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    Abstract  

  Crop plants are exposed to a plethora of biotic and abiotic stresses. Biotic 
stresses such as pathogens (viruses, bacteria and fungi), insect pests, nem-
atode parasites and weeds cause a signifi cant loss of crop yield and quality. 
Although conventional strategies like breeding for resistant varieties and 
agrochemicals and biocontrol agents for control of diseases and pests have 
been in use for a long time, these have been met with limited success. 
During the last 10 years, technological advancements in genetic engineer-
ing have led to the development of transgenic crop varieties resistant to 
various biotic stresses. A large number of transgenic crops have been 
developed and more are underway; however, the number of biotech crops 
reaching the fi eld from labs is still limited. Transgenic crops developed 
against insect resistance and/or herbicide tolerance have been commercial 
success stories, an example being Bt cotton.  
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30.1         Introduction 

 In the present-day scenario, food availability, 
quality and safety are given top priority, keeping 
in view the changing climate which will, in the 
near future, reduce availability of fertile land for 
agriculture (Easterling et al.  2000 ) besides 
directly affecting agricultural yield. Crop yield 
losses due to biotic stresses like pest infestation, 
weed overtake and disease occurrence together 
with abiotic factors like drought, salinity and 
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extreme temperature diminish considerably food 
production economics in many parts of the 
world. With climate change predicted to alter 
conditions in various parts of the world, research-
ers started developing models to forecast adverse 
effects of abiotic and biotic factors on crop pro-
ductivity. In a study by Collier et al. ( 2008 ), it 
was deduced that changes in life cycle of a pest 
with increased number of generations or with 
increase in number of survivors of a particular 
stage of instar could be a consequence of the 
changing climatic conditions in the future. Such 
changes are also predicted for plant pathogens 
(Lonsdale and Gibbs  2002 ; Turner  2008 ). Apart 
from this, the tremendous increase in human 
population is bound to elevate food demand in 
terms of both quality and quantity. In fact, it has 
been suggested that food production needs to be 
doubled by 2050 with available arable land to 
ensure food security for future generations 
(Baulcombe  2010 ; Datta  2013 ). Further, it was 
estimated that in wheat alone, production needs 
to increase by 2 % annually (Singh and 
Trethowan  2007 ). 

 Enhancement of food production can be 
achieved by various strategies: (1) increasing the 
land area under cultivation, (2) developing 
improved varieties by traditional breeding meth-
ods, (3) adopting better agricultural techniques 
and tools and (4) adopting transgenic approaches. 
The fi rst approach is neither feasible nor sustain-
able, as we can no longer convert scarce forest 
areas into arable lands. Although conventional 
breeding has contributed its share, it has limita-
tions such as non-precise gene transfer, transfer 
of unwanted genes, time-consuming and labori-
ous (Rajam et al .   1998 ; Bhatnagar-Mathur et al .  
 2008 ; Hazarika and Rajam  2011 ). At the same 
time, increasing use of land for purposes other 
than agriculture (like housing, industrial build-
ing, forest conservation and so on) also needs to 
be considered (Evans  2009 ). In the present con-
text, an effective and challenging task is to maxi-
mise land use effi ciency by increasing crop 
productivity per unit area. Therefore, better tools 
and techniques can only compliment conven-

tional agricultural productivity by use of other 
novel approaches. 

 In this regard, transgenic technology has 
gained relevance for crop improvement and has 
added a new thrust to agriculture. Better under-
standing of biotic and abiotic factors involved in 
crop improvement, and their manipulation for 
better results, is developing as a potential strat-
egy. Area under cultivation of genetically modi-
fi ed (GM) crops is increasing year by year (James 
 2013 ). Although this is a positive sign for increas-
ing acceptance of GM crops in the commercial 
market (with a notion that the productivity of 
these crop varieties can deal with the demand for 
quantity and quality of food) (Chakraborty et al. 
 2000 ; Datta  2012 ), concerns regarding the effects 
of these GM products on human health do persist 
(Dona and Arvanitoyannis  2009 ). It is to be noted 
here that in both conventional breeding tech-
niques and transgenic crops, change in the genetic 
make-up of the plant may be involved. However, 
in the production of GM varieties via the trans-
genic technology, genetic changes that are 
brought about are small and defi ned, whereas in 
conventional breeding, these changes can be rela-
tively large and may involve a set of ill-defi ned, 
uncharacterised genes (Datta  2013 ). In this chap-
ter, we have given a general overview of biotic 
factors and transgenic approaches being used for 
alleviating these stresses for improving crop 
health and productivity.  

