = bright, e2 = colorful, and e3 = light. Let ω = (F̃A, E) be the HFSS
over X defined as follows:

F̃A(x1, e1) = (0.6, 0.3, 0.7), F̃A(x1, e2) = (0.8, 0.7), F̃A(x1, e3) = (0.3, 0.5, 0.7),
F̃A(x2, e1) = (0.7, 0.8), F̃A(x2, e2) = (0.3, 0.7, 0.5), F̃A(x2, e3) = (0.9, 0.3),
F̃A(x3, e1) = (0.5, 0.6, 0.3), F̃A(x3, e2) = (0.4, 0.3), F̃A(x3, e3) = (0.1, 0.4).

Thus as per the Definition 9 we get the HFSM as follows:

[ai j ] =
⎡

⎣
(0.6, 0.3, 0.7) (0.8, 0.7) (0.3, 0.5, 0.7)
(0.7, 0.8) (0.3, 0.7, 0.5) (0.9, 0.3)
(0.5, 0.6, 0.3) (0.4, 0.3) (0.1, 0.4)

⎤

⎦

Then with the above representation, the HFSS (F̃A, E) is represented by the matrix
[ai j ]m×n and we can write (F̃A, E) = [ai j ]m×n . Let (F̃A, E) = [ai j ]m×n and
(G̃ A, E) = [bi j ]m×n be two hesitant fuzzy soft sets. Clearly (F̃A, E) = (G̃ A, E) if
and only if [ai j ]m×n = [bi j ]m×n .

3.2 Distance Measure Between Hesitant Fuzzy Soft Sets

Let ω = (F̃A, E) and � = (G̃ A, E) be two hesitant fuzzy soft sets over X, i.e.,
ω,� ∈ HFSS(X). Let ‘d’ be a mapping d : HFSS(X) × HFSS(X) → R+ ∪ {0}
(where R+ ∪ {0} denotes a set of nonnegative real numbers). It can be easily verified
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that distance d(ω,�) between hesitant fuzzy soft setsω and� satisfies the following
properties ((P1)–(P3)):

(P1) d(ω,�) ≥ 0; (P2) d(ω,�) = d(�,ω); (P3) d(ω,�) = 0 iff (ω = �).

Definition 10 Let ω = (F̃A, E) = [ai j ]m×n and � = (G̃ A, E) = [bi j ]m×n be two
HFSSs overX. Hamming distance dH

HFSS(ω,�) andEuclidean distance dE
HFSS(ω,�)

between ω and � are defined as follows:

dH
HFSS(ω,�) =

m∑

i=1

n∑

j=1

∑

k

|hk
F̃A

(xi , e j ) − hk
G̃ A

(xi , e j )|
k

dE
HFSS(ω,�) =

⎛

⎜
⎝

m∑

i=1

n∑

j=1

∑

k

{
hk
F̃A

(xi , e j ) − hk
G̃ A

(xi , e j )
}2

k

⎞

⎟
⎠

1
2

.

Definition 11 Normalized Hamming distance dnHHFSS(ω,�) and normalized Euclid-
ean distance dnEHFSS(ω,�) between ω and � can be defined as follows:

dnHHFSS(ω,�) = dH
HFSS(ω,�)

mn
, dnEHFSS(ω,�) = dE

HFSS(ω,�)

(mn)
1
2

Here it is easy to verify that the aforementioned distance satisfies the properties
of distance (i.e., (P1)–(P3)) and also the following properties:

0 ≤ dH
HFSS(ω,�) ≤ mn, 0 ≤ dnHHFSS(ω,�) ≤ 1, 0 ≤ dE

HFSS(ω,�) ≤ √
mn,

0 ≤ dnEHFSS(ω,�) ≤ 1.

Example 3 Assume that a hesitant fuzzy soft set ω = (F̃A, E) = [ai j ]3×3 is given
in Example 2. Another hesitant fuzzy soft set � = (G̃ A, E) = [bi j ]3×3 is given as
follows:

[bi j ] =
⎡

⎣
(0.7, 0.1) (0.4, 0.5, 0.4) (0.9, 0.1)
(0.5, 0.4, 0.2) (0.5, 0.6) (0.4, 0.2, 0.1)
(0.8, 0.1) (0.2, 0.3, 0.6) (0.3, 0.5, 0.1)

⎤

⎦

Then the various distance measurement results are given below.

dH
HFSS(ω,�) = 2.6, dnHHFSS(ω,�) = 0.29, dE

HFSS(ω,�) = 1.06,

dnEHFSS(ω,�) = 0.35.
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3.3 Score of HFSS

Definition 12 Score of a hesitant fuzzy soft set ω = (F̃A, E) can be defined by:

Score(ω) = 1

mn

m∑

i=1

n∑

j=1

(
1

k

∑

k

hkω(xi , e j )

)

, e ∈ E, x ∈ X.

Score of a parameter e ∈ E can be defined by:

Score{e}(ω) = 1

m

m∑

i=1

(
1

k

∑

k

hkω(xi , e)

)

, x ∈ X.

Example 4 For theHFSM [bi j ] (Example 3) score of the parameters E = {e1, e2, e3}
are defined by

Score{e1}(�) = 1

3

3∑

i=1

(
1

k

∑

k

hk� (xi , e1)

)

= 1

3

(
(0.7 + 0.1)

2
+ (0.5 + 0.4 + 0.2)

3
+ (0.8 + 0.1)

2

)

= 0.41,

Score{e2}(�) = 1

3

3∑

i=1

(
1

k

∑

k

hk� (xi , e2)

)

= 1

3

(
(0.4 + 0.5 + 0.4)

3
+ (0.5 + 0.6)

2
+ (0.2 + 0.3 + 0.6)

3

)

= 0.45,

Score{e3}(�) = 1

3

3∑

i=1

(
1

k

∑

k

hk� (xi , e3)

)

= 1

3

(
(0.9 + 0.1)

2
+ (0.4 + 0.2 + 0.1)

3
+ (0.3 + 0.5 + 0.1)

3

)

= 0.34.

3.4 Aggregation Operators in HFSS

Definition 13 Let h j ( j = 1, 2, . . . , n) be a collection of HFEs for attribute e ∈ E
and alternative x ∈ X. HFSWA operator is a mapping Hn → H such that
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HFSWA(h1, h2, . . . , hn)(xi , e j )

=
n∑

j=1

wjh j (xi , e j ) = ∪γ1∈h1,γ2∈h2,...,γn∈hn (xi , e j )

⎧
⎨

⎩
1 −

n∏

j=1

(1 − γ j )
wj

⎫
⎬

⎭
,∀i.

where k is the dimension of h j ,w = (w1,w2, . . . ,wn)
T is the weight vector of

h j ( j = 1, 2, . . . , n) with wj ∈ [0, 1] and ∑n
j=1 wj = 1.

Ifw = (1/n, 1/n, . . . , 1/n)T then the HFSWA operator reduces to hesitant fuzzy
soft averaging (HFSA) operator:

HFSA(h1, h2, . . . , hn)(xi , e j )

=
n∑

j=1

(
1

n
h j

)

(xi , e j ) = ∪γ1∈h1,γ2∈h2,...,γn∈hn (xi , e j )

⎧
⎨

⎩
1 −

n∏

j=1

(1 − γ j )
1/n

⎫
⎬

⎭
,∀i.

Definition 14 Let h j ( j = 1, 2, . . . , n) be a collection of HFEs for attribute e ∈ E
and alternative x ∈ X. HFSWG operator is a mapping Hn → H such that

HFSWG(h1, h2, . . . , hn)(xi , e j ) =
n∏

j=1

h
wj
j (xi , e j )

= ∪γ1∈h1,γ2∈h2,...,γn∈hn (xi , e j )

⎧
⎨

⎩

n∏

j=1

(γ j )
wj

⎫
⎬

⎭
,∀i.

where k is the dimension of h j ,w = (w1,w2, . . . ,wn)
T is the weight vector of

h j ( j = 1, 2, . . . , n) with wj ∈ [0, 1] and ∑n
j=1 wj = 1.

In the case where w = (1/n, 1/n, . . . , 1/n)T then the HFSWG operator reduces
to hesitant fuzzy soft geometric (HFSG) operator:

HFSG(h1, h2, . . . , hn)(xi , e j ) =
n∏

j=1

h1/nj (xi , e j )

= ∪γ1∈h1,γ2∈h2,...,γn∈hn (xi , e j )

⎧
⎨

⎩

n∏

j=1

(γ j )
1/n

⎫
⎬

⎭
,∀i.
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4 An Approach to Multiple Attribute Decision-Making with
Hesitant Fuzzy Soft Set

In some real-life problems, for example, to properly diagnose a patient, anonymity
is required in order to protect the decision-makers’ privacy or avoid influencing each
other. In this section, we utilize the hesitant soft aggregation operators to MADM
with HFSS. Let A = {A1, A2, . . . , Am} be a discrete set of alternatives, G =
{G1,G2, . . . ,Gn} be a set of attributes, andw = {w1,w2, . . . ,wn}T is the weighting
vector of the attribute G j { j = 1, 2, . . . , n}, where wj ∈ [0, 1],∑n

j=1 wj = 1.

Step 1. The decision-makers provide their evaluations about the alternative Ai under
the attribute G j denoted by the hesitant fuzzy elements hi j (i = 1, 2, . . . ,m; j =
1, 2, . . . , n) in terms of HFSM.
Step2. Aggregate all hesitant fuzzy values hi (i = 1, 2, . . . ,m) byusing the proposed
soft aggregation operators for the alternatives A = {A1, A2, . . . , Am}.

HFSWA(h1, h2, . . . , hn)(xi , e j )

=
n∑

j=1

wjh j (xi , e j ) = ∪γ1∈h1,γ2∈h2,...,γn∈hn (xi , e j )

⎧
⎨

⎩
1 −

n∏

j=1

(1 − γ j )
wj

⎫
⎬

⎭
,∀i.

HFSWG(h1, h2, . . . , hn)(xi , e j )

=
n∏

j=1

h
wj
j (xi , e j ) = ∪γ1∈h1,γ2∈h2,...,γn∈hn (xi , e j )

⎧
⎨

⎩

n∏

j=1

(γ j )
wj

⎫
⎬

⎭
,∀i.

Step 3. Calculate the score values s(hi ){i = 1, 2, . . . ,m} of hesitant fuzzy values
hi {i = 1, 2, . . . ,m} for the alternatives Ai {i = 1, 2, . . . ,m}.
Step4. Rank all the alternatives A = {A1, A2, . . . , Am} in accordancewith s(hi ){i =
1, 2, . . . ,m} to find out the priorities of those alternatives.

Example 5 A group of medical experts consisting of five members is empan-
elled to diagnose a patient. Suppose a set of four possible diseases (alternatives)
D = {D1, D2, D3, D4} are to be evaluated against a set of four common symptoms
(attributes) S = {S1, S2, S3, S4}. Opinions of all experts against each symptoms and
diseases are recorded using HFSS which is represented by HFSM (Table2). As opin-
ions of each expert might differ, one might ignore the importance of one or more
symptoms for a particular disease. As a result opinions of some experts may be miss-
ing for some symptoms as they are not interested or expertise in those symptoms. In
this example missing opinions of experts are marked by ‘--’. For example, if an HFE
is ( --, 0.3, 0.7, --, --), then opinions of expert 1, 4, and 5 are said to be missing and
expert 2 gives his opinion as 0.3, expert 3 gives the same as 0.7. This type of uncertain
situations can be well expressed in the framework of HFSS. In this example, Tables3
and 4 show the assigned weight vector, score values, and the corresponding ranking
of alternatives obtained, respectively, by applying HFSWA and HFSWG operator on
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Table 2 Hesitant fuzzy soft matrix as input

Diseases/
symptoms

S1 S2 S3 S4

D1 (0.3, 0.7, 0.5, --, --) (0.3, 0.1, 0.2, 0.5, --) (0.7, 0.6, 0.4, --, --) (0.5, 0.6, 0.7, --, --)

D2 (0.4,0.3,0.5, --, --) (0.1, 0.7, -- ,--, --) (0.3, 0.3, 0.4, 0.8, 0.3) (0.3, 0.7, 0.8, --, --)

D3 (0.7, 0.9, 0.3, 0.2, 0.1) (0.3, 0.2, 0.1, --, --) (0.8, 0.7, --, --, --) (0.6, 0.7, 0.6, --, --)

D4 (0.5, 0.4, 0.5, --, --) (0.5, 0.3, 0.5, 0.7,
0.6)

(0.7, 0.6, 0.7, --, --) (0.4, 0.3, --, --, --)

Table 3 Score values obtained by HFSWA operator and the rankings of alternatives

Weight vector D1 D2 D3 D4 Ranking

HFSWA {0.2, 0.3, 0.15, 0.35}T 0.5060 0.5193 0.5445 0.4893 D3 > D2 > D1 > D4

{0.35, 0.15, 0.3, 0.2}T 0.5290 0.4847 0.5981 0.5296 D3 > D4 > D1 > D2

{0.15, 0.2, 0.35, 0.3}T 0.5326 0.5118 0.6158 0.5343 D3 > D4 > D1 > D2

{0.3, 0.35, 0.2, 0.15}T 0.4788 0.4750 0.5202 0.5235 D4 > D3 > D1 > D2

Table 4 Score values obtained by HFSWG operator and the rankings of alternatives

Weight vector D1 D2 D3 D4 Ranking

HFSWG {0.2, 0.3, 0.15, 0.35}T 0.5635 0.6126 0.5538 0.6305 D4 > D2 > D1 > D3

{0.35, 0.15, 0.3, 0.2}T 0.6167 0.5491 0.5579 0.6665 D4 > D1 > D3 > D2

{0.15, 0.2, 0.35, 0.3}T 0.6055 0.5514 0.6263 0.6688 D4 > D3 > D1 > D2

{0.3, 0.35, 0.2, 0.15}T 0.5373 0.5824 0.5076 0.6205 D4 > D2 > D1 > D3

various set of weighting vector. Weighting vector is prepared by the relative experts
considering the importance of various symptoms for a particular disease. As per
our knowledge, importance of various symptoms might vary with various diseases,
so distinct set of weight values are assigned to the weight vector. Result shows the
ranking of diseases on various weighting vectors by combining the opinions of all
experts using soft aggregation operators.

5 Concluding Remarks

This paper has introduced the concept of HFSS by combining hesitant fuzzy set and
soft set theory. HFSS is capable of dealing with several membership values for a par-
ticular element andmainly useful in uncertain situations where decision-makers have
hesitation to express their opinions. This paper presents hesitant fuzzy soft matrix
to represent a hesitant fuzzy soft set. A set of distance measurements methods and
score functions based on HFSS are devised with numerical examples. This paper
has proposed a couple of aggregation operators in the context of HFSS and used
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them in MADM problems. Finally, an algorithmic approach is given to explore the
application of HFSS in multi-attribute decision-making problems. The validity of
the proposed approach has also been illustrated using a practical medical related
example. In future, researchers might use HFSS for group decision-making with
more imprecise and uncertain information. Researchers may also define the relation-
ship of soft sets with generalized approximation spaces introduced by Skowron and
Stepaniuk [26].
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On Fuzzy Ideal Cone Method to Capture
Entire Fuzzy Nondominated Set of Fuzzy
Multi-criteria Optimization Problems
with Fuzzy Parameters

Debdas Ghosh and Debjani Chakraborty

Abstract This paper deals with the computational aspect of the fuzzy ideal cone
method by Ghosh and Chakraborty, Fuzzy ideal cone: a method to obtain complete
fuzzy nondominated set of fuzzy multi-criteria optimization problems with fuzzy
parameters, In: The Proceedings of IEEE International Conference on Fuzzy Sys-
tems 2013, FUZZ IEEE 2013, IEEE Xplore, pp. 1–8 to generate the complete fuzzy
nondominated set of a fuzzy multi-criteria optimization problem. In order to formu-
late the decision feasible region, the concept of inverse points in fuzzy geometry is
used. Relation between the fuzzy decision feasible sets evaluated through the inverse
points and directly through the extension principle is reported. It is shown that under
a certain monotone condition both the decision feasible sets are identical. This result
can greatly reduce the computational cost of evaluating the decision feasible region.
After evaluating the decision feasible region, criteria feasible region is formulated
using the basic fuzzy geometrical ideas. An algorithmic implementation of the fuzzy
ideal cone method is presented to find the complete fuzzy nondominated set of the
fuzzy criteria feasible region.

Keywords Multiple criteria analysis · Fuzzy nondominated set · Fuzzy geometry ·
Fuzzy multi-criteria optimization

1 Introduction

In practice, criteria and constraints for decision-making problems in imprecise envi-
ronment may involve many parameters whose possible values are assigned by a
decision-maker (DM) which may be imprecisely or ambiguously known. Usually,
these ambiguous parameters are represented by fuzzy numerical values and more
appropriately by fuzzy numbers. The resulting fuzzy multi-criteria optimization
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problems (FMOPs) whose parameters are fuzzy may be appeared as more realis-
tic than the conventional multi-criteria optimization problems (MOPs).

A general model of a fuzzy multi-criteria optimization problem with fuzzy para-
meters is described by the following system [3]:

⎧
⎨

⎩

min f (x, c̃)
subject to g(x, ã) ≤̃ b̃,

x ∈ C ⊆ R
n
�,

(1)

where f (x, c̃) = ( f1(x, c̃1), f2(x, c̃2), …, fk(x, c̃k))t , k ≥ 2, g(x, ã) = (g1(x, ã1),
g2(x, ã2), …, gm(x, ãm))t , m ≥ 1, c̃ j = (̃c j1, c̃ j2, . . . , c̃ j p j )

t , j = 1, 2, . . . k, and
ãi = (̃ai1, ãi2, . . . , ãiqi )

t , i = 1, 2, . . .m; the parameters c̃ js and ãi t are fuzzy
numbers for each s = 1, 2, . . . , p j and t = 1, 2, . . . , qi . The notation R

n
� represents

nonnegative hyper-octant of Rn , i.e., Rn
� = {x ∈ R

n : x = (x1, x2, . . . , xn)t , xi ≥ 0

for all i = 1, 2, . . . , n}. Let us denote the fuzzy constraint set of (1) by X̃ , i.e., X̃ =
{x ∈ C : g(x, ã) ≤̃ b̃}.

Let us introduce the notation that will be used in the rest of this paper. We use the
notation Ã(α) to represent α-cut of the fuzzy set Ã. In particular, the support of Ã is
denoted by Ã(0) and the core or 1-cut of Ã is presented by Ã(1). The notation μ(.| Ã)

denotes membership function of the fuzzy set Ã. YN stands for the nondominated
set of Y ⊂ R

k with respect to the usual partial ordering in R
k . An LR-type fuzzy

number is denoted by (a/b/c)LR for some reference functions L and R.
In the FMOP (1), we assume that for each x in the fuzzy constraint set X̃ , f j (x, c̃)

and gi (x, ã) are continuous fuzzy numbers for all possible i and j and also for each
j ∈ {1, 2, . . . , k}, f j (x, c̃ j (1)) has minimum value ‘zero’ on X̃ (1).

In fuzzy optimization problem, a proper comparison of fuzzy number valued
objective functions, with regard to FMOPs, is not found yet. Many researchers
attempted to describe the concept of fuzzy dominance and fuzzy Pareto optimal-
ity. We have already reported a detailed overview on the fuzzy dominance concept
in our previous paper [3].

From the existing literature, we can notice that several fuzzy dominance relations
have been proposed for FMOPs. Methodologies proposed in the above-mentioned
various papers may give a particular solution or a part of fuzzy nondominated set. But
no research work is focused yet to obtain entire fuzzy nondominated set. Recently,
Ghosh and Chakraborty [3] proposed a technique to capture entire nondominated
set of FMOPs. However, in [3], we have used the extension principle directly. In
this paper, we will use the concept of inverse points of fuzzy geometry [1, 2] to
formulate decision and criteria feasible regions of the problem. We also focus on
the computational aspect of the proposed technique. Delineation of the paper is as
follows.

In the next section, the preliminaries are given which are used throughout the
paper. Formulations of fuzzy decision feasible region using inverse points are
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presented in Sect. 3. An algorithmic implementation of fuzzy ideal cone method
to obtain the complete fuzzy nondominated set of a FMOP is proposed in Sect. 4.
Lastly, a brief conclusion and a prospect of the future works are given in Sect. 5.

2 Preliminaries

Criteria feasible region Ỹ of FMOP (1) can be defined as (see [3])

Ỹ =
⋃

x∈X̃ (0)

f̂ (x, c̃). (2)

where f̂ (x0, c̃) is given by μ(y| f̂ (x0, c̃)) = min{μ(x0|X̃ ), μ(y| f (x0, c̃))},
andμ(y| f (x0, c̃))=min{μ(y1| f1(x0, c̃1)), μ(y2| f2(x0, c̃2)), . . . , μ(yk | fk(x0, c̃k))}.
Definition 1 (Fuzzy nondominated set [3]). Let us consider any x ∈ X̃ and c ∈ c̃.
If the fuzzy region Ỹ ∩ ( f (x, c) − R

k
�) is a normal fuzzy set with singleton core

{ f (x, c)}, then this intersection region may be said as a nondominated region of Ỹ .
Fuzzy nondominated set, ỸN say, of Ỹ may be defined by

ỸN =
⋃

x∈X̃ (0)
c∈c̃(0)

{Ỹ ∩ ( f (x, c) − R
k
�) : Ỹ ∩ ( f (x, c) − R

k
�) is a

normal fuzzy set with singleton core { f (x, c)}}.

Theorem 1 (See [3]) ỸN = ∪y∈Ỹ(1)N
(Ỹ ∩ (y − R

k
�)).

Definition 2 (Same and inverse points [2]). Let x , y be two numbers belonging to
the supports of the continuous fuzzy numbers ã and b̃, respectively. The numbers x
and y are said to be same points with respect to ã and b̃ if:

(i) μ(x |̃a) = μ(y |̃b), and
(ii) x ≤ a and y ≤ b, or x ≥ a and y ≥ b, where a, b are midpoints of ã(1), b̃(1),

respectively.

The numbers x and y are said to be inverse points with respect to ã and b̃ if x , −y
are same points with respect to ã and −b̃

Using the concept of inverse points, decision feasible region X̃ for the FMOP (1)
can be formulated as follows.
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3 Decision Feasible Set ˜X

Let us note that constraint of FMOP (1) reads as {x ∈ C : g(x, ã) ≤̃ b̃}. We observe
that g(x, ã) ≤̃ b̃ may be appeared to be equivalent to g(x, ã) − b̃ ≤̃ 0̃. Corresponding
to each x ∈ C , g(x, ã) is a fuzzy number. The substraction g(x, ã) − b̃ of fuzzy
numbers can be done by the concept of inverse points [2]. Thus, let us construct a
set Ω(α) corresponding to each α in [0, 1] as follows:

Ω(α) = {x ∈ C : g(x, a) − b ≤ 0, where g(x, a) and b are inverse

points with membership value α on g(x, ã) and b̃}.

Now let us define membership function of X̃ by

μ(x |X̃ ) = sup{α : x ∈ Ω(α)}. (3)

To obtain mathematical formulation of μ(.|X̃ ), one may need its constituent α-
cuts, i.e., X̃ (α) for each α ∈ [0, 1]. Here natural question may arise whether there
is any relation between X̃ (α) and Ω(α). Following theorem investigates the same.
Prior to the theorem let us give the following straightforward lemma which will be
useful to the theorem.

Lemma 1 For any 0 ≤ α1 ≤ α2 ≤ 1, the set Ω(α2) is a subset of Ω(α1).

Theorem 2 X̃ (α) = Ω(α) for all α in [0, 1].
Proof Similar to Theorem 1 of [3] and we skip the proof.

Let x1 ∈ C . As gi (xi , ãi ) is a fuzzy number, there exist two reference functions L1
and R1 where L1 is increasing and left continuous function and R1 is decreasing and
right continuous (see [4], p. 126) such that gi (x1, ãi ) = (gli (x1)/g

m
i (x1)/g

r
i (x1))L1R1 .

Similarly, for x2 ∈ C , x2 	= x1, there exist two reference functions L2 and R2
such that gi (x2, ãi ) = (gli (x2)/g

m
i (x2)/g

r
i (x2))L2R2 .

