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    Abstract  

  Present-day cultivars of crop species have become susceptible to a range 
of biotic and abiotic stresses because of their narrow genetic base. The 
genes imparting resistance to these stresses are no more available within 
the cultivated species but are present in many wild and weedy relatives. To 
transfer desirable genes to the cultivars, the production of wide hybrids is 
an important pre-breeding requirement. One of the major limitations of 
wide hybridization is the presence of strong crossability barriers that oper-
ate before as well as after fertilization. During the last several decades, 
many biotechnological methods have become available, and their integra-
tion into the traditional methods of wide hybridization greatly increases 
the effi cacy and reduces the time and efforts needed. Some of these include 
pollen storage, application of growth substances, stump pollination, pla-
cental pollination, in vitro fertilization and embryo rescue in the form of 
ovary, ovule and embryo culture. This review highlights the effi cacy of 
these techniques in realizing wide hybrids and emphasizes the use of com-
bination of techniques to make these approaches more successful. The 
interest on production and use of sexual wide hybrids has greatly reduced 
after the development of the techniques of somatic hybridization and 
genetic transformation. Although they provide powerful technologies to 
achieve some specifi c objectives of the breeding program, they cannot 
replace sexual hybridization for gene transfer. It is important for the plant 
breeders to refi ne and exploit fully some of the underexploited techniques 
described in this review in raising wide sexual hybrids.  
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17.1         Introduction 

 The transfer of desirable genes to crop species 
from other accessions or species through sexual 
hybridization has been one of the most effective 
crop improvement programs (Goodman et al. 
 1987 ). Until recently, the major objectives of crop 
improvement programs have been on increasing 
the yield and improving the quality and genetic 
uniformity of the cultivars. Breeders have been 
able to achieve remarkable success on these lines 
in almost all crop species. Intensive breeding and 
selection for economic traits over the years have 
greatly reduced genetic variability in crop species. 
Because of their narrow genetic base, present-day 
cultivars have become susceptible to a range of 
biotic and abiotic stresses. Although most of the 
cultivars have the genetic potential for high yield 
under optimal agronomic conditions, their 
increased susceptibility to the stresses brings down 
the yield substantially (Boyer  1982 ). Broadening 
the genetic base of cultivated species, therefore, 
has become an important pre-breeding require-
ment to safeguard crop yield in the coming years. 

 In recent years, the objectives of the breeding 
program, apart from improvement in yield and 
quality, have become more diverse. Some of 
these additional breeding objectives are:
    1.     To breed varieties tolerant/resistant to biotic 

and abiotic stresses.   
   2.     To breed varieties that have lower require-

ment for environmentally unfriendly chemi-
cals particularly pesticides and herbicides. 
Excessive use of agrochemicals has been a 
major environmental problem of modern agri-
culture. The trend is to grow crops ‘organi-
cally’ without the use of environmentally 
unfriendly agrochemicals.   

   3.     To breed varieties that can be grown on mar-
ginal lands. A large area of agricultural land is 
being degraded, particularly in developing 
countries, due to water logging, soil erosion, 
salinity, alkalinity and contamination with 
industrial chemicals. The recovery of such 
vast areas of land is not feasible because of the 
lack of suitable technologies and/or the high 
cost involved. Breeding crops that can be 
grown on marginal lands has become an alter-
nate strategy.     
 Because of the constant erosion of genetic 

diversity in our crop species, genes imparting the 
required traits are no longer available within the 
cultivated species. A large number of wild and 
weedy relatives of crop species, however, form a 
good repository of such desirable genes (Harlan 
 1976 ). The plant breeders, therefore, often have 
to extend the breeding program across the species 
limits to tap genes of the wild and weedy species 
(wide hybridization). A good number of exam-
ples of successful gene transfer through wide 
hybridization are already available (Hawkes 
 1977 ; Hadley and Openshaw  1980 ; Stalker  1980 ; 
Goodman et al.  1987 ; Hermsen  1992 ; Kalloo 
 1992 ; Chopra et al.  1996 ; Sareen et al.  1992 ; 
Wang et al.  2005 ; Prakash et al.  2011 ). The pri-
mary requirement for transferring genes from 
wild species to the cultivars is the production of 
wide hybrids (hybrids from distantly related 
species). 

 In addition to the transfer of desirable genes 
from wild species to the cultivars, wide hybrid-
ization is also one of the standard approaches to 
develop new cytoplasmic male sterile lines 
(through cytoplasmic substitution), which are 
important for crop species (Labana et al.  1992 ; 
Shivanna and Sawhney  1997 ; Shivanna  2003 ; 
Prakash et al.  2011 ). Another application of wide 
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hybrids is to develop new alloploid crops such as 
triticale ( Triticum  ×  Secale ) and  Raphanobrassica  
( Raphanus  ×  Brassica ) (Sareen et al.  1992 ). Wide 
hybrids are also useful to study a range of prob-
lems of traditional and molecular cytogenetics, 
particularly for elucidating homology (Prakash 
et al.  2011 ). 

 The presence of strong crossability barriers 
between the species is the major constraint in any 
wide hybridization program. Early plant breeders 
used to resort to mass pollination, generally in 
thousands, to realize a few wide hybrids. Now, a 
number of biotechnological approaches have 
become available to overcome crossability barri-
ers. Integration of these techniques with conven-
tional breeding program greatly improves the 
effi ciency of wide hybridization and reduces 
markedly the time and cost of breeding. This 
review briefl y discusses some of the important 
biotechnological approaches that have been used 
to produce wide hybrids through sexual pathway 
and highlights their importance in the coming 
decades. 

 The following are a few general guidelines to 
be followed to achieve success in any wide 
hybridization program:
    1.     It is desirable to try different accessions of 

both the parents in crossing experiments since 
genetic variability within the species may 
affect the intensity of the barriers. Some of the 
accessions/genotypes may turn out to be more 
compatible when compared to others.   