30.2     Types of Biotic Stress 

 Plant species are under a constant threat from a 
number of biotic stresses that exist simultane-
ously in nature. Attack by pathogens and para-
sites such as bacteria, fungi, viruses and 
nematodes plays a crucial role in plant growth 
and productivity. Apart from these, insect her-
bivory and theft of nutrients by weeds also cause 
serious economic losses in crop yield. These 
stresses very often coexist, leading to multiple 
stresses which might elevate the level of biotic 
stress incident on crop plants.  
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30.3     Conventional Strategies 
to Alleviate Biotic Stresses 

 To protect plants against biotic stresses, various 
prevention and control strategies have been tested 
over the ages. Conventional breeding practices 
for the generation of disease-resistant lines 
against diverse biotic stresses in plants have been 
widely employed over several decades now. 
Besides conventional agricultural practices, 
farmers depend on chemical pesticides and herbi-
cides to a great extent which leads to signifi cant 
increase in crop yields. However, the ever- 
increasing environmental and health concerns 
against use of chemicals in agriculture paved the 
way for the development of biological control 
agents (BCAs). Biological control measures 
include use of BCAs, i.e. use of antagonists that 
suppress plant diseases; use of predatory insects, 
entomopathogenic fungi, bacteria and nematodes 
for control of insect pests; and use of weed- 
specifi c pathogens for control of populations of 
specifi c weeds. Formulated natural plant prod-
ucts are also used in integrated pest management 
(IPM) strategies.  

30.4     Why the Need 
for an Alternative? 

 Although BCAs and resistant lines of crop plants 
are successfully used for some plant disease and 
insect pest control, emergence of resistance- 
breaking biotypes is rapid in pace. Conventional 
plant breeding techniques are laborious and 
time- consuming. To keep pace with the emer-
gence of resistant biotypes of pests, breeders 
need to look for new resistant traits that are more 
durable. However, keeping the time required for 
developing a new cultivar in view, it becomes 
diffi cult to rely wholly on such a strategy. 
Advancements in the fi eld of genetic engineer-
ing and molecular biology over the past two 
decades have led to the use of transgenic tech-
nology in crop improvement.  

30.5     Transgenic Approaches 
to Biotic Stress Tolerance 
in Plants 

 The high potential of genetic engineering in 
developing disease-resistant transgenic crop 
plants has been successfully tapped as a strategy 
alternative to conventional breeding. Over the 
years, success stories have thrown up transgenic 
plants resistant to various plant pathogens and 
insect pests, and these engineered crops have 
moved to the fi eld (James  2013 ) instead of 
remaining as just laboratory curiosities. Thus, 
transgenic crop plants engineered for resistance 
against bacteria, fungi (Wally and Punja  2010 ), 
virus (Prins et al.  2008 ), pathogens and nema-
todes (Atkinson et al.  2003 ; Tamilarasan and 
Rajam  2013 ) have become a reality, so also resis-
tance against insect herbivory (Christou et al. 
 2006 ; Gatehouse  2008 ) and for dealing with the 
unwanted weeds (Herouet-Guicheney et al. 
 2009 ). 