Apparently, L1 = L2 and R1 = R2 since formulation of reference functions
depends on reference functions of ãi and does not depend on the points in C . Let
gi (x, ãi ) = (gli (x)/g

m
i (x)/gri (x))LR . Indeed, left spread gmi (x) − gli (x) and right

spread gri (x) − gmi (x) vary point-to-point on C . We also note that gli (x), g
m
i (x) and

gri (x) functions, though seems to be dependent on x alone, but they implicitly depend
on the constants in ãi (0). Following formulation gives how to evaluate membership
value of any point lies in the support of gi (x, ãi ).

For each i = 1, 2, . . . ,m and x ∈ C , gi (x, ãi ) is evaluated in the following way:

μ(y|gi (x, ãi )) = sup
y=g(x,a)

π(c|̃c) where π(c|̃c) = min
j=1,2,...,qi

μ(c|̃ci j )
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Theorem 3 For each α ∈ [0, 1], let us define a set

Ω ′(α) = {x ∈ C : g(x, a) ≤ b, a ∈ ã(α), b ∈ b̃(α)}.

(1) In general Ω(α) is subset of Ω ′(α).
(2) Let for each i = 1, 2, . . .m, ãi (0) = [aLi , aiU ] and b̃(0) = [bL , bU ]. Let Li and

Ri be restrictions of μ(.|̃ai ) on [aLi , ã(1)] and [ãi (1), aUi ] respectively; Lm+1

and Rm+1 be restriction of μ(.|̃b) on [bL , b̃(1)] and [̃b(1), bU ] respectively. If
Li , Ri are continuous and strictly increasing functions and each component of
g is strictly increasing function,1 then Ω(α) = Ω ′(α).

Proof We will prove both the results for g to be a single function. When g is a vector
function, from the componentwise generalization we can prove the result.

(1) Let x0 ∈ Ω(α). Therefore, there exist a ∈ ã(0), b ∈ b̃(0) such that g(x0, a) ≤ b
where g(x, a) and b are inverse points with membership value α with regard
to g(x0, ã) and b̃. If possible let μ(a |̃a) < α. Then according to the evalua-
tion of membership function of g(x0, ã), we get μ(g(x0, a)|g(x0, ã)) < α. A
contradiction arises. This shows that x0 lies in Ω ′(α). Thus, Ω(α) ⊆ Ω ′(α).

(2) To prove Ω ′(α) ⊆ Ω(α), let us take any element x0 ∈ Ω ′(α). As x0 ∈ Ω ′(α),
there exist a0 = (a0

1 , a0
2 , . . . , a0

m)t ∈ (̃a1(α), ã2(α), . . . , ãm(α))t = ã(α), b0 ∈
b̃(α) such that g(x0, a0 ) ≤ b0.
Let

φ(a1, a2, . . . , am, b) = g(x0; a1, a2, . . . , am) − b.

As g is an strictly increasing function with respect to each ai and decreasing for
b. Suppose −b = am+1, −b̃ = ãm+1 and −b0 = −a0

m+1. Let

h(a1, a2, . . . , am, am+1) = φ(a1, a2, . . . , am,−am+1)

= g(x0, a1, a2, . . . , am) + am+1.

Then, h is strictly increasing function w.r.t. its each variable. Let k = h(a0
1 ,

a0
2 , . . . , a0

m+1) = g(x0, a0
1 , a0

2 , . . . , a0
m) + a0

m+1 = g(x0, a0) − b0. Therefore,
k ≤ 0.

Here two cases may arise:

(2.a) g(x0, a0) − b0 ≤ g(x0, ã(1)) − b̃(1) or
(2.b) g(x0, a0) − b0 > g(x0, ã(1)) − b̃(1).

(2.a) In this case, h(a0
1, a0

2 , . . . , a0
m+1) ≤ h(̃a1(1), ã2(1), . . . , ãm+1(1)). Let us

define ψ = h(L−1
1 , L−1

2 , . . . , L−1
m+1). As each L−1

i is continuous and strictly
increasing, so is ψ on its domain. Also ψ is one-to-one function.
Let β = ψ−1(k) and a∗

i = L−1
i (β), i = 1, 2, . . . ,m + 1.

1a function g(x1, x2, . . . , xn) is said to be strictly increasing when x1 > y1, x2 > y2, …, xn > yn
implies g(x1, x2, . . . , xn) > g(y1, y2, . . . , yn).
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Therefore, h(a∗
1 , a∗

2 , . . . , a∗
m+1) = ψ(β) = k = h(a0

1 , a0
2 , . . . , a0

m+1).
Moreover a∗

i ≤ ãi (1) and β = μ(k|h(̃a1, ã2, . . . , ãm+1)) ≥ α. Therefore
g(x0, a∗) ≤ g(x0, ã(1)) and b∗ ≥ b̃(1) where a∗ = (a∗

1 , a∗
2 , . . . , a∗

m). Also
μ(g(x0, a∗)|g(x0, ã)) = β = μ(b∗|̃b) ≥ α.
Thus g(x0, a∗) and b∗ are inverse points with membership value β on g(x0, ã)

and b̃, respectively. Again g(x0, a∗) − b∗ = k ≤ 0. Hence x0 lies in
Ω(β) ⊆ Ω(α).

(2.b) This case is similar to the case (2.a) with R1, R2, . . . , Rm+1 in place of
L1, L2, . . . , Lm+1.

Hence under the conditions stated in the theorem, we get Ω(α) = Ω ′(α).

Corollary 1 If constraint set X̃ of FMOP (1) is fuzzy linear inequality ã1x1+ã2x2+
· · · + ãnxn ≤̃ b̃ where x = (x1, x2, . . . , xn)t ∈ C ⊆ R

n
�, then

X̃ (α) = {x ∈ C : aα
1 x1 + aα

2 x2 + · · · + aα
n ≤ bα : whereaα

1 , aα
2 , . . . , aα

n and − bα

are same points with respect to ã1, ã2, . . . , ãnand − b̃}.

4 On Generation of Entire ˜YN : Fuzzy Ideal Cone Method

To obtain a nondominated point of Ỹ(1), according to fuzzy ideal cone method, one
must solve the following minimization problem [3] corresponding to a particular
β̂ ∈ S

k−1
� = S

k−1 ∩ R
k
� (here S

k−1 represents the unit ball in R
k):

⎧
⎪⎨

⎪⎩

min z

subject to zβ̂ � f (x, c̃(1)),

x ∈ X̃ (1).

(4)

Due to this method and Theorem 1,

ỸN =
⋃

y∈Ỹ(1)N

(Ỹ ∩ (y − R
k
�))

=
⋃

β̂∈S̄k−1
�

(Ỹ ∩ (zββ̂ − R
k
�)),

where zβ is ‘min z’ of (4) for β̂.
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Here let us note that Ỹ(0) can be computed from the union (refer to Sect. 2)

Ỹ =
⋃

x∈X̃ (0)

f̂ (x, c̃).

Corresponding to each β̂ ∈ S̄
k−1
� , the set Ỹ ∩ (zββ̂ − R

k
�) can be obtained by

restricting Ỹ on the set Aβ = {y ∈ Ỹ(0) : y � zββ̂}. Now if we take any y ∈ Aβ ,
then μ(y|Ỹ ∩ (zββ̂ − R

k
�)) = μ(y|Ỹ), since zββ̂ − R

k
� is a crisp set. For any

β̂ ∈ S̄
k−1
� , let us denote Ỹ ∩ (zββ̂ − R

k
�) as Ãβ . Obviously, membership function

of Ãβ is given by μ(y| Ãβ) = μ(y|Ỹ) when y in Aβ and ‘0’ otherwise. Thus, entire
ỸN can be obtained by

ỸN =
⋃

β̂∈S̄k−1
�

Ãβ.

4.1 Algorithmic Implementation of the Fuzzy
Ideal Cone Method

Let us note that any β̂ ∈ S
k−1 can be expressed by

(
cos φ1, cos φ2 sin φ1, cos φ3 sin φ2 sin φ1, . . . , cos φk−1

k−2∏

i=1

sin φi ,

k−1∏

i=1

sin φi

)
,

for φi ∈ [0, π
2 ], i = 1, 2, . . . , (k − 1). This is well known spherical discretization

technique. However, if we discretize each φi to equal number of subintervals, then
set of discretized points will be much congested near the point (1, 0, . . . , 0). Thus,
to get a uniform discretized points on S

k−1, let us attempt to divide φ1 by m number
of points and φi by round(m

∏i
l=1 sin φi ) number of points, for i = 2, 3, . . . , k−1.

Here round is the rounding function to the nearest integer.
Following Algorithm 1 provides a sequential procedure to obtain complete Pareto

set of a tri-criteria problem. In tri-criteria problem, we need to run 3 for loops for
each φi , i = 1, 2, 3. For k-criteria problem, we only have to run k for loops for each
φi , i = 1, 2, . . . , k.

In the next, an numerical example has been presented to elaborate the
methodology.
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Algorithm 1 Algorithm to generate the complete fuzzy nondominated set
Require: Given fuzzy MOP: ⎧

⎪⎪⎨

⎪⎪⎩

min f (x, c̃)

subject to g(x, ã)≤̃b̃,

x ∈ C ⊆ R
n
� .

Final output ỸN of the algorithm is the complete fuzzy nondominated set of the problem.
1: Initialize φ1, φ2, and φ3 to 0.
2: Initialize ỸN ← ∅.
3: Give m (total number of grid points for φ1)
4: for φ1 = 0 to π

2 with step length π
2m do

5: Find m2 = round(m sin φ1)

6: for φ2 = 0 to π
2 with step length π

2m2
do

7: Find β̂ = (cos φ1, cos φ2 sin φ1, sin φ2 sin φ1)

8: Find zβ which is solution of the following problem for β̂:

⎧
⎪⎨

⎪⎩

min z

subject to zβ̂ � f (x, c̃(1)),

x ∈ X̃ (1).

9: Find Ãβ = Ỹ ⋂
(zβ β̂ − R

3
�).

10: Set ỸN ← ỸN
⋃

Ãβ .
11: end for
12: end for

4.2 An Illustrative Example

Example 1 Let us consider the following fuzzy bi-criteria minimization problem:

min

(
f1
f2

)

=
(
x1 + (− 1

4/0/ 1
2 )

x2 + (− 1
4/0/ 1

2 )

)

subject to 4̃(x1 − 1)2 + 2̃(x2 − 1)2 ≤̃ 2̃,

− 1

2
≤ x1 ≤ 1,−1

2
≤ x2 ≤ 1,

where 2̃ = (1/2/3) and 4̃ = (2/4/6). Same points with respect to 4̃, 2̃ and −̃2 are

2 + 2α, 1 + α and − (3,−α) or 6 − 2α, 3 − α and − (1 + α).

Therefore according to decision feasible region construction through invere
points (Sect. 3), the set X̃ is given by
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X̃ =
∨

α∈[0,1]

{
{(x1, x2) ∈ [−1/2 , 1] × [−1/2 , 1] : (2 + 2α)(x1 − 1)2

+ (1 + α)(x2 − 1)2 ≤ 3 − α} ∪ {(x1, x2)∈[−1/2 , 1]
×[−1/2 , 1] : (6 − 2α)(x1 − 1)2+ (3 − α)(x2 − 1)2 ≤1 + α}

}

For each α ∈ [0, 1], α-cut of X̃ is determined by

X̃ (α)= Ω(α)=
{
(x1, x2)∈[−1/2 , 1]×[−1/2 , 1] : 2(x1 − 1)2+(x2 − 1)2 ≤ 3 − α

1 + α

}
.

For any (x1, x2) ∈ [−1/2 , 1] × [−1/2 , 1], closed form of membership function of
X̃ is as follows:

μ((x1, x2)|X̃ ) =

⎧
⎪⎨

⎪⎩

1 if 2(x1 − 1)2 + (x2 − 1)2 ≤ 1
4

1+2(x1−1)2+(x2−1)2 − 1 if 1 ≤ 2(x1 − 1)2 + (x2 − 1)2 ≤ 3

0 elsewhere.

The decision feasible region X̃ is depicted in Fig. 1. Any point on the part of ellipse
{(x1, x2) ∈ [−1/2 , 1] × [−1/2 , 1] : 2(x1 − 1)2 + (x2 − 1)2 ≤ 3−α

1+α
} has membership

value α on X̃ .
Corresponding to each point x = (x1, x2) ∈ X̃ (0), f (x0, c̃) determines a fuzzy

point with support [x1 + 1/4 , x1 + 1/2 ] × [x2 − 1/4 , x2 + 1/2 ].
For each α ∈ [0, 1], α-cut of f (x0, c̃) is given by

Fig. 1 Fuzzy decision
feasible region X̃ of the
Example 1
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Fig. 2 Criteria feasible
region Ỹ and nondominated
set ỸN of the Example 1
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f (x0, c̃)(α) =
[
x1 + α − 1

4
, x1 + 1 − α

2

]
×

[
x2 + α − 1

4
, x2 + 1 − α

2

]
= S(α) say.

Here corresponding to any (x1, x2) in X̃ (0) (with μ((x1, x2)|X̃ ) = γ say) the
fuzzy set f̂ ((x1, x2), c̃) is given by its α-cuts for each α in [0, 1] as follows:

f̂ ((x1, x2), c̃)(α) =
{
S(α) if α ∈ [0, γ ]
S(γ ) if α ∈ [γ, 1].

For example if we consider (x1, x2) = ( 1
5 , 1

2 ) ∈ X̃ (0), then μ(( 1
5 , 1

2 )|X̃ ) =
400
253 − 1 = 0.58 and for each α ∈ [0, 1]:

f̂ ((1/5 , 1/2 ), c̃)(α) =
{
S(α) if α ∈ [0, 0.58]
[0.1, 0.4] × [0.4, 0.7] if α ∈ [0.58, 1],

where S(α) = [ 5α−1
20 , 7−5α

10 ] × [ 1+α
4 , 2−α

2 ].
The union

⋃
x∈X̃ (0) f̂ ((x1, x2), c̃) determines the criteria feasible region Ỹ . Criteria

feasible region is shown in the Fig. 2.
We obtain from the proposed method on Ỹ(1) that
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Ỹ(1)N =
{
( f1, f2) ∈

[3

4
− 1√

2
,

3

2

]
×

[3

4
−√

3,
3

2

]
: ( f1 − 3

2 )2

( 3
4 + 1√

2
)2

+ ( f2 − 3
2 )2

( 7
4 )2

= 1
}

and S̄
1 = {β̂ = (cos θβ, sin θβ) : 0 ≤ θβ ≤ π

2 }. Entire nondominated set ỸN of
the considered problem is the fuzzy region, on the support of Ỹ , lying inside and
boundary of the region QN RSQ in the Fig. 2. For each α ∈ [0, 1], α-cut of ỸN is
the set

{
( f1, f2) ∈

[3

4
− 1√

2
,

3

2

]
×

[3

4
−√

3,
3

2

]
: ( f1 − 3

2 )2

( 3
4 +

√
3−α

2(1+α)
)2

+ ( f2 − 3
2 )2

( 3
4 +

√
3−α
1+α

)2
≤ 1

}
.

5 Discussion and Concluding Remarks

This paper deals with the computational aspect of the fuzzy ideal cone method [3] to
generate the complete fuzzy nondominated set of fuzzy multi-criteria optimization
problems. Concept of inverse points in fuzzy geometry is being used to formulate
decision feasible region. Relation between the fuzzy decision feasible sets evaluated
by inverse points and by extension principle has been presented. It is shown that
under a certain continuity and a monotone condition on the reference functions of
the fuzzy numbers gi (xi , ãi ) both the decision feasible sets are equal. This result
can greatly reduce computational cost to evaluate decision feasible region, since
direct use of extension principle uses only inverse points of gi (xi , ãi ) and bi , while
extension principle uses their all possible combinations to obtain fuzzy decisions
feasible region. An algorithmic implementation of the fuzzy ideal cone method is
presented to find complete fuzzy nondominated set of the fuzzy criteria feasible
region. Some more computational aspect of the fuzzy ideal cone method can be
obtained in our future research.

Practically, in any decision-making problem, available data sets are used to be
inherently imprecise. However, it turns out that solution is always crisp. Usually
from the available data set we fit the coefficients of the constraints. Thus, in the
considered FMOP (1), coefficients of the constraint set are taken as fuzzy. Again
as final decision for any decision-making process is always crisp, so we considered
the decision variables as crisp. For more analysis on the proposed method, future
research may be focused on the FMOPs with fuzzy variable.

To show effectiveness of the proposed method, sensitivity analysis must be an
issue. However, focus on this paper is to explore the computational aspect of the
fuzzy ideal cone method and thus we keep the sensitivity analysis as a future research.
However, on the prospect of the sensitivity analysis we note that the ideal cone
method is solely dependent on the core of the fuzzy decision feasible region (please
see Algorithm 1, Step 8) and not on the fuzzy information. Hence,
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(i) If the spreads of the coefficients are changed while keeping the cores fixed,
a fuzzy nondominated solution generated by the method will be still a fuzzy
nondominated solution if it is feasible. For instance, in the Example 1, proposed
method will give a reliable result up to any bounded increase of the constants.

(ii) If a fuzzy inequality is added, though it will reduce the feasible region, but
still a fuzzy nondominated solution generated by the method will be a fuzzy
nondominated solution if it is feasible.

(iii) If we add an extra criteria on the FMOP, though it will change the dimension
of the criteria feasible region, the generated fuzzy nondominated set for the
problem without the extra criteria will be a subpart of the fuzzy nondominated
set for the problem with the extra criteria.

Our detailed research on this sensitivity analysis may be obtained in the future.
Future research may also be done on the real-life applications of the proposed

method. Particularly, the procedure to acquire the fuzzy parameters, the scalability
issues, etc., can be highlighted.

For a numerical illustration of the proposed method, we have given the Example 1.
In the mentioned problem, question may arise that how an increase of the width of
the constants will effect the result and how far we can increase the width of the
fuzzy constants for reliable results. To answer the question we note that generation
of the fuzzy nondominated set depends on the core of the criteria feasible region Ỹ
(see Theorem 1). Thus if we increase the spreads of the constants, keeping the cores
fixed, the result will increase at its imprecise region and not at its core level. Also, a
generated nondominated region will be a superset of a nondominated region for the
problem without the increase on the coefficients.

We note that proposed method essentially depends on the core set Ỹ(1). If Ỹ(1) is
empty, then problem to obtain entire ỸN may be appeared as a challenging task and
proposed method cannot work. Future research work may be focused for this exten-
sion. Fuzzy dominance under general convex cone may also be focused in the future.
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A Bi-Objective Solid Transportation Model
Under Uncertain Environment

Amrit Das and Uttam Kumar Bera

Abstract In this paper, we study a solid transportation problem with uncertain cost
and uncertain time, where the supplies, the demands, the conveyance capacities
are regarded as uncertain in nature. For the first time we minimize the uncertain
transportation time. According to the inverse uncertainty distribution, the model
can be transformed into a deterministic form by taking expected value on objective
functions and confidence level on the constraint functions. We solve the uncertain
solid transportation problem by fuzzy programming technique and using the LINGO
13.0 software. Finally, this paper is illustrated by a numerical example on uncertain
solid transportation problem to show the application of the model.

Keywords Uncertain solid transportation problem ·Uncertain cost and time ·Fuzzy
programming technique.

1 Introduction

Transportation models are widely used in system distribution, job assignment, and
other problems. In traditional TP, there are usually two kinds of constraints to be
considered, namely, source constraint and destination constraint suggested by Balin-
ski [1] in (1961). But in real situation, besides of these two constraints we have to
deal with another constrain such as product type constraint or transportation mode
constraint. For that reason the traditional TP turns into the solid transportation prob-
lem (STP) where we deal with three types of constraints. So as a generalization
of the traditional TP, the STP was introduced by Haley [2] in 1962. Recently, the
STP obtained much attention and many models and algorithms under both crisp
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environment and uncertain environment have been investigated. For examples, Bit
et al. [3] presented the fuzzy programmingmodel for amulti-objective STP,Mahapa-
tra et al. [4] investigated amulti-objective stochastic transportation problem involving
log-normal, Kaufmann [5] studied two kinds of uncertain STP, that is, the supplies,
demands, and conveyance capacities are interval numbers and fuzzy numbers, respec-
tively. Sheng [6] and Pandian et al. [7] provided a new method to find an optimal
solution of the STP. More recently, Baidya et al. [8, 9] introduced safety measure in
solid transportation problem under different environment.

In reality, due to changes in market supply and demand, weather conditions,
road conditions and other uncertainty factors, uncertainty transportation problem
is particularly important. Therefore studying uncertainty in transportation problem
has both theoretical and practical significances. In order to construct model for STP
in uncertain environment, we shall first introduce some knowledge of uncertainty
theory. Uncertainty theory was founded by Liu [10] in 2007 and refined by Liu
[11–13] in 2009 and 2012 respectively, which is a branch of mathematics based
on normality, duality, subadditivity, and product axioms. Now, uncertainty theory
has become a mathematical tool to model the indeterminate phenomenon in our
real world. It has been developed to a fairly complete mathematical system [14]. So
manymodels had been developed bymany researchers in this area. Jimenez et al. [15]
investigated uncertain solid transportation problem in 1998. Yuhong Sheng and Kai
Yao studied a Transportation Model with Uncertain Costs and Demands in [16, 17].
Yuhong Sheng and Kai Yao presented Fixed Charge Transportation Problem and its
Uncertain ProgrammingModel in [18]. Cui and Sheng [19] also presented Uncertain
Programming Model for Solid Transportation Problem and so on. In this paper, the
STP is modeled based on uncertainty theory. In [20] Minimization of transportation
time is considered by Bhatia et al. under crisp environment.

In this paper, we solve a bi-objective solid transportation problem (BOSTP) with
uncertain cost and uncertain time, where the supplies, the demands, the conveyance
capacities are regarded as fuzzy in nature. One task of this paper is to find a trans-
portation plan such that the transportation cost and time are minimized. For the first
time we minimize the uncertain transportation time. According to the inverse uncer-
tainty distribution, the model can be transformed into a deterministic form by taking
expected value on objective functions and confidence level on the constraint func-
tions. We solve the uncertain solid transportation problem by fuzzy programming
technique and using the LINGO 13.0 software. Finally, this paper is illustrated by a
numerical example on uncertain solid transportation problem to show the application
of the model.
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1.1 Preliminaries

Uncertain Variable:
Definition (Liu [10]) An uncertain variable is a measurable function ξ from an

uncertainty space (�,L,M) to the set of real numbers, i.e., for any Borel set B of
real numbers, the set {ξ ∈ B} = {γ ∈ �|ξ(γ ) ∈ B} is an event.

Definition (Liu [10]) The uncertainty distribution � of an uncertain variable ξ

is defined by �(x) = M{ξ ≤ x} for any real number x .
Definition Anuncertainty distribution� is said to be regular if its inverse function

�−1(α) exists and is unique for each α ∈ (0, 1).
Definition Let ξ be an uncertain variable with regular uncertainty distribution �.

Then the inverse function �−1
ξ is called the inverse uncertainty distribution of ξ .

Example: The inverse uncertainty distribution of normal uncertain variable is

N (e, σ ) is �−1(α) = e + σ
√
3

π
ln α

1−α
.

Definition (Liu [10]) The uncertain variables, ξ1, ξ2, . . . , ξn are said to be inde-
pendent if M{⋂n

i=1(ξi ∈ Bi )} = ∧n
i=1M{(ξi ∈ Bi } for any Borel setsB1,B2, . . .,

Bn of real numbers.
Definition (Liu [10]) Let ξ be an uncertain variable. Then the expected value of

ξ is defined by E [ξ ] = ∫ +∞
0 M{ξ ≥ r}dr − ∫ 0

−∞ M{ξ ≤ r}dr , provided that at
least one of the two integrals is finite. Let ξ be uncertain variable with uncertainty
distribution �.

If the expected value exists, then E [ξ ] = ∫ 1
0 �−1(α)dα.

