
Static Analysis: A Survey of Techniques
and Tools

Anjana Gosain and Ganga Sharma

Abstract Static program analysis has shown tremendous surge from basic compiler
optimization technique to becoming a major role player in correctness and
verification of software. Because of its rich theoretical background, static analysis is
in a good position to help produce quality software. This paper provides an overview
of the existing static analysis techniques and tools. Further, it gives a critique of static
analysis approach over six attributes, namely precision, efficiency, coverage,
modularity, scalability, and automation.

Keywords Static analysis � Data flow analysis � Abstract interpretation �
Constraint solving � Symbolic execution � Theorem proving

1 Introduction

Static analysis is the process of automatically analyzing the behavior of computer
programs without executing it [1–3]. Dynamic analysis, on the other hand, analyses
programs by executing an instrumented program and generating some form of trace
[4]. Static analysis techniques have remained the most popular choice for analysis
of computer programs because of the fact that it is very simple and fast [5].
Dynamic analysis has existed in parallel with static analysis providing a comple-
mentary alternative to static analysis [4, 6, 7]. This paper is an attempt to provide an
overview of static analysis and its associated techniques and tools. The remaining
paper is organized as follows: Sect. 2 and its subsections give brief introduction of
static program analysis, its taxonomy, and associated techniques and tools.

A. Gosain (&) � G. Sharma
USICT, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
e-mail: anjana_gosain@hotmail.com

G. Sharma
e-mail: ganga.negi@gmail.com

© Springer India 2015
D. Mandal et al. (eds.), Intelligent Computing and Applications,
Advances in Intelligent Systems and Computing 343,
DOI 10.1007/978-81-322-2268-2_59

581



Section 3 gives a critique of static analysis, namely precision, efficiency, coverage,
modularity, scalability, and automation. Finally, Sect. 4 concludes the paper.

2 Static Analysis

Static analysis means automatic methods which can reason about run-time prop-
erties of program without actually executing it [2, 8]. Static analysis has been used
to detect errors which might lead to premature termination or ill-defined results of
the program [9]. Following is a non-exhaustive list of errors that can be addressed
using static analysis [3, 9, 10]:

• array out of bound, i.e., accessing an element of array beyond its size.
• null pointer dereference, i.e., a pointer with NULL value is used as though it

contained a valid memory address.
• memory leaks, i.e., a program fails to return memory taken for temporary use.
• buffer underflow/overflow, i.e., size of a data value/memory used for holding is

not taken care of.
• access to uninitialized variables/pointers, i.e., use of variables/pointers without

assigning them values/memory.
• invalid arithmetic operation, e.g., division by zero.
• non-terminating loops, e.g., exit condition of the loop does not evaluate to false.
• Non-terminating calls, i.e., the control flow of a program never returns from a

function call.

Most of the aforementioned errors can be detected by software testing. Although
testing still remains the major validation activity in software development process
[8], the promising nature of program analysis approaches can help software
developers in producing correct and reliable software. The main advantages and
disadvantages of static analysis over testing are summarized in Table 1.

One of the key ideas behind static analysis is abstraction. Abstraction refers to
transformation of a program, called concrete program, into another program that
still has some key properties of the concrete program, but is much simpler, and
therefore easier to analyze [5]. Over-approximation results when there are more
behaviors in the abstraction than in the concrete system [5]. Under-approximation,
on the other hand, deals with fewer behaviors than in the concrete system.

Static analysis can be sound or unsound. Soundness guarantees that the infor-
mation computed by the analysis holds for all program executions, whereas
unsound analysis does not [11]. Static analysis can be made path, flow, and context
sensitive by making it to distinguish between paths, order of execution of state-
ments, and method call (call site), respectively [12]. Precision of an analysis
approach can be measured by classifying the analysis results into three categories
[13]: false positives, i.e., nonexistent bugs are reported as potential bugs; false
negatives, i.e., bugs that are undiscovered; and true positives, i.e., true and dis-
covered bug. Efficiency is related to computational complexity or cost pertaining to

582 A. Gosain and G. Sharma



space and time requirements of the algorithms used in the analysis [5]. Precision
and efficiency are related to each other, i.e., a precise analysis is more costly and
vice versa.