30.5.1     Viruses 

 Plant viruses cause signifi cant losses in crop 
yield and productivity on a global scale. The 
most devastating infectious plant diseases are 
caused by viruses (Anderson et al.  2004 ) belong-
ing to the  Tospovirus  group, causing crop losses 
of more than a billion dollar a year (Prins and 
Goldbach  1998 ). In view of the limited effective-
ness of control mechanisms like the use of virus- 
free seeds, prevention by phytosanitation, 
breeding for resistant lines or prevention of vec-
tor transmission (Mawassi and Gera  2012 ), the 
transgenic approach has been used. Introduction 
of natural virus-resistant genes into an existing, 
desirable cultivar can be achieved using genetic 
engineering. Pathogen-derived resistance (PDR) 
is the most commonly used phenomenon. Here, 
transgenic plants expressing genes of a viral 
pathogen show resistance against the same or 
related viruses (Slater et al.  2003 ). The fi rst 
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 application of PDR phenomenon with respect to 
plant viruses was demonstrated by Powell-Abel 
et al. ( 1986 ) who showed that transgenic tobacco 
plants expressing tobacco mosaic virus coat 
 protein gene were resistant to attack by the 
tobacco mosaic virus. Examples of pathogen-
derived genes include the replicase protein 
(Rubino and Russo  1995 ), coat protein (Lindbo 
and Dougherty  1992 ; Nelson et al.  1993 ; Ganesan 
et al.  2009 ), proteinase (Vardi et al.  1993 ), move-
ment protein (Cooper et al.  1995 ) or genes cod-
ing for host cell lethal proteins like antiviral 
compounds (ribosome- inhibiting proteins) 
(Wang et al.  1998 ) or those that target the viral 
genome or particle directly, viz., ribozymes and 
ribonucleases (Sano et al.  1997 ). Resistance 
against viruses can also be obtained by presetting 
the RNA silencing system in plants by introduc-
ing and expressing fragments of sense and anti-
sense viral nucleic acid sequences into 
chromosomes of the plants (Prins et al.  2008 ; 
Tyagi et al.  2008 ; Duan et al.  2012 ), or by 
expressing the virus mini-replicon (Brumin et al. 
 2009 ), or by expression of artifi cial microRNA 
(Niu et al.  2006 ). Management of papaya ringspot 
virus (PRSV) is one of the remarkable success 
stories (Gonsalves et al.  2004 ).  

30.5.2     Bacterial and Fungal 
Pathogens 

 Research over the years has led to the use of vari-
ous strategies for the development of transgenic 
plants resistant to bacterial and fungal pathogenic 
attack (Salomon and Sessa  2012 ), the fi rst among 
these being expression of resistance genes 
(R-genes). R-genes code for nucleotide-binding 
peptides harbouring leucine-rich repeats (LRRs) 
which are transmembrane in nature (Bent and 
Mackey  2007 ). These peptides recognise prod-
ucts of avirulence ( Avr ) genes produced by the 
pathogen and subsequently induce activation of 
diverse downstream processes that include acti-
vation of pathogenesis-related genes (PR genes), 
production of high amounts of inhibitory mole-
cules and their accumulation and induction of the 
hypersensitive response (Kiraly et al.  2007 ). 

Introduction of R-gene  Rxo1  from maize into rice 
led to the latter’s resistance to bacterial streak 
disease caused by  Xanthomonas oryzae  pv.  oryzi-
cola  (Zhao et al.  2005a ), while expression of 
R-gene (RPI-BLB2) from wild potato conferred 
resistance to the cultivated potato against attack 
by  Phytophthora infestans  (van der Vossen et al. 
 2005 ). 

 Many fungal pathogens produce toxins called 
mycotoxins in general.  Fusarium culmorum  and 
 F. graminearum  produce deoxynivalenol, a 
trichothecene mycotoxin, which confers viru-
lence to these fungal strains and also poses tox-
icity threat to humans and animals (Kimura et al. 
 2006 ). Looking into the way in which the fungus 
deals with the mycotoxin, researchers developed 
transgenic lines of wheat, rice and barley. These 
genetically modifi ed (GM) plants overexpressed 
the trichothecene 3-O-acetyltransferase ( tri101 ) 
gene, whose product is involved in acetylating 
deoxynivalenol which results in a much less 
active form of the toxin (Manoharan et al.  2006 ). 
The transgenic wheat line showed reduced wheat 
spike infection (Okubara et al.  2002 ), and trans-
genic rice (Ohsato et al.  2007 ) and barley 
(Manoharan et al.  2006 ) yielded grains with far 
less mycotoxin contamination than in the wild 
type. 