In fact, the expected value operator is linear.
Theorem 1 (Liu [10]) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with

uncertainty distributions �1,�2, . . . , �n , respectively. If f is a strictly increasing
function, then ξ = f (ξ1, ξ2, . . . , ξn) is an uncertain variable with inverse uncertainty
distribution 	−1(α) = f (�−1

1 (α),�−1
2 (α), . . . , �−1

n (α)).
Theorem 2 (Liu [10]) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with

uncertainty distributions �1,�2, . . . , �n , respectively. If f is a strictly decreasing
function, then ξ = f (ξ1, ξ2, . . . , ξn)is an uncertain variable with inverse uncertainty
distribution 	−1(α) = f (�−1

1 (1 − α),�−1
2 (1 − α), . . . , �−1

n (1 − α)).

2 Uncertain Solid Transportation Model Formulation

Let there arem sources, n destinations and k conveyances of the STP. The amount of
products in source i is denoted by ai , the minimal demand of products in destination
j is denoted by b j , the transportation capacities of conveyance k is denoted by
ek , the unit transportation cost is denoted by ξi jk, xi jk be the quantity, where i =
1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , k.

In order to model the above-mentioned uncertain solid transportation prob-

lem, the following notations are employed: yi jk =
{
1, i f xi jk > 0

0, otherwise
where i =

1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , k, respectively. This implies that, if the
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transportation activities are assigned from source i to destination j by k conveyance,
then the corresponding time will be occurring.

To describe the problems conveniently, we denote the cost objective function and
the time objective function of model in the following way,

f1(x, ξ) =
m∑

i=1

n∑

j=1

l∑

k=1

ξi jk xi jk

f2(x, t) =
m∑

i=1

n∑

j=1

l∑

k=1

ti jk y(xi jk)

where x, ξ, t denote the vectors consisting of xi jk, ξi jk, ti jk, i = 1, 2, . . . ,m, j =
1, 2, . . . , n, k = 1, 2, . . . , l respectively. Therefore model Bi-Objective Solid Trans-
portation Problem (BOSTP) can be stated as follows:

min =
m∑

i=1

n∑

j=1

l∑

k=1

ξi jk xi jk

min =
m∑

i=1

n∑

j=1

l∑

k=1

ti jk y(xi jk) (1)

subject to

n∑

j=1

l∑

k=1

xi jk ≤ ai , i = 1, 2, . . . ,m

m∑

i=1

n∑

j=1

xi jk ≥ b j , j = 1, 2, . . . , n

m∑

i=1

n∑

j=1

xi jk ≤ ek, k = 1, 2, . . . , l

xi jk ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , l.

But due to the complexity of the real world, we may always meet uncertain
phenomena in constructing mathematical model. For such condition, we generally
add the uncertain variables to the model. Hence, in this paper, we assume that the
unit cost, transportation time, the capacity of each source and that of each destination
are all uncertain variables and denoted by ξ̃i jk, t̃i jk, ãi , b̃ j , ẽk , respectively. Also we

assume that all the uncertain variables ãi , b̃ j , ẽk, ξ̃i jk , and t̃i jk are independent. Then
the bi-objective STP becomes uncertain bi-objective STP.
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The expected-constrained programming model is constructed by [10]. The main
idea of this model is to optimize the expected value of the objective function under
the chance constraints.

Definition (Liu [21]) Assume that f (x, ξ) is an objective function, and g j (x, ξ)

are constraints functions, j = 1, 2, . . . , k. A solution x is feasible if and only if
M{g j (x, ξ) ≤ 0} ≥ α j for j = 1, 2, . . . , n. A solution x∗ is an optimal solution to
the uncertain programming model if E[ f (x∗, ξ)] ≤ E[ f (x, ξ)] if for any feasible
solution x .

By taking the expected value criterion on the objective functions and confidence
level on the constraint functions, the above model turns into the following mathe-
matical model:

min E

[
m∑

i=1

n∑

j=1

l∑

k=1
ξ̃i jk xi jk

]

min E

[
m∑

i=1

n∑

j=1

l∑

k=1
t̃i jk xi jk

]

(2)

subject to

M
{

n∑

j=1

l∑

k=1
xi jk ≤ ãl

}

≤ αi , i = 1, 2, . . . ,m

M
{

m∑

i=1

l∑

k=1
xi jk ≥ b̃ j

}

≥ β j , j = 1, 2, . . . , n

M
{ m∑

i=1

n∑

j=1
xi jk ≤ ẽk

}

≤ γk, k = 1, 2, . . . , l

xi jk ≥ 0, ξi jk ≥ 0, ti jk ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , l.

whereαi , β j , γk are specified confidence levels for i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

k = 1, 2, . . . , l.The first constraint implies that total amount transported from source
should be no more than its supply capacity at the confidence level αi ; the second
constraint implies that the total amount transported from source i should satisfy the
requirement of destination j at the credibility level β j ; the third constraint states that
the total amount transported by conveyance k should be no more than its transporta-
tion capacity at the confidence level γk .

3 Crisp Equivalences of Models:

Since the proposed model have so many uncertain variables, to solve the models, we
have to convert the models into crisp equivalences of models. Here, we shall induce
the deterministic form for model taking advantage of some properties of expected
value and uncertain measure in uncertainty theory.
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Theorem 3 If ãi , b̃ j , ẽk, ξ̃i jk and t̃i jk , are independent uncertain variables with
uncertainty distributions�ãi ,�b̃ j

,�ẽk ,�ξ̃i jk
, and�t̃i jk , respectively, then model (2)

is equivalent to the following model

min
m∑

i=1

n∑

j=1

l∑

k=1

xi jk

∫ 1

0
�−1

ξi jk
(α)dα

min
m∑

i=1

n∑

j=1

l∑

k=1

y(xi jk )

∫ 1

0
�−1

ti jk (α)dα (3)

subject to

n∑

j=1

l∑

k=1

xi jk − �−1
ãl

(1 − αi ) ≤ 0, i = 1, 2, . . . ,m

�−1
b̃ j

(β j ) −
m∑

i=1

l∑

k=1

xi jk ≤ 0, j = 1, 2, . . . , n

m∑

i=1

n∑

j=1

xi jk − �−1
ẽk

(1 − γk) ≤ 0, k = 1, 2, . . . , l

xi jk ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , l.

Proof: Since ξ̃i jk, t̃i jk, ãl , b̃ j , ẽk are independent uncertain variables with uncer-
tainty distributions�ξi jk ,�ti jk ,�ãl ,�b̃ j

,�ẽk respectively.According to the linearity
of expected value operator, we have

E

[
m∑

i=1

n∑

j=1

l∑

k=1
ξ̃i jk xi jk

]

�
m∑

i=1

n∑

j=1

l∑

k=1

xi jk E [̃ξi jk]

where E [̃ξi jk] = ∫ 1
0 �−1

ξi jk
(α)dα, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k = 1, 2, . . . , l.

According to the Theorems 1 and 2, the constraints are converted as follows: the
first constraint of the model (2)

M
{

n∑

j=1

l∑

k=1
xi jk ≤ ãl

}

≥ αi , i = 1, 2, . . . ,m,

is equivalent to

n∑

j=1

l∑

k=1

xi jk − �−1
ãl

(1 − αi ) ≤ 0, i = 1, 2, . . . ,m. (4)
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the second constraint of the model (2)

M
{

m∑

i=1

l∑

k=1
xi jk ≥ b̃ j

}

≥ γ j j = 1, 2, . . . , n.

is equivalent to

�−1
b̃ j

(β j ) −
m∑

i=1

l∑

k=1

xi jk ≤ 0, j = 1, 2, . . . , n. (5)

and the third constraint of the model (2)

M
{ m∑

i=1

n∑

j=1
xi jk ≤ ẽk

}

≤ ηk, k = 1, 2, . . . , l

is equivalent to

m∑

i=1

n∑

j=1

xi jk − �−1
ẽk

(1 − γk) ≤ 0, k = 1, 2, . . . , l. (6)

the result follows from immediately. Assume that all uncertain variables are normal
uncertain variables,

ξ̃i jk and t̃i jk ∼ N (ei jk, σi jk), ãi ∼ N (ei , σi ), b̃ j ∼ N (e′
j , σ

′
j ), ẽk

∼ N (e′′
k , σ

′′
k )i = 1, . . . , 4, j = 1, . . . , 6, k = 1, 2,

4 Techniques to Solve a Crisp Bi-Objective
Linear/Nonlinear Problem:

To solve the transformed crisp forms of the model we used the fuzzy programming
technique, where we first find the lower bound as L p and the upper bound asUp for
the pth objective function Z p, p = 1, 2, . . . , P here Up is the highest acceptable
level of achievement for objective p, L p the aspired level of achievement for objective
p and dp = Up − L p the degradation allowance for objective p. When the aspiration
levels for each of the objective functions have been specified, a fuzzymodel is formed
and then the fuzzy model is converted into a crisp model. The solution of BOSTP
can be obtained by the following steps.

Step-1: Solve the BOSTP and as a single objective STP using each time only one
objective and ignore other objective and taking the constraints.

Step-2: From the results of step-1, determine the corresponding value for every
objective functions at each solution.
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Step-3: Find upper and lower bounds (i.e., Up and L p) for pth objective from
the two objective values derived in step-2. We construct a payoff matrix, according
to every objective w.r.t. each solution. The payoff matrix in the main program gives
the set of nondominated solution which should be in the following table:

Z1Z2Z3 . . . . . . Zp

x (1) Z11Z12Z13 · · · · · · Z1p

x (2) Z21Z22Z23 · · · · · · Z2p
· · · · ·
· · · · ·
x (p) Zp1Z p2Z p3 · · · · · · Zpp

where x (1), x (2), x (3), . . . . . . , x (p) is the ideal solution for the objective Z1, Z2, Z3,

. . . . . . , Z p respectively.
Let Zi j = Z j (xi ), i = 1, 2, . . . . . . , p and j = 1, 2 . . . . . . , p are the minimum

value (best) for each objective Zr , r = 1, 2, . . . p.
Step-4: To find the best (Lr ) and worst for each objectives corresponding to

the set of solution, i.e., Lr = Zrr and Ur = maxr≥1 {Z1r , Z2r , . . . . . . , Z pr }. For
simplicity, Zr ≤ Lr = 1, 2, 3, . . . . . . , p and constraints.

Step-5: Then the proposed model converted to the following crisp model:

Maximize λ

subject to, Zl + λ(Up − L p) ≤ Up, p = 1, 2, . . . , P

and the constraints (4)–(6) along with xi jk ≥ 0 ∀i, j, k and λ ≥ 0.

Fuzzy programming technique with exponential membership function (MF):

An exponential membership function is defined by

μE (Z p) =

⎧
⎪⎨

⎪⎩

1, if Z p ≥ L p

e−s	p (x)−e−s

1−e−s , if L p < Z p < Up

0 if Z p ≥ Up

(7)

where,	p(X) = (Z p−L p)

(Up−L p)
, p = 1, 2, . . . , P, S is a nonzero parameter prescribed by

the decision-maker.
Use of exponential MF will give the following equivalent crisp model:

Maximize λ

subject to, λ ≤ e−s	p(X)−e−s

1 − e−s
, p = 1, 2, . . . , P

and the constraints (4)–(6) along with xi jk ≥ 0 ∀i, j, k and λ ≥ 0.
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Fuzzy programming technique with hyperbolic membership function:

A hyperbolic membership function is defined by

⎧
⎪⎨

⎪⎩

1, if Z p ≤ L p
1
2
e{(Up+L p )/2−Z p (X)}αp−e−{(Up+L p )/2−Z p (X)}αp
e{(Up+L p )/2−Z p (X)}αp+e−{(Up+L p )/2−Z p (X)}αp + 1

2 , if L p < Z p < Up

0 if Z p ≥ Up

where αp = 6
(Up−L p)

Use of hyperbolic MF will give the following equivalent crisp model:

Maximize λ

subject to, λ ≤ 1

2

e{(Up+L p)/2−Z p(X)}αp − e−{(Up+L p)/2−Z p(X)}αp

e{(Up+L p)/2−Z p(X)}αp + e−{(Up+L p)/2−Z p(X)}αp

+ 1

2
p = 1, 2, . . . , P (8)

and the constraints (4)–(6) along with xi jk ≥ 0 ∀ i, j, k and λ ≥ 0.

5 Numerical Experiments

Suppose that there are four coal mines to supply the coal for six cities. During the
process of transportation, two kinds of conveyances are available to be selected, i.e.,
train and cargo ship. Now, the task for the decision-maker is to make the transporta-
tion plan for the next month in advance such that the transportation cost and the
transportation time is minimum. At the beginning of this task, the decision-maker
needs to obtain the basic data, such as supply capacity, demand, transportation cost
of unit product, transportation time, and so on. In fact, since the transportation plan
is made in advance, we generally cannot get these data exactly. For this condition,
the usual way is to obtain the uncertain data by means of experience evaluation or
expert advice and the corresponding uncertain data are as follows (Tables1 and 2):

5.1 Input Data

Then the model (3) is equivalent to the following model:

min
4∑

i=1

6∑

j=1

2∑

k=1

ei jk xi jk

min
4∑

i=1

6∑

j=1

2∑

k=1

mi jk xi jk
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Table 1 Unit objective parameters by different conveyances

1 2 3 4 5 6

1 Costs by
train

(16, 2) (16, 2) (16, 2) (15, 1.5) (16, 2) (6, 1.5) (ei j1, σi j1)

2 (6, 1) (7, 1.5) (3, 1.5) (16, 2) (16, 1.5) (16, 1.5)

3 (6, 1.5) (14, 1.5) (4, 1.5) (8, 1.5) (16, 1.5) (18, 1.5)

4 (17, 1.5) (10, 1.5) (14, 1.5) (8, 1.5) (9, 1.5) (18, 2)

1 Times by
train

(16, 1) (16, 1) (16, 1) (15, 0.75) (16, 1) (6, 0.75) (ei j1, σi j1)

2 (6, 0.5) (7, 0.75) (3, 0.75) (16, 1) (16, 0.75) (16, 0.75)

3 (6, 0.75) (14, 0.75) (4, 0.75) (8, 0.75) (16, 0.75) (18, 0.75)

4 (17, 0.75) (10, 0.75) (14, 0.75) (8, 0.75) (9, 0.75) (18, 1)

1 Costs by
ship

(30, 2) (30, 2) (30, 2) (29, 1.5) (30, 2) (20, 1.5) (ei j2, σi j2)

2 (10, 1) (21, 1.5) (17, 1.5) (30, 2) (30, 1.5) (30, 1.5)

3 (10, 1.5) (28, 1.5) (18, 1.5) (22, 1.5) (30, 1.5) (32, 1.5)

4 (31, 1.5) (24, 1.5) (28, 1.5) (22, 1.5) (23, 1.5) (32, 2)

1 Times by
ship

(30, 1) (30, 1) (30, 1) (29, 0.75) (30, 1) (20, 0.75) (ei j2, σi j2)

2 (10, 0.5) (21, 0.75) (17, 0.75) (30, 1) (30, 0.75) (30, 0.75)

3 (10, 0.75) (28, 0.75) (18, 0.75) (22, 0.75) (30, 0.75) (32, 0.75)

4 (31, 0.75) (24, 0.75) (28, 0.75) (22, 0.75) (23, 0.75) (32, 1)

Table 2 Supplies, demands, and conveyance capacities

1 2 3 4 5 6

Sources (25,1.5) (30,1.5) (32,2) (28,2) (ei , σi )

Demands (10,1.5) (14,1) (22,1) (18,1) (16,1) (12,1) (e′
j , σ

′
i )

Conveyance (40,1.5) (60,1) (e′′
k , σ

′′
k )

subject to:

6∑

j=1

2∑

k=1

xi jk −
[

ei + σi
√
3

π
In
1 − βi

βi

]

≤ 0, i = 1, 2, 3, 4

[

e′
j + σ ′

j

√
3

π
In

γi

1 − γ j

]

−
4∑

i=1

2∑

k=1

xi jk ≤ 0, j = 1, 2, 3, 4, 5, 6

4∑

i=1

6∑

j=1

xi jk −
[

e′′
k + σ ′′

k

√
3

π
In
1 − ηk

ηk

]

≤ 0, k = 1, 2

xi jk ≥ 0, i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5, 6, k = 1, 2.



A Bi-Objective Solid Transportation Model Under Uncertain Environment 271

Therefore with above input data the problem can be reformed as:

MinZ1 = 16x111 + 16x121 + 16x131 + 15x141 + 16x151 + 6x161 + 30x112
+ 30x122 + 30x132 + 29x142 + 30x152 + 20x162 + 6x211 + 7x221 + 3x231 + 16x241
+ 16x251 + 16x261 + 10x212 + 21x222 + 17x232 + 30x242 + 30x252 + 30x262
+ 6x311 + 14x321 + 4x331 + 8x341 + 16x351 + 18x361 + 10x312 + 28x322 + 18x332
+ 22x342 + 30x352 + 32x362 + 17x411 + 10x421+ 14x431+ 8x441 + 9x451 + 18x461
+ 31x412 + 24x422 + 28x432 + 22x442 + 23x452 + 32x462

MinZ2 = 18x111 + 18x121 + 18x131 + 17x141 + 18x151 + 8x161 + 38x112
+ 38x122+ 38x132 + 37x142 + 38x152 + 28x162 + 8x211 + 10x221 + 6x231+ 18x241
+ 18x251 + 18x261 + 18x212 + 29x222 + 25x232 + 38x242 + 38x252 + 38x262
+ 8x311+ 16x321 + 7x331 + 11x341 + 18x351 + 20x361 + 18x312 + 36x322+ 26x332
+ 30x342 + 38x352 + 40x362 + 20x411 + 13x421 + 16x431 + 11x441 + 12x451
+ 20x461 + 39x412 + 32x422 + 36x432 + 30x442 + 31x452 + 40x462 subject to

x111 + x121 + x131 + x141 + x151 + x161 + x112 + x122 + x132 + x142 + x152

+ x162 ≤ 25 + 1.5 × √
3

π
In

(
1 − 0.9

0.9

)

x211 + x221 + x231 + x241 + x251 + x261 + x212 + x222 + x232 + x242 + x252

+ x262 ≤ 30 + 1.5 × √
3

π
In

(
1 − 0.9

0.9

)

x311 + x321 + x331 + x341 + x351 + x361 + x312 + x322 + x332 + x342 + x352

+ x362 ≤ 32 + 1.5 × √
3

π
In

(
1 − 0.9

0.9

)

x411 + x421 + x431 + x441 + x451 + x461 + x412 + x422 + x432 + x442 + x452

+ x462 ≤ 28
1.5 × √

3

π
In

(
1 − 0.9

0.9

)

x111 + x211 + x311 + x411 + x112 + x212 + x312 + x412 ≥ 10

+ 1.5 × √
3

π
In

(
0.9

1 − 0.9

)

x121 + x221 + x321 + x421 + x122 + x222 + x322 + x422 ≥ 14
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+ 1 × √
3

π
In

(
0.9

1 − 0.9

)

x131 + x231 + x331 + x431 + x132 + x232 + x332 + x432 ≥ 22

+ 1 × √
3

π
In

(
0.9

1 − 0.9

)

x141 + x241 + x341 + x441 + x142 + x242 + x342 + x442 ≥ 18

+ 1 × √
3

π
In

(
0.9

1 − 0.9

)

x151 + x251 + x351 + x451 + x152 + x252 + x352 + x452 ≥ 16

+ 1 × √
3

π
In

(
0.9

1 − 0.9

)

x161 + x261 + x361 + x461 + x162 + x262 + x362 + x462 ≥ 12

+ 1 × √
3

π
In

(
0.9

1 − 0.9

)

x111 + x121 + x131 + x141 + x151 + x161 + x211 + x221 + x231 + x241 + x251
+ x261 + x311 + x321 + x331 + x341 + x351 + x361 + x411 + x421 + x431 + x441

+ x451 + x461 ≤ 40 + 1.5 × √
3

π
In

(
1 − 0.9

0.9

)

x112 + x122 + x132 + x142 + x152 + x162 + x212 + x222 + x232 + x242 + x252
+ x262 + x312 + x322 + x332 + x342 + x352 + x362 + x412 + x422 + x432 + x442

+ x452 + x462 ≤ 60 + 1 × √
3

π
In

(
1 − 0.9

0.9

)

For all i, j, k, xi jk ≥ 0;
Next to solve the problem we use the LINGO 13.0 software and the procedure for

that is discussed here.

Solution Methodologies:

Using the fuzzy programming technique first we find out the minimum and max-
imum values of the first objective function ignoring the second objective function.
Similarly we find the minimum and maximum values for the second objective func-
tion to form the payoff matrix as follows:

Z1 Z2

min 4106.792 4392.708

max 4184.332 4636.050
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Then we get, L1 = min (4106.792, 4184.332) = 4106.792, L2 = min (4392.708,
4636.050)= 4392.708, U1 =max (4106.792, 4184.332)= 4184.332 and U2 =max
(4392.708, 4636.050) = 4636.050.
If we use linear membership function, then crisp model can be presented as follows:

Max λ

subject to, Z2 + λ(U1 − L1) ≤ U1

Z1 + λ(U2 − L2) ≤ U2 0 ≤ λ ≤ 1.

and the constraints (4) to (6) along with xi jk ≥ 0 for all i, j, k.

Result with linear, exponential and hyperbolic membership functions

Using the linear MF, exponential MF given by (7) and hyperbolic membership func-
tions given by (8), respectively, and proceedings as before, we get the following
optimal results:

MF Optimal cost (Z1 ) Optimal time (Z2 ) xi jk λ

Linear MF 4128.53 4460.92 x122 = 2.41, x142 =
4.48, x162 = 16.29,
x222 = 6.56, x341 =
6.37, x312 = 23.21,
x441 = 8.37, x451 =
17.21, x221 = 6.24,
and all others xi jk
are zero

0.72

Exponential MF 4145.56 4440.1 x122 = 4.31, x142 =
1.26, x441 = 11.47,
x222 = 4.89, x341 =
6.48, x312 = 23.09,
x451 = 14.11,
x221 = 6.01, x152 =
3.10, x162 = 13.47,
x231 = 0.12 and all
others xi jk are zero

0.38

Hyperbolic MF 4145.56 4440.1 x122 = 4.31, x142 =
2.12, x162 = 13.93,
x222 = 9.38, x341 =
8.72, x312 = 20.85,
x441 = 8.37, x451 =
17.21, x221 =1.53,
x231 = 2.36 and
others xi jk are zero

0.50
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6 Conclusion

This paper mainly investigated a new uncertain cost and uncertain time solid trans-
portationproblembasedonuncertainty theory.As a result, a decisionmodel under cri-
teria was presented. The construction of expected-constrained programming model
was according to the idea of expected value of the objective under the chance con-
straints

In this paper, BOSTP under uncertain environment is solved by using fuzzy pro-
gramming technique with linear, exponential, and hyperbolic membership functions.
It has been found that for BOSTP under uncertain environment with multi-objective
functions the optimal solutions do not change if we use exponential and hyperbolic
membership functions but is different compared to if we use a linear membership
function. For the problem we find that the first objective functions, i.e., Z1 is mini-
mum with respect to the linear membership function and Z2 is minimum when the
membership function is nonlinear.
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A Food Web Population Model in
Deterministic and Stochastic Environment

D. Sadhukhan, B. Mondal and M. Maiti

Abstract This paper deals with the selective harvesting of two species from a food
chain model of three species, in which prey and predator obey the Gompertz law of
growth. Initially the dynamical behaviour of the system was studied under determin-
istic environment. In deterministic case, the local stability of the system was also
studied; we investigated the condition of global stability and the existence of the
bionomic equilibrium was examined. The optimal harvesting policy is studied with
the help of Pontryagin’s maximum principle. In the second part of the problem, we
investigated the stability condition of the system under stochastic environment. Then
a comparison is made between deterministic and stochastic cases.

Keywords Prey-predator-superpredator · Gompertz growth law · Optimal harvest-
ing · Wiener process · Stochastic stability

1 Introduction

Harvesting of multispecies food chain system especially in fisheries is an important
branch of study in modern day population biology. The pioneering work in this field
was first done by Clark [1]. Clark also worked on selective harvesting in a fish-
ery, consisting of two competitive species. Brauer and Soudack [2, 3], Myerscough
et al. [4], Dia and Tang [5], Xiao and Ruan [6], etc. also discussed the constant rate
of harvesting in population dynamics. Recently, Chaudhuri [7, 8], Kar and Chaud-
huri [9, 10] and Purohit and Chaudhuri [11] studied the combined harvesting of two
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competitive species and discussed the dynamics of optimization of the harvesting
policy.