2.1 Static Analysis Techniques

2.1.1 Syntactic Pattern Matching

This technique is based on the syntactic analysis of a program by a parser. The
parser takes as input the program source code and outputs a data structure called
abstract syntax tree [1]. When used for bug finding, this technique works by
defining a set of program constructs that are potentially dangerous or invalid and
then searching the input program’s abstract syntax tree for instances of any of these
constructs. Syntactic pattern matching is the fastest and easiest technique for static
analysis. But it provides little confidence in program correctness and can result in a
high number of false alarms [14].

2.1.2 Data Flow Analysis

It is the most popular static analysis technique. The general idea was given in [15–17].
It proceeds by constructing a graph-based representation of the program, called
control flow graph, and writing data flow equations for each node of the graph. These
equations are then repeatedly solved to calculate output from input at each node
locally until the system of equations stabilizes or reaches a fixed point. Themajor data
flow analyses used are reaching definitions (i.e., most recent assignment to a
variable), live variable analysis (i.e., elimination of unused assignments), available

Table 1 Comparison of static analysis and testing

Static analysis Testing

Can be applied without executing the code Can be applied only by executing the code

Can be applied early in the development
process

Is applied late in the development process

Results do not depend on inputs Results depend on inputs

Results can be generalized for future
executions

Results cannot be generalized for future
executions

Less costly Very costly

Very fast process Slow process

False-positive rate is very high False-positive rate is very less

Approximations are used Exact results are used

Cannot be used for functional correctness of
program

Can be used for functional correctness of
programs

Static Analysis: A Survey of Techniques and Tools 583



expression analysis (i.e., elimination of redundant arithmetic expressions), and very
busy expression analysis (i.e., hoisting of arithmetic expressions computed on mul-
tiple paths) [2]. At each source code location, data flow analysis records a set of facts
about all variables currently in scope. In addition to the set of facts to be tracked, the
analysis defines a “kills” set and a “gens” set for each block. The “kills” set describes
the set of facts that are invalidated by execution of the statements in the block, and the
“gens” set describes the set of facts that are generated by the execution of the state-
ments in the block. To analyze a program, the analysis tool begins with an initial set of
facts and updates it according to the “kills” set and “gens” set for each statement of the
program in sequence. Although mostly used in compiler optimization [16, 17], data
flow analysis has been an integral part of most static analysis tools [18–21].

2.1.3 Abstract Interpretation

This technique was formalized by Cousot and Cousot [22]. It is a theory of
semantics approximation of a program based on monotonic functions over ordered
sets, especially lattices [23]. The main idea behind this theory is as follows: A
concrete program, its concrete domain, and semantics operations are replaced by an
approximate program in some abstract domain and abstract semantic operations.
Let L be an ordered set, called a concrete set, and let L′ be another ordered set,
called an abstract set. A function α is called an abstraction function if it maps an
element x in the concrete set L to an element α(x) in the abstract set L′. That is,
element α(x) in L′ is the abstraction of x in L. A function γ is called a concretization
function if it maps an element x′ in the abstract set L′ to an element γ(x′) in the
concrete set L. That is, element γ(x′) in L is a concretization of x′ in L′. Let L1, L2, L′
1, and L′2 be ordered sets. The concrete semantics f is a monotonic function from
L1 to L2. A function f′ from L′1 to L′2 is said to be a valid abstraction of f if for all x′
in L′1, (f ∘ γ)(x′) ≤ (γ ∘ f′)(x′). The primary challenge to applying abstract inter-
pretation is the design of the abstract domain of reasoning [24]. If the domain is too
abstract, then precision is lost, resulting in valid programs being rejected. If the
domain is too concrete, then analysis becomes computationally infeasible. Yet, it is
a powerful technique because it can be used to verify program correctness prop-
erties and prove absence of errors [25, 26].

2.1.4 Constraint-Based Analysis

A constraint-based analysis traverses a program, emitting and solving constraints
describing properties of a program [27, 28]. This technique works in two steps. The
first step, called constraint generation, produces constraints from the program text,
which describe the information or behavior desired from the program. The second
step is constraint resolution which involves solving the constraint by computing the
desired information. Static information is then extracted from these solutions.

584 A. Gosain and G. Sharma



One of the key features of this technique is that algorithms used for constraint
resolution can be written independently of the eventual constraint system used [28].

