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Abstract In this work, an attempt has been made to design an intelligence
technique-based expert system using adaptive neuro-fuzzy inference system
(ANFIS) for predicting tool wear in milling operation. An artificial neural network
is used for designing an optimized fuzzy logic system, so that the tool wear can be
modeled for a set of input cutting parameters, namely feed rate, depth of cut, and
cutting force. The proposed method uses two different learning approaches, namely
back-propagation gradient descent method alone and hybrid method (i.e., combi-
nation of the least squares method and back-propagation algorithm) for training of
first-order Sugeno-type fuzzy system. The predicted tool wear values derived from
proposed ANFIS were compared with the experimental data.
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1 Introduction

The concept of tool condition monitoring has gained considerable importance in the
manufacturing industry. This is mainly attributed to the transformation of the
manufacturing environment from manually operated production machines to CNC
machine tools and the highly automated CNC machining center. For modern
machine tools, 20 % of the downtime is attributed to tool failure, resulting in
reduced productivity and economic losses [1]. So in machining processes, tool
condition is of vital importance, as it affects the quality of the product and the
efficiency of the process. Different types of sensor have been used to detect tool
wear. Yao et al. [2] and Lee et al. [3] used acoustic emission in the development of
a tool wear monitoring system. Mehta et al. [4] employed an accelerometer to
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monitor tool wear and concluded that the frequency increases as the tool deterio-
rates. Konig et al. [5] used cutting force to predict tool wear and found that there is
a positive correlation between cutting tools and tool deterioration. Lin and Yang [6]
proposed a tool wear monitoring system in face milling operations using a force
coefficient. Artificial neural network was used for predicting tool wear in milling by
Chen et al. [7]. Wang et al. [8] presented a tool wear monitoring system using a
fuzzy logic model called fuzzy clustering. However, this model is complicated and
there is no current evidence of model validation. Moreover, the proper selection of
the number, the type, and the parameters of the fuzzy membership functions and
rules are crucial for achieving the desired performance. Yet, it has been often done
through trial and error. This fact highlights the significance of fuzzy logic system
tuning. To achieve this, adaptive neuro-fuzzy approach is used to model tool wear
in milling operation as milling is one of the most common metal removal operations
used in manufacturing industry. In this work, artificial neural network is used for
designing an optimized fuzzy logic system, so that the tool wear can be modeled for
a set of input parameters, namely feed rate, depth of cut, and cutting force.

2 Proposed Adaptive Neuro-Fuzzy Inference System

2.1 Fuzzy Logic System

Fuzzy set theory was developed by Prof. L.A. Zadeh [9] to capture the imprecise
modes of reasoning employed in an environment characterized by uncertainty and
vagueness. A fuzzy inference system employing fuzzy ‘if-then’ rules can model the
qualitative aspects of human knowledge and reasoning processes without
employing precise quantitative analysis. This fuzzy modeling first explored sys-
tematically by Takagi and Sugeno [10]. A fuzzy inference system is composed of a
rule base, containing a number of fuzzy if-then rules; a database, which defines the
membership functions of fuzzy sets used in fuzzy rules; a decision-making unit
which performs inference operations on the rules; and a defuzzification interface,
which transforms fuzzy results into a crisp output. The integration of neural net-
work into fuzzy logic system makes it possible to learn from data prior.

2.2 Adaptive Neuro-Fuzzy System

The adaptive neural-fuzzy system is a Sugeno fuzzy model put in the framework of
adaptive systems to facilitate learning and adaptation [10]. Such framework makes
the adaptive neuro-fuzzy modeling more systematic and less reliant on expert
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knowledge. To present the adaptive neural-fuzzy system architecture, let us
consider two fuzzy if-then rules based on a first-order Sugeno model:

Rule 1: If (v is V1) and (d is D1), then f1 = p1v + q1d + t1
Rule 2: If (v is V2) and (d is D2), then f2 = p2v + q2d + t2

where Vi and Di are the fuzzy sets, fi is the outputs within the fuzzy region
specified by the fuzzy rule, and pi, qi, and ti are the design parameters that are
determined during the training process. The entire system architecture consists of
five layers, namely the fuzzy layer, product layer, normalized layer, de-fuzzy layer,
and total output layer.

Fuzzy layer: Every node in this layer is an adjustable node, with node function as

O1;i ¼ lVi
vð Þ i ¼ 1; 2 ð1Þ

O1;i ¼ lDi
dð Þ i ¼ 3; 4 ð2Þ

where lvi vð Þ and ldi dð Þ can adopt any fuzzy membership function. For example, if
the Gaussian membership function is employed, lvi vð Þ is given by:

lviðvÞ ¼ e
�ðv�ciÞ2

2r2
i ð3Þ

where {σi, ci} represents the parameter set. It is significant that if the values of these
parameters set change, the Gaussian function will be changed accordingly. The
parameters in this layer are named as ‘premise parameters.’