In this type of study, Chaudhuri and SahaRay [12] developed a model in which
combined harvesting of prey and predator was discussed where some prey hide in
refuges. Dubey et al. [13], Kar [14], etc., studied harvesting of some prey–predator
systems by dividing the space into reserved and unreserved areas. There are also
some papers of harvesting of mature species by Kar and Matsuda [15], Kar and
Pahari [16] and Kar [17] and others by incorporating time delay.

With the improvement of the study in population dynamics, researchers have
investigated the effect of environmental fluctuation in the harvesting of species; this
phenomenon has been studied by Kar and Chaudhuri [18], Beddington and May
[19], May et al. [20], Ludwig [21], Reed [22], Hanson [23], etc. There are also some
harvesting models under random environment studied by Braumann [24], Turelli
[25], etc. Very few researchers have developed the harvesting phenomena in a food
chain model of three species [26, 27].

To our knowledge, almost in all food chain models of three species, no researcher
has considered the Gompertz law of growth. In our present work, we have considered
a food chain model of three species—prey, predator and super-predator considering
Gompertz growth law and harvesting is considered only on prey and predator as
we are not interested in the harvesting of super predator. In the deterministic case,
we found the local stability condition and also the global stability conditions by
selecting suitable Lyapunov function. Also, we discuss the optimal harvesting policy
using Pontryagin’s maximum principle. Again in the second part of the problem, we
investigated the stability conditions of the system under stochastic environment.

2 Notations

(i) x1, x2 and x3 are, respectively, the number of prey, predator and super-predator
at time t .

(ii) k1, k2 and k3 are respective environmental carrying capacities of prey, predator
and super predator.

(iii) r1, r2 and r3 are the intrinsic growth rates of prey, predator and super predator
respectively.

(iv) q1 and q2 are the respective catchability coefficients of prey and predator.
(v) E is the common catching effort.
(vi) α12 and α13 are predator response rates toward the prey and super-predator

respectively.
(vii) α23 super predator are the response rates toward the predator.
(viii) α21 and α31 are the rates of conversion of prey to predator and super-predator

respectively.
(ix) α32 is the rate of conversion of predator to super predator.
(x) α12,α13 andα23 are the predation coefficients.
(xi) α31,α32 and α21 are conversion parameters.
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(xii) C is the constant fishing cost per unit effort.
(xiii) p1 and p2 are constant price per unit biomass of first and second species respec-

tively.

3 Model Formulation

As ideal living conditions are normally prevailed in the initial stage, there should
be very rapid growth initially. Thereafter, as the population grows, the limitation of
resources forces the growth rate to decline and the population gradually approaches
the saturation level. Compared to logistic law, the Gompertz law exhibits faster early
growth, but a slower approach to the asymptote, with longer period of linear growth
about the point of inflexion.

When the fish population size becomes considerably large, it tends to maintain
stronger pressure on the newly produced biomass through cannibalism which is
more effective on larger egg- aggregates formed by overcrowding of eggs in large
fish populations. Also, there will be intraspecific competition amongst individuals in
the population for the use of limited resources available in the habitat. These effects,
coupled together, should retard the growth of the population to a large extent and as a
result, the population size should approach its asymptote rapidly as in the case of the
logistic model. These retarding effects are, however, counterbalanced to some extent
by group movement (cf. Sutinen [28]), which is a special behavioural characteristic
of a fish population. As a result, the approach of the population size to asymptote
is slowed down. This peculiar feature of faster early growth and slower approach to
the asymptote are reflected in the Gompertz law of growth (cf. Pradhan [29]).

Considering this advantage of Gompertz law of growth, in this section we develop
a general food chain model with selective harvesting, within which prey and predator
followGompertz lawof growth andharvesting is allowed for these prey andpredators.
But we have not considered the harvesting for super-predator, as in many coastal
areas, super-predators such as shark and whale harvesting are banned.

The governing equations describing the system are as follows:

dx1
dt = r1x1 ln

k1
x1

− α12x1x2 − α13x1x3 − q1Ex1

dx2
dt = r2x2 ln

k2
x2

+ α21x1x2 − α23x2x3 − q2Ex2

dx3
dt = r3x3 + α31x1x3 + α32x2x3 − x23

(1)

where 0 ≤ x1 ≤ k1, 0 ≤ x2 ≤ k2, 0 ≤ x3 ≤ k3., andα12,α13,α21,α23,α31 andα32
are positive constants. The catch rate functions q1Ex1 and q2Ex2 are based on CPUE
(CATCH-PER-UNIT EFFORT).
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4 The Steady States and Stability Analysis of the System

4.1 The Steady States

The steady states of the above system (1) are obtained solving the equations. The
possible states, i.e. pointsmay be assumed as: P0(0, 0, 0), P1(0, x21, x31), P2(x12, 0,
x32), P3(x13, x23, 0), P4(0, 0, x34), P5(0, x25, 0), P6(x16, 0, 0), P7(x∗

1 , x
∗
2 , x

∗
3 ).

The nontrivial steady state P7(x∗
1 , x

∗
2 , x

∗
3 ), is given by

dx1
dt = dx2

dt = dx3
dt = 0 and

is obtained by solving the following equations simultaneously:

λ1 ln
K1

x1
− α12x2 − α13x3 − q1E = 0 (2)

λ2 ln
K2

x2
+ α21x1 − α23x3 − q2E = 0 (3)

r3 + α31x1 + α32x2 − x3 = 0 (4)

Now to get the nontrivial steady state P7(x∗
1 , x

∗
2 , x

∗
3 ) for a given set of parametric

values, we have from Eqs. (2) and (3)

r1 ln
K1
x1

− α12x2 − α13x3

q1
= r2 ln

K2
x2

+ α21x1 − α23x3

q2
(5)

Therefore the biological steady state P7(x∗
1 , x

∗
2 , x

∗
3 ) must satisfy the biological equi-

librium path (4) and (5).

4.2 Local Stability

The variational matrix V (x1, x2, x3) is given as

V (x1, x2, x3) =

⎡

⎢
⎢
⎢
⎢
⎣

V11 V12 V13

V21 V22 V23

V31 V32 V33

⎤

⎥
⎥
⎥
⎥
⎦

(6)
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where

V11 = r1 ln
k1
x1

− r1 − α12x2 − α13x3 − q1E,

V22 = r2 log
k2
x2

− r2 + α21x1 − α23x3 − q2E,

V33 = r3 + α31x1 + α32x2 − 2x3,

V12 = −α12x1, V13 = −α13x1,

V23 = −α23x2, V21 = α21x2,

V31 = α31x3 and V32 = α32x3

(7)

For the point P3: The characteristic equation for V (x13, x23, 0) is given as

[μ − (r3 + α31x13 + α32x23)]
[
μ2 + (r1 + r2) μ + (r1r2 + α12α21x13x23)

]
= 0

One of the eigenvalues of the variational matrix V (x13, x23, 0) is r3 + α31x13 +
α32x23 (> 0). So, the system is unstable at P3 (x13, x23, 0).

For the point P7: The characteristic equation forV
(
x∗
1 , x

∗
2 , x

∗
3

)
is given by

μ3 + a′
1μ

2 + a′
2μ + a′

3 = 0
where,a′

1 = r1 + r2 + x∗
3 ,

a′
2 = (

r1r2 + α12α21x∗
1 x

∗
2

) + (
r2x∗

3 + α23α32x∗
2 x

∗
3

) + (
r1x∗

3 + α13α31x∗
1 x

∗
3

)

and
a′
3 = r1r2x∗

3 + r1α23α32x∗
2 x

∗
3 + x∗

3α12α21x∗
1 x

∗
2 + r2α13α31x∗

1 x
∗
3−α12α23α31x∗

1 x
∗
2 x

∗
3 + α13α21α32x∗

1 x
∗
2 x

∗
3

Therefore as a′
1 > 0, so by Routh-Hurwitz condition, P7 will be stable if∣

∣
∣
∣
a′
1 a′

3
1 a′

2

∣
∣
∣
∣ > 0.

4.3 Global Stability

In this section we prove the global stability of the governing system by constructing
a suitable Lyapunov function.

Theorem 1 The interior equilibrium point P7 is globally asymptotically stable if

(α21 − α12)
2 < r1r2

(x1−x∗
1)(x2−x∗

2)
ln x1

x∗
1
ln x2

x∗
2
,

(α31 − α13)
2 < r1

(x1−x∗
1)

ln x1
x∗
1

and

(α32 − α23)
2 < r2

(x2−x∗
2)

ln x2
x∗
2
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Proof Let us consider a Lyapunov function

L (x1, x2, x3) = (
x1 − x∗

1

) − x∗
1 ln

x1
x∗
1

+ (
x2 − x∗

2

) − x∗
2 ln

x2
x∗
2

+ (
x3 − x∗

3

) − x∗
3 ln

x3
x∗
3

(8)

Obviously, L (x1, x2, x3) is positive definite and continuous ∀x1, x2, x3 > 0

dL

dt
=

∑ ∂L

∂xi

dxi
dt

= ∂L

∂x1

dx1
dt

+ ∂L

∂x2

dx2
dt

+ ∂L

∂x3

dx3
dt

(9)

After simplification, we have

dL
dt = − 1

2b11
(
x1 − x∗

1

)2 + b12
(
x1 − x∗

1

) (
x2 − x∗

2

) − 1
2b22

(
x2 − x∗

2

)2

− 1
2b11

(
x1 − x∗

1

)2 + b13
(
x1 − x∗

1

) (
x3 − x∗

3

) − 1
2b33

(
x3 − x∗

3

)2

− 1
2b22

(
x2 − x∗

2

)2 + b23
(
x2 − x∗

2

) (
x3 − x∗

3

) − 1
2b33

(
x3 − x∗

3

)2

where,

b11 = r1
(x1−x∗

1)
ln x1

x∗
1
, b22 = r2

(x2−x∗
2)

ln x2
x∗
2
, b33 = 1,

b12 = α21 − α12, b23 = α32 − α23, b13 = α31 − α13

Therefore the system will be globally asymptotic stable if

b212 < b11b22, b
2
13 < b11b33 and b223 < b22b33 (10)

Hence the result.

5 Bioeconomic Equilibrium

The term bionomic(bioeconomic) equilibrium is an amalgamation of the concept of
biological equilibrium as well as economic equilibrium. As already said, a biological
equilibrium is given by ẋ1 = 0, ẋ2 = 0, ẋ3 = 0. The economic equilibrium is said to
be achieved when TR (the total revenue obtained by selling the harvested biomass)
equals TC (the total cost for the effort devoted to harvesting).
The economic rent (net revenue) at any time is given by

π (x1, x2, x3, E) = (p1q1x1 + p2q2x2 − C) E (11)

Therefore the economic equilibrium will follow the path given by the equation

p1q1x1 + p2q2x2 − C = 0 (12)
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We treat Eq. (12) as an economic equilibrium path. The bionomic equilibrium point
(x1b, x2b, x3b) is the solution of Eqs. (4) and (5) together with Eq. (12) for any given
E and other values of the parameters.

6 Optimal Harvesting Policy

In this section, the present value J of continuous time-stream of revenues is given by

J =
∞∫

0

e−δtπ (x1, x2, x3, E, t) dt (13)

whereπ (x1, x2, x3, E, t) = (p1q1x1 + p2q2x2 − C)E and δ denotes the annual dis-
count rate. Now we have to maximize J subject to the system of Eq. (1) by Pontrya-
gin’s Maximal Principle [1]. The control variable E(t) is subjected to the constraints
0 ≤ E(t) ≤ Emax so that Vt = [0, Emax] is the control set and Emax is a feasible
upper limit for the harvesting effort.

The Hamiltonian for the problem is given as

H = e−δ1t (p1q1x1 + p2q2x2 − c) E

+ μ1 (t)
[
r1x1 ln

k1
x1

− α12x1x2 − α13x1x3 − q1Ex1
]

+ μ2 (t)
[
r2x2 ln

k2
x2

+ α21x1x2 − α23x2x3 − q2Ex2
]

+ μ3 (t)
[
r3x3 + α31x1x3 + α32x2x3 − x23

]

(14)

The adjoint equations are

dμ1

dt
= −∂H

∂x1
,
dμ2

dt
= −∂H

∂x2
,
dμ3

dt
= −∂H

∂x3
(15)

Therefore,

dμ1
dt = r1μ1 − μ2α21x2 − μ3α31x3 − p1q1Ee−δ1t

dμ2
dt = μ1α12x1 + r2μ2 − μ3α32x3 − p2q2Ee−δ1t

dμ3
dt = μ1α13x1 + μ2α23x2 + x3μ3

(16)
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The solution of the above system of linear differential equations is given as

μ1 = A1e
m1t + A2e

m2t + A3e
m3t + M1

N
e−δt (17)

where m1,m2 and m3 are the roots of the cubic equation

a0m
3 + a1m

2 + a2m + a3 = 0 (18)

with,

a0 = 1 (19)

a1 = −(r1 + r2 + x3) (20)

a2 = (r1r2 + α12α21x1x2) + (r2x3 + α23α32x2x3) + (r1x3 + α13α31x1x3) (21)

a3 = −(r1r2x3 + r1α23α32x2x3 + x3α12α21x1x2 + r2α13α31x1x3
−α12α23α31x1x2x3 + α13α21α32x1x2x3)

(22)

μ1 is bounded if mi < 0, i = 1, 2, 3 or At
i = 0.

The Hurwitz matrix is
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 1 0

a3 a2 a1

0 0 a3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and �1 = a1,�2 = a1a2 − a3,�3 = a3 (a1a2 − a3) (23)

Therefore, the roots of the cubic equation are real negative or complex conjugate
having negative real parts iff�1,�2,�3 are all greater than zero.

But�1 < 0, so it is difficult to check whethermi < 0, therefore we take Ai = 0.
Then

μ1 (t) = M1

N
e−δt (24)

By similar process we get

μ2 (t) = M2

N
e−δt (25)
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and

μ3 (t) = M3

N
e−δt (26)

where,

M1 = −E

⎡

⎣
p1q1

{
δ21 + δ1 (r2 + x3) + r2x3 + α23α32x2x3

}

+ p2q2 {α21x2δ1 + α21x2x3 − α31α23}

⎤

⎦ (27)

M2 = −E

⎡

⎣
p2q2

{
δ21 + δ1 (r1x3) + r1x3 + α13α31x1x3

}

+ p1q1 {α12x1δ1 − α12x1x3 − α13α32}

⎤

⎦ (28)

M3 = −E [p1q1 {−α13x1δ1 + α13x1r2 + α12α23}] (29)

and

N = −
(
a0δ

3 − a1δ
2 + a2δ − a3

)
�= 0 (30)

We find that the shadow pricesμi (t) eRL t , i = 1, 2, 3. of the three species remain
bounded as t → ∞ and hence satisfy the transversality condition at ∞.

The Hamiltonian must be maximized for E ∈ [0, Emax] . Assuming that the con-
trol constraints 0 ≤ E ≤ Emax are not binding (that is, the optimal equilibrium does
not occur either at (E=0 or,E = Emax), so we consider the singular control.

Therefore,

∂H
∂E = e−δt (p1q1x1 + p2q2x2 − C) − μ1q1x1 − μ2q2x2 = 0 (31)

or,

e−δt dπ

dE
= μ1q1x1 + μ2q2x2 (32)

As we know from (11) that,

dπ

dE
= (p1q1x1 + p2q2x2 − C) (33)

This Eq. (33) indicates that the total user cost of harvest per unit effort must be equal
to the discounted value of the future profit at the steady-state effort level [1].
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Now from (28) and (30),we get

e−δt (p1q1x1 + p2q2x2 − C) = μ1q1x1 + μ2q2x2 (34)

Substituting the values ofμ1 andμ2, Eq. (34) reduces to

(

p1 − M1

N

)

q1x +
(

p2 − M2

N

)

q2y = C (35)

The above Eq. (35) together with Eq. (1) gives the optimal equilibrium population
densities as x1 = x1δ, x2 = x2δ and x3 = x3δ . Nowwhenδ → ∞, the above equation
leads to the result

p1q1x∞ + p2q2y∞ = C (36)

which gives thatπ(x1∞, x2∞, x3∞, E) = 0.
Using (35), we get

π = (p1q1x + p2q2y − C) E = (M1q1x + M2q2y) E

N
(37)

As each M1 andM2 is of o (δ) and N is of o
(
δ2

)
, therefore π is ofo

(
δ−1

)
. Thus

π is a decreasing function of δ(≥ 0). We therefore conclude that δ = 0 leads to
maximization ofπ.

7 Stochastic Model

In this model, we allow stochastic perturbations of the variables x1, x2, x3 around
their values at the positive equilibrium

(
x∗
1 , x

∗
2 , x

∗
3

)
in R3+, in the case when it is fea-

sible and locally asymptotically stable. The local stability of
(
x∗
1 , x

∗
2 , x

∗
3

)
is implied

by the condition of existence of
(
x∗
1 , x

∗
2 , x

∗
3

)
. So, in system (1), we assume that sto-

chastic perturbations of variables around their equilibrium values
(
x∗
1 , x

∗
2 , x

∗
3

)
are of

white noise type, which is proportional to the distance of x1, x2, x3 from the val-
ues x∗

1 , x
∗
2 , x

∗
3 . So the system (1) reduces to

dx1 =
(
r1x1 ln

k1
x1

− α12x1x2 − α13x1x3 − q1Ex1
)
dt + σ1

(
x1 − x∗

1

)
dξ1t

dx2 =
(
r2x2 ln

k2
x2

+ α21x1x2 − α23x2x3 − q2Ex2
)
dt + σ2

(
x2 − x∗

2

)
dξ2t

dx3 = (
r3x3 + α31x1x3 + α32x2x3 − x23

)
dt + σ3

(
x3 − x∗

3

)
dξ3t

(38)
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whereσi , i = 1, 2, 3are real constants,ξit = ξi (t), i = 1, 2, 3are independent from
each other standard Wiener processes [30–32]. Now we investigate the asymptotic
stability behaviour of the equilibrium point

(
x∗
1 , x

∗
2 , x

∗
3

)
under such kind of stochas-

ticity for the system (38) which is Ito stochastic differential system.

8 Stochastic Stability of the Positive Equilibrium

Now as the system (1) has the equilibrium point
(
x∗
1 , x

∗
2 , x

∗
3

)
in R3+, then the stochas-

tic differential system (38) canbe centred at its positive equilibrium
(
x∗
1 , x

∗
2 , x

∗
3

)
using

change of variables as

u1 = x1 − x∗
1 , u2 = x2 − x∗

2 , u3 = x3 − x∗
3 (39)

Therefore, the linearized stochastic differential equations around
(
x∗
1 , x

∗
2 , x

∗
3

)
are of

the form

du (t) = f (u (t)) dt + g (u (t)) dξ (t) (40)

whereu (t) = col (u1 (t) , u2 (t) , u3 (t))and

f (u (t)) =

⎡

⎢
⎢
⎢
⎢
⎣

−r1 −α12x∗
1 −α13x∗

1

α21x∗
2 −r2 −α23x∗

2

α31x∗
3 α32x∗

3 −x∗
3

⎤

⎥
⎥
⎥
⎥
⎦
u (t) , (41)

g (u) =

⎡

⎢
⎢
⎢
⎢
⎣

σ1u1 0 0

0 σ2u2 0

0 0 σ3u3

⎤

⎥
⎥
⎥
⎥
⎦

(42)

In Eq. (40), the positive equilibrium
(
x∗
1 , x

∗
2 , x

∗
3

)
corresponds to the trivial solu-

tionu (t) = 0.
LetU be the set U = (t ≥ t0) × Rn , t0εR+. Hence V εC0

2 (U ) is a twice continu-
ously differentiable function with respect to u and a continuous function with respect
to t (cf. Afanas’ev [33]).
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Fig. 1 Variation of the
populations against time,
beginning with x1 = 50,
x2 = 50 and x3 = 25

Now, with reference to (40),

LV (t, u) = ∂V (t, u)

∂t
+ f T (u)

∂V (t, u)

∂u
+ 1

2
Tr

[

gT (u)
∂2V (t, u)

∂u2
g (u)

]

(43)

where ∂V
∂u = Col

(
∂V
∂u1

, ∂V
∂u2

, ∂V
∂u3

)
, ∂2V (t,u)

∂u2
=

(
∂2V

∂ui∂u j

)
i, j = 1, 2, 3andT denotes

transposition (Fig. 1).

Theorem 2 Suppose there exists a functionV (t, u) εC0
2 (U ) satisfying the inequal-

ities

K1 |u|p ≤ V (t, u) ≤ K2 |u|p ,

LV (t, u) ≤ −K3 |u|p , Ki > 0, p > 0
(44)

Then the trivial solution of (40) is exponentially p-stable for t ≥ 0.

If in (44), p = 2, then the trivial solutions of (40) is globally asymptotically stable
in probability (cf. Afanas’ev [33]).

Theorem 3 Let r1 > 1
2σ

2
1, r2 > 1

2σ
2
2, x

∗
3 > 1

2σ
2
3 . Then the zero solution of (40) is

asymptotically mean square stable.

Proof Let us consider the Lyapunov function

L (u) = 1

2

[
w1u

2
1 + w2u

2
2 + w3u

2
3

]
(45)

where wi are real positive constants. The first inequalities of (44) is obvious for
p = 2.
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Again

LL (u) = w1
(−r1u1 − α12x∗

1u2 − α13x∗
1u3

)
u1

+w2
(
α21x∗

2u1 − r2u2 − α23x∗
2u3

)
u2

+w3
(
α31x∗

3u1 + α32x∗
3u2 − x∗

3u3
)
u3

+ 1
2Tr

[
gT (u)

∂2L(t,u)

∂u2
g (u)

]

(46)

where ∂2L
∂u2

=

⎡

⎢
⎢
⎢
⎢
⎣

w1 0 0

0 w2 0

0 0 w3

⎤

⎥
⎥
⎥
⎥
⎦

.

Therefore gT (u)
∂2L(t,u)

∂u2
g (u) =

⎡

⎢
⎢
⎢
⎢
⎣

w1σ
2
1u

2
1 0 0

0 w2σ
2
2u

2
2 0

0 0 w3σ
2
3u

2
3

⎤

⎥
⎥
⎥
⎥
⎦

with

1

2
Tr

[

gT (u)
∂2L (t, u)

∂u2
g (u)

]

= 1

2

[
w1σ

2
1u

2
1 + w2σ

2
2u

2
2 + w3σ

2
3u

2
3

]
(47)

Fig. 2 Phase-space
trajectory
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Now choosing w1α12x∗
1 = w2α21x∗

2 , w2α23x∗
2 = w3α32x∗

3 and w1α13x∗
1 =

w3α31x∗
3 in (44) and using (47) in (46) we have

LL (u) = −
(

r1 − 1

2
σ2
1

)

w1u
2
1 −

(

r2 − 1

2
σ2
2

)

w2u
2
2 −

(

x∗
3 − 1

2
σ2
3

)

w3u
2
3 (48)

This completes the proof of the theorem (Fig. 2).

9 Numerical Experiments

Let r1 = 6.09, r2 = 4.07, r3 = 1.6, k1 = 300, k2 = 200, α12 = 0.05, α13 =
0.06, α21 = 0.005, α23 = 0.05, α31 = 0.006, α32 = 0.05, q1 = 0.05, q2 =
0.01, and E = 25.

With these following set of data, the stability diagram and the Phase-space trajec-
tory are as follows:

10 Conclusion

In this work, a prey-predator-super predator aquatic model is formulated considering
selective harvesting of prey and predators under deterministic and stochastic environ-
ments. In deterministic case, we investigate local stability, Global stability, bionomic
equilibrium, and optimal harvesting for the system and under stochastic conditions,
the stability criteria for the system using Lyapunnov function are studied. It is to be
noted that for the present system, when growth rates increase, the asymptotic mean
square stability property is achieved.