   2.     It is also necessary to check the viability of 
the pollen sample used for crosses and the 
receptivity of the stigma at the time of pollina-
tion (Shivanna and Rangaswamy  1992 ). If 
possible, it is better to use pollen grains col-
lected from freshly dehisced anthers.   

   3.     Many of these crosses show unilateral incom-
patibility (de Nettancourt  2001 ); it is, there-
fore, better to make crosses in both the 
directions.   

   4.     Recent studies have shown that knowledge 
on the phylogenetic relationships of the culti-
var with its wild relatives would help in 
selecting the wild parent which is likely to be 
more successful (Kubota et al.  2011 ). For 
example, in  Hydrangea , interspecifi c crosses 

were found to be successful up to an average 
genetic distance of 0.01065. The crosses are 
likely to fail when the average genetic dis-
tance is 0.01385 and higher (Mendoza et al. 
 2013a ,  b ). Similarly, in wheat-rye hybrids, 
signifi cant differences in the frequency of 
normal embryo development were found 
when different lines of rye were used in rye × 
wheat crosses (Taira et al.  2011 ). It would 
therefore be helpful to check the available 
information on phylogenetic relationship of 
the selected species and use closely related 
parents for making crosses.      

17.2     Crossability Barriers 

 Crossability barriers operate at different levels 
before and after fertilization (Sastri  1985 ; 
Shivanna  1997 ; de Nettancourt  2001 ). One of the 
common barriers particularly in distantly related 
species is the physical barrier imposed by geo-
graphical and/or temporal isolation of the parent 
species. The male and female parents do not 
grow at the same place and/or their fl owering 
may not be synchronous, thus preventing effec-
tive pollination. Pre-fertilization barriers inhibit 
pollen germination or pollen tube entry into the 
stigma or subsequent growth of the pollen tubes 
before reaching the ovule. More often these bar-
riers operate in a cumulative way; the proportion 
of pollen grains that complete germination or 
post-germination growth of pollen tubes at differ-
ent levels may get reduced at each step, resulting 
in the failure of fertilization. In multiovulate sys-
tems, fertilization may occur in a few ovules 
which may not be suffi cient to activate the devel-
opment of the fruit and thus no seeds are 
realized. 

 Post-fertilization barriers operate at various 
levels: abortion of hybrid embryos at preglobu-
lar/globular/later stages, failure of hybrid seeds 
to germinate or the seedling to grow up to the 
fl owering, hybrid sterility and lack of recombina-
tion. Post-fertilization barriers also operate in a 
cumulative way with the result that no usable 
hybrid is realized. A number of biotechnological 
approaches are now available to overcome such 
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barriers. Identifi cation of the barrier(s) would 
help in the selection of effective method(s) to 
 circumvent the barrier(s).  

17.3     Methods to Overcome 
Physical Barriers 

17.3.1     Pollen Storage 

 Pollen storage is one of the simple and effective 
methods to overcome physical barriers imposed 
by temporal and spatial isolation of the parent 
species. A number of techniques are now avail-
able to store pollen grains for extended periods in 
viable condition. When once a suitable technique 
is standardized for a given species, pollen grains 
of the male parent can be stored and used rou-
tinely for pollination when the female parent 
fl owers. Apart from its application to overcome 
physical barriers, successful pollen storage elimi-
nates the need to grow pollen parent continuously 
in the breeding program. Another important 
application of pollen storage relevant to the 
breeding program is that it provides a convenient 
and simple means of pollen exchange amongst 
breeders within and between countries. Many of 
the horticultural societies such as the American 
Rhododendron Society maintain their own pollen 
banks which are accessible to their members 
(Mayer  1983 ). Pollen grains are generally free 
from pathogens even when the parent plant is 
infected. Except for some viral diseases, there are 
no authentic reports of systemic transmission of 
fungal and bacterial diseases through pollen 
(Mink  1993 ). Therefore, the quarantine restric-
tions for the exchange of germplasm through pol-
len are much less when compared to seeds and 
vegetative parts of the plant. The utility of ‘pollen 
banks’, which would ensure the availability of 
pollen of the desired species/variety at any time 
of the year and at any place, has been emphasized 
since long. Pollen banks would greatly facilitate 
the breeding program, particularly of tree species 
which have to complete their juvenile phase, 
often lasting for several years, before fl owering. 
Extensive literature, available on pollen storage, 
has been reviewed regularly (Johri and Vasil 

 1961 ; King  1965 ; Stanley and Linskens  1974 ; 
Shivanna and Johri  1985 ; Towill  1991 ; Hanna 
and Towill  1995 ; Barnabas and Kovacs  1997 ; 
Ganeshan and Rajasekaran  2000 ; Shivanna 
 2003 ). Many of these reviews list the pollen spe-
cies stored for various periods under different 
storage conditions. The following is a brief 
description of the important methods used to 
store pollen grains of various species:
   Storage of pollen under low temperature (+4 to 

−20 °C) and humidity (<10 % RH) conditions 
is one of the simple and commonly used meth-
ods particularly for horticultural species. 
Pollen grains are kept in small unsealed vials 
and stored in a desiccator or a suitable airtight 
vial containing an appropriate dehydrating 
agent such as dry silica to maintain low RH 
(Shivanna and Johri  1985 ; Shivanna and 
Rangaswamy  1992 ). The sealed desiccators 
are then kept in a refrigerator or a deep freeze. 
This method is very convenient and effective 
for short-term storage (for a few weeks/
months) and has been used extensively by 
amateur horticulturists.  