2.2 Miscellaneous Techniques

2.2.1 Symbolic Execution

In this method, instead of supplying normal inputs to the program, one uses
symbols representing arbitrary values [29]. The execution proceeds as in a normal
execution except that the values are now symbolic formulas over input values. As a
result, the output values computed by a program are expressed as a function of the
input symbolic values. The state of a symbolically executed program includes the
symbolic values of program variables, a path condition (PC) and a program counter.
The path condition is quantifier-free Boolean formula over the symbolic inputs; it
accumulates constraints which the inputs must satisfy in order for an execution to
follow the particular associated path. A symbolic execution tree characterizes the
execution paths followed during the symbolic execution of a program. The tree
nodes represent program states, and they are connected by program transitions.
Symbolic execution is the underlying technique of several successful bug-finding
tools like PREfix [18] and CodeSonar [19].

2.2.2 Theorem Proving

Theorem Proving is based on the deductive logic proposed by Floyd and Hoare
[30, 31]. A program statement S is represented as a triple {p}S{q}, where
p (precondition) and q (post-condition) are logical formulas over program states.
This triple is valid iff for a state t satisfying formula p, executing S on t yields a state
t′ which satisfies q. Various inference rules are then used to verify system states.
One of the most famous theorem provers is Simplify [32] which has been used in
tools like ESC/Java [21]. Tiwari and Gulwani [33] have used theorem proving for a
new technique called logical interpretation, i.e., abstract interpretation over logical
lattices. This technique tries to embed theorem proving technology in the form of
engines of proof into the static analysis tools based on abstract interpretation. Then,
it is used for checking as well as generating program invariants.

2.3 Static Analysis Tools

There are numerous commercial as well as open-source static analysis tools
available. A summary of these tools is given in Table 2. We have categorized these
tools in the following categories based on the way they are used:

Static Analysis: A Survey of Techniques and Tools 585



• Static checking [20, 34–39]: The aim here is to find common coding errors.
• Error detection/bug finding [18, 19, 40, 41]: The aim of the tools in this category

is to find bugs and report them.
• Software verification [10, 25, 26, 42]: The tools in this category guarantee the

absence of errors by providing proofs.
• Type qualifier inference [43–45]: The tools in this category specify as well as

check program properties.

The first static analysis tool was Lint [34]. It was a simple Unix utility command
which accepted multiple files and library specifications and checked them for
inconsistencies like unused variables and functions, unreachable code, non-portable
character, and pointer alignment. But Lint could not identify defects that can cause
run-time problems. A series of shallow static analysis tools like FlexeLint/PCLint
[35] and Splint [36] then followed. These tools relied on the syntactic information,
and the analysis is mainly path or context sensitive. Splint additionally checks for
security vulnerabilities. These tools mainly worked for C/C++. JLint [37] is the Lint
family tool to check Java code for inconsistencies, bugs, and synchronization
problems. Other tools for Java which use syntactic pattern matching include
FindBugs [20] and PMD [39]. FindBugs also uses a simple, intra-procedural data
flow analysis to check for null pointer dereferences. PMD is an open-source, rule-
based, static analyzer that analyzes Java source code based on the evaluative rules

Table 2 Summary of static analysis tools

Tools Static
checking

Error detection/bug
finding

Verification Type
inference

Lint family [34–36] ✓

JLint [37] ✓

FindBugs [20] ✓ ✓

PMD [39] ✓ ✓

Coverity Prevent [41] ✓

KlockWork K7 [40] ✓

ASTREE [25] ✓ ✓

CGS [10] ✓

Polyspace Verifier [26] ✓

TVLA [42] ✓

BANE [44] ✓

BANSHEE [45] ✓

CQual [43] ✓

PREfix [18] ✓

CodeSonar [19] ✓

ESC/Java [38] ✓ ✓

ESP [21] ✓ ✓

586 A. Gosain and G. Sharma



that have been enabled during a given execution. The tool comes with a default set
of rules which can be used to unearth common development mistakes such as
having empty try-catch blocks, variables that are never used, and objects that are
unnecessary.

ESP [21] uses path-sensitive data flow analysis for error detection. It uses a
combination of scalable alias analysis and property simulation to verify that large C
code bases obey temporal safety properties. Symbolic execution is the underlying
technique of the successful bug-finding tool PREfix for C and C++ programs [18].
For each procedure, PREfix synthesizes a set of execution paths, called a model.
Models are used to reason about calls, and then, fixpoints of models are approxi-
mated iteratively for recursive and mutually recursive calls. Polyspace Verifier [26]
uses sound analysis based on abstract interpretation which can prove absence of
run-time errors related to arithmetic operations. Prevent [41] uses path simulation
techniques to prune the infeasible paths and helps in curbing false alarms.
CodeSonar [19] uses symbolic execution engine to explore program paths, rea-
soning about program variables and how they relate. It then uses data flow analysis
to prune infeasible program paths from being explored. Only Klockwork K7 [40]
supports software metrics in this category apart from other common facilities. CGS
[10] is a precise and scalable static analyzer which uses abstract interpretation to
check run-time errors in embedded systems and has been used extensively on real
NASA space missions.