In real-life projects this type of interaction model is most suitable to discuss the
marine food web system considering sardine, menhaden, etc., as prey with tuna,
Leerfish, Bluefish as predator and shark as super-predator.

This model is scalable to more complex dynamical systems by introducing Gom-
pertz law of growth of prey-predator species, selective harvesting of prey-predator
only, but not super predator and optimal harvesting policy in deterministic envi-
ronment. The uncertainty behaviours of ecosystem model by introducing Winner
process in stochastic environment is discussed.

In deterministic environment, we have considered Holling type-I response func-
tion between prey-predator, prey-super predator and predator-super predator and also
harvesting term which is the product of common effort, catchability co-efficient and
available biomass in differential equation to discuss complex dynamical system. In
stochastic environment, complex dynamical system is discussed by Ito stochastic
differential equation and stochastic perturbation of the variables.
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In this model, numerical simulation is discussed using the data which is similar
in the published paper in highly rated journal in this area. At present, we are not in
a position to discuss the model with life data due to nonavailability. If it is available
in the near future, then it will be discussed in our model formulation.

However, to increase the complexity of this type of food web system as per
nature’s demand one can introduce time delay, difference equation, delay differential
equation, fuzziness, randomness, etc. in different parameters of our model.
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Computational Method for High-Order
Weighted Fuzzy Time Series Forecasting
Based on Multiple Partitions

Sukhdev Singh Gangwar and Sanjay Kumar

Abstract In this paper, we present modified version of computational algorithm
given by Gangwar and Kumar (Expert Syst Appl 39:12158–12164, 2012 [5]) for
higher order weighted fuzzy time series with multiple partitioning to enhance the
accuracy in forecasting. The developedmethod provides a better approach to enhance
the accuracy in forecasted values. The proposed method was implemented on the
historical student enrollments data of University of Alabama. The suitability of the
developed method has been examined in comparison with other models in terms of
mean square and average forecasting errors to show its superiority.

Keywords Fuzzy time series · Enrollment · Weighted · Fuzzy logical relations ·
Linguistic variable

1 Introduction

The knowledge of forecasting based on available time series data is one of the core
components in planning and decision-making. One of the major limitations of con-
ventional mathematical and statistical models is not to address the forecasting prob-
lem in which historical data are imprecise and vague. Concept of fuzzy set theory
introduced by Zadeh [21, 22] was applied by Song and Chissom [15–17] to fore-
cast the historical enrollments of the University of Alabama. Chen [1] proposed
high-order fuzzy time series modes for forecasting the enrollments. Own and Yu
[10] presented a heuristic higher order model by introducing a heuristic function to
incorporate the heuristic knowledge to improve TAIFEX forecast.
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Yu [20] introducedweighted fuzzy time series forecastingmodel to tackle issues of
recurrence andweighting in fuzzy time series forecasting. Cheng et al. [3] proposed a
trend-based fuzzy time series model to improve the forecast accuracy in information
and communication technologies products. Lee et al. [8] proposed the weighted
adoption and the difference between actual data toward midpoint interval based on
fuzzy time series. Ismail and Efendi [6] proposed the development of weighted fuzzy
time series based on a collection of variation of the chronological number in the fuzzy
logical group. Suhartono and Lee [18] proposed a new hybrid model based on the
Winter’s model and weighted fuzzy time series to improve the forecast accuracy in
trend and seasonal data.

Singh [11–14] presented fixed difference parameters-based computational algo-
rithm for forecasting with fuzzy time series. Gangwar and Kumar [5] proposed a
computational method of forecasting based on multiple partitioning and higher order
fuzzy time series. Joshi and Kumar [7] also presented another computational method
based on difference parameters and considering the order of fuzzy logical relation
as variable.

In this paper, we propose an enhanced version of computational algorithm pro-
posed by Gangwar and Kumar [5] for weighted higher order fuzzy time series fore-
casting with multiple partitions. An innovative scheme to assign weight of fuzzy
logical relations (FLRs) is also proposed in the present study. The objective of this
study is to improve forecasting accuracy by using higher order weighted fuzzy time
series, multiple partitioning of universe of discourse, and difference parameters as
relations for forecasting. The proposed algorithm minimizes the time of generating
relational equations by using complex min–max composition operations and various
defuzzification process. The proposedmethod has been implemented on benchmark-
ing problem of forecasting the historical student enrollments data of University of
Alabama and compared with the various other recent methods proposed by Singh
[14], Gangwar and Kumar [5] and Joshi and Kumar [7].

2 Fuzzy Set and Fuzzy Time Series

Definitions of fuzzy set and fuzzy time series given by [15–17, 21] are described as
follows:

Definition 1 A fuzzy set Ai defined on the Universe of discourse, U = {u1, u2,
u3, . . . , un, }, is represented as follows:

Ai = µAi (u1)/u1 + µAi (u2)/u2 + µAi (u3)/u3 + · · · + µAi (un)/un (1)

where µAi is the membership function of fuzzy set Ai , µAi : U → [0, 1]
Definition 2 Suppose Y(t), (t = . . . , 0, 1, 2, . . .) be the Universe of discourse and
Y (t) ⊆ R. Assume that fuzzy sets, fi (t), (i = 1, 2, . . .) are defined in the Universe
of discourse Y(t). F(t), collection of fi (t) is known as fuzzy time series on Y(t).
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Definition 3 If F(t) is caused only by F(t − 1), i.e., F(t −1) → F(t), then this can
be expressed by the following fuzzy relational equation:

F(t)= F(t − 1) o R(t, t − 1) (2)

where the symbol “o” is Max–Min composition operator. The relation R(t, t − 1)
is a fuzzy relation between F(t) and F(t − 1) and is called the first order model of
F(t).

Definition 4 If F(t) is caused by more fuzzy sets, F(t − n), F(t − n + 1), . . . ,
F(t − 1), the fuzzy relationship is represented by Ai1 , Ai2 , Ai3 . . . , Ain → A j

here, F(t − n) = Ai1 , F(t − n + 1) = Ai2 , . . . , F(t − 1) = Ain (3)

This relationship is called nth order fuzzy time series model.

Definition 5 Let F(t) be a fuzzy time series and R(t, t − 1) be a first order model of
F(t). If R(t, t − 1)= R(t − 1, t − 2) for any time t, the F(t) is named a time-invariant
fuzzy time series. But if R(t, t − 1) is time dependent, that is, R(t, t − 1) may be
different from R(t − 1, t − 2) for any timet then F(t) is called time-variant fuzzy
time series.

3 Weighted Fuzzy Time Series

Yu [20] proposed theweighted fuzzy time seriesmodel to resolve recurrence of fuzzy
relationships and weighting problems in fuzzy time series forecasting. In most of the
weighted models, the recurrences of each fuzzy logical relation (FLR) are taken
into account. From this viewpoint, the FLRs of various recurrences are assigned
different weights. In present study weights assigned to recent FLR are higher than
that of older FLR keeping the fact that the recent FLR has more importance than the
previous ones. The novelty of the proposed weighted fuzzy time series forecasting
method is described as follows:

The probability of appearance of the most recent FLR (t = n) in the near future
is higher than others, hence the highest weight wn−1 is assigned for the most recent
FLR (t = n). On the other hand, the probability of appearance of the most aged FLR
(t = n) in the near future is lower than in the case of the others, hence the lowest
weight of 1 is assigned for the most aged FLR (t = n). The proposed method of
assigning the weight to FLRs is explained as follows:

Suppose A1
w1=1−→ A2, A2

w2=2−→ A3, A3
w3=3−→ A4, . . . , An

wn=n−→ An+1 are the FLRs
used for forecast An+2 with corresponding weights. The sum of the weight of each
FLR should be standardized, hence computation for weight can be determined as
follows:
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W (t) = [w′
1,w

′
2, . . . ,w

′
n] =

⎡

⎢
⎢
⎣

w1
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h=1
wh

,
w2
n∑
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, . . . ,
wn
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⎤

⎥
⎥
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where n is the number of FLR used to forecast for An+2.
W (t) = [w′

1,w
′
2, . . . ,w

′
n] should satisfy the necessary condition

n∑

h=1

w′
h = 1 (5)

4 Proposed Method and Computational Algorithm

Proposed method uses the ratio formula given by Gangwar and Kumar [5] for deter-
mining the number of partitions. For each partition, the weighted fuzzy relations and
difference parameters are defined by following rules:

(i) In order to forecast the enrollment for third year (1973), we implement A1
w1=1−→

A2. In this case w1 × |E2 − E1| is used.
(ii) In order to forecast the enrollment for fourth year (1974), we implement

A1
w1=1−→ A2 & A2

w2=2−→ A3. In this case
w1

w1 + w2
× |E2 − E1| & w2

w1 + w2
×

|E3 − E2| are used.
(iii) In order to forecast the enrollment for fifth year (1975), we implement A1

w1=1−→
A2, A2

w2=2−→ A3 & A3
w3=3−→ A4. In this case

w1

w1 + w2 + w3
× |E2 − E1|,

w2

w1 + w2 + w3
× |E3 − E2| & w3

w1 + w2 + w3
× |E4 − E3| are used.

Similarly, In order to forecast the enrollment for (n + 2)th year, we imple-

ment A1
w1=1−→ A2,A2

w2=2−→ A3,A3
w3=3−→ A4, . . . , An

wn=n−→ An+1. In this case
w1

w1 + w2 + w3 + · · · + wn
× |E2 − E1|, w2

w1 + w2 + w3 + · · · + wn
× |E3 − E2|,

w3

w1 + w2 + w3 + · · · + wn
×|E4 − E3|, . . . , wn

w1 + w2 + w3 + · · · + wn
×|En+1 −

En| are used.
Stepwise computational procedure for forecasting historical time series data of

year n + 2, given as follows:

Step 1: Define the Universe of discourse, U based on the range of available time
series data, by the rule U = [Emin − D1, Emax + D2] where D1 and D2 are two
proper positive numbers are selected randomly to accommodate the complete time
series data.
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Step 2: The Universe of discourse U is partitioned into equal length of intervals:
u1, u2, . . . , um .
Step 3: Construct the fuzzy sets Ai in accordance with the number of intervals in
step 2 and apply the triangular membership function to each fuzzy set constructed.
Step 4: Fuzzify the data by choosing maximum membership and establish the fuzzy
logical relationships by the rule proposed by [5].
Step 5: Repartition the whole fuzzy time series using the ratio formula proposed by
[5].
Step 6: Rules for forecasting
Some notations used are defined as follows:

[*A j ] is corresponding interval u j for which membership in A j is supreme (i.e.,
1). L[*A j ] and U[*A j ] is the lower and upper bound of interval u j . M[*Ai ] and
M[*A j ] is the mid value of the interval ui and u j , respectively, having supremum
value in Ai and A j .
For a fuzzy logical relation Ai → A j

Ai and A j is the fuzzified enrollment of year n and (n + 1), respectively. Ei , Ei−1,
Ei−2, Ei−c, and Ei−(c+1) are the actual enrollment of the years n, (n − 1), (n − 2),
(n − c), and (n − (c + 1)), respectively and F j is the crisp forecasted enrollment of
the year (n + 1).

The proposed method utilizes the historical data of year 1 to n for framing rules
to implement on fuzzy logical relation, Ai →A j , whereAi , the current state, is the
fuzzified enrollments of year n and A j , the next state, is fuzzified enrollments of
year n + 1. The proposed method for forecasting is mentioned as computational
algorithms for assigning the weight and generating the relations between the time
series data of year 1 to n for forecasting the enrollment of year n + 1 in each partition.
The developed computational algorithm uses the weighted differences in enrollment
of past n years and have been considered a fuzzy parameter in framing the fuzzy
rules to impose on current year fuzzified enrollment to get forecast of next year
enrollments.
Computational algorithm: The proposed computational algorithm used starting
from k = 1 (first partition) to k = K (last partition). Within k = 1 we used data
starting from i = 2 to N (end of time series data for each partition) and obtained
fuzzy logical relation Ai →A j for year i to i + 1.

Compute parameters Di for corresponding year i by using the following expres-
sion:

Di =
∣
∣
∣
∣
∣

(i − 1)
∑i−1

w=1 w
|Ei − Ei−1| −

[
i−1∑

c=1

{
(i − (c + 1))

∑i−1
w=1 w

|Ei−c − Ei−(c+1)|
}]∣

∣
∣
∣
∣

(6)

P = 0 and Q = 0
For a = 2 to i
Calculate Fia and FFia by using the following expression:
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Fia = M[∗Ai ]+(a∗Di )/(a − 1)

FFia = M[∗Ai ]−(a∗Di )/(a − 1)

If Fia is greater than and equal to lower bound of interval u j having supremum
value in A j and less than and equal to upper bound of interval u j having supremum
value in A j then

P = P + (a − 1)/(i − 1)∗Fia
Q = Q + (a − 1)/(i − 1)

}

(7)

If FFia is greater than and equal to lower bound of interval u j having supremum
value in A j and less than and equal to upper bound of interval u j having supremum
value in A j then

P = P + (a − 1)/(i − 1)∗FFia
Q = Q + (a − 1)/(i − 1)

}

(8)

Finally, using P, Q, Fia , FFia and M[*A j ], we calculate F j given by following
expression:

Fj = (P + M(∗A j ))/(Q+1) (9)

The above process is repeated to end term of time series data for each partition.
Step 7: Mean square error (MSE) and Average forecasting error (AFE) are common
tools which are used in fuzzy time series forecasting to verify the performance. The
MSE and AFE are defined as follows:

MSE =
∑n

i=1 (actual valuei − forecasted valuei )
2

n
(10)

Forecasting error (in%) = |forecasted - actual value|
actual value

× 100 (11)

AFE (in%) = sum of forecasting error

numbers of errors
(12)

5 Implementation of Proposed Method

The stepwise implementation of proposed method on the time series data of student
enrollments at University of Alabama is given as follows:
Step 1: Universe of discourseU = [13,000, 20,000] is defined for the available time
series data.
Step 2: The Universe of discourse is partitioned into following seven intervals:

u1=[13,000, 14,000] u2 = [14,000, 15,000] u3 = [15,000, 16,000]
u4 = [16,000, 17,000] u5 = [17,000, 18,000] u6 = [18,000, 19,000]
u7 = [19,000, 20,000]
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Step 3: Seven fuzzy sets A1, A2, . . . , A7 are define on the universe of discourse U
and the membership grades to these fuzzy sets are defined as follows:

A1 = 1/u1 + 0.5/u2 + 0/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7,

A2 = 0.5/u1 + 1/u2 + 0.5/u3 + 0/u4 + 0/u5 + 0/u6 + 0/u7,

A3 = 0/u1 + 0.5/u2 + 1/u3 + 0.5/u4 + 0/u5 + 0/u6 + 0/u7,

A4 = 0/u1 + 0/u2 + 0.5/u3 + 1/u4 + 0.5/u5 + 0/u6 + 0/u7,

A5 = 0/u1 + 0/u2 + 0/u3 + 0.5/u4 + 1/u5 + 0.5/u6 + 0/u7,

A6 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0.5/u5 + 1/u6 + 0.5/u7,

A7 = 0/u1 + 0/u2 + 0/u3 + 0/u4 + 0/u5 + 0.5/u6 + 1/u7.

Step 4: The fuzzified historical time series data of enrollments are obtained and fuzzy
logical relations are established (Table1).
Step 5: Using the ratio formula given by Gangwar and Kumar [5], the time series
data again partitioned in three parts. First partition contains enrollments from 1971
to 1978, second partition contains enrollments from 1979 to 1985, and third partition
contains enrollments from 1986 to 1992.
Step 6: The computations for the enrollments of University of Alabama have been
carried out by using the proposed model (computational algorithm) given in Sect. 4.
The results obtained are placed in the Table2 along with results of other models.
Step 7: Mean square error (MSE) and Average Forecasting Error is calculated and
are placed in Table3 to compare the accuracy in forecasted values of proposed model
with other models.

Table 1 Actual and fuzzified enrollments of University of Alabama

Year Actual Fuzzified Year Actual Fuzzified

1971 13,055 A1 1982 15,433 A3

1972 13,563 A1 1983 15,497 A3

1973 13,867 A1 1984 15,145 A3

1974 14,696 A2 1985 15,163 A3

1975 15,460 A3 1986 15,984 A3

1976 15,311 A3 1987 16,859 A4

1977 15,603 A3 1988 18,150 A6

1978 15,861 A3 1989 18,970 A6

1979 16,807 A4 1990 19,328 A7

1980 16,919 A4 1991 19,337 A7

1981 16,388 A4 1992 18,876 A6
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Table 2 Enrollments forecast by proposed method and other various methods

Partition Year Actual Singh [14] Joshi and
Kumar [7]

Gangwar
and Kumar
[5]

Proposed

1 1971 13,055 – – – –

1972 13,563 – – – –

1973 13,867 – – 13,500 13,500

1974 14,696 14,331 14,544 14,500 14,500

1975 15,460 15,489 15,504 15,500 15,500

1976 15,311 15,463 15,456 15,500 15,500

1977 15,603 15,412 15,599 15,500 15,500

1978 15,861 15,559 15,723 15,500 15,500

2 1979 16,807 16,500 16,482 – –

1980 16,919 16,616 16,603 – –

1981 16,388 16,516 16,340 16,500 16,500

1982 15,433 15,538 15,356 15,500 15,622

1983 15,497 15,440 15,408 15,500 15,500

1984 15,145 15,497 15,425 15,500 15,500

1985 15,163 15,280 15,395 15,500 15,500

3 1986 15,984 15,351 15,471 – –

1987 16,859 16,395 16,573 – –

1988 18,150 18,500 18,683 18,500 18,375

1989 18,970 18,376 18,646 18,500 18,500

1990 19,328 19,366 19,373 19,337 19,500

1991 19,337 19,407 – 19,500 19,500

1992 18,876 18,604 – 18,704 18,763

Table 3 Comparison of MSE and AFE of proposed method with other methods

Method Singh [14] Joshi and Kumar
[7]

Gangwar and
Kumar [5]

Proposed

MSE 95,306 67943.47 62976.63 61229.44

AFE 1.5319 1.264196 1.269981 1.309517

6 Conclusion

In this paper, we have proposed a computational method for high-order fuzzy time
series with a new method of assigning weight to fuzzy logical relations used in fore-
cast. The proposed method is an enhanced version of the computational algorithm
given by Gangwar and Kumar [5]. The proposed method has been tested for fore-
casting efficiency on the historical time series data of enrollments of University of
Alabama and has a comparative study with some of existing methods. Even though
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Fig. 1 Actual enrollments versus forecasted enrollments

the AFE in forecasting enrollments using proposed method is slightly higher than
the method given by Joshi and Kumar [7] and Gangwar and Kumar [5], but still it is
lower than the method given by Singh [14]. The proposed method outperforms with
Singh [14], Joshi and Kumar [7], and Gangwar and Kumar [5] in terms of MSE.
As the work of Gangwar and Kumar [5] outperformed the work of [2, 4, 9, 11, 13,
19] indirectly, we can conclude that proposed model outperforms these models in
forecasting the enrollments at University of Alabama (Fig. 1).
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Portfolio Selection with Possibilistic Kurtosis

Sheikh Ahmed Hossain and Rupak Bhattacharyya

Abstract This paper proposes a new approach for modeling multiple objective
portfolio selection problem by applying weighted possibilistic moments of trape-
zoidal fuzzy numbers. The proposed model allows the decision-maker to select the
suitable portfolio taking into account the impreciseness to the market scenarios.
Here, the objectives are to (i) maximize the expected portfolio return, (ii) minimize
the portfolio variance, (iii) maximize the portfolio skewness, and (iv) minimize the
portfolio kurtosis for the risky investor. The proposed model has been solved by
Zimmermann’s fuzzy goal programming technique. The model is illustrated by a
numerical example using data extracted from the Bombay Stock Exchange.

Keywords Fuzzy portfolio selection · Possibilistic measures · Mean · Variance ·
Skewness · Kurtosis · Zimmerman’s fuzzy goal programming

1 Introduction

A number of authors(e.g., [1–5] ) have proposed to select stock portfolios on the
basis of the first three moments of return distributions, rather than the first two
(mean and variance) proposed byMarkowitz [6] in 1952. The third moment of return
distribution is called skewness. Researchers interested in skewness believe investors
should prefer positive skewness. All else constant, they should prefer portfolios with
a larger probability of very large payoffs. This is not only logical, but also consistent
with some empirical evidence that investors exhibit this preference. If the three
moments are important to the investor, then the portfolio problem is represented
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in three-dimensional space with mean on one axis, variance on the second, and
skewness on the third. The efficient set would be the outer shell of the feasible set
with maximum mean, minimum variance, and maximum skewness. However, it is
evident that the measures of a return distribution, mean, variance, and skewness
cannot form a complete design about the distribution. In addition to these measures,
we should consider one more measure which Prof. Karl Pearson calls the Convexity
of a curve or Kurtosis. Kurtosis enables us to have an idea about the flatness or
peakness of the curve. It is measured by the coefficient β2 or its derivation γ2 given

by β2 =
(

μ4

μ2
2

)

, γ2 = β2 − 3 [μi being the i th order moment]. Curve which is

neither flat nor peaked is called the normal curve or mesokurtic curve and for such a
curve β2 = 3, i.e., γ2 = 0. Curve which is flatter than the normal curve is known as
platykurtic and for such a curve, β2 < 3, i.e.,γ2 < 0. Curve which is more peaked
than the normal curve is known as leptokurtic and for such a curve β2 > 3, i.e.,
γ2 > 0. The high kurtosis (fat tails) in return distribution suggests that periods of
stability are interspersed by rapid change.

Two distributions may have the same average, dispersion, and skewness, yet in
one there may be high concentration of values near the mode, showing a sharper peak
in frequency curve than the other. The classical capital market theory, like the bulk of
economics, is based on the equilibrium system articulated sowell byAlfredMarshall,
the father of modern economics in the 1890s. This view is based on the idea that
economics is like Newtonian physics, with well-defined cause–effect relationships.

Empirical evidence suggests that the classical capital market theory falls short in
the following ways:

• The distribution of stock returns exhibit a high degree of kurtosis. This means that
the tails of the distribution are fatter and the mean of the distribution is higher than
what is predicted by a normal distribution. In other words, it means that periods
of relatively modest changes are interspersed with periods of booms and busts.

• Financial returns are predictable to some extent.
• Risk and return are not related in a linear manner.
• Investors are prone to make systematic errors in their judgment and trade exces-
sively.

The mean–variance decision criterion by Markowitz [6] is inadequate for allo-
cating wealth when we deal with the funds to be invested in the stock market. Not
only are the return distributions asymmetric and leptokurtic, they also display sig-
nificant coskewness and cokurtosis with the return of other asset classes due to the
option-like features of alternative investments. Different approaches have been devel-
oped in the financial literature to incorporate the individual preferences for higher
order moments into the optimal security allocation problem. Davies et al. [7] and
Berenyi ([8, 9]) use the goal programming approach to determine the set of the
mean–variance–skewness–kurtosis efficient funds of hedge funds.

Different from [10–12], after recalling the definition of mean, variance, semi-
variance, and skewness, this paper considers the kurtosis for portfolio selection with
possibilitic fuzzy risk factors. Several empirical studies show that portfolio returns
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have fat tails. Generally, investors would prefer a portfolio return with smaller kur-
tosis which indicates the leptokurtosis (fat tails or thin tails) when the mean value,
the variance, and the asymmetry are the same. The paper is organized as follows: In
Sect. 2, we recall the weighted possibilistic measures of means, variance, skewness
of a trapezoidal fuzzy variable. Then we introduce the possibilistic measure of kur-
tosis for a trapezoidal fuzzy number. In Sect. 3, we have proposed a tetra-objective
optimization model for portfolio selection problems. In Sect. 4, we discuss Zimmer-
man’s goal programming method for multiple objective optimization. In Sect. 5, a
case study has been done to illustrate our model. In Sect. 6, some concluding remarks
are specified.

2 Weighted Possibilistic Measures of Mean, Variance, and
Skewness of Trapezoidal Fuzzy Numbers

In this section some basic ideas of fuzzy sets and possibilistic measures of fuzzy
sets are discussed. We also introduce possibilistic measure of fourth-order moment
followed by possibilistic measure of kurtosis for trapezoidal fuzzy numbers.