  Storage under subfreezing temperatures (ca 
−20 °C) is effective for storing pollen grains 
of several species for more than a year. Frozen 
pollen of  Rhododendron  in home freezer has 
been reported to be viable for 3 years (Mayer 
 1983 ). Pollen grains of cereals in general can-
not withstand desiccation and need to be 
stored under high RH in the refrigerator. Even 
under these conditions, viability of cereal pol-
len lasts only for a few days (Shivanna and 
Heslop-Harrison  1981 ).  

  Storage of freeze-dried/vacuum-dried pollen is 
an effective method for long-term storage. 
Freeze-drying involves rapid freezing of pol-
len (−60 to −80 °C) and gradual removal of 
water under sublimation. In vacuum-drying, 
the pollen is subjected to simultaneous cool-
ing and vacuum-drying. Freeze-dried and 
vacuum- dried pollen grains generally do not 
show any differences in their responses to 
storage. The freeze-dried pollen is usually 
stored at sub-zero temperatures. For effective 
use of this method, optimum pollen water 
content, duration of drying and subsequent 
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rehydration have to be optimized (Barnabas 
and Kovacs  1997 ). Freeze-drying method has 
been effective for long-term storage of pollen 
grains of a number of species (King  1965 ; 
Towill  1991 ). However, in recent years, this 
method has not been very popular probably 
because of the success achieved by using a 
simpler technique of cryopreservation.  

  Cryopreservation of pollen is another effective 
method for long-term pollen storage and has 
become more popular than freeze-drying 
method in recent years. In this method, pollen 
grains are dried to bring their water content 
below a threshold level and stored in liquid 
nitrogen (Towill  1991 ; Barnabas and Kovacs 
 1997 ). Initial attempts to cryopreserve pollen 
grains of cereals were not successful largely 
because of their susceptibility to desiccation 
(which is critical for cryopreservation). Unlike 
the earlier methods used for drying pollen 
grains over a desiccant, Barnabas and her 
associates used a ‘pollen drier’ in which the air 
of 20 °C and 20–40 % humidity is blown 
through pollen, facilitating a rapid but gentle 

and uniform drying (Barnabas and Kovacs 
 1997 ). Through this drying method, it was 
possible to successfully cryopreserve the 
 pollen grains of many cereals for several 
years.      

17.4     Methods to Overcome 
Pre-fertilization Barriers 

 A number of techniques have been developed over 
the years to overcome pre-fertilization barriers that 
operate after pollination but before fertilization. 
Some of these methods along with a few examples 
are presented in Table  17.1 . Additional examples 
are found in Van Tuyl and De Jeu ( 2003 ) and 
Shivanna ( 2003 ). According to Bates and Deyoe 
( 1973 ), the inhibition reaction of pollen in the pis-
til is analogous to immunochemical reaction found 
in animals. On the basis of this hypothesis, the 
fl owers were treated with some immunosuppres-
sors such as E-amino caproic acid, salicylic acid or 
acrifl avin (using similar methods used for treat-
ment with growth  substances), and a few wide 

   Table 17.1    Details of in situ pollination methods used to produce hybrids with some examples   

 Effective methods  Some examples 

  Application of growth substances  
 Growth substances (auxins, cytokinins and gibberlins) 
applied around the pedicel of the fl ower or to the 
wound caused by removing one of the sepals/petals, at 
the time of pollination or soon after pollination. This is 
one of the oldest methods tried and has been successful 
in several crosses. Growth substances delay fl oral 
abscission and facilitate slow-growing pollen tubes to 
effect fertilization 

 Interspecifi c crosses of  Vigna  (Chen et al.  1978 ), 
 Agropyrum  (Alonso and Kimber  1980 ),  Triticum  
(Mujeeb-Kazi  1981 ),  Arachis  (Sastri  1985 ; Sastri and 
Moss  1982 ; Sastri et al.  1983 ),  Corchorus  (Park and 
Walton  1990 ) and  Hordeum  (Subramanyam  1999 ) 

  Mentor pollen  
 Pollinated with a mixture of mentor pollen (compatible 
pollen made ineffective to effect fertilization, generally 
prepared by exposing pollen to high doses of 
irradiation) and viable pollen of the male parent 

 Very effective in several crosses of  Populus  (Knox et al. 
 1972 ; Stettler  1968 ;  see  Villar and Gaget- Faurobert  1997 ). 
In wide crosses of  Sesamum , it was effective in 
overcoming the inhibition of pollen germination but not of 
pollen tube growth in the style (Sastri and Shivanna  1976 ). 
Not effective for  Lilium  (Van Tuyl and de Jeu  2003 ) 

  Stump pollination  
 The stigma and a part or the whole of the style are 
excised, and pollen grains are deposited at the cut end 
of the style or the tip of the ovary. This reduces the 
distance through which pollen tubes have to grow to 
reach the ovules. Application of suitable medium on 
the stump before pollination may facilitate pollen 
germination 

 Interspecifi c crosses of corn (Heslop-Harrison et al.  1985 ), 
 Lilium  (van Tuyl et al.  1991 ; Janson et al.  1993 ),  Lathyrus  
(Herrick et al.  1993 ),  Fritillaria  (Wietsma et al.  1994 ) 

(continued)
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hybrids were  realized in some cereals and legumes 
(Van Tuyl and De Jeu  2003 ; Shivanna  2003 ). 
However, so far, there are no evidences to indicate 
the involvement of immunochemical reactions in 
crossability barriers, and there have been no addi-
tional reports on the success of immunosuppres-
sors in realizing wide hybrids.

