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Abstract Static program analysis has shown tremendous surge from basic compiler
optimization technique to becoming a major role player in correctness and
verification of software. Because of its rich theoretical background, static analysis is
in a good position to help produce quality software. This paper provides an overview
of the existing static analysis techniques and tools. Further, it gives a critique of static
analysis approach over six attributes, namely precision, efficiency, coverage,
modularity, scalability, and automation.
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1 Introduction

Static analysis is the process of automatically analyzing the behavior of computer
programs without executing it [1–3]. Dynamic analysis, on the other hand, analyses
programs by executing an instrumented program and generating some form of trace
[4]. Static analysis techniques have remained the most popular choice for analysis
of computer programs because of the fact that it is very simple and fast [5].
Dynamic analysis has existed in parallel with static analysis providing a comple-
mentary alternative to static analysis [4, 6, 7]. This paper is an attempt to provide an
overview of static analysis and its associated techniques and tools. The remaining
paper is organized as follows: Sect. 2 and its subsections give brief introduction of
static program analysis, its taxonomy, and associated techniques and tools.
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Section 3 gives a critique of static analysis, namely precision, efficiency, coverage,
modularity, scalability, and automation. Finally, Sect. 4 concludes the paper.

2 Static Analysis

Static analysis means automatic methods which can reason about run-time prop-
erties of program without actually executing it [2, 8]. Static analysis has been used
to detect errors which might lead to premature termination or ill-defined results of
the program [9]. Following is a non-exhaustive list of errors that can be addressed
using static analysis [3, 9, 10]:

• array out of bound, i.e., accessing an element of array beyond its size.
• null pointer dereference, i.e., a pointer with NULL value is used as though it

contained a valid memory address.
• memory leaks, i.e., a program fails to return memory taken for temporary use.
• buffer underflow/overflow, i.e., size of a data value/memory used for holding is

not taken care of.
• access to uninitialized variables/pointers, i.e., use of variables/pointers without

assigning them values/memory.
• invalid arithmetic operation, e.g., division by zero.
• non-terminating loops, e.g., exit condition of the loop does not evaluate to false.
• Non-terminating calls, i.e., the control flow of a program never returns from a

function call.

Most of the aforementioned errors can be detected by software testing. Although
testing still remains the major validation activity in software development process
[8], the promising nature of program analysis approaches can help software
developers in producing correct and reliable software. The main advantages and
disadvantages of static analysis over testing are summarized in Table 1.

One of the key ideas behind static analysis is abstraction. Abstraction refers to
transformation of a program, called concrete program, into another program that
still has some key properties of the concrete program, but is much simpler, and
therefore easier to analyze [5]. Over-approximation results when there are more
behaviors in the abstraction than in the concrete system [5]. Under-approximation,
on the other hand, deals with fewer behaviors than in the concrete system.

Static analysis can be sound or unsound. Soundness guarantees that the infor-
mation computed by the analysis holds for all program executions, whereas
unsound analysis does not [11]. Static analysis can be made path, flow, and context
sensitive by making it to distinguish between paths, order of execution of state-
ments, and method call (call site), respectively [12]. Precision of an analysis
approach can be measured by classifying the analysis results into three categories
[13]: false positives, i.e., nonexistent bugs are reported as potential bugs; false
negatives, i.e., bugs that are undiscovered; and true positives, i.e., true and dis-
covered bug. Efficiency is related to computational complexity or cost pertaining to
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space and time requirements of the algorithms used in the analysis [5]. Precision
and efficiency are related to each other, i.e., a precise analysis is more costly and
vice versa.

2.1 Static Analysis Techniques

2.1.1 Syntactic Pattern Matching

This technique is based on the syntactic analysis of a program by a parser. The
parser takes as input the program source code and outputs a data structure called
abstract syntax tree [1]. When used for bug finding, this technique works by
defining a set of program constructs that are potentially dangerous or invalid and
then searching the input program’s abstract syntax tree for instances of any of these
constructs. Syntactic pattern matching is the fastest and easiest technique for static
analysis. But it provides little confidence in program correctness and can result in a
high number of false alarms [14].