Definition 1 A fuzzy set Ã in U ⊂ IR, where IR is the set of all real numbers, is
an ordered paired set Ã = {(x, μ Ã(x)) : x ∈ IR}, where μ Ã(x) is the membership
function of x and 0 ≤ μ Ã(x) ≤ 1.

Definition 2 An α-cut of a fuzzy set Ã is a crisp set Ãα that contains all the elements
inU and that has membership values in Ã greater than or equal to α, i.e., Ãα = {x ∈
U : μ Ã(x) ≥ α}.
Definition 3 A fuzzy number Ã = (a, b, c, d) is called a trapezoidal fuzzy number
(Tr.F.N.) with core [b, c] if its membership function has the following form:

μ Ã(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−a
b−a f or x ∈ [a, b]
1 f or x ∈ [b, c]
d−x
d−c f or x ∈ [c, d]
0 otherwise.

Its α-level sets are Ãα = [a
¯
(α), ā(α)] = [a + (b − a)α, d − (d − c)α].

Definition 4 Let Ãα = [a
¯
(α), ā(α)] be a α-cut of a fuzzy number Ãα and f (α) be

a weighted function. Also, let DL and DU be two real numbers such that DL ≤ DU .
Then nth weighted double possibilistic moments of fuzzy number Ã about points
DL and DU are defined as:

M (DL ,DU )
n ( Ã) = 1

2

∫ 1
0 f (α)

[
(a
¯
(α) − DL)n + (ā(α) − DU )n

]
dα, n = 1, 2, 3, . . .
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If DL = DU = m( Ã), where m( Ã) is the possibilistic mean of the fuzzy number
Ã and m( Ã) is given by m( Ã) = 1

2

∫ 1
0 f (α)(a

¯
(α) + ā(α))dα. If f (α) = 2α, then

Mn( Ã) = ∫ 1
0 α[(a

¯
(α) − m( Ã))n + (ā(α) − m( Ã))n]dα, n = 1, 2, 3, . . .

The second, third, and fourth probalistic moments are, respectively, given as
M2( Ã) = ∫ 1

0 α[(a
¯
(α) − m( Ã))2 + (ā(α) − m( Ã))2]dα

M3( Ã) = ∫ 1
0 α[(a

¯
(α) − m( Ã))3 + (ā(α) − m( Ã))3]dα

M4( Ã) = ∫ 1
0 α[(a

¯
(α) − m( Ã))4 + (ā(α) − m( Ã))4]dα

Definition 5 The weighted possibilistic skewness (WPS) of the fuzzy number Ã is

defined by γ1 = M3( Ã)
(√

M2( Ã)
)3 .

Definition 6 The weighted possibilistic kurtosis (WPK) of the fuzzy number Ã is

defined by γ2 = M4( Ã)
(√

M2( Ã)
)4 .

Theorem 1 Let Ã = (a, b, c, d) be a trapezoidal fuzzy number. Then the weighted
possibilistic mean, variance, and skewness of Ã are, respectively, given by

WPM = 1
6 [a + 2(b + c) + d]

WPV = 1
36 [2(a2 + d2) + 5(b2 + c2) + 2(ab + cd − da) − 4(ac + bd) − 8bc]

WPS = 1
5 [19(a3 + d3) + 26(b3 + c3) − 15ad(a + d) − 30bc(b + c) + 60bc.

(a + d) + 30ad(b + c) − 12(a2b + cd2) − 30(a2c + bd2) − 33(ab2 + c2d)

−15(a2c+b2d)]/[2(a2+d2)+5(b2+c2)+2(ab+cd−da)−4(ac+bd)−8bc] 32
Proof For proof refer to Battacharyya et al. [4].

Theorem 2 Let Ã = (a, b, c, d) be a trapezoidal fuzzy number. Then the weighted
possibilistic kurtosis of Ã is given as

WPK = 1296[ 1
72 (b − a)2(d − c)2 + 3

8b
2c2 − 1

6bc[(b − c)2 + (b − a)(d − c)
+(d − c)2] − 1

4bc[b2 + c2 − (b − c)(b − a + d − c)] − 1
18 (b − a)(b − c)

(d − c)(b − a + d − c) + 5
432 [(b − a)4 + (d − c)4] + 1

16 (b
4 + c4) + 1

12
(b2 + c2)[(b − a)2 + (b − a)(d − c) + (d − c)2] − 1

12 (b
3 − c3)(b − a + d − c)

+ 2
135 (b − a)(d − c)[(b − c)2 + ((d − c)2]/[2(a2 + d2) + 5(b2 + c2) + 2

(ab + cd − da) − 4(ac + bd) − 8bc]2.
Proof We have Ã = (a, b, c, d) to be a trapezoidal fuzzy number. Its α-level sets are
Ãα = [a

¯
(α), ā(α)] = [a+ (b−a)α, d − (d − c)α]. Then the weighted probabilistic

fourth-order moment is given as
M4( Ã) = ∫ 1

0 α[(a
¯
(α) − m( Ã))4 + (ā(α) − m( Ã))4]dα

= ∫ 1
0 α[(a + (b − a)α − 1

6 {a + 2(b + c) + d})4 + (d − (d − c)α − 1
6 {a + 2

(b + c) + d})4]dα

= 1
72 (b − a)2(d − c)2 + 3

8b
2c2 − 1

6bc[(b − c)2 + (b − a)(d − c) + (d − c)2] −
1
4bc[b2+c2−(b−c)(b−a+d−c)]− 1

18 (b−a)(b−c)(d−c)(b−a+d−c)+
5

432 [(b−a)4+(d−c)4]+ 1
16 (b

4+c4)+ 1
12 (b

2+c2)[(b−a)2+(b−a)(d−c)+
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(d − c)2]− 1
12 (b

3 − c3)(b−a+d − c)+ 2
135 (b−a)(d − c)[(b− c)2 + ((d − c)2]

By definition WPK = γ2 = M4( Ã)

(
√

M2( Ã))4
.

Hence the result follows.

3 Weighted Possibilistic Mean–Variance–Skewness–Kurtosis
Models for Portfolio Selection

Empirically, it is evident that return from stocks is not fixed, rather range bound.
Analyzing the ranges of different stocks we can find that returns can be considered
as fuzzy numbers. Let r̃i be a fuzzy number representing the return of i th security.
Let xi be the portion of the total capital invested in security i, i = 1, 2, . . . , n. Then
pi+di−p′

i
pi

, where pi , p′
i , di are, respectively, closing price at previous year, closing

price at next year, and dividend paid for i th security calculates a particular return.

Theorem 3 Let r̃i = (ai , bi , ci , di ) be independent trapezoidal fuzzy numbers and
r̃ = (r̃1, r̃2, . . . , r̃n) n component row vector and x̃ = (x1, x2, . . . , xn)′ n component
column vector. The weighted possibilistic mean, variance, skewness, and kurtosis of
fuzzy number are, respectively, given as

E = E(r̃ x) = 1
6

[∑n
i=1 ai xi + 2

(∑n
i=1 bi xi + ∑n

i=1 ci xi
) + ∑n

i=1 di xi
]

V = V (r̃ x) = 1
36 [2((

∑n
i=1 ai xi )

2 + (
∑n

i=1 di xi )
2) + 5((

∑n
i=1 bi xi )

2

+(
∑n

i=1 ci xi )
2) + 2((

∑n
i=1 ai xi )(

∑n
i=1 bi xi ) + (

∑n
i=1 ci xi )(

∑n
i=1 di xi )−

(
∑n

i=1 di xi )(
∑n

i=1 ai xi )) − 4((
∑n

i=1 ai xi )(
∑n

i=1 ci xi ) + (
∑n

i=1 bi xi )
(
∑n

i=1 di xi )) − 8(
∑n

i=1 bi xi )(
∑n

i=1 ci xi )]
S = S(r̃ x) = 1

5 [19((
∑n

i=1 ai xi )
3 + (

∑n
i=1 di xi )

3) + 26((
∑n

i=1 bi xi )
3 +

(
∑n

i=1 ci xi )
3) − 15(

∑n
i=1 ai xi )(

∑n
i=1 di xi )((

∑n
i=1 ai xi ) + (

∑n
i=1 di xi )) − 30

(
∑n

i=1 bi xi )(
∑n

i=1 ci xi )((
∑n

i=1 bi xi )+ (
∑n

i=1 ci xi ))+ 60(
∑n

i=1 bi xi )(
∑n

i=1 ci xi )
((

∑n
i=1 ai xi ) + (

∑n
i=1 di xi )) + 30(

∑n
i=1 ai xi )(

∑n
i=1 di xi )((

∑n
i=1 bi xi ) + (

∑n
i=1

ci xi ))−12((
∑n

i=1 ai xi )
2(

∑n
i=1 bi xi )+(

∑n
i=1 ci xi )(

∑n
i=1 di xi )

2)−30((
∑n

i=1 ai xi)
2

(
∑n

i=1 ci xi ) + (
∑n

i=1 bi xi )(
∑n

i=1 di xi )
2) − 33((

∑n
i=1 ai xi )(

∑n
i=1 bi xi )

2 + (
∑n

i=1
ci xi )2(

∑n
i=1 di xi )) − 15((

∑n
i=1 ai xi )

2(
∑n

i=1 ci xi ) + (
∑n

i=1 bi xi )
2(

∑n
i=1 di xi ))]/[2((∑n

i=1 ai xi )
2+(

∑n
i=1 di xi )

2)+5((
∑n

i=1 bi xi )
2+(

∑n
i=1 ci xi )

2)+2((
∑n

i=1 ai xi )
(
∑n

i=1 bi xi )+(
∑n

i=1 ci xi )(
∑n

i=1 di xi )−(
∑n

i=1 di xi )(
∑n

i=1 ai xi ))−4((
∑n

i=1 ai xi )

(
∑n

i=1 ci xi ) + (
∑n

i=1 bi xi )(
∑n

i=1 di xi )) − 8(
∑n

i=1 bi xi )(
∑n

i=1 ci xi )]
3
2

K = K (r̃ x) = 1296[ 1
72 ((

∑n
i=1 bi xi ) − (

∑n
i=1 ai xi ))

2((
∑n

i=1 di xi ) − (
∑n

i=1

ci xi ))2 + 3
8 (

∑n
i=1 bi xi )

2(
∑n

i=1 ci xi )
2 − 1

6 (
∑n

i=1 bi xi )(
∑n

i=1 ci xi )[((
∑n

i=1 bi xi ) −
(
∑n

i=1 ci xi ))
2+((

∑n
i=1 bi xi )−(

∑n
i=1 ai xi ))((

∑n
i=1 di xi )−(

∑n
i=1 ci xi ))+((

∑n
i=1

di xi ) − (
∑n

i=1 ci xi ))
2] − 1

4 (
∑n

i=1 bi xi )(
∑n

i=1 ci xi )[(
∑n

i=1 bi xi )
2 + (

∑n
i=1 ci xi )

2

−((
∑n

i=1 bi xi )−(
∑n

i=1 ci xi ))((
∑n

i=1 bi xi )−(
∑n

i=1 ai xi )+(
∑n

i=1 di xi )−(
∑n

i=1
ci xi ))]− 1

18 ((
∑n

i=1 bi xi )− (
∑n

i=1 ai xi ))((
∑n

i=1 bi xi )− (
∑n

i=1 ci xi ))((
∑n

i=1 di xi )



308 S.A. Hossain and R. Bhattacharyya

− (
∑n

i=1 ci xi ))((
∑n

i=1 bi xi ) − (
∑n

i=1 ai xi ) + (
∑n

i=1 di xi ) − (
∑n

i=1 ci xi )) + 5
432

[((∑n
i=1 bi xi )−(

∑n
i=1 ai xi ))

4+((
∑n

i=1 di xi )−(
∑n

i=1 ci xi ))
4]+ 1

16 ((
∑n

i=1 bi xi )
4+

(
∑n

i=1 ci xi )
4)+ 1

12 ((
∑n

i=1 bi xi )
2+(

∑n
i=1 ci xi )

2)[((∑n
i=1 bi xi )−(

∑n
i=1 ai xi ))

2+
((

∑n
i=1 bi xi )−(

∑n
i=1 ai xi ))((

∑n
i=1 di xi )−(

∑n
i=1 ci xi ))+((

∑n
i=1 di xi )−(

∑n
i=1 ci

xi ))2]− 1
12 ((

∑n
i=1 bi xi )

3−(
∑n

i=1 ci xi )
3)((

∑n
i=1 bi xi )−(

∑n
i=1 ai xi )+(

∑n
i=1 di xi )

− (
∑n

i=1 ci xi )) + 2
135 ((

∑n
i=1 bi xi ) − (

∑n
i=1 ai xi ))((

∑n
i=1 di xi ) − (

∑n
i=1 ci xi ))

[((∑n
i=1 bi xi )−(

∑n
i=1 ci xi ))

2+(((
∑n

i=1 di xi )−(
∑n

i=1 ci xi ))
2]]/[2((∑n

i=1 ai xi )
2+

(
∑n

i=1 di xi )
2) + 5((

∑n
i=1 bi xi )

2 + (
∑n

i=1 ci xi )
2) + 2((

∑n
i=1 ai xi )(

∑n
i=1 bi xi ) +

(
∑n

i=1 ci xi )(
∑n

i=1 di xi )−(
∑n

i=1 di xi )(
∑n

i=1 ai xi ))−4((
∑n

i=1 ai xi )(
∑n

i=1 ci xi )+
(
∑n

i=1 bi xi)(
∑n

i=1 di xi )) − 8(
∑n

i=1 bi xi )(
∑n

i=1 ci xi )]2.
Proof We have

r̃ x = r̃1x1 + r̃2x2 + · · · + r̃n xn

= (
∑n

i=1 ai xi ,
∑n

i=1 bi xi ,
∑n

i=1 ci xi ,
∑n

i=1 di xi )

= (a, b, c, d) (say),

where a = ∑n
i=1 ai xi , b = ∑n

i=1 bi xi , c = ∑n
i=1 ci xi , d = ∑n

i=1 di xi
Hence, proof of the theorem immediately follows from Theorems 1 and 2.

3.1 Proposed Multi-Objective Optimization Model

In this section we have proposed a multi-objective optimization model consisting of
four objectives, viz., maximization of return(E), minimization of risk (variance)(V),
maximization of skewnwss (S), andminimization of kurtosis subject to the constraint
that the sum of all portions of shares is equal to one.

Maximize Ẽ(r̃ x) = Ẽ(r̃1x1 + r̃2x2 + · · · + r̃n xn)
Minimize Ṽ (r̃ x) = Ṽ (r̃1x1 + r̃2x2 + · · · + r̃n xn)
Maximize S̃(r̃ x) = S̃(r̃1x1 + r̃2x2 + · · · + r̃n xn)
Minimize K̃ (r̃ x) = K̃ (r̃1x1 + r̃2x2 + · · · + r̃n xn)
x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1)
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4 Solution Methodology: Zimmerman’s Fuzzy Goal
Programming

A general multi-objective nonlinear programming problem is of the following form:

max/min[ f1(x), f2(x), . . . , fK (x)]
subject to
x ∈ X = {x : gs(x)(≤,=,≥)0, s = 1, 2, . . . ,m}

(2)

where fa(x) are objective functions for maximization, a ∈ A and fb(x) are objective
functions for minimization b ∈ B, A, B being two exhaustive subsets of the index
set 1, 2, …K and x being the decision variable. It is noted that all functions fk(x)
and gi (x) (k = 1, 2, . . .K and i = 1, 2, . . .m) can be linear or nonlinear. In the
past two decades, many fuzzy programming techniques have been developed for
solving multi-objective optimization problems. In this area, Zimmermann [13] first
shows that fuzzy programming technique can be used satisfactorily to solve themulti-
objective programming problem using maxmin operator of Bellman and Zadeh [14].

The steps of the fuzzy programming technique are as follows:
Step 1. Each objective function fk(x) of theMOP problem is optimized separately

subject to the constraints of the problem. Let these optimum values be f ∗
k (x)(k =

1, 2, . . . K ).
Step 2. For each optimal solution of the K single-objective programming problem

solved in step 1, find the value of the remaining objective functions and construct a
payoff matrix of order K × K as given in Table1.

Step 3. Evaluate
f Lk = Min{ fk(x1), fk(x2), . . . , fk(xK )} and f Uk = Max{ fk(x1), fk(x2), . . . ,
fk(xK )} for all k = 1, 2, . . . , K .
Step 4. Form the membership functions μ fi (x), i ∈ A and μ f j (x), j ∈ B,

respectively, for the maximization objective functions μ fi (x), i ∈ A and minimiza-
tion objective function μ f j (x), j ∈ B, where AUB = {1, 2, . . . , K } in the linear
form as follows.

Table 1 Payoff matrix

Solution f1(x) f2(x) … fK (x)

(x1) f ∗
1 (x1) f2(x1) … fK (x1)

(x2) f1(x2) f ∗
2 (x2) … fK (x2)

… … … … …

(xK ) f1(xK ) f2(xK ) … f ∗
K (xK )
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μ fi (x) =

⎧
⎪⎨

⎪⎩

1 if fi (x) > f Ui
fi (x)− f Li
f Ui − f Li

if f Li ≤ fi (x) ≤ f Ui , f or all i ∈ A

0 if fi (x) < f Li

μ f j (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if fi (x) > f Ui
f Uj − f j (x)

f Uj − f Lj
if f Lj ≤ f j (x) ≤ f Uj , f or all j ∈ B

0 if f j (x) < f Lj

Step 5.Using the abovemembership functions formulate and solve the crisp nonlinear
programming model following the methods due to Zimmermann [13].

4.1 Zimmermann’s Model

If w1, w2, w3 and w4 are the intuitive crisp weights for the portfolio mean(E),
variance(V), skewness(S) , and kurtosis(K), respectively, then for different models
the problem (1) can be formulated as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Maximize α

such that

w1(
E−EU

EU−EL ) = α, w2(
VU−V
VU−V L ) = α, w3(

S−SU

SU−SL
) = α, w4(

KU−K
KU−K L ) = α

x ∈ X
0 ≤ α ≤ 1, w1 + w2 + w3 + w4 = 1

(3)

Zimmerman’s fuzzy goal programming is a pre-emptive fuzzy goal programming
method where the priorities of the goals are considered to be the same (e.g., α).

5 Case Study: Bombay Stock Exchange (BSE)

In this section we apply the proposed portfolio selection models on the data set
extracted from the Bombay Stock Exchange (BSE). BSE is the oldest stock exchange
in Asia with a rich heritage of over 133 years of existence. What is now popularly
known as BSE was established as The Native Share & Stock Brokers’ Association
in 1875. It is the first stock exchange in India which obtained permanent recognition
(in 1956) from the Government of India under the Securities Contracts (Regulation)
Act (SCRA) 1956. With demutualization, the stock exchange has two of the world’s
prominent exchanges, Deutsche Borse and Singapore Exchange, as its strategic part-
ners. Today, BSE is the world’s number one exchange in terms of the number of listed
companies and the world’s fifth in handling of transactions through its electronic
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trading system. The companies listed on BSE command a total market capitaliza-
tion of USD trillion 1.06 as of July 2009. The BSE Index, SENSEX, is India’s first
and most popular stock market benchmark index. Sensex is tracked worldwide. It
constitutes 30 stocks representing 12 major sectors. It is constructed on a free-float
methodology, and is sensitive to market movements and market realities. Apart from
the SENSEX, BSE offers 23 indices, including 13 sectoral indices. We have taken
monthly share price data for 60 months (March 2003–February 2008) of just five
companies which are included in Bombay Stock Exchange (BSE) index. Though any
finite number of stocks can be considered, we have taken only five stocks to reduce
the complexity of representation.

5.1 Example

Let us consider the following multi-objective portfolio selection problem.

Maximize Ẽ(r̃ x) = Ẽ(r̃1x1 + r̃2x2 + r̃3x3 + r̃4x4 + r̃5x5)
Minimize Ṽ (r̃ x) = Ṽ (r̃1x1 + r̃2x2 + r̃3x3 + r̃4x4 + r̃5x5)
Maximize S̃(r̃ x) = S̃(r̃1x1 + r̃2x2 + r̃3x3 + r̃4x4 + r̃5x5)
Minimize K̃ (r̃ x) = K̃ (r̃1x1 + r̃2x2 + r̃3x3 + r̃4x4 + r̃5x5)
x1 + x2 + x3 + x4 + x5 = 1
xi ≥ 0, i = 1, 2, 3, 4, 5.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4)

The Zimmermann’s model for multi-objective decision-making(as described in
Sect. 4 is used to solve the example. Using Theorem 3 and using the data given in
Table2, we can find the payoff matrix (Table3).

Table 2 Fuzzy returns of
stocks listed at Bombay Stock
Exchange (BSE)

Company Variables Fuzzy return in
trapezoidal form

Reliance energy REL (x1) (−0.008, 0.0223,
0.0501, 0.0673)

Larsen & Tubro LT (x2) (−0.0031, 0.0287,
0.0611, 0.0866)

BHEL BHEL (x3) (−0.0020, 0.0282,
0.0581, 0.0832)

Tata steel TISCO (x4) (0.0086, 0.0296,
0.0410, 0.0525)

State Bank of India SBI (x5) (−0.100, 0.0217,
0.0576, 0.0789)
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Table 3 Payoff matrix on the basis of data in Table2

Solution Return(E) Variance(V) Skewness Kurtosis(K)

(0.00, 0.40, 0.37,
0.23, 0.00)

0.04094 0.000512 0.00000592 1.1595

(0.37, 0.00, 0.23,
0.40, 0.00)

0.03577 0.000354 0.00000000 1.1666

(0.00, 0.37, 0.40,
0.23, 0.00)

0.04090 0.000511 0.00000592 1.1430

(0.00, 0.20, 0.40,
0.40, 0.00)

0.03920 0.000407 0.00040700 1.1400

Applying Zimmermann’s method we obtain the following solution:

E = 0.039377,V = 0.0004147,S = 0.000003345,K = 1.142835

x1 = 0.00, x2 = 0.33, x3 = 0.27, x4 = 0.40, x5 = 0.00.

6 Conclusion

In this paper, we have used the fuzzy possibilistic measure of kurtosis to model a
new possibilisticmean–variance–skewness–kurtosis stock portfolio selectionmodel.
Zimmerman’s fuzzy goal programming method is applied to convert the tetra-
objective programming problem into a single-objective programming problem. Data
of 60 months from BSE of five stocks are used for testing the effectiveness of the
proposed model. In the future we will apply the model on a larger data set. We will
also compare the proposed model with other established models of portfolio selec-
tion problem. For simulation, genetic algorithm or ant colony optimization algorithm
can be used.
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Conflicting Bifuzzy Preference Relations
Based Method for Multi Criteria Decision
Making Problems

Deepa Joshi and Sanjay Kumar

Abstract In this paper, we present conflicting bifuzzy preference relations-based
method for multi-criteria decision-making (MCDM) problem. In proposed method
linear programming model is used to obtain optimal weights of criteria by utilizing
criteriaweights and score function. The best alternative is selected in accordancewith
the value of weighting function. In order to examine the impact of criteria weights
on final ranking sensitivity analysis is performed. A numerical example is also given
to clarify the developed approach and to demonstrate its effectiveness.