17.4.1        In Vitro  Pollination of Cultured 
Ovules 

 In this method, instead of carrying out pollination 
on the stigma, pollen grains are deposited directly 
on the ovules. In one of these methods, a group of 
ovules are excised from the ovary and cultured on 
a nutrient medium (Kanta et al.  1962 ; Kameya 
and Hinata  1970 ); the ovule mass is dusted with 
pollen grains. In another method termed placen-
tal pollination, the entire mass of ovules intact on 
the placenta(e) together with a short length of 
pedicel is excised and cultured by inserting only 
the pedicel in the medium (Rangaswamy and 
Shivanna  1967 ). Pollen grains are dusted on cul-
tured ovule mass (Shivanna and Rangaswamy 
 1992 ). As this technique eliminates pollen-pistil 

interaction altogether and brings pollen grains in 
direct contact with the ovules, it is likely to be 
more effective than other methods to overcome 
pre-fertilization barriers. In successful pollina-
tions, pollen grains germinated on the ovule 
mass; pollen tubes entered the ovules and effected 
fertilization. The fertilized ovules developed into 
seeds. Ovule pollination has been used success-
fully to produce interspecifi c as well as interge-
neric hybrids particularly by Zenkteler and his 
associates (Zenkteler  1980 ,  1990 ; Zenkteler and 
Bagniewska-Zadworna  2001 ). Some of the suc-
cessful crosses include  Melandrium album   ×   M. 
rubrum ,  M. album   ×   Silene schafta  (Zenkteler 
 1980 ,  1990 ) and several interspecifi c crosses of 
 Nicotiana  (Reed and Collins  1978 ; DeVerna 
et al.  1987 ; Zenkteler  1990 ). Attempts were also 
made to obtain interspecifi c/intergeneric hybrids 
in Brassicaceae (Kameya and Hinata  1970 ; 
Zenkteler  1990 ; Zenkteler et al.  1987 ). Hybrids 
were realized in a few combinations, but in some 
others, although there was normal fertilization, 
hybrid embryos degenerated. Isolation and cul-
ture of embryos on a suitable nutrient medium 
would probably enable the production of hybrids 
in such crosses also. In an interesting treatment, 

Table 17.1 (continued)

 Effective methods  Some examples 

  Style grafts  
 Pollination is carried out on compatible stigma, and 
after pollen grains have germinated and pollen tubes 
have grown through a part of the style, the style is 
excised in front of the growing pollen tubes and grafted 
onto incompatible pistil. This is a delicate operation 
and can be done only in species with robust pistils. In 
 Lilium , grafting was carried out using a straw fi lled 
with the exudates of compatible stigma 

 Interspecifi c crosses of  Lilium  (Van Tuyl et al.  1991 ; Van 
Tuyl and De Jeu  2003 ) 

 Bud pollination 
 Incompatible pollination carried out in the bud stage 
when the factors that induce crossability barriers are 
not likely to be fully developed. This approach has not 
been used frequently; as it is one of the simplest 
techniques, it may be worthwhile trying 

 Interspecifi c crosses of  Nicotiana  (Kuboyama et al.  1994 ) 

  Intraovarian pollination  
 Injection of pollen grains suspended in a suitable 
medium directly into the ovary. This is another simple 
technique which has not been tested with additional 
systems. Lack of ovarian cavity in many species is a 
limitation 

 Interspecifi c crosses of  Argemone  (Maheshwari and Kanta 
 1961 ) 
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placental cultures of some fl owering plants were 
pollinated with pollen grains of a few gymno-
sperms; pollen grains of  Pinus  and  Ephedra  
could germinate on placental cultures of several 
fl owering plants (Zenkteler and Bagniewska- 
Zadworna  2001 ). Although some pollen tubes 
were occasionally seen entering the ovules, no 
hybrid embryos were realized.  

17.4.2      In Vitro  Fertilization 

 Fertilization in fl owering plants takes place deep 
inside the ovule, and this is one of the limitations 
to conduct experimental studies on fertilization. 
Following the dramatic progress of protoplast 
technology of somatic cells, a number of investi-
gators started work on isolation of male and 
female gametes of fl owering plants in the 1980s. 
Success was soon achieved in isolation of proto-
plasts of embryo sacs and sperm cells of a number 
of species and to keep them in viable condition for 
considerable length of time (Cass  1997 ; Mathys-
Rochon et al.  1997 ). In three-celled pollen, sperm 
cells were isolated by incubating pollen grains in 
hypotonic medium that results in bursting of pol-
len grains or mechanically rupturing the pollen 
grains by gentle grinding in an isolation medium. 
The released sperm cells were purifi ed and 
washed suitably. In two-celled pollen, a semi-
vitro method (Shivanna and Rangaswamy  1992 ) 
was used to allow pollen tubes to grow partly 
inside the style and then emerge into a nutrient 
medium. This was followed by the treatment of 
pollen tubes with cell wall-degrading enzymes or 
subjecting pollen tubes to osmotic shock to the 
release of sperm cells from the tip of pollen tubes 
(Shivanna et al.  1987 ). Subsequently it was pos-
sible to isolate the components of the embryo sac 
(egg, synergids, and central cell). By 1990s, all 
the basic requirements needed to try in vitro fertil-
ization in fl owering plants were available. 

 Kranz and his associates were the fi rst to 
achieve in vitro fertilization in maize by bringing 
isolated egg and sperm cells together under the 
microscope in microdroplets of the fusion 
medium (Kranz and Lorz  1993 ; Kranz  1997 ; 
Okamoto and Kranz  2005 ). In vitro formed 

zygotes were grown successfully by using nurse 
culture method (by culturing zygotes on a semi-
permeable membrane placed on fast-growing 
non-morphogenetic cell suspension cultures 
derived from maize embryos or microspores) into 
plantlets and eventually into adult fertile plants. 
Subsequently the sperm cell was also fused with 
the central cell; the fusion product did not give 
rise to the embryo but gave rise to an unorganized 
tissue comparable to the endosperm in vivo. 
Subsequently several modifi cations in the proto-
cols to improve the effi cacy of fusion and embryo 
development have been reported (Kranz  1997 ; 
Wang et al.  2006 ; Kranz et al.  2008 ). 