 Use of antimicrobial peptides and PR-proteins 
in engineering plants for resistance against patho-
gens is the most common strategy. These proteins 
are expressed constitutively in plants; however, 
their levels shoot up upon pathogen attack (Rao 
et al.  1999 ; Wally and Punja  2010 ). Antimicrobial 
metabolites thus produced are involved in degrad-
ing fungal components like the cell wall, cell 
membrane or RNA, or these induce secondary 
metabolite production or increase physical barri-
ers in a plant cell (Ferreira et al.  2007 ). A wide 
range of such peptides have been overexpressed 
in plants for conferring resistance against differ-
ent plant pathogens, to name a few, chitinases, 
β1-3 glucanases, defensins, thionins, thaumatin- 
like proteins (Rajam et al.  2007 ), lipid-transfer 
proteins and phenylalanine ammonia lyase 
(reviewed by Wally and Punja  2010 ). Recent 
reports show that introduction of alfalfa gluca-
nase into eggplant led to increased resistance 
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against pathogenic fungi like  Verticillium dahlia  
and  Fusarium oxysporum  (Singh et al.  2014 ). 

 Interestingly, polyamines like diamine putres-
cine, triamine spermidine and tetra-amine 
 spermine have been implicated in abiotic (Rajam 
et al.  1998 ) and biotic (Hazarika and Rajam 
 2011 ) stress tolerance (Hussain et al.  2011 ) 
besides their involvement in the regulation of a 
wide variety of biological processes including 
cell division, growth and development, stabilisa-
tion of DNA and gene regulation (Igarashi and 
Kashiwagi  2010 ). Although considerable amount 
of work has been done on genetic manipulation 
of polyamine biosynthesis genes for abiotic stress 
tolerance in various plants (Marco et al.  2012 ), 
engineering polyamine biosynthesis for biotic 
stress tolerance has not been explored much so 
far, as evidenced by scarce literature on the sub-
ject. For instance, enhanced fungal resistance 
was reported by overexpressing the polyamine 
biosynthesis gene, S-adenosylmethionine decar-
boxylase, in tobacco (Waie and Rajam  2003 ) and 
tomato (Hazarika and Rajam  2011 ) and arginine 
decarboxylase in eggplant (Prabhavathi and 
Rajam  2007 ). 

 RNA interference (RNAi) strategy involving 
plant-mediated silencing of fungal genes shows 
promise for developing potential tools in the fi ght 
against fungal attack on crop plants in the near 
future. Fungal uptake of synthetic siRNA specifi c 
to the ornithine decarboxylase ( ODC ) gene led to 
downregulation of  ODC  gene and in turn caused 
signifi cant decrease in mycelial growth and spor-
ulation in the fungal pathogen,  Aspergillus nidu-
lans  (Khatri and Rajam  2007 ). Transgenic 
tobacco plants that expressed antisense RNA of 
heterologous (mouse) ornithine decarboxylase 
gene were demonstrated to be more resistant to 
 Verticillium  wilt compared to the wild type plants 
(Rajam  2012a ). Also, development of powdery 
mildew causing fungus in wheat and barley, 
 Blumeria graminis , was affected adversely by  in 
planta  expression of antisense transcripts and 
dsRNA specifi c to the fungus (Nowara et al. 
 2010 ). These initial steps might pave the way for 
the development of a promising tool for control 
of fungal plant pathogens (Rajam  2012b ). 
However, success of transgenic crops showing 

resistance to bacterial and fungal pathogens is 
limited in comparison to insect-resistant trans-
genic crops (Punja  2006 ).  