Keywords MCDM · Conflicting bifuzzy preference relations · Linear program-
ming · Score function · Sensitivity analysis

1 Introduction

MCDM problem is the process of finding the best alternative from all the feasible
alternatives after qualitative or quantitative assessment of a finite set of interdepen-
dent or independent criteria. Desirable alternative can be chosen by providing prefer-
ence information in terms of exact numerical value but due to lack of knowledge about
background and conflicting nature of alternatives, it is difficult for decision-maker
to use the exact values to express their preference information about alternatives
or criteria. To deal with such cases fuzzy preference relations [3] are used. These
relation is based on fuzzy set proposed by Zadeh [9]. To provide the degree that an
alternative not priority to another, Szmidt and Kacprzyk [6] generalized the fuzzy
preference relation to intuitionistic fuzzy preference relations and Xu [8] also intro-
duced the concept of intuitionistic fuzzy preference relation based on intuitionistic

D. Joshi (B) · S. Kumar
Department of Mathematics, Statistics & Computer Science, G. B. Pant University
of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
e-mail: deepajoshi.6nov@gmail.com

S. Kumar
e-mail: skruhela@hotmail.com

© Springer India 2015
M.K. Chakraborty et al. (eds.), Facets of Uncertainties and Applications,
Springer Proceedings in Mathematics & Statistics 125,
DOI 10.1007/978-81-322-2301-6_24

315



316 D. Joshi and S. Kumar

fuzzy set proposed by Atanassov [1]. Intuitionistic fuzzy sets are characterized by
two functions, the membership function (μA) and the nonmembership function (νA)
with condition 0 ≤ μA(x) + νA(x) ≤ 1. Sometimes, this inequality cannot handle
the condition when sum of membership and nonmembership is greater than one, i.e.,
if performance of a candidate is ‘good’ is 0.8 in reality, it does not mean that ‘poor’
performance is always 0.2 but it can be more than 0.2. Based on these arguments
Zamali et al. [10] proposed a new concept conflicting bifuzzy set (CBFS), in this set
the membership and nonmembership are not compliments to each other, their sum
can also be greater than one but cannot be more than two. So we can say that conflict-
ing bifuzzy sets (CBFS) are an extension of intuitionistic fuzzy set and preference
relations based on these sets are proposed by Naim et al. [5]. By conflicting bifuzzy
preference relations both positive and negative aspects will be considered simultane-
ously in judgment process, while previous only takes into account the positive aspect
without considering negative aspect.

In this paper, we propose a method for solving multi-criteria decision making
(MCDM) problem based on conflicting bifuzzy preference relations. We have also
presented a linear programming model to obtain optimal weights with help of score
function and for final ranking weighting function is used. Sensitivity analysis is
also done to see the impact of change of weights on final ranking. The proposed
method has been implemented on decision-making problem to determine the best
company for investment of money based on some independent criteria. Final ranking
is compared for different set of criteria weights for testing the validity of final ranking
results.

2 Preliminaries

In this section, basic definitions of fuzzy set by Zadeh [9], intuitionistic fuzzy set
as generalization of fuzzy set by Atanassov [1], conflicting bifuzzy set by Zamali
et al. [10], and their properties are presented. We also described different type of
preference relations as follows:

Definition 1 A fuzzy set A in the Universe of discourse X is characterized by
membership function μA : X → [0, 1]. A fuzzy set A is represented by following
ordered pair:

A = {(x, μA(x)) : ∀x ∈ X} (1)

where μA is the grade of membership of element x in the set A.

Definition 2 An intuitionistic fuzzy set I on a universe X is defined as an object of
the following form:

I = {〈x, μI (x), νI (x)〉 : ∀x ∈ X} (2)

where the functions μI (x) : X → [0, 1] and νI (x) : X → [0, 1] represent the
degree of membership and degree of nonmembership of an element x ∈ I ⊂ X
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respectively. πI (x) = 1 − μI (x) − υI (x) is called degree of hesitation with the
condition 0 ≤ μI (x) + υI (x) ≤ 1.

Definition 3 Let a set X be fixed set. A conflicting bifuzzy set A of X is the object
having following form:

A = {〈x, μA(x), νA(x)〉 : ∀x ∈ X} (3)

where the functions μA(x) and νA(x) satisfy the inequality 0 ≤ μA(x) ≤ 1 and
0 ≤ νA(x) ≤ 1, μA(x) and νA(x) represent positive degree and negative degree of
x in A respectively. Both μA(x) and νA(x) are some numerical values in the unit
interval [0,1]. As μA(x) and νA(x) can take any value in [0, 1] therefore A should
satisfy following inequality 0 < μI (x) + υI (x) < 2.

Conflicting bifuzzy sets can only be considered in certain cases when it is out of
intuitionistic condition.

Definition 4 A fuzzy preference relation R on the set X is represented by a comple-
mentary matrix = (rij)n×n ⊂ X × X for all i, j = 1, 2, . . . , n.

Definition 5 An intuitionistic preference relation B on a set X is represented by a
matrix B = (bij)n×n ⊂ X × X with bij = 〈

(xi , x j ), μ(xi , x j ), ν(xi , x j )
〉
for all

i, j = 1, 2, . . . , n. For convenience, let bij = (μij, νij), for all i, j = 1, 2, . . . , n
where bij is an intuitionistic fuzzy value, composed by the certain degree μij to
which xi is preferred to x j and certain degree vij to which xi is non-preferred to xi ,
and πij (x) = 1− μij(x) − νij(x) is interpreted as the uncertainty degree to which xi
is preferred to x j and πij (x) = 1 − μij(x) − νij(x) is interpreted as the uncertainty
degree to which xi is preferred to x j .

Definition 6 Let A = {a1, a2, a3, . . . , an} be a finite set of alternatives and B =
{b1, b2, b3, . . . , bn} the set of decision makers. X is a matrix of conflicting bifuzzy
preference relation (Naim et al. [5]) represented by X = (xij)n×n ⊂ A × A for all
xij = 〈

(ai , a j ), μ(ai , a j ), ν(ai , a j )
〉
for all i, j = 1, 2, . . . , nwhere xij is a conflicting

bifuzzy value, composed by the certainty degreeμij towhich ai is positively preferred
to a j and certainty degree νij to which ai is negatively preferred to a j , and 0 <

μA(a) + νA(a) < 2.
In general, a conflicting bifuzzy preference relation P is a bifuzzy subset of A× A

which characterized by the following membership function (Naim et al. [5]):

μij(Ai , A j ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if Ai is positive definitely preferred to A j

c ∈ (0.5, 1), if Ai is povitive slightly preferred to A j

0.5, if there is no preference (indifference)
d ∈ (0.5, 1), if A j is positive slightly preferred to Ai

0, if A j is positive definitely preferred to Ai
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And

νij(Ai , A j ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if Ai is negative definitely preferred to A j

c ∈ (0.5, 1), if Ai is negative slightly preferred to A j

0.5, if there is no preference (indifference)
d ∈ (0.5, 1), if A j is negative slightly preferred to Ai

0, if A j is negative definitely preferred to Ai

2.1 Score Function

Wang et al. [7] introduced Score function in fuzzy multi-criteria decision-making in
order to do selection and ranking. The greater the value of score functions the higher
the degree of appropriateness that alternative satisfies some criteria. Hong and Choi
[2] modified earlier score function formula to take into account the unknown part
while Wang et al. [7] consider only true and false function. Modified score function
by Hong and Choi [2] is given as follows:

Let xij = (μij, νij) be a conflicting bifuzzy preference value. For μij, νij ∈ [0, 1],
μij + νij < 2. The score function of xij can be evaluated by the score function S
defined as,

S
(
xij

) = μij − νij − 1 − μij − νij

2

= 3μij − νij − 1

2
(4)

where S(xij) ∈ [0, 1].
The reason for taking modified formula of score function is given as follows:
If we have two conflicting bifuzzy preference values (0.7, 0.5) and (0.6, 0.4),

according to the score function given by Hong and Choi [2] score function of both
values is 0.2, sowe cannot decidewhich value is greater. By using formula (4) of score
function we can compare the incomparable conflicting bifuzzy preference values.

3 Proposed Method

Proposed method uses following linear programming model to calculate optimal
weights of criteria.

∑m

i=1
{S(xij)

∗wj + S(xik)
∗wk . . . + S(xip)

∗wp}
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s.t.wl
j ≤ wj ≤ wu

j ,

wl
k ≤ wk ≤ wu

k ,

........................

wl
p ≤ wp ≤ wu

p,

wj + wk + · · · + wp = 1 (5)

where * represents multiplication and wj ,wk, . . . ,wp are respectively weights of
the criteria c j , ck...,cp for i, j = 1, 2 . . . n, k = 2, 3 . . . n, p = 3, 4 . . . n.

We can solve Eq. (5) by Simplex method.
Then, the degree of suitability to which alternative Ai satisfies the decision-

maker’s requirement can be measured by the weighting function W:

W(Ai ) =
∑m

i=1
{S(xij)

∗wj + S(xik)
∗wk + S(xip)

∗wp} (6)

where W (Ai ) ∈ [0, 1].
Step 1: Construct conflicting bifuzzy relations matrix.

X (k) = (x (k)
ij )n×n

where i, j, k = 1, 2, . . . n.
Step 2: We propose following aggregation operator for tuplewise aggregation.

X = 1 · x (1)
11 + 2 · x (2)

11 + 3 · x (3)
11 + . . . n · x (n)

11
n(n+1)

2

(7)

where n is the number of decision-makers.
Step 3: Compute score function for each entry of decision matrix.
Step 4: Determine optimal weights of each criteria using following linear program-
ming: ∑m

i=1
{S(xij)

∗wj + S(xik)
∗wk + S(xip)

∗wp}

s.t.wl
j ≤ wj ≤ wu

j ,

wl
k ≤ wk ≤ wu

k ,

........................

wl
p ≤ wp ≤ wu

p,

wj + wk + · · · + wp = 1
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Step 5: Calculate weight function of each alternative using (6).
Step 6: Finally, rank the alternatives according to descending order of weighting
function.

4 Implementation of Proposed Method

Suppose an investment company wants to invest a sum of money in best option. Four
alternatives in which to invest money are as follows:

(1) Car company, (2) Food company, (3) Computer company, (4) TV company
These four alternatives are assessed for their performance on the basis of following

four criteria:
C1 = risk analysis
C2 = growth analysis
C3 = social-political impact analysis
C4 = environmental impact analysis

D1, D2, D3 are three decision-makers.

Step 1: Conflicting bifuzzy preference relation decision matrices according to three
decision-makers are as follows (Table1):
Step 2: Aggregating tuplewise each entry of decision matrices by using (7).
Taking no. of decision makers (n) = 3.

X = 1 · x (1)
11 + 2 · x (2)

11 + 3 · x (3)
11

6

Table 1 Conflicting bifuzzy preference relation decision matrices

C1 C2 C3 C4

X(1) A1 (0.5, 0.5) (0.7, 0.4) (0.6, 0.5) (0.2, 0.8)

A2 (0.9, 0.2) (0.8, 0.3) (0.9, 0.3) (0.6, 0.5)

A3 (0.7, 0.3) (0.9, 0.2) (0.8, 0.2) (0.7, 0.3)

A4 (0.8, 0.3) (0.6, 0.5) (0.5, 0.5) (0.9, 0.2)

X(2) A1 (0.7, 0.3) (0.8, 0.2) (0.7, 0.3) (0.5, 0.5)

A2 (0.8, 0.2) (0.5, 0.5) (0.9, 0.2) (0.7, 0.3)

A3 (0.9, 0.1) (0.6, 0.5) (0.6, 0.5) (0.8, 0.2)

A4 (0.7, 0.4) (0.9, 0.3) (0.8, 0.2) (0.6, 0.2)

X(3) A1 (0.6, 0.4) (0.9, 0.3) (0.8, 0.2) (0.9, 0.1)

A2 (0.7, 0.3) (0.8, 0.2) (0.6, 0.5) (0.5, 0.5)

A3 (0.9, 0.2) (0.6, 0.5) (0.7, 0.3) (0.9, 0.2)

A4 (0.7, 0.1) (0.5, 0.5) (0.6, 0.4) (0.8, 0.3)

Where X(1), X(2), X(3) are decision matrices according to decision-makers D1, D2 and D3, respec-
tively
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Table 2 Decision matrix by aggregating tuplewise

C1 C2 C3 C4

X A1 (0.617, 0.383) (0.83, 0.283) (0.73, 0.283) (0.25, 0.75)

A2 (0.77, 0.25) (0.7, 0.317) (0.75, 0.37) (0.583, 0.43)

A3 (0.87, 0.183) (0.65, 0.45) (0.683, 0.35) (0.83, 0.2)

A4 (0.717, 0.23) (0.65, 0.43) (0.65, 0.35) (0.75, 0.25)

So decision-maker’s weights are (1/6, 2/6, 3/6).
Decisionmatrix byusingproposed aggregationoperator is as followsgiven inTable2:
Step 3: Score function of each entry is given as follows:

S(x11) = 0.234, S(x12) = 0.4605, S(x13) = 0.4535, S(x14) = 0.50
S(x21) = 0.53, S(x22) = 0.3915, S(x23) = 0.44, S(x24) = 0.1595
S(x31) = 0.7135, S(x32) = 0.25, S(x33) = 0.3495, S(x34) = 0.645
S(x41) = 0.4605,S(x42) = 0.26, S(x43) = 0.30, S(x44) = 0.50

Step 4: Optimal weights of criteria are computed by following linear programming:

1.992∗w1 + 1.505∗w2 + 1.543∗w3 + 0.8045∗w4

s.t. 0.10 ≤ w1 ≤ 0.20

0.15 ≤ w2 ≤ 0.25

0.20 ≤ w3 ≤ 0.30

0.25 ≤ w4 ≤ 0.35

w1 + w2 + w3 + w4 = 1

Using simplex method to solve the above linear programming, its optimal solution
can be obtained as:

w1 = 0.20, w2 = 0.25,w3 = 0.30, w4 = 0.25
Step 5: By applying equation (6) we get

W(A1) = 0.208,W (A2 = 0.338,W (A3) = 0.464,W (A4) = 0.092
Step 6: Finally rank the alternatives according to descending order of weighting
function as follows:

A3 > A2 > A1 > A4.

5 Sensitivity Analysis

Sensitivity analysis determines how stable ranking is against the sudden changes in
the weights of criteria or inputs. In the present study sensitivity analysis is performed
by examining the impact of sudden change in criteria weights on the final ranking.
We change set of criteria weights four times in this analysis and solve the above linear
programming model by Simplex method, we get sets of final rankings as follows:
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Weights of criteria Rank
W1 = 0.20 A3 > A2 > A1 > A4
W2 = 0.25
W3 = 0.30
W4 = 0.25
W1 = 0.40 A3 > A2 > A1 > A4
W2 = 0.30
W3 = 0.25
W4 = 0.05
W1 = 0.30 A3 > A2 > A4 > A1
W2 = 0.40
W3 = 0.10
W4 = 0.20
W1 = 0.10 A3 > A4 > A2 > A1
W2 = 0.25
W3 = 0.40
W4 = 0.25
In above analysis alternative A3 had the highest ranking.

6 Conclusions

In this paper, we review the limitations of intuitionistic fuzzy sets and discuss the
importance of conflicting bifuzzy sets and conflicting bifuzzy preference relations.
We propose an aggregation operator to aggregate decision matrices, it is suitable
for all types of sets, i.e., fuzzy sets, intuitionistic fuzzy sets, bifuzzy sets. To obtain
optimal criteria weights linear programming model and score function is used and
to select the best alternative weighting function is used. Finally, we apply proposed
approach in decision-making problem for taking investment decisions. To verify the
validity of ranking results, sensitivity analysis is done by changing criteria weights
four times. Thus the proposed approach is proven accurate, suitable and recom-
mended to be used by decision-makers in MCDM problems.
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A Linear Goal Programming Method for
Solving Chance-Constrained Multiobjective
Problems with Interval Data Uncertainty

Mousumi Kumar and Bijay Baran Pal

Abstract This paper presents a goal programming (GP) method for modeling and
solving multiobjective decision-making problems having interval parameter sets and
a set of chance constraints in uncertain environments. In the proposed approach,
planned interval goals defined for the objective goals are converted into standard
linear goals in GP by using interval arithmetic technique and introducing under- and
over-deviational variables to each of them. The chance constraints are also converted
into deterministic equivalents and Taylor series approximation technique is used to
transform the defined quadratic constraints into linear form to solve the problem
effectively by employing linear GP method. Then, from the optimistic point of view
of decision-maker, the framework of interval-valued GP is addressed to design goal
achievement function for minimizing possible deviations concerned with achieve-
ment of goals within their target intervals specified in the decision situation. The
approach is illustrated by a numerical example.

Keywords Chance-constrained programming · Fractional programming · Goal
programming · Interval programming · Taylor series approximation

1 Introduction

Multiobjective decision-making (MODM) is an area of multiple criteria decision
making [1] that is concerned with mathematical optimization problems involving
more than one objective function to be optimized simultaneously. Actually, most
of the human-centered decision-making problems are with multiplicity of objec-
tives. It is worthy to mention here that the rapid rise in human civilization owing to
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technological mechanization and cultural revolution have led to enormous increase
in the volume of various types of objectives in the premises of MODM in the recent
years. Here, in a practical decision situation, it is found that objectives are incom-
mensurable in nature and often conflict each other concerning optimization of them
in a decision environment.

When decision-making is emphasized, a human decision-maker (DM) plays an
important role and the objective of solving a MODM problem is of finding the
most preferred solution according to his/her subjective preferences [2, 3]. There are
different underling philosophies regarding multiobjective optimization methods [4]
in the literature of mathematical programming.

In the area of MODM, the GP approach [5], which is based on the satisficing
(coined by the nobel laureate H.A. Simon) philosophy [6], has appeared as a goal-
orientedmethod and robust tool for multiobjective decision analysis in crisp decision
environment. Here, in case of using the conventional GP, it may be mentioned that
aspiration levels of goals are assigned by DM and that depend on needs and desires
in the decision-making horizon. Although, GP is a widely used method for solving
problems with multiplicity of objectives, decision errors are directly involved therein
most of the times to solve practical decision problems owing to vague in nature of
human knowledge about exact values of physical and technical parameters. In such a
situation, if crisp values are set as target levels, solution achievement may not comply
with the real situation which is actually dictated by the nature of problem as well as
the environment of making decision.

To cope with the above situation, the stochastic programming (SP) approach
[7], initially introduced by Charnes and Cooper [8] as chance-constrained program-
ming (CCP), that deals with probabilistically defined uncertain data [9] to modeling
MODM problems have been studied deeply [10] in the past. In SP method, it is
assumed that the probability distributions of random parameters of the problem are
known. But, it is not always easy for DM to specify accurate probability distribution
[11] to establish an approximate analyticalmodel formeasuringperformances against
simultaneous optimization of objectives ofMODMproblems owing to unpredictable
nature of objectives in uncertain environment.

Again, to deal with the imprecise characteristics of model parameters, fuzzy goal
programming (FGP) [12] as an extension of fuzzy programming (FP) [13, 14] in the
framework of conventionalGP,which is based on the notion of fuzzy sets initially pro-
posed byZadeh [15], has been implemented to different real-worldMODMproblems
[16–18]. However, to employ such an approach, the membership functions of fuzzily
described objectives need be known. But, in some practical decision situations, it
becomes difficult to specify an appropriate membership function of fuzzy goals
owing to vagueness and nonlinear nature of objectives in decision environment [19].

To overcome the above difficulties, interval programming [20] has appeared as
a promising tool to solve MODM problems in inexact environment. In interval
programming method, the uncertain model parameters are represented as interval
numbers, where an interval defines a set of numbers on a real line enclosed by certain
lower and upper bounds in the notion of interval arithmetic [21]. Actually, the defined
intervals of parameter sets are regarded as regions within which the parameters
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possibly take their respective values in inexact environment. Here, the major advan-
tage of the approach is that interval information can be directly communicated into the
optimization process and resulting solution [22] without any distributional informa-
tion that is always required in FP and SP methods. Eventually, the proposed method
involves a relatively low computational requirement and leads to more reliable solu-
tions to optimization problems.

Historically, the seeds of interval programming can be traced in the third century
BC, when Archimedes (the father of Mathematics) calculated the value of π (pi)
with certain lower- and upper bounds (223/71 < π < 22/7) on it. The interval
arithmetic rule was first formalized in a book prepared by Moore [23]. The study on
interval analysis and prominent role of interval arithmetic to global optimization has
been well documented by Hansen [24].

Now, theGP formulation of aMODMproblemwith interval parameter sets, called
interval-valued GP (IVGP), has been introduced by Inuiguchi and Kume [25]. The
methodological aspects of IVGP approach studied in the past have been surveyed by
Olivera and Antunes [26].

The IVGP approach to mobile robot path planning [27] and portfolio selection
[28] has been studied in the past. The potential use of IVGP to different real-life
MODM problems has also been demonstrated by Inuiguchi and Mizoshita [29], Pal
et al. [30–32] in the recent past. A genetic algorithm (GA) [33] based IVGPmethod to
patrol manpower allocation problem has also been proposed Pal et al. [34] in the past.
Here, it may bementioned that the success of a GA scheme highly depends on proper
selections of reproduction operators and initialization of population [35], and imple-
mentation of it creates solution error and frequently trapped into local optima owing
to incommensurability and conflicting in nature of objectives as well as their hidden
nonlinearities as arises in conventional GP formulation [36] of real-life problems.
Furthermore, in some real-life problems, objective functions with fractional criteria
are found frequently involved in the decision situations. For instance, cost-benefit
analysis in agricultural planning [30], faculty, and other staff allocation problems
[32] for minimizing certain ratios of students’ enrolments and staff structure within
academic units of educational institutions, and others. Here, it may bementioned that
decision trouble frequently arises with fractional criteria [37] in course of solving
problems. The IVGP approach with fractional objectives has been studied by Pal
et al. [38] and implemented to real-world problems [32, 39] in the recent past. How-
ever, deep study on methodologies of IVGP that concerned with solving practical
problems is at an early stage.

Now, in practical decision situations, it is to be realized to the fact that both the
interval and probabilistic data are frequently involved in MODM problems and both
the aspects of interval programming and SP would have to be taken into account
for modeling and solving real-life problems. For example, in an agricultural plan-
ning problem [40], optimization of production of various seasonal crops involves
interval data, whereas seasonal rainfall as a main productive resource is inherently
probabilistic in nature in the decision environment.

In this paper, a MODM problem with multiplicity of linear as well as fractional
objectives having interval coefficients under a system of chance constraints with
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normally distributed parameter sets is taken into consideration. In the proposed
approach, unlike the consideration of crisp target values of objective goals in conven-
tional GP, target intervals for objectives within which they possibly take their values
in an uncertain situation are taken into account. In the sequel of model formulation,
chance constraints are converted into their equivalent crisp system constraints by
using the notion of means and variances of probabilistically defined random para-
meters. The nonlinear crisp constraints are then transformed into linear forms by
using Taylor series approximation technique [41] to avoid any computational com-
plexity with nonlinear system in the solution search process. Again, to formulate
the standard GP model, the objectives with planned interval goals of the defined
target intervals are transformed into conventional form of linear goals by employing
interval arithmetic rule [23] and introducing under- and over-deviational variables
to each of them. In the goal achievement function (regret function), both theminsum
GP [4] and minmax GP [42] modeling aspects in GP are taken into account to min-
imize regrets toward achieving goals values within the specified target intervals in
the decision environment. To illustrate the potential use of the approach a numerical
example is solved and the model solution is compared with an approach [25] studied
previously.

Now, the IVGP formulation of a chance-constrainedMODMproblem is presented
in the Sect. 2.

2 Chance-Constrained IVGP Formultion

The general structure of a chance-constrained interval programming problem with
linear and factional can be presented as [43]:

Find X(x1, x2, . . . , xn) so as to:

Maximize Tk(X) :
n∑

j=1

[
aLk j , a

U
kj

]
x j +

[
αL
k , αU

k

]
, k ∈ K1 (1)

Maximize Tk(X) :

n∑

j=1

[
cLk j , c

U
k j

]
x j + [

μL
k , μU

k

]

n∑

j=1

[
bLk j , b

U
kj

]
x j + [

ρL
k , ρU

k

]
, k ∈ K2 (2)

subject toX ∈ S{X ∈ Rn|Pr [F(X)

(≥
≤

)

h] ≥ p,X ≥ 0, h ∈ Rm}, (3)

where Tk(X) represents the k-th objective, X designates the vector of n decision
variables, where [aLk j , aUkj ], k ∈ K1, j = 1, 2, . . . , n and [cLk j , cUk j ],[bLk j , bUkj ], k ∈
K2, j = 1, 2, . . . , n are the vectors of coefficient intervals associated with linear
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and fractional objective functions, respectively. [αL
k , αU

k ],k ∈ K1, and [μL
k , μU

k ]
and [ρL

k , ρU
k ],k ∈ K2, are the constant intervals associated with kth interval goal

of the respective linear and fractional objective functions. The superscripts L and U
stand for lower- and upper-bounds, respectively, of the define intervals. It is assumed
that the feasible region S ( �= φ) is bounded, and K1 ∪ K2 = {1, 2, . . . , K } with
K1 ∩ K2 = φ.