 Apart from its application in tackling a range 
of problems fundamental to fertilization ( see  
Okamoto and Kranz  2005 ; Wang et al.  2006 ), one 
of the most obvious practical applications of 
in vitro fertilization is in realizing wide hybrids. 
Although the success has so far been confi ned in 
achieving fertilization and embryo development 
between gametes of compatible species, studies 
of Kranz and his associates (Kranz  1997 ,  2008 ; 
Scholten and Kranz  2001 ) have shown that there 
is no technical diffi culty in achieving in vitro fer-
tilization between isolated egg and sperm cells in 
interspecifi c and intergeneric combinations. 
However, the development of zygotes is restricted 
to crosses between closely related species (Kranz 
and Dresselhaus  1996 ). Hybrid zygotes between 
maize (egg donor) and sperm cell of many other 
members of Poaceae gave rise to multicellular 
structures, while those resulting from the egg of 
maize and sperm of a distant species,  Brassica , 
failed to divide. Further studies are needed to 
extend this technology to other species and to 
realize useful interspecifi c and intergeneric 
hybrids from in vitro fused zygotes.   

17.5     Methods to Overcome 
Post-fertilization Barriers 

 Post-fertilization barriers operate after fertilization. 
Depending on the extent of reproductive isolation 
between the parent species, the embryo abortion 
may initiate at a very early stage of development or 
after the growth of embryo to different stages. 

17 Effi cacy of Biotechnological Approaches to Raise Wide Sexual Hybrids



354

17.5.1     Embryo Rescue 

 Embryo rescue has become the most effective 
and routinely used technique to overcome 
post- fertilization barriers. When the abortion 
occurs at a very early stage, it is diffi cult to 
excise the embryo and also to culture it suc-
cessfully as its nutrient requirements are more 
complex and precise. Embryo excision is a 
problem even at later stages when the develop-
ing seeds are very small. In such instances, it is 
more convenient to culture the whole ovule or 
even the ovary. Ovule and ovary culture facili-
tates embryo growth in situ without exposure 
to in vitro disturbances. In crosses where the 
embryo aborts at later stages, embryo culture is 
the most ideal. There are a large number of 
successful hybrids realized through embryo 
rescue ( see  also Chap.   18     of this volume). For 
details of the technique and  comprehensive 
examples, the reader may refer to Maheshwari 
and Rangaswamy ( 1965 ), Raghavan ( 1977 , 

 1986 ,  1999 ), Rangan ( 1982 ), Williams et al. 
( 1987 ), Sharma et al. ( 1996 ) and Van Tuyl and 
De Jeu ( 2003 ). A modifi ed technique of embryo 
rescue termed ‘sequential culture’ has been 
reported to be more effective than either ovary 
or ovule culture alone in realizing many wide 
hybrids (Nanda Kumar et al.  1988 ; Agnihotri 
 1993 ; Shivanna  2000 ). In sequential culture, 
ovaries are cultured 4–8 days after pollination; 
cultured ovaries are taken out 7–10 days after 
culture, dissected under aseptic conditions, and 
enlarged ovules (young seeds) are then re- 
cultured on a fresh medium. In successful 
crosses, cultured ovules grow further and ger-
minate in vitro. In some crosses, it was neces-
sary to dissect the embryo from cultured ovules 
and re- culture the embryo. Some examples of 
wide hybrids realized through ovary, ovule, 
embryo and sequential cultures are presented 
in Table  17.2 . In a few crosses of legumes, 
hybrid embryos have been transplanted into the 
developing endosperm of  compatible seeds 

   Table 17.2    Some wide crosses produced through embryo rescue   

 Effective methods  Some examples 

  Ovary culture  
 Pollinated ovaries are excised before the onset of 
embryo abortion and cultured on a suitable nutrient 
medium 

  Phaseolus  (Sabja et al.  1990 ),  Lilium  (Van Tuyl et al.  1991 ), 
 Eruca  ×  Brassica  hybrids (Agnihotri et al.  1990a ),  Brassica  
(Gundimeda et al.  1992 ),  Brassica napus  ×  Raphanobrassica  
(Agnihotri et al.  1990b ) 

  Ovary slice culture  
 Pollinated ovary, a few days after pollination, is 
transversely cut into slices and the slices along with 
attached ovules are cultured 

 So far confi ned to  Lilium  (Kanoh et al.  1988 ; Van Tuyl et al. 
 1991 ; Janson et al.  1993 ; Obata et al.  2000 ) 

  Ovule culture  
 Ovules are excised from pollinated ovaries before 
the initiation of embryo degeneration and cultured. 
In some crosses, cultured ovules are re-cultured on 
a different medium 

  Alstroemeria  (Bridges et al.  1989 ; De Jeu et al.  1992 ), 
 Cyclamen  (Ishizaka and Uematsu  1992 ),  Nicotiana  (Reed and 
Collins  1978 ; Iwai et al.  1986 ),  Lilium  (Ikeda et al.  2003 ), 
 Gentiana  (Morgan  2004 ),  Hylocereus  (Cisneros and Tel-Zur 
 2010 ), Asteraceae species (Wang et al.  2014 ) 

  Embryo culture  
 Embryo is dissected from fertilized ovules and 
cultured 

  Allium  (Nomura and Oosawa  1990 ),  Lilium  (Van Tuyl et al. 
 1991 ),  Solanum  (Singsit and Hannaeman  1991 ),  Gossypium  
(Mehetre and Aher  2004 ),  Hylocereus  (Sage et al.  2010 ) 

  Sequential culture  
 Culture of pollinated ovary, followed by culture of 
ovules from cultured ovaries and fi nally culture of 
embryos from cultured ovules. The time gap between 
each varies. In some species, culture of ovary and 
then ovule was enough to recover hybrids, while in 
some other species, culture of ovary, ovule and then 
embryo was successful in recovering hybrids 

  Brassica  (Nanda Kumar et al.  1988 ; Agnihotri et al.  1990a ; 
Gundimeda et al.  1992 ; Nanda Kumar and Shivanna  1993 ; 
Vyas et al.  1995 ),  Medicago  (McCoy and Echt  1993 ),  Lilium  
(Van Tuyl and De Jeu  2003 ) 
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(after  removing compatible embryo), and such 
transplanted embryo-endosperm complex has 
been successfully cultured (Williams and 
Latour  1980 ).