30.5.3     Insect Pests 

 Success story of the transgenic plants for insect 
resistance started with transforming plants with 
 cry  genes from  Bacillus thuringiensis  (Vaeck 
et al.  1987 ). These genes code for highly insecti-
cidal crystal proteins called Bt toxins. Upon 
ingestion, the toxin binds to specifi c receptors in 
the insect midgut epithelium, and further action 
of the proteases activates the toxin. This active 
toxin induces lytic pore formation in the midgut 
epithelial cells, leading to their lysis, and subse-
quently kills the insect larva (Daniel et al.  2000 ). 
Over 400 genes coding for these toxin variants 
have been identifi ed from different strains of  B. 
thuringiensis  (Crickmore et al.  2007 ). 
Insecticidal spectrum of each of these toxin vari-
ants is distinct. Since the fi rst transgenic tobacco 
and tomato plants were developed carrying  cry  
genes (Vaeck et al.  1987 ), tissue-specifi c or con-
stitutive expression of Bt toxins has been estab-
lished in many crop plants against specifi c pest 
species (Pierpoint and Hughes  1996 ). Bt cotton 
is one among them and is a commercial success. 
Apart from Bt toxin,  B. thuringiensis  also 
expresses other proteins like vegetative insecti-
cidal protein (Vip) which is, obviously, insecti-
cidal in nature. Ingestion of Vip proteins leads to 
the swelling and osmotic lysis of midgut epithe-
lial cells, causing death of the target insect. 
Unlike  cry  toxins, these are expressed both dur-
ing vegetative growth and sporulation of the bac-
terium (Estruch et al.  1996 ; Crickmore et al. 
 2007 ). Like Bt, different Vip toxins act against 
specifi c groups of insects. Although Vip3 showed 
very high insecticidal activity against major lepi-
dopteran pests attacking maize and cotton 
(Estruch et al.  1996 ; Fang et al.  2007 ), licence 
granted for release of GM Vip cotton is limited 
and controlled (Crothers  2006 ). Other entomo-
pathogenic bacteria like  Photorhabdus lumines-
cens  also express insecticidal toxin complexes 
whose genes have been introduced into plants 
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(Liu et al.  2003 ). Transgenic  Arabidopsis 
 thaliana  plants expressing  tcdA  gene encoding 
for toxin A showed resistance against tobacco 
hornworm and southern corn rootworm. 

 Apart from genes from microbes, genes from 
the insect itself are used for killing the pest. One 
such gene is chitinase, which is a development- 
associated gene in insects and is expressed during 
larval moulting, i.e. shedding of the peritrophic 
membrane and exoskeleton. Insect pests feeding 
on transgenic plants constitutively expressing 
insect chitinase are exposed to a constant level of 
this enzyme all through their development cycle, 
which disturbs their process of regular moulting. 
Ding et al. ( 1998 ) showed that transgenic tobacco 
plants expressing chitinase conferred resistance 
to lepidopteran pests. 

 Plant transformation with plant genes encod-
ing for insecticidal secondary metabolites like 
proteinase inhibitors, alpha-amylase and lectins 
has also been shown to confer resistance to insect 
attack. In insects, proteinases are among the 
digestive enzymes essential for catalytic release 
of amino acids from the ingested proteins which, 
thereby, contribute to the insect’s growth and 
development. Hence, ingestion of proteinase 
inhibitors could prove lethal to insects. Proteinase 
inhibitors are produced in high amounts and are 
accumulated by plants in response to herbivorous 
attack or mechanical injury (Ryan  1990 ). 
Although plants expressing different proteinase 
inhibitors, viz., BTI-CMe (barley trypsin inhibi-
tor) and MTI-2 (mustard trypsin inhibitor), 
showed signifi cant insect resistance (Altpeter 
et al.  1999 ; De Leo et al.  2001 ), genes for pro-
teinase inhibitors like cowpea trypsin inhibitor 
(CpTI) have been used in combination with Bt 
toxins to enhance protection of the transgenic 
crop against insects (Gatehouse  2011 ). 

 Expression of protein inhibitors of proteases 
(Wolfson and Murdock  1987 ; Thomas et al. 
 1995 ) in plants had a signifi cant effect on repro-
ductive output of target insect pests. Exploiting 
the neuropeptides and inhibitors of polyamine 
biosynthesis with potential insecticidal activity 
might prove benefi cial for developing insect 
resistance in plants (Rajam  1991 ; Raina et al. 
 1994 ; Kumar et al.  2009 ). 

 With ever-increasing knowledge in the fi eld of 
RNAi, RNA-mediated (sense or antisense RNA, 
dsRNA, artifi cial microRNA) strategies are being 
employed to induce RNAi in transgenic plants as 
an effective defence mechanism against insect 
attack (Mao et al.  2007 ; Baum et al.  2007 ; 
Terenius et al.  2011 ). One of the major achieve-
ments is the use of this strategy to control sap- 
sucking insects like aphids. Recent success with 
the use of plant-generated dsRNA and other 
small RNA-mediated approaches, for conferring 
resistance against aphids, is remarkable (Pitino 
et al.  2011 ; Guo et al.  2014 ).  