ASTREE [25] has similar foundational theory as CGS but also is sound. It is
used for checking run-time errors as well as assertion violations and has been used
in safety-critical systems. Three Valued Logic Analysis Engine (TVLA) [42] is a
system that can automatically generate abstract interpretation analysis algorithms
from program semantics. It has been successfully used in performing shape analysis
of heap allocated data [46]. The most popular static analysis tool which uses
theorem proving is ESC/Java [38]. To use ESC/Java, the programmer adds pre-
conditions, post conditions, and loop invariants to source code in the form of
special comments called annotations. It then uses Simplify theorem prover [32] to
verify that the program matches the specifications.

CQual [43] is a constraint-based analysis tool used for type inference. It traverses
the program’s abstract syntax tree and generates a series of constraints that capture
the relations between type qualifiers. If the constraints have no solution, then there
is a type qualifier inconsistency, indicating a potential bug. BANE [44] is a
framework which helps in developing constraint-based program analyses. It frees
the user from writing the constraint solver which is the most difficult task in
constraint-based analysis. The user only writes code to generate constraints from
program texts. Banshee [45] is a scalable version of BANE. It inherits a lot of
features of BANE and has added the support for incremental analysis using
backtracking.

Static Analysis: A Survey of Techniques and Tools 587



3 A Critique of Static Analysis

3.1 Precision

Static analysis can be imprecise because it makes assumptions or approximations
about the run-time behavior of a program. Therefore, it suffers a lot from false
positives. One way to avoid false positives is to filter the analysis results, removing
errors which are highly unlikely. For example, in PREfix [18], the user of the tool
can control the maximum number of execution paths that will be generated for a
function. Another way to avoid false positives is to prune the paths which may be
infeasible. For example, Coverity Prevent [40] uses SAT solvers for this kind of
false path pruning. But filtering or pruning can introduce false negatives. Therefore,
use of filtering/pruning should be done with caution.

3.2 Efficiency

Efficiency is an important attribute as it directly links to the cost of the analysis.
Efficiency is also related to precision. Static analysis trades off precision over
efficiency; that is, in order to provide analysis results faster, it uses approximation or
abstraction mechanisms which lead to less precise results. But there exist tech-
niques which can make static analysis precise by making static analysis flow, path,
or context sensitive [12]. But this precision comes at the cost of longer time and
greater resource need.

3.3 Coverage

It implies the total number of execution paths analyzed [5, 11]. Obviously, the
execution paths analyzed must be valid ones. By its very nature, static analysis
provides high coverage as it does not depend on specific input stimuli. Therefore, as
compared to its dynamic counterparts, static analysis provides high coverage of
code for analysis purpose.

3.4 Scalability

In general, a system is said to be scalable if it remains suitably efficient and practical
when applied to situations in the large [5]. This is required when one applies analysis
approaches to industrial-size software. Incorporating scalability into a static analysis

588 A. Gosain and G. Sharma



is tedious as it operates on some kind of model of the system. Most static analysis
tools employing abstract interpretation [10, 25, 26] have been developed to pursue
scalability. ESP [21] is made scalable using property simulation.

3.5 Modularity

A program is analyzed by analyzing its parts (such as components, modules, and
classes) separately, and then, analysis results are composed together to get the
required information on the whole program [24]. The advantage of using this
approach is that precision, efficiency, and scalability can be greatly enhanced. Work
has been done on modular static analysis by Cousot and Cousot [47] to enhance
scalability. Dillig [48] describes a fully modular, summary-based pointer analysis
that can systematically perform strong updates to abstract memory locations
reachable through function arguments. ESC/Java [38] is a static analysis tool which
supports modular analysis.

3.6 Automation

It implies the extent to which the analyzer analyses the code by itself without
requiring human intervention [12]. Static analysis is a fully automated technique
and thus is the most popular choice for analysis of source code [5].