17.5.2        Wide Hybrids in  Brassica  

  Brassica  is an important oilseed crop in several 
countries. All the three major cultivated species, 
 B. rapa ,  B. juncea and B. napus , are susceptible 
to a number of diseases, pests and abiotic stresses 
and result in low productivity. The genes impart-
ing resistance to these stresses are not available in 
the cultivated species, but many of their wild rel-

atives possess such genes ( see  Prakash et al. 
 2011 ). A large number of wide hybrids have been 
produced in crop brassicas with many of their 
wild relatives through embryo rescue, especially 
from the University of Delhi in collaboration 
with the Indian Agricultural Research Institute, 
New Delhi (Shivanna  1995 ,  2003 ; Prakash et al. 
 2011 ). The details of the crossability barriers 
between all the cultivated species and 12–20 wild 
relatives have been documented by Singh et al. 
( 2007 ). Of the 100 cross combinations tested, 73 
crosses showed pre-fertilization barriers and 27 
crosses showed post-fertilization barriers. All the 
wide hybrids produced by this group through 
embryo rescue are listed in Table  17.3 .

   Table 17.3    Wide (interspecifi c and intergeneric) hybrids of  Brassica  realized through embryo rescue   

 Sr no.  Hybrids  Reference 

 1   Brassica rapa  ×  Erucastrum gallicum   Batra ( 1991 ) 
 2   B. rapa  ×  E. abyssinicum   Rao ( 1995 ) 
 3   B. juncea  ×  Sinapis pubescens   Gundimeda et al. ( 1992 ) 
 4   B. juncea  ×  B. gravinae   Nanda Kumar et al. ( 1989 ) 
 5   B. juncea  ×  Enarthrocarpus lyratus   Gundimeda et al. ( 1992 ) 
 6   B. napus  ×  B. gravinae   Nanda Kumar et al. ( 1989 ) 
 7   Eruca sativa  ×  B. rapa   Agnihotri et al. ( 1990a ) 
 8   Brassica napus  ×  Raphanobrassica   Agnihotri et al. ( 1990b ) 
 9   B. cossoneana  ×  B. rapa   Verma ( 1993 ) 
 10   B. cossoneana  ×  B. carinata   Verma ( 1993 ) 
 11   B. cossoneana  ×  B. juncea   Verma ( 1993 ) 
 12   B. cossoneana  ×  B. napus   Verma ( 1993 ) 
 13   B. cossoneana  ×  B. oleracea   Verma ( 1993 ) 
 14   B. fruticulosa  ×  B. rapa   Nanda Kumar et al. ( 1988 ) 
 15   B. maurorum  ×  B. rapa   Chrungu et al. ( 1999 ) 
 16   B. maurorum  ×  B. nigra   Chrungu et al. ( 1999 ) 
 17   B. maurorum  ×  B. juncea   Chrungu et al. ( 1999 ) 
 18   B. maurorum  ×  B. oleracea   Chrungu et al. ( 1999 ) 
 19   B. maurorum  ×  B. carinata   Chrungu et al. ( 1999 ) 
 20   Diplotaxis assurgens  ×  B. rapa   Vyas ( 1993 ) 
 21   D. berthautii  ×  B. rapa   Vyas ( 1993 ) 
 22   D. catholica  ×  B. rapa   Mohanty ( 1996 ) 
 23   D. catholica  ×  B. juncea   Mohanty ( 1996 ) 
 24   D. erucoides  ×  B. rapa   Vyas et al. ( 1995 ) 
 25   D. erucoides  ×  B. juncea   Vyas et al. ( 1995 ) 
 26   D. erucoides  ×  B. napus   Vyas et al. ( 1995 ) 
 27   D. erucoides  ×  B. oleracea   Vyas et al. ( 1995 ) 
 28   D. siifolia  ×  B. juncea   Batra et al. ( 1990 ) 
 29   D. siettiana  ×  B. rapa   Nanda Kumar and Shivanna ( 1993 ) 
 30   D. siifolia  ×  B. napus   Batra et al. ( 1990 ) 

(continued)
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17.6         Bridge Cross Hybrids 

 As pointed out earlier, the strength of the cross-
ability barriers of the cultivar may vary with dif-
ferent wild relatives. The barriers may not be so 
strong with some of the wild relatives, but such 
species may not have desirable traits; those that 
have desirable traits may show strong barriers 
with the cultivar. Another simple method, referred 
to as bridge cross method, has been used by the 
breeders to circumvent such barriers. In this 
method, the hybrid is produced between the cul-
tivar and one of the wild species (which does not 
show strong barriers with the cultivar), and this 
hybrid or its amphidiploid is used as the bridge 
species to raise hybrids with another wild species 
(which shows strong barriers with the cultivar but 
has desirable trait). This approach has been very 
effective in a number of crop plants – wheat, 
tobacco, potato, lettuce, sugarcane and  Brassica  
( see  Shivanna  2003 ). In some combinations, it 
was possible to realize bridge cross hybrids 
through fi eld pollinations without resorting to 

application of any special technique. Bridge 
cross technique is simple and very useful particu-
larly to transfer the cytoplasm from one species 
to the other (Shivanna  1995 ,  2000 ), although the 
transfer of nuclear genes through this method 
involves more elaborate breeding program 
(Hadley and Openshaw  1980 ). The bridge cross 
hybrids raised in  Brassica  by Delhi group are 
listed in Table  17.4 .