2.1.2 Data Flow Analysis

It is the most popular static analysis technique. The general idea was given in [15–17].
It proceeds by constructing a graph-based representation of the program, called
control flow graph, and writing data flow equations for each node of the graph. These
equations are then repeatedly solved to calculate output from input at each node
locally until the system of equations stabilizes or reaches a fixed point. Themajor data
flow analyses used are reaching definitions (i.e., most recent assignment to a
variable), live variable analysis (i.e., elimination of unused assignments), available

Table 1 Comparison of static analysis and testing

Static analysis Testing

Can be applied without executing the code Can be applied only by executing the code

Can be applied early in the development
process

Is applied late in the development process

Results do not depend on inputs Results depend on inputs

Results can be generalized for future
executions

Results cannot be generalized for future
executions

Less costly Very costly

Very fast process Slow process

False-positive rate is very high False-positive rate is very less

Approximations are used Exact results are used

Cannot be used for functional correctness of
program

Can be used for functional correctness of
programs
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expression analysis (i.e., elimination of redundant arithmetic expressions), and very
busy expression analysis (i.e., hoisting of arithmetic expressions computed on mul-
tiple paths) [2]. At each source code location, data flow analysis records a set of facts
about all variables currently in scope. In addition to the set of facts to be tracked, the
analysis defines a “kills” set and a “gens” set for each block. The “kills” set describes
the set of facts that are invalidated by execution of the statements in the block, and the
“gens” set describes the set of facts that are generated by the execution of the state-
ments in the block. To analyze a program, the analysis tool begins with an initial set of
facts and updates it according to the “kills” set and “gens” set for each statement of the
program in sequence. Although mostly used in compiler optimization [16, 17], data
flow analysis has been an integral part of most static analysis tools [18–21].

2.1.3 Abstract Interpretation

This technique was formalized by Cousot and Cousot [22]. It is a theory of
semantics approximation of a program based on monotonic functions over ordered
sets, especially lattices [23]. The main idea behind this theory is as follows: A
concrete program, its concrete domain, and semantics operations are replaced by an
approximate program in some abstract domain and abstract semantic operations.
Let L be an ordered set, called a concrete set, and let L′ be another ordered set,
called an abstract set. A function α is called an abstraction function if it maps an
element x in the concrete set L to an element α(x) in the abstract set L′. That is,
element α(x) in L′ is the abstraction of x in L. A function γ is called a concretization
function if it maps an element x′ in the abstract set L′ to an element γ(x′) in the
concrete set L. That is, element γ(x′) in L is a concretization of x′ in L′. Let L1, L2, L′
1, and L′2 be ordered sets. The concrete semantics f is a monotonic function from
L1 to L2. A function f′ from L′1 to L′2 is said to be a valid abstraction of f if for all x′
in L′1, (f ∘ γ)(x′) ≤ (γ ∘ f′)(x′). The primary challenge to applying abstract inter-
pretation is the design of the abstract domain of reasoning [24]. If the domain is too
abstract, then precision is lost, resulting in valid programs being rejected. If the
domain is too concrete, then analysis becomes computationally infeasible. Yet, it is
a powerful technique because it can be used to verify program correctness prop-
erties and prove absence of errors [25, 26].

2.1.4 Constraint-Based Analysis

A constraint-based analysis traverses a program, emitting and solving constraints
describing properties of a program [27, 28]. This technique works in two steps. The
first step, called constraint generation, produces constraints from the program text,
which describe the information or behavior desired from the program. The second
step is constraint resolution which involves solving the constraint by computing the
desired information. Static information is then extracted from these solutions.
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One of the key features of this technique is that algorithms used for constraint
resolution can be written independently of the eventual constraint system used [28].

2.2 Miscellaneous Techniques

2.2.1 Symbolic Execution

In this method, instead of supplying normal inputs to the program, one uses
symbols representing arbitrary values [29]. The execution proceeds as in a normal
execution except that the values are now symbolic formulas over input values. As a
result, the output values computed by a program are expressed as a function of the
input symbolic values. The state of a symbolically executed program includes the
symbolic values of program variables, a path condition (PC) and a program counter.
The path condition is quantifier-free Boolean formula over the symbolic inputs; it
accumulates constraints which the inputs must satisfy in order for an execution to
follow the particular associated path. A symbolic execution tree characterizes the
execution paths followed during the symbolic execution of a program. The tree
nodes represent program states, and they are connected by program transitions.
Symbolic execution is the underlying technique of several successful bug-finding
tools like PREfix [18] and CodeSonar [19].