4 Conclusion

This paper studies the foundational techniques of static program analysis. It pro-
vides a list of static analysis tools with a brief overview of these tools. It further
provides a critique of static analysis over six attributes, namely precision, efficiency,
coverage, scalability, modularity, and automation. Static analysis is the most widely
used technique for program analysis because of its high efficiency, coverage, and
automation, but suffers from high false-positive rates. Still, static analysis tech-
niques are being widely adopted by software community in various fields like bug
finding and software verification.

Static Analysis: A Survey of Techniques and Tools 589



References

1. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, Tools. Addison Wesley,
Boston (1986)

2. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. 1st edn, p. 452,
Springer, Berlin. (1996) ISBN: 978-3-540-65410-0

3. Kirkov, R., Agre, G.: Source Code Analysis: An Overview. Cybernetics and Information
Technologies, Bulgarian Academy of Sciences (2010)

4. Ball, T.: The concept of dynamic analysis. In: Proceedings of 7th ACM/SIGSOFT Conference
on Foundations of Software Engineering (1999)

5. Binkley, D.: Source Code Analysis: A Road Map. Future of Software Engineering, pp. 15–30.
Minneapolis, USA, 23–25 May 2007

6. Ernst, M.D.: Static and dynamic analysis: synergy and duality. In: Proceedings of the 5th
ACM Workshop on Program Analysis for Software Tools and Engineering (2004)

7. Gosain, A., Sharma, G.A.: Survey of dynamic program analysis techniques and tools. In:
Proceedings of 3rd International Conference on Frontiers in Intelligent Computing Theory and
Applications, Bhubaneshwar, vol. 1, pp. 113–122 Nov (2014)

8. Bentonino, A.: Software testing research: achievements, challenges, dreams. Future Softw.
Eng. (2007)

9. Emaneulsson, P., Nilson, U.: A comparative study of industrial static analysis tools. Electron.
Notes Theor. Comput. Sci. 217, 5–21 (2008)

10. Brat, G., Venet, A.: Precise and scalable static program analysis of NASA flight software. In:
IEEE Aerospace Conference, March (2005)

11. Jackson, D., Rinard, M.: Software analysis: a road map. IEEE Trans. Softw. Eng. (2000)
12. D’Silva, V., Kroenig, D., Weissenbacher, G.: A survey of automated techniques for formal

software verification. IEEE Trans. CAD (2008)
13. Cifuentus, C.: BegBunch—benchmarking for C bug detection tools. DEFECTS (2009)
14. Pemdergrass, J.A., Lee, S.C., McDonnell, C.D.: Theory and practice of mechanized software.

Johns Hopkins APL Technical Digest, 32(2) 2013
15. Kildall, G.A.: A unified approach to global program optimization. POPL (1973)
16. Kam, J.B., Ullman, J.D.: Global data flow analysis and iterative algorithms. J. ACM 23(1),

158–171 (1976)
17. Kennedy, K.A.: Survey of data flow analysis techniques. In: Muchnick, S., Jones, N. (eds.)

Program Flow Analysis: Theory and Applications, pp. 5–54. Prentice-Hall, Englewood Cliffs
(1981)

18. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic programming
errors. Softw. Pract. Experience 30(7), 775–802 (2000)

19. GrammaTech Inc. Overview of grammatech static analysis technology. White paper (2007)
20. Hovemeyer, D., Pugh, W.: Finding bugs is easy. http://www.cs.umd.edu/˜pugh/java/bugs/

docs/findbugsPaper.pdf (2003)
21. Das, M., Lerner, S., Siegel, M.: ESP: path sensitive program verification in polynomial time.

PLDI’02, Berlin (2002)
22. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In Proceedings of 6th ACM
Symposium on Principles of Programming Languages. California, pp. 238–252, (1977)

23. Jones, N.D., Nielson, F.: Abstract Interpretation: A Semantics Based Tools for Program
Analysis. Handbook of Logics in Computer Science, vol. 14. Oxford University Press, Oxford
(1995)

24. Cousot, P.: Abstract Interpretation Based Formal Methods and Future Challenges. Lecture
Notes in Computer Science#2000, pp. 138–156. Springer, Berlin (2001)

25. Cousot, P., Cousot, R., Feret, J., Mine, A., Mauborgne, L., Monniaux, D., Rival, X.: Varieties
of static analyzer: a comparison with astree. In: 1st Joint IEEE/IFIP Symposium on Theoretical
Aspects of Software Engineering (TASE), June (2007)