17.7        The Development of New 
Cytoplasmic Male Sterile 
(CMS) Lines in  Brassica  

 Male sterile lines are very important to exploit 
hybrid vigor in crop plants. By using male sterile 
line as the female parent, intra-line pollinations 
are prevented completely in hybrid seed produc-
tion plots. Male sterile lines developed through 
different approaches (genic male sterile lines, 
cytoplasmic male sterile lines, male sterility 
induced through application of chemicals and 
also through recombinant DNA technology) are 

Table 17.3 (continued)

 Sr no.  Hybrids  Reference 

 31   D. tenuisiliqua  ×  B. rapa   Vyas ( 1993 ) 
 32   D. tenuisiliqua  ×  B. juncea   Vyas ( 1993 ) 
 33   D. tenuisiliqua  ×  B. napus   Vyas ( 1993 ) 
 34   D. tenuisiliqua  ×  B. oleracea   Vyas ( 1993 ) 
 35   D. viminea  ×  B. carinata   Mohanty ( 1996 ) 
 36   D. viminea  ×  B. napus   Mohanty ( 1996 ) 
 37   Enarthrocarpus lyratus  ×  B. campestris   Gundimeda et al. ( 1992 ) 
 38   E. lyratus  ×  B. carinata   Gundimeda et al. ( 1992 ) 
 39   E. lyratus  ×  B. napus   Gundimeda et al. ( 1992 ) 
 40   E. lyratus  ×  B. oleracea   Gundimeda et al. ( 1992 ) 
 41   Erucastrum abyssinicum  ×  B. rapa   Rao et al. ( 1996 ) 
 42   E. abyssinicum  ×  B. carinata   Rao et al. ( 1996 ) 
 43   E. abyssinicum  ×  B. juncea   Rao et al. ( 1996 ) 
 44   E. abyssinicum  ×  B. oleracea   Rao et al. ( 1996 ) 
 45   E. cardaminoides  ×  B. oleracea   Mohanty et al. ( 2009 ) 
 46   E. gallicum  ×  B. juncea   Batra et al. ( 1989 ) 
 47   E. gallicum  ×  B. napus   Batra et al. ( 1989 ) 
 48   E. varium  ×  B. rapa   Das ( 1993 ) 
 49   E. varium  ×  B. juncea   Das ( 1993 ) 
 50   E. varium  ×  B. oleracea   Das ( 1993 ) 
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available. Of these, cytoplasmic male sterile 
(CMS) lines have several advantages over others 
in producing hybrid seeds ( see  Shivanna and 
Sawhney  1997 ; Shivanna  2003 ). One of the stan-
dard approaches to produce CMS lines is through 
the development of alloplasmic lines (containing 
the cytoplasm of one species and the nuclear 
genes of another species) as many of them result 
in cytoplasmic male sterility. This involves pro-
duction of wide hybrids (wild species as the 
female and cultivar as the male parent). As the 
cytoplasm is inherited only through the egg in a 
majority of species, the hybrids possess the cyto-
plasm of the wild species and the nuclear genome 
of both the parents. The hybrid or its amphiploid 
is repeatedly backcrossed with the cultivar (as 
male parent) to eliminate the nuclear genome of 
the wild species. Although many CMS lines were 
available in crop  Brassica  (Banga  1992 ; Shivanna 
 2000 ; Prakash et al.  2011 ), they show many limi-
tations such as chlorophyll defi ciency, thermo-
sensitivity of male sterility and presence of 
female sterility. Also, many of them do not have 
suitable restorers needed for hybrid seed produc-
tion. There has been a need to produce more 

CMS and restorer lines. The Delhi University 
group has been able to produce several new CMS 
lines in the background of the cytoplasm of dif-
ferent wild species. These CMS lines are listed in 
Table  17.5 .

   Restorer lines have been developed subse-
quently for some of these alloplasmic lines:  B. 
juncea  carrying  Diplotaxis catholica  cytoplasm 
(Pathania et al.  2003 );  B. rapa  (Deol et al.  2003 ), 
 B. juncea  (Banga et al.  2003 ) and  B. napus  
(Janeja et al.  2003 ) carrying  Enarthrocarpus 
lyratus  cytoplasm; and  B. juncea  carrying  D. 
 erucoides   cytoplasm (Bhat et al.  2005 ).  

17.8     Multiplication of Hybrids 

 The number of hybrids realized in wide crosses 
even after using biotechnological methods is 
rather limited. A large number of hybrids are 
needed for morphological and cytological stud-
ies, induction of amphiploidy to restore fertility 
and to raise backcross progeny. Hybrids can eas-
ily be multiplied through the use of in vitro cul-
ture technique (Nanda Kumar and Shivanna 
 1991 ; Agnihotri et al.  1990a ,  b ; Shivanna  2000 ). 
Culture of shoot tips or single node segments on 
a medium containing one of the cytokinins is 
effective in inducing multiple shoots. The shoots 
are isolated and cultured on an auxin-containing 
medium to induce rooting. The plantlets are then 
hardened and transferred to the soil. Hybrids can 
also be multiplied through the induction of callus 
from hybrid embryos or hypocotyl segments and 

   Table 17.4    Wide hybrids in  Brassica  realized through 
bridge cross method   

 Sr. 
no.  Hybrid  Reference 

 1  ( Diplotaxis siettiana  × 
 Brassica rapa ) ×  B. juncea  

 Nanda Kumar and 
Shivanna ( 1993 ) 

 2  ( D. siettiana  ×  B. rapa ) ×  B. 
napus  

 Nanda Kumar and 
Shivanna ( 1993 ) 

 3  ( D. berthautii  ×  B. rapa ) × 
 B. juncea  

 Vyas ( 1993 ) 

 4  ( D. tenuisiliqua  ×  B. rapa ) × 
 B. napus  

 Vyas ( 1993 ) 