2.2.2 Theorem Proving

Theorem Proving is based on the deductive logic proposed by Floyd and Hoare
[30, 31]. A program statement S is represented as a triple {p}S{q}, where
p (precondition) and q (post-condition) are logical formulas over program states.
This triple is valid iff for a state t satisfying formula p, executing S on t yields a state
t′ which satisfies q. Various inference rules are then used to verify system states.
One of the most famous theorem provers is Simplify [32] which has been used in
tools like ESC/Java [21]. Tiwari and Gulwani [33] have used theorem proving for a
new technique called logical interpretation, i.e., abstract interpretation over logical
lattices. This technique tries to embed theorem proving technology in the form of
engines of proof into the static analysis tools based on abstract interpretation. Then,
it is used for checking as well as generating program invariants.

2.3 Static Analysis Tools

There are numerous commercial as well as open-source static analysis tools
available. A summary of these tools is given in Table 2. We have categorized these
tools in the following categories based on the way they are used:
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• Static checking [20, 34–39]: The aim here is to find common coding errors.
• Error detection/bug finding [18, 19, 40, 41]: The aim of the tools in this category

is to find bugs and report them.
• Software verification [10, 25, 26, 42]: The tools in this category guarantee the

absence of errors by providing proofs.
• Type qualifier inference [43–45]: The tools in this category specify as well as

check program properties.

The first static analysis tool was Lint [34]. It was a simple Unix utility command
which accepted multiple files and library specifications and checked them for
inconsistencies like unused variables and functions, unreachable code, non-portable
character, and pointer alignment. But Lint could not identify defects that can cause
run-time problems. A series of shallow static analysis tools like FlexeLint/PCLint
[35] and Splint [36] then followed. These tools relied on the syntactic information,
and the analysis is mainly path or context sensitive. Splint additionally checks for
security vulnerabilities. These tools mainly worked for C/C++. JLint [37] is the Lint
family tool to check Java code for inconsistencies, bugs, and synchronization
problems. Other tools for Java which use syntactic pattern matching include
FindBugs [20] and PMD [39]. FindBugs also uses a simple, intra-procedural data
flow analysis to check for null pointer dereferences. PMD is an open-source, rule-
based, static analyzer that analyzes Java source code based on the evaluative rules

Table 2 Summary of static analysis tools

Tools Static
checking

Error detection/bug
finding

Verification Type
inference

Lint family [34–36] ✓

JLint [37] ✓

FindBugs [20] ✓ ✓

PMD [39] ✓ ✓

Coverity Prevent [41] ✓

KlockWork K7 [40] ✓

ASTREE [25] ✓ ✓

CGS [10] ✓

Polyspace Verifier [26] ✓

TVLA [42] ✓

BANE [44] ✓

BANSHEE [45] ✓

CQual [43] ✓

PREfix [18] ✓

CodeSonar [19] ✓

ESC/Java [38] ✓ ✓

ESP [21] ✓ ✓
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that have been enabled during a given execution. The tool comes with a default set
of rules which can be used to unearth common development mistakes such as
having empty try-catch blocks, variables that are never used, and objects that are
unnecessary.

ESP [21] uses path-sensitive data flow analysis for error detection. It uses a
combination of scalable alias analysis and property simulation to verify that large C
code bases obey temporal safety properties. Symbolic execution is the underlying
technique of the successful bug-finding tool PREfix for C and C++ programs [18].
For each procedure, PREfix synthesizes a set of execution paths, called a model.
Models are used to reason about calls, and then, fixpoints of models are approxi-
mated iteratively for recursive and mutually recursive calls. Polyspace Verifier [26]
uses sound analysis based on abstract interpretation which can prove absence of
run-time errors related to arithmetic operations. Prevent [41] uses path simulation
techniques to prune the infeasible paths and helps in curbing false alarms.
CodeSonar [19] uses symbolic execution engine to explore program paths, rea-
soning about program variables and how they relate. It then uses data flow analysis
to prune infeasible program paths from being explored. Only Klockwork K7 [40]
supports software metrics in this category apart from other common facilities. CGS
[10] is a precise and scalable static analyzer which uses abstract interpretation to
check run-time errors in embedded systems and has been used extensively on real
NASA space missions.