590 A. Gosain and G. Sharma

http://www.cs.umd.edu/%cb%9cpugh/java/bugs/docs/findbugsPaper.pdf
http://www.cs.umd.edu/%cb%9cpugh/java/bugs/docs/findbugsPaper.pdf


26. Polyspace Verifier. http://www.polyspace.com
27. Aiken, A.: Introduction to set constraint-based program analysis. Sci. Comput. Program. 35,

79–111 (1999)
28. Gulwani, S., Shrivastava, S., Venkatraman, R.: Program analysis as constraint solving. PLDI,

June (2008)
29. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
30. Floyd, R.: Assigning meanings to programs. In: Proceedings of Symposium on Applied

Mathematics (1967)
31. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),

576–580 (1969)
32. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. www.

hpl.hp.com/techreports/2003/HPL-2003-148.html
33. Tiwari, A., Gulwani, S.: Logical interpretation: static program analysis using theorem proving.

In: Proceedings of Conference on Automated Deduction (2007)
34. Johnson, S.C.: Lint: A C program checker. Unix programmer’s manual, Computer Science

Technical Report 65. AT & T Bell Laboratories (1978)
35. FlexeLint/PCLint. http://www.gimpel.com/html/lintinfo.htm
36. Evans, D., Larochelle, D.: Improving security using extensible lightweight static analysis.

IEEE Softw. 19, 42–51 (2002)
37. JLint. http://artho.com/jlint
38. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static

checking for Java. In: Proceedings of ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 234–245 (2000)

39. PMD/Java. http://pmd.sourceforge.net
40. Klocwork. Klocwork K7. http://www.klocwork.com
41. Chelf, B., Chou, A.: Next generation of static analysis: Boolean satisfiability and path

simulation-a perfect match. http://www.coverity.com/library/pdf/coverity_white_paper_SAT_
next_Generation_Static_Analysis.pdf. Downloaded on Dec 2012

42. Ami, T.L., Sagiv, M.: TVLA-a system for implementing static analyses. In: Static Analysis
Symposium (2000)

43. Foster, J.S.: Type qualifiers: lightweight specifications to improve software quality. Ph.D.
thesis, UCB (2002)

44. Aiken, A., F¨ahndrich, M., Foster, J., Su, Z.: A toolkit for constructing type- and constraint-
based program analyses. In: Proceedings of the 2nd International Workshop on Types in
Compilation, LNCS #, vol. 1473, pp. 76–96, March (1998)

45. Kodumal, J., Aiken, A.: Banshee: a scalable constraint- based analysis toolkit. In: Proceedings
of the 12th International Static Analysis Symposium, pp. 218–234 (2005)

46. Ami, T.L., Reps, T., Sagiv, M., Wilhelm, R.: Putting static analysis to work for verification: a
case study. ISSTA (2000)

47. Cousot, P., Cousot, R.: Compositional separate modular static analysis of programs using
abstract interpretation. In: Proceedings of 2nd International Conference on Advances in
Infrastructure for E-Business, E-Science, E-Education on the Internet (2001)

48. Dillig, T.: A modular and symbolic approach to static program analysis. Ph.D. Dissertation,
Department of Computer Science, Stanford University (2011)

Static Analysis: A Survey of Techniques and Tools 591

http://www.polyspace.com
http://www.hpl.hp.com/techreports/2003/HPL-2003-148.html
http://www.hpl.hp.com/techreports/2003/HPL-2003-148.html
http://www.gimpel.com/html/lintinfo.htm
http://artho.com/jlint
http://pmd.sourceforge.net
http://www.klocwork.com
http://www.coverity.com/library/pdf/coverity_white_paper_SAT_next_Generation_Static_Analysis.pdf
http://www.coverity.com/library/pdf/coverity_white_paper_SAT_next_Generation_Static_Analysis.pdf

	59 Static Analysis: A Survey of Techniques and Tools
	Abstract
	1 Introduction
	2 Static Analysis
	2.1 Static Analysis Techniques
	2.1.1 Syntactic Pattern Matching
	2.1.2 Data Flow Analysis
	2.1.3 Abstract Interpretation
	2.1.4 Constraint-Based Analysis

	2.2 Miscellaneous Techniques
	2.2.1 Symbolic Execution
	2.2.2 Theorem Proving

	2.3 Static Analysis Tools

	3 A Critique of Static Analysis
	3.1 Precision
	3.2 Efficiency
	3.3 Coverage
	3.4 Scalability
	3.5 Modularity
	3.6 Automation

	4 Conclusion
	References