30.5.4     Nematode Parasites 

 Plant parasitic nematodes can cause crop yield 
losses up to 20 % in a single crop, and in most 
cases, these losses are caused by attack of root- 
knot nematodes and cyst nematodes (Koenning 
et al.  1999 ; Bird and Kaloshian  2003 ; Tamilarasan 
and Rajam  2013 ). Conventional strategies like 
crop rotation do not hold good for control of 
nematodes with a wide host range, and chemical 
practices are expensive (Abad et al.  2003 ). 
Alternate transgenic approaches and RNAi, 
which was in fact discovered in the nematode 
 Caenorhabditis elegans  (Fire et al.  1998 ), pro-
vide a better scope for control of plant parasitic 
nematodes. Some of the strategies used for devel-
oping transgenic plants with resistance to nema-
todes include anti-invasion and migration, 
anti-nematode feeding and development and 
feeding-cell attenuation strategies (Atkinson 
et al.  2003 ). Expression of cysteine proteinase 
inhibitor (cystatin) in transgenic plants helped 
potato plants resist nematode attack (Cowgill 
et al.  2002 ). The parasitism genes express para-
sitism proteins which help the nematode infect 
the root and parasitise the plants (Davis et al. 
 2004 ). Using RNAi approach,  Arabidopsis  plants 
were bioengineered to express dsRNA of one of 
the parasitism genes,  16D10 . These transgenic 
plants were resistant to four species of root-knot 
nematodes (Huang et al.  2006 ). Therefore, this 
strategy can be applied to agriculturally impor-
tant crops for developing resistance against 
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 nematodes. Similarly, the nematode genes 
involved in its development and reproduction and 
the nematode- responsive host plant genes have 
been targeted for developing effective methods of 
plant nematode control (for review, Tamilarasan 
and Rajam  2013 ).  

30.5.5     Weeds 

 Herbicides are chemicals which are used to kill 
the weeds, but at the same time, they are deadly 
to the cultivated crop plants also. Hence, devel-
opment of transgenic plants resistant to herbi-
cides was taken up. One of the most commonly 
used herbicide, glyphosate, inhibits the 
enzyme 5-enolpyruvylshikimate-3-phosphate 
(EPSP) synthase. Overexpression of this enzyme 
in transformed  Petunia  plants conferred resis-
tance to this herbicide (Shah et al.  1986 ). 
Expression of an insensitive form of EPSP syn-
thase also showed similar results (Herouet-
Guicheney et al.  2009 ). Since then, this strategy 
has been used for several crop plants. Glyphosate-
tolerant soybean was successfully commer-
cialised in 1996, and later, GM crops like 
herbicide-tolerant maize, cotton, etc. were also 
accepted by the farmers (James  2013 ). Recent 
studies showed that transformation with two 
genes, glyphosate acetyl transferase  gat  and 
EPSPS  G2-aroA  genes, conferred high level of 
tolerance towards glyphosate in tobacco plants 
(Din et al.  2014 ). Further, stacking of genes for 
herbicide tolerance and insect resistance has also 
been reported in crops like cotton, and these are 
being commercialised (James  2013 ).   

30.6     Concerns About Transgenic 
Plants and Novel Alternative 
Strategies 

 In spite of the various advantages of the use of 
transgenic technology, there are some limita-
tions. One major concern, in general, about the 
release of transgenic plants into the natural envi-
ronment is transgene fl ow. Gene fl ow is a natural 
process among related species (vertical gene 

fl ow) or related genera within a family (diagonal 
gene fl ow) or, even, among unrelated species 
(horizontal gene fl ow). However, transgenes that 
code for traits not found in related species, or 
even genera, would not integrate into these plants 
had there not been a transgenic. This unnatural 
event might pose a threat to the natural gene pool 
over time (Gressel  2012 ). The most common 
cases reported in this context are fl ow of 
herbicide- resistant genes from crops to weeds as 
reported in transgenic glufosinate-resistant rice 
(Song et al.  2011 ). The ability to control weeds in 
such cases, thus, becomes close to nil. Various 
techniques for transgene containment to prevent 
such transgene fl ow have been discussed recently 
(Gressel  2012 ). In the case of a leaky contain-
ment mechanism where such a transgene move-
ment takes place, methods of transgene mitigation 
to suppress its spread and establishment in the 
population have also been highlighted (Gressel 
 1999 ,  2012 ). 