In case of fractional goal expression in (2), it is customary to assume that
n∑

j=1

[bLk j , bUkj ]x j + [ρL
k , ρU

k ] > 0 to avoid any undefined situation. ‘Pr’ stands for

probabilistically defined constraints, F(X) is a (linear or nonlinear) function repre-
senting structural constraints set, h is a resource vector, and p (0< p <1) is the vector
of satisficing probability levels defined for randomness of parameters associatedwith
the constraints.

Now, the notion of interval number and some basic rules of interval arithmetic
[23] that are concerned with present IVGP model formulation are discussed in the
following section.

2.1 Basic Concept of Interval Number and Arithmetic
Operations

(i) Interval number

An interval represents a set that consists of all real numbers between a given pair
of numbers. It can also be thought of as a segment of a real number line, and an
endpoint marks the end of the line segment. In the notion of interval number, both
endpoints, either endpoint or neither endpoint can be included in an interval. The
term interval means closed interval that is considered here in IVGP formulation of
the problem.

An interval can be defined by an ordered pair as [23]:

A =
[
aL , aU

]
=

{
a : aL ≤ a ≤ aU ; a ∈ �

}
, (4)

where aL and aU are lower- and upper-bounds, respectively, of the interval A on a
real line �, and where L and U stand for lower and upper, respectively.

The notion of a closed interval is depicted in Fig. 1.

Fig. 1 An illustration of closed interval
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Here, for a particular case, if aL = aU = a, then A = [a, a] represents a real
number a and is called degenerate interval [a, a]. In this sense, 0 = [0,0] can be
taken into account in the sequel of interval number representation.

Now, the notions of Absolute-value, Width andMidpoint of an interval are defined
as follows:

• The absolute-value of A, denoted |A|, is defined the maximum of the absolute
values of its endpoints as:

|A| = max
{

|aL |, |aU |
}

, where |a| ≤ |A|, for every a ∈ A. (5)

• The width of an interval A is defined and denoted by

w[A] =
(
aU − aL

)
(6)

• The midpoint m[A] of A is given by

m[A] = 1

2

(
aL + aU

)
(7)

The graphic illustrations of absolute value, width, and midpoint are shown in
Fig. 2.

(ii) Basic interval arithmetic operations

It may be noted that ‘interval arithmetic’ defines a set of operations on intervals,
whereas classical arithmetic defines operations on individual numbers.

There are different types of possible relations between the two defined intervals
A = [

aL , aU
]
and B = [

bL , bU
]
.

The diagrammatic illustrations of nonoverlapping and overlapping relations
between intervals A and B are depicted in Fig. 3a, b.

Now, the general binary operation (*) between A and B can be defined as:

A∗B = {c/c = a∗b, a ∈ A, b ∈ B}
= {c/c = a∗b, aL ≤ a ≤ aU , bL ≤ b ≤ bU } (8)

UL
aA

A

ma0 )(

)(Aw

Fig. 2 Graphic illustrations of absolute value, width and midpoint of an interval
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UULL baba0

A(a) (b)B

ULUL bbaa0

A B

Fig. 3 a Relation between two overlapping intervals. b Relation between two nonoverlapping
intervals

In the notion of interval arithmetic, since A*B determines the region of the value
a * b, where a ∈ A and b ∈ B, the operator (*) is called the extended operator.

There are various types of extended operations in the interval arithmetic literature
[21]. The possible extended subtraction operation between the non-negative intervals
A and B, which is the most common and useful to modeling the proposed problem,
can be defined as

A(−)B = A(+) (−B) =
[
aL − bU , aU − bL

]
. (9)

Then, the resultant intervals for possible extended subtraction operations on the
nonoverlapping and overlapping relations defined above are diagrammatically pre-
sented in Fig. 4a, b.

Actually, different resultant intervals for possible subtractions can be obtained for
different types of relations that exist between A and B. However, extensive study on
interval arithmetic made in the past has also been well documented [44] and widely
circulated in the literature.

In multiobjective decision analysis, the other useful interval arithmetic operations
are defined as follows:

• The scalar multiplication of A by λ is defined as

λA =
{ [

λaL , λaU
]
, λ ≥ 0

[
λaU , λaL

]
, λ < 0

(10)

(a) (b)

Fig. 4 a Possible subtraction operation between two overlapping intervals. b Possible subtraction
operation between two nonoverlapping intervals



332 M. Kumar and B.B. Pal

• The variable multiplication of A by x is defined as

[
aL , aU

]
x =

[
aL x, aU x

]
. (11)

• If {A j =
[
aLj , a

U
j

]
, j = 1, 2, . . . , n} be a collection of intervals and {x j (≥

0); x j ∈ �, j = 1, 2, . . . , n} be a set of variables, then the possible extended sum
of n intervals is given by

⎛

⎝
n∑

j=1

⎞

⎠ A j x j =
⎡

⎣
n∑

j=1

aLj x j ,
n∑

j=1

aUj x j

⎤

⎦ (12)

• The multiplication between A and B can be defined as

A.B =
[
aL , aU

]
·
[
bL , bU

]
=

[
aL .bL , aUbU

]
, if aL , bL ≥ 0. (13)

• The division of A by B can be obtained as

A/B =
[
aL , aU

]
/
[
bL , bU

]
=

[
aL , aU

]
·
[
1/bU , 1/bL

]
, if 0 /∈

[
bL , bU

]
(14)

Thebasic relations andoperations of interval numbers alongwith their constructive
diagrammatic representations for practical uses have been discussed in [45] in the
past. To formulate the model of the problem within the framework of conventional
GP, the objectives with interval coefficients are to be converted into plan-valued
objectives by using interval arithmetic rules [23], which define the bounded regions
within which the values of objectives (called planned values) possibly can take.

Now, conversions of interval-valued objectives in (1) and (2) into plan-valued
objectives are discussed in the following Sect. 2.2.

2.2 Conversion of Interval Objectives into Plan-Valued
Objectives

Following the operational rules in (11)–(14), the plan-valued objectives
corresponding to the defined objectives in (1) and (2) can be obtained as [32]:

Tk(X):
⎡

⎣
n∑

j=1

aLk j x j + αL
k ,

n∑

j=1

aUkj x j + αU
k

⎤

⎦ , k ∈ K1 (15)
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Tk(X):

⎡

⎢
⎢
⎢
⎢
⎢
⎣

n∑

j=1

cLk j x j + μL
k

n∑

j=1

bUkj x j + ρU
k

,

n∑

j=1

cUk j x j + μU
k

n∑

j=1

bLk j x j + ρL
k ,

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, k ∈ K2 (16)

Now, in the sequel of model formulation, without loss of generality and for sim-
plicity, it is assumed that the random parameters associated with the system con-
straints in (3) are normally distributed, which frequently arises in modeling real-life
problems.

2.3 Deterministic Equivalents of Chance Constraints

The chance constraints set in (3) with ≥ type can be explicitly presented as:

Pr

⎡

⎣
n∑

j=1

ĝi j x j ≥ ĥi

⎤

⎦ ≥ pi , i = 1, 2, . . . , m1; m1 < m (17)

Let E(ĥi ), E(ĝi j ) and var(ĥi ), var(ĝi j ) be the means and variances of the random
variables ĥi and ĝi j having the characteristics of normal distribution.

Then, following the notion of distribution function for random variable, the crisp
equivalent of the constraints in (3) can be defined.

Let F (ŷ) be the distribution function of the random variable Ŷ (say).
Then, since F(ŷ) is a monotonically nondecreasing function, the value of the

corresponding variable ŷ can be found as:

F−1(ε) = {Max ŷ |Pr(Ŷ≤ŷ) ≤ ε}, 0 < ε < 1, (18)

where ε indicates the satisficing level of probability.
Now, since ĝij and ĥi are random variables, the conversion of their deterministic

equivalent can be described as follows.

Let, ŷi =
⎛

⎝
n∑

j=1

ĝi j x j − ĥi

⎞

⎠ (19)

Since, ŷi is linear combination of the normally distributed random variables, it
will also follow normal distribution.

Now, the constraints set in (3) with ≥ type restrictions can be expressed as:

Pr [ŷi ≥ 0] ≥ pi , i = 1, 2, . . . ,m1; m1 ≤ m. (20)
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The expression in (20) can be generalized as

Pr

[
ŷi − E(ŷi )
√{var(ŷi )}

≥ −E(ŷi )
√{var(ŷi )}

]

≥ pi

or, Pr

[
ŷi − E(ŷi )
√{var(ŷi )}

≤ −E(ŷi )
√{var(ŷi )}

]

≤ 1 − pi (21)

where ŷi−E(ŷi )√
{var(ŷi )}

is a standard normal variate.

Using the notion of distribution function defined in (18), the deterministic equivalents
of the constraints in (21) can be obtained as

−E(ŷi )
√{var(ŷi )}

≤ F−1(1 − pi )

or, E(ŷi ) + F−1(1 − pi )
√

{var(ŷi )} ≥ 0, i = 1, 2, . . . , m1 (22)

Here, it is to be followed that the expression in (9) is quadratic in nature.
Proceeding in an analogous way, the equivalent deterministic nonlinear constraints
of the chance constraints in (3) with ≤ type restriction can be obtained as

E(ŷi ) + F−1(pi )
√

{var(ŷi )} ≤ 0, i = (m1 + 1), (m1 + 2), . . . , m (23)

Note 1: It is to be noted that if only b̂i (i = 1, 2, . . . , m) are random in nature, then
the constraints in (22) and (23) would be linear in form.

Now, to solve the problem by using linear goal programming (LGP) method, it
is necessary to transform the quadratic constraints in (22) and (23) to their linear
forms. Here, instead of using the traditional variable transformation approach [32],
thewidely used first-orderTaylor series approximationmethod [41] can be employed
to make an ease of solving the problem by using LGP methodology.

2.4 Use of Taylor Series Approximation

The expressions in (22) and (23) can be successively recast as:

E(ŷi ) + f −1(1 − pi )
√
var(ŷi ) = F1i (X), i = 1, 2, . . . ,m1 (24)

and, E(ŷi )+ f −1(pi )
√
var (ŷi ) = F2i (X), i = (m1+1), (m1+2), . . . ,m. (25)
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Since the defined constraints set are quadratic in form, the first-order Taylor series
approximation, the simplest form of it, is sufficient to consider in the linearization
process.

The Taylor series approximation is presented in the following steps:
Step 1: Determine X∗ = (x∗

1 , x
∗
2 , . . . , x

∗
n ), where X

∗ is the initial approximate solu-
tion. Here, any one of the individual best solution of the objectives can be considered
as the initial solution X∗.
Step 2: Transform the function Fki (X) by using first order of Taylor series expansion
as

Fki (x1, x2, . . . , xn) = Fki (x
∗
1 , x

∗
2 , . . . , x

∗
n )+

n∑

j=1

(x j − x∗
j )

∂Fki (x∗
1 , x

∗
2 , . . . , x

∗
n )

∂x j

(26)
Step 3: Design the constraint sets in (24) and (25) by using the expression in (26) as:

F1i (X∗) +
n∑

j=1

(x j − x∗
j )

∂F1i (X∗)
∂x j

≥ 0 (27)

and, F2i (X∗) +
n∑

j=1

(x j − x∗
j )

∂F2i (X∗)
∂x j

≤ 0 (28)

It is to be noted here that constraints sets defined in (27) and (28) are linear forms
of the constraints sets in (24) and (25), respectively.

Then, in IVGP model formulation of the problem, the plan-valued objectives are
to be transformed into planned interval goals by introducing target intervals to each
of them.

2.5 Construction of Planned Interval Goals

In the decision environment, worst and best solutions of k-th objective that are asso-
ciated with lower and upper limits of its planned interval in terms of their minimum
and maximum outputs can be obtained as TkU and TkL, respectively.

Then, from the viewpoint of achieving an objective value with certain tolerance
limits for satisfaction of DM, the target interval associated with achievement of k-th
objective, which lies between the corresponding worst and best solutions can be
considered as

[
t Lk , tUk

]
, where TkL ≤ t Lk < tUk ≤ TkU, k = 1, 2, . . . , K .

The planned interval goals appear as [25]:

⎡

⎣
n∑

j=1

aLk j x j + αL
k ,

n∑

j=1

aUkj x j + αU
k

⎤

⎦ =
[
t Lk , tUk

]
, k ∈ K1 (29)



336 M. Kumar and B.B. Pal

⎡

⎢
⎢
⎢
⎢
⎢
⎣

n∑

j=1

cLk j x j + μL
k

n∑

j=1

bUkj x j + ρU
k

,

n∑

j=1

cUk j x j + μU
k

n∑

j=1

bLk j x j + ρL
k ,

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
[
t Lk , tUk

]
, k ∈ K2, (30)

Then, following interval arithmetic rules, the linear form of expression in (30)
can be obtained as:

⎡

⎣
n∑

j=1

(
cLk j − t Lk b

U
k j

)
x j +

(
μL
k − tUk ρU

k

)
,

n∑

j=1

(
cUkj − tUk bLk j

)
x j +

(
μU
k − t Lk ρU

k

)
⎤

⎦ = [0, 0] , k ∈ K2

(31)

Now, there are different versions of formulating IVGPmodels [25] that aremainly
concerned with construction of goal achievement functions (called regret functions)
for minimization of deviational variables associated with the defined goals. The
notion of minimization of possible regrets from the optimistic point of view of DM
is considered here as a simplest and promising one in the present decision-making
context. However, in the process of formulating IVGP model, each of the defined
goals in (29) and (31) are converted into equivalent two (flexible) standard goals by
assigning the corresponding lower- and upper-bounds individually as the aspiration
levels by using the interval arithmetic technique and introducing under- and over-
deviational variables to each of them.

2.6 Conversion of Planned Interval Goals into Standard Goals

The standard goals associated with the goal expressions in (29) and (31) appear as:

n∑

j=1

cUk j x j + αU
k + d−

kL−d+
kL = t Lk , k ∈ K1 (32)

n∑

j=1

cLk j x j + αL
k + d−

kU − d+
kU = tUk , k ∈ K1 (33)

n∑

j=1

(
cUk j − tUk bLk j

)
x j +

(
μU
k − t Lk ρU

k

)
+ d−

kL − d+
kL = 0, k ∈ K2 (34)

n∑

j=1

(
cLk j − t Lk b

U
k j

)
x j +

(
μL
k − tUk ρU

k

)
+ d−

kU − d+
kU = 0, k ∈ K2 (35)
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where
(
d−
kL , d−

kU

)
and

(
d+
kL , d+

kU

) ≥ 0 with d−
kL · d+

kL = 0 and d−
kU · d+

kU = 0,
(k = 1, 2, . . . , K ), represent the under- and over-deviational variables, respectively,
associated with the respective goals.

Now, formulation of the GP model the proposed problem is presented in Sect. 3.

3 GP Model Formulation

In the decision-making context, it can easily be realized to the fact that the objec-
tive of achieving the goal values within their specified ranges means simultaneous
minimization of under- and over-deviational variables associated with the goals in
(32)–(35) to the extent possible in the decision environment. In the literature of GP,
the two commonly used approaches are minsum GP [4] and minmax GP [42]. How-
ever, an intuitive idea of using GP is to take the convex combination of minsum GP
andminmaxGP formulations called extended GP (EGP) [43] in order to make a rea-
sonable balance of achieving the decisionwith regard to take aggregated achievement
of goals generated by using both the approaches simultaneously.

The GP model of the problem can be presented as [32]:
Find X so as to:

Minimize Z = μ

K∑

k=1

wk
(
d−
kL + d+

kU

) + (1 − μ)V,

and satisfy the goal expressions in (32)–(35) subject to the system constraints in (27)
and (28) and (

d−
kL + d+

kU

) − V ≤ 0, (36)

where Z represents the achievement functions, V = max
k

(
d−
kL + d+

kU

)
, and ‘max’

stands for maximum.
To illustrate the effective use of the proposed approach, a numerical example is

solved in the Sect. 4.

4 Numerical Example

A chance-constrained problem with two objectives having interval coefficients is
considered as follows:
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Table 1 Means and variances of the model parameters

Variable: g11 g12 g13 h1 g21 g22 g23 h2

Mean: 2 4 6 9 3 5 7 20

Variance: 0.5 1 2.5 4 1.5 2 2.7 5

Find X(x1, x2, x3) so as to :
Maximize T1 : [3, 5]x1 + [11, 12]x2 + [3, 6]x3 + [3, 3]
Maximize T2 : [3, 11]x1 + [15, 17]x2 + [0.5, 3]x3 + [4, 4]

[6, 8]x1 + [3, 5]x2 + [2, 3]x3 + [5, 5]
subject to Pr [g11x1 + g12x2 + g13x3 ≥ h1] ≥ 0.90,

Pr [g21x1 + g22x2 + g23x3 ≤ h2] ≥ 0.85, (37)

where gi j (i = 1, 2; j = 1, 2, 3), h1 and h2 are independent normal random
variables.

In the decision situation, the means and variances of the system parameters are
presented in Table1.

In the model formulation, first using the data in Table1 and following the expres-
sions in (27) and (28), the deterministic equivalents of the chance constraints in (37)
are successively determined as:

2x1 + 4x2 + 6x3 − 1.281
(
0.5x21 + x22 + 2.5x23 + 4

) 1
2 − 9 ≥ 0,

3x1 + 5x2 + 7x3 + 1.036
(
1.5x21 + 2x22 + 2.7x23 + 5

) 1
2 − 20 ≤ 0 (38)

Then, linear approximations of both the constraints about the point (0, 0, 0) as an
initial one are taken into account in the process of solving the problem.

The constraints in linear form are obtained as:

1.77x1 + 3.57x2 + 4.87x3 − 10.84 ≥ 0,

3.46x1 + 5.62x2 + 7.83x3 − 18.45 ≤ 0. (39)

Now, interval programming formulation of the problem is discussed as follows.
Using the expressions in (15) and (16), the plan-valued objectives are obtained as

T1(X) = [3x1 + 11x2 + 3x3 + 3, 5x1 + 12x2 + 6x3 + 3] (40)

T2(X) =
[
3x1 + 15x2 + 0.5x3 + 4

8x1 + 5x2 + 2x3 + 5
,
4x1 + 17x2 + 3x3 + 4

6x1 + 3x2 + 3x3 + 5

]

. (41)
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Then, following the proposed procedure, the individual worst and best solutions of
the objectives in (40) and (41) are obtained as (T1L , T1U ) = (15.38, 33.53) and
(T2L , T2U ) = (0.80, 3.10), respectively.

In the decision process, the target intervals of the objectives in (40) and (41) are
considered [17.78, 30.53] and [0.91, 2.75], respectively.
Now, using interval arithmetic rules and employing the proposed method, the stan-
dard linear goals of the model are obtained as follows.

5x1 + 12x2 + 6x3 + d−
1L − d+

1L = 14.78,

3x1 + 11x2 + 3x3 + d−
1U − d+

1U = 27.53,

−5.50x1 + 8.75x2 − 2.5x3 + d−
2L − d+

2L = 9.75,

−4.28x1 + 10.45x2 − 1.32x3 + d−
2U − d+

2U = 0.55, (42)

Then, following the procedure, the executable GP model of the problem is obtained
as follows.

Find X(x1, x2) so as to:

Minimize Z = μ
[
w1

(
d−
1L + d+

1U

) + w2
(
d−
2L + d+

2U

)] + (1 − μ)V

and satisfy the goal expressions in (42) subject to the system constraints in (39),

and d−
1L + d+

1U ≤ V, d−
2L + d+

2U ≤ V, (43)

where
(
d−
kL , d−

kU

)
and

(
d+
kL , d+

kU

) ≥ 0 with d−
kL ·d+

kL=0 and d
−
kU ·d+

kU=0, (k = 1, 2).
Now, for simplicity and without loss of generality, equal weights are assigned to

all the goals for their achievement, i.e., wk = 0.50, for k = 1, 2, and μ = 0.5 are
introduced in the decision-making context. The Software LINGO (ver. 12.0) is used
to solve the problem.

The resultant decision is (x1, x2, x3) = (0, 1.48, 0.98).
The achieved objective values in interval form are found as:
T1 = [19.28, 27.22] and T2 = [0.91, 1.28].
The result shows that a satisfactory solution is reached for achievement of goals

within their specified target intervals in the decision environment.
Note 2: The truncation errors occur for linearization of constraints are successively
found as 0.06 and 0.04% with regard to accuracy of satisfying the associated con-
straints in the decision situation. Thus, the tolerance values of arriving at optimality
for the use of such linear constraints are quite acceptable in the uncertain environ-
ment.
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Fig. 5 Graphical representations of achieved objective values under the two approaches

4.1 Illustration for Performance Comparison

To expound the potential use of proposed method, execution of the problem is made
without linearization of the fractional goals in the same decision environment.

Here, the solution is found as (x1, x2, x3) = (0, 0.3055, 2.0019) with objective
values T1 = [12.37, 18.68] and T2 = [0.560, 0.091].
The results achieved under the two approaches are shown via the bar diagram pre-
sented in Fig. 5.

The graph shows that the decision achieved under the proposed approach is more
acceptable than the conventional one with regard to achievement of values of the
goals within the target intervals specified in the decision situation.

Remark In an uncertain environment, when model parameters follow other
distributions [7] rather than normal one, like Poisson, Weibull distributions, etc.,
then the corresponding means and variances may not always agree with actual dis-
tribution patterns of random parameters. In such a case, computational complexity
arises [46] with consideration of deterministic conversions of chance constraints in
the decision situation. Here, stochastic simulation technique [47] can be effectively
used to fit the chance parameters in the solution search process, which may be an
extension in future study.

Note 3: It is worthy to note that, although interval programming has appeared as a
pragmatic tool to solve real-world MODM problems, sometimes it becomes hard
to specify the exact values of both lower- and upper-bounds of interval parameters
owing to highly uncertain information about them in complex real-world decision
situations. Again, in many practical problems, the lower and upper bounds of some
interval parameters can rarely be acquired as deterministic in an uncertain envi-
ronment. Consequently, robustness of an optimization process should have to be
enhanced with the fluctuation of boundaries for searching better decision in inexact
environment. The conceptual mathematical frame for solving such type of uncertain
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programming problemswas introduced by Inuiguchi andSakawa [48] in the past. The
literature on uncertain programming for solving complex real-life problems has also
been well discussed by Liu [49]. Here, one potential approach for better accounting
for integrated uncertainties of parameters of a model might be the hybridization of
interval programming method with incorporation of stochastic/ fuzzy distribution of
bounds of interval parameters, and that can be effectively introduced toMODMprob-
lems with highly complex and uncertain information in managerial decision-making
situations.

Here, it may be mentioned that, although the bounds of interval parameters are
stochastically/fuzzily described, the elements within intervals are regarded as certain
numbers. Although, the modeling of a real-world problem with such characteristics
has been discussed by Nie et al. [50] in the past, study in the area is at an early
stage in the literature of MODM in uncertain environment. However, the use of such
an approach would be effective to establish a compromise between optimality and
stability of the system and thereby potential solution can be generated for efficient
management practices in uncertain decision making world.

5 Conclusions and Scope for Future Research

The main merit of using the proposed method is that all possible instances of uncer-
tain data can be expressed as intervals, and interval information can be directly
communicated in the process of solving problems without any distributional infor-
mation that are required in conventional FP and SP methods. The potential use of the
approach is illustrated by numerical example and the obtained solution is compared
with solution of the problem obtained by using the conventional IVGP approach
studied previously.

Further, the main advantage of the proposed approach is that the computational
load [32] occurs for the uses of traditional linearization approaches to nonlinear func-
tions does not arise here owing to the efficient use of interval arithmetic operation
rules, and approximation error arises for the use of linearization technique is also
negligible. In future study, the proposed approach can be extended to solve hierar-
chical decentralized decision problems [51] with interval parameter sets. However,
it is hoped that approach presented here will open up new directions of research
on IVGP for its actual implementation to real-world MODM problems in inexact
environment.
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