 5  ( D. erucoides  ×  B. rapa ) ×  B. 
juncea  

 Vyas et al. ( 1995 ) 

 6  ( Erucastrum abyssinicum  × 
 B. juncea ) ×  B. napus  

    G.U. Rao 
(unpublished) 

 7  ( E. abyssinicum  ×  B. juncea ) 
×  B. nigra  

 G.U. Rao 
(unpublished) 

 8  ( E. abyssinicum  ×  B. juncea ) 
×  B. rapa  

 G.U. Rao 
(unpublished) 

 ( E. cardaminoides  ×  B. 
oleracea ) ×  B. napus  

 Mohanty et al. 
( 2009 ) 

 ( E. cardaminoides  ×  B. 
oleracea ) ×  B. carinata  

 Mohanty et al. 
( 2009 ) 

   Table 17.5    Cytoplasmic male sterile (CMS) lines of 
 Brassica  produced through sexual alloplasmics   

 Cytoplasmic 
donor 

 Recipient 
species  Reference 

  Diplotaxis 
siifolia  

  Brassica 
juncea  

 Rao et al. ( 1994 ) 

  D. siifolia    B. napus   Rao and Shivanna 
( 1996 ) 

  D. erucoides    B. juncea   Malik et al. ( 1999 ) 
  D. berthautii    B. juncea   Malik et al. ( 1999 ) 
  D. catholica    B. juncea   Mohanty ( 1996 ) 
  Erucastrum 
lyratus  

  B. rapa   Gundimeda et al. 
( 1992 ), Deol et al. 
( 2003 ) 
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subsequent regeneration of plantlets through 
shoot and root regeneration pathway or somatic 
embryogenesis pathway (Nanda Kumar and 
Shivanna  1991 ; Agnihotri    et al.  1990a ,  b ).  

17.9     Concluding Remarks 

 The production of wide hybrids is an important 
pre-breeding step in transferring genes across 
species limits. Early breeders, in spite of low rate 
of success, were able to realize a number of wide 
hybrids in many crop species and to transfer 
important traits from the wild species to the culti-
vars. Integration of some of the tools of biotech-
nology to the breeding program has made the 
production of wide hybrids more effective, and a 
large number of wide hybrids have been pro-
duced through this approach. Pollen storage is 
probably the simplest and effective technique to 
overcome nonsynchronous fl owering and geo-
graphical isolation of the parent species. Although 
several pollen banks of many horticultural spe-
cies have come up to supply pollen for the breed-
ing programs, pollen banks for crop species are 
yet to be established as a routine facility at the 
international level. Establishment of effective 
pollen banks, similar to seed banks, at global 
level would greatly facilitate the breeding pro-
grams of crop species. 

 There is a scope for further refi nement of 
many of the available techniques to overcome 
pre-fertilization barriers. For example, by carry-
ing out stump pollination or stylar grafting on 
cultured pistils (instead of fl owers retained on 
plants), the operations can be performed and con-
trolled more effi ciently. Cultured pistils would 
provide a more convenient system to conduct 
additional treatments such as irradiation or high- 
temperature treatment to the pistil, which have 
not yet been tried seriously to raise wide hybrids. 
Cultured pistils are also ideal to perform intra- 
stylar pollinations (in hollow-styled systems) and 
mixed/mentor pollinations. These treatments can 
be combined with manipulation of the medium 
and other conditions to improve the growth of 
cultured pistils. Also, the full potentials of other 
in vitro techniques particularly in vitro pollina-

tion of ovules and in vitro fertilization are yet to 
be fully exploited. 

 More importantly, a combination of tech-
niques integrating the methods used to overcome 
pre- and post-fertilization barriers is likely to 
give better results. In the absence of such integra-
tion, even when a particular method is effective 
in circumventing pre-fertilization barriers, it may 
not yield hybrids because of the operation of 
post-fertilization barriers. For example, in crosses 
between  B. rapa  and  B. juncea , showing pre- 
fertilization barriers, bud pollination and stump 
pollination increased the frequency of ovules that 
were fertilized. However, hybrids could be recov-
ered only when bud pollination and stump polli-
nation were combined with ovule culture (Bhat 
and Sarla  2004 ). Combination of placental polli-
nation with embryo rescue would be particularly 
effective in providing suitable conditions for 
hybrid embryos to continue their growth. Thus, 
plant breeders in the coming decades should try 
combination of techniques rather than a single 
technique to raise wide hybrids. 

 Although a large number of wide hybrids have 
been realized in a number of crop species, intro-
gression of desirable traits from wild species to 
the cultivars is limited due to lack of interge-
nomic chromosome homoeology. This is one of 
the major problems to achieve alien gene transfer 
even after getting wide hybrids. Interspecifi c 
hybridization and polyploidization in ornamental 
plants are more simple and straightforward, as it 
aims to produce novel cultivars combining the 
traits of both the parents rather than to transfer 
specifi c traits from one parent to the other (Kato 
and Mii  2012 ). Even the fertility of the hybrid 
may not be a serious problem in ornamental 
plants as many of them can be propagated through 
vegetative multiplication or through 
micropropagation. 

 The interest on wide hybridization through 
sexual pathway has greatly reduced after the 
development of the techniques of somatic hybrid-
ization and genetic transformation. There are not 
many reports on the production of wide sexual 
hybrids in recent years. Although both somatic 
hybridization and genetic transformation have 
great potential in specifi c areas of crop 
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 improvement program, they cannot replace sex-
ual hybrids; they can only supplement them. 
Thus, there is a continuous need for the produc-
tion of sexual wide hybrids in the coming years. 
It is necessary for the breeders to re-establish 
interest in sexual hybrids, particularly wide 
hybrids for transferring desirable traits from wild 
species/accessions to the cultivars.     
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