 Development of resistant pest populations is 
another shortcoming of transgenic crops express-
ing insecticidal genes. This has been well noted 
in Bt crops (Shelton et al.  2003 ; Moar et al. 
 2008 ). Although development of resistant target 
pest populations against Bt crops has been slower 
than against that of Bt sprays (Fox  2003 ; Gressel 
 2012 ), there are fi eld reports of Bt-resistant pest 
populations, as observed in  Spodoptera frugi-
perda  and  Helicoverpa zea  (Moar et al.  2008 ; 
Tabashnik et al.  2008 ). To this problem, ‘refugia’ 
have worked as a solution. Planting regular rows 
of Bt and non-Bt crops allows survival of the sus-
ceptible pests. Bt-resistant trait is recessive, and 
as long as the susceptible mating population is 
within reach, selection of resistant genes in the 
population is expected to be very meagre (Bates 
et al.  2005 ). Pyramiding of two or more  cry  
genes, or different insecticidal genes, is expected 
to delay eruption of resistant pest species, as the 
pest needs to then evolve resistance against two 
or more insecticidal toxins simultaneously (Zhao 
et al.  2005b ; Watkins et al.  2012 ). 

 A more recent advancement in this fi eld is 
the RNAi approach, which is an alternative to 
expression of transgenes and might prove to be 
advantageous over the latter, considering the 
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limitations and concerns of the transgenic 
approach. RNAi technology can be applied for 
control of those insect pests where effective Bt 
genes are not available, e.g. sucking pests like 
aphids and jassids. One other important point is 
its species specifi city which reduces the risk of 
negative effects on nontarget organisms 
(Huesing et al.  2009 ). Unlike the existing trans-
genic crops which are based mainly on trans-
gene protein, RNAi strategy works at the 
post-transcriptional level where there is no pro-
tein in the transgenic plant, and therefore, it is 
very unlikely that the target pathogen or pest 
would gain resistance in the absence of the 
transgene protein (Rajam  2011 ; Rajam and 
Singh  2011 ). A case in point is Bt crops and 
other transgenic plants where target pathogens 
or pests have been shown to be resistant after a 
few generations (Moar et al.  2008 ; Rajam and 
Singh  2011 ). Further, a major concern with 
transgenic plants is the possible allergic 
response in the consumers against the expressed 
transgene protein (Niblett and Bailey  2012 ) 
which, on the other hand, in RNAi plants, might 
not be the case due to absence of any transgene 
protein. This makes these RNAi plants and their 
products safe for human and animal consump-
tion and greatly reduces the regulatory issues 
related with their commercialisation (Auer and 
Frederick  2009 ). The beauty of RNAi approach 
is that more than one gene can be effectively tar-
geted using chimeric RNAi constructs (Gupta 
et al.  2013 ; Sinha and Rajam  2013 ) to the patho-
gen or pest by this technique. This would also 
avoid development of resistance by target organ-
isms and would allow targeting of more than 
one pathogen or pest, as chimeric RNAi con-
struct contains sequences of more than one tar-
get gene (Rajam  2011 ; Rajam and Singh  2011 ). 
However, RNAi approach has at least one limi-
tation, i.e. the sequence(s) introduced can have 
off-target effects on the host plant or other 
organisms, depending upon the extent of homol-
ogy between the introduced sequence and the 
sequence of nontarget genes (Du et al.  2005 ). 

 Details on the use of RNAi technology for 
crop improvement, including control of diseases 
and pests, are available in the following chapter.  

30.7     Conclusions and Future 
Prospects 

 The most important point which needs consider-
ation in the use of transgenic approach for allevi-
ating biotic stress in plants is stability of the 
resistance in engineered plants. Although a large 
number of transgenic plants resistant to various 
biotic stresses are under development, only a few 
have become commercially successful. Examples 
of such commercial successes are Bt crops. One 
of the main features responsible for acceptance 
of Bt crops in the commercial market by consum-
ers was the proof provided for Bt toxin as having 
no effect on birds and mammals, including 
humans (Goldberg and Tjaden  1990 ; Mendelsohn 
et al.  2003 ). For large-scale public acceptance of 
transgenic technologies, the transgenics need to 
be of proven safety for human and animal con-
sumption; also, the economic balance, i.e. cost 
involved in developing, raising and registering 
the transgenic crops, should be balanced with 
profi t margins of their producers, and fi nally, ease 
of their availability to the consumer must be 
ensured.     
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