ASTREE [25] has similar foundational theory as CGS but also is sound. It is
used for checking run-time errors as well as assertion violations and has been used
in safety-critical systems. Three Valued Logic Analysis Engine (TVLA) [42] is a
system that can automatically generate abstract interpretation analysis algorithms
from program semantics. It has been successfully used in performing shape analysis
of heap allocated data [46]. The most popular static analysis tool which uses
theorem proving is ESC/Java [38]. To use ESC/Java, the programmer adds pre-
conditions, post conditions, and loop invariants to source code in the form of
special comments called annotations. It then uses Simplify theorem prover [32] to
verify that the program matches the specifications.

CQual [43] is a constraint-based analysis tool used for type inference. It traverses
the program’s abstract syntax tree and generates a series of constraints that capture
the relations between type qualifiers. If the constraints have no solution, then there
is a type qualifier inconsistency, indicating a potential bug. BANE [44] is a
framework which helps in developing constraint-based program analyses. It frees
the user from writing the constraint solver which is the most difficult task in
constraint-based analysis. The user only writes code to generate constraints from
program texts. Banshee [45] is a scalable version of BANE. It inherits a lot of
features of BANE and has added the support for incremental analysis using
backtracking.
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3 A Critique of Static Analysis

3.1 Precision

Static analysis can be imprecise because it makes assumptions or approximations
about the run-time behavior of a program. Therefore, it suffers a lot from false
positives. One way to avoid false positives is to filter the analysis results, removing
errors which are highly unlikely. For example, in PREfix [18], the user of the tool
can control the maximum number of execution paths that will be generated for a
function. Another way to avoid false positives is to prune the paths which may be
infeasible. For example, Coverity Prevent [40] uses SAT solvers for this kind of
false path pruning. But filtering or pruning can introduce false negatives. Therefore,
use of filtering/pruning should be done with caution.

3.2 Efficiency

Efficiency is an important attribute as it directly links to the cost of the analysis.
Efficiency is also related to precision. Static analysis trades off precision over
efficiency; that is, in order to provide analysis results faster, it uses approximation or
abstraction mechanisms which lead to less precise results. But there exist tech-
niques which can make static analysis precise by making static analysis flow, path,
or context sensitive [12]. But this precision comes at the cost of longer time and
greater resource need.

3.3 Coverage

It implies the total number of execution paths analyzed [5, 11]. Obviously, the
execution paths analyzed must be valid ones. By its very nature, static analysis
provides high coverage as it does not depend on specific input stimuli. Therefore, as
compared to its dynamic counterparts, static analysis provides high coverage of
code for analysis purpose.

3.4 Scalability

In general, a system is said to be scalable if it remains suitably efficient and practical
when applied to situations in the large [5]. This is required when one applies analysis
approaches to industrial-size software. Incorporating scalability into a static analysis
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is tedious as it operates on some kind of model of the system. Most static analysis
tools employing abstract interpretation [10, 25, 26] have been developed to pursue
scalability. ESP [21] is made scalable using property simulation.

3.5 Modularity

A program is analyzed by analyzing its parts (such as components, modules, and
classes) separately, and then, analysis results are composed together to get the
required information on the whole program [24]. The advantage of using this
approach is that precision, efficiency, and scalability can be greatly enhanced. Work
has been done on modular static analysis by Cousot and Cousot [47] to enhance
scalability. Dillig [48] describes a fully modular, summary-based pointer analysis
that can systematically perform strong updates to abstract memory locations
reachable through function arguments. ESC/Java [38] is a static analysis tool which
supports modular analysis.

3.6 Automation

It implies the extent to which the analyzer analyses the code by itself without
requiring human intervention [12]. Static analysis is a fully automated technique
and thus is the most popular choice for analysis of source code [5].

4 Conclusion

This paper studies the foundational techniques of static program analysis. It pro-
vides a list of static analysis tools with a brief overview of these tools. It further
provides a critique of static analysis over six attributes, namely precision, efficiency,
coverage, scalability, modularity, and automation. Static analysis is the most widely
used technique for program analysis because of its high efficiency, coverage, and
automation, but suffers from high false-positive rates. Still, static analysis tech-
niques are being widely adopted by software community in various fields like bug
finding and software verification.
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