Product layer: Every node in this layer is a fixed node with node function to be
multiplied by input signals to serve as output signal

O2;i ¼ wi ¼ lVi vð Þ � lDi dð Þ i ¼ 1; 2 ð4Þ

The output signal wi means the firing strengths of a rule.
Normalized layer: Every node in this layer is a fixed node with node function to

normalize firing strength by calculating the ratio of this node firing strength to the
sum of the firing strength:

O3;i ¼ wi ¼ wi

w1 þ w2
i ¼ 1; 2 ð5Þ

De-fuzzy layer: Every node in this layer is an adjustable nodewith node function as

O4;i ¼ wifi ¼ wiðpivþ qid þ tiÞ i ¼ 1; 2 ð6Þ

where pi, qi, and ti are parameter set which is referred as the ‘consequent
parameters.’
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Total output layer: Every node in this layer is a fixed node with node function to
compute the overall output by

O5;i ¼
X2

i¼1

wifi ð7Þ

2.3 Learning Algorithm of Adaptive Neuro-Fuzzy System

It can be observed that there are two adaptive layers in this architecture, namely the
first layer and the fourth layer. In the first layer, there are two modifiable parameters
{σi, ci}, which are related to the input membership functions. In the fourth layer,
there are also three modifiable parameters {pi, qi, ti}, pertaining to the first-order
polynomial. The task of the learning algorithm for this architecture is to tune all the
modifiable parameters, namely {σi, ci} and {pi, qi, ti}, to make the adaptive neural-
fuzzy system output match the training data. The learning algorithm may consist of
either back-propagation learning algorithm or hybrid learning algorithm.

Approach 1:
In this approach, the basic learning method is back-propagation algorithm which

is an error-based supervised learning algorithm. It employs an external reference
signal, which acts like a teacher and generates an error signal by comparing the
reference with the obtained response. Based on error signal, the network modifies
the design parameters to improve the system performance. It uses gradient descent
method to update the parameters.

Approach 2:
The hybrid learning algorithm applies a combination of least square estimator

(LSE) and gradient descent method for training fuzzy logic system membership
function parameters to emulate a given training data set. The LSE method is used to
optimize the consequent parameters with the premise parameters fixed. Once the
optimal consequent parameters are found, the gradient descent method is used to
adjust optimally the premise parameters corresponding to the fuzzy sets in input
domain. The output of the adaptive neuro-fuzzy system is calculated by employing
the consequent parameters. The output error is used to adapt the premise parameters
by means of a standard gradient descent method.

3 Results and Discussion

A training database with regard to machining parameters and tool wear is essential
to train the fuzzy system for modeling and predicting tool wear. A number of
milling experiments were carried out [7] on Fadal machine using 3-insert with a
diameter 1.25 in. mill and 1,018 steel workpiece. The worn tools, which were
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ground artificially, were used in the experimental runs. The experimental design for
collecting data was set up as the following combination of machining cuts: feed rate
at 5.0, 7.0, 9.0, 11.0, and 13.0 in./min; depth of cut at 0.02, 0.03, 0.04, 0.05, and
0.06 in.; flank wear at 0.25, 0.35, 0.45, and 0.55 mm. Based on above combina-
tions, 100 milling experiments were performed. The average peak cutting force in
the y-direction collected through the experimental runs and unit for cutting force is
measured in V. These sets of 100 data, as listed in Table 1, were used for training of
the fuzzy system by both Approach 1 and Approach 2 as mentioned in Sect. 2.3.
This training adjusts the membership function parameters. In general, this type of
model works well if the training data presented are fully representative of the
features of the data that the trained fuzzy system is intended to model. This is not
always the case; however, in some cases, data are collected using noisy measure-
ments, and the training data cannot be representative of all the features of the data

Table 1 Experimental data [7] for training

Feed rate (in./min) Depth of cut (in.) Tool wear (mm)

0.25 0.35 0.45 0.55

Cutting force (V)

5.0 0.02 0.31 0.23 0.11 0.08

0.03 0.39 0.29 0.18 0.11

0.04 0.45 0.35 0.21 0.17

0.05 0.56 0.41 0.29 0.25

0.06 0.59 0.45 0.37 0.29

7.0 0.02 0.39 0.28 0.16 0.13

0.03 0.48 0.37 0.27 0.20

0.04 0.56 0.42 0.35 0.29

0.05 0.64 0.47 0.44 0.38

0.06 0.67 0.54 0.49 0.43

9.0 0.02 0.45 0.31 0.21 0.15

0.03 0.52 0.40 0.33 0.25

0.04 0.62 0.43 0.44 0.35

0.05 0.71 0.56 0.52 0.43

0.06 0.76 0.62 0.59 0.54

11.0 0.02 0.48 0.40 0.25 0.19

0.03 0.62 0.51 0.36 0.28

0.04 0.76 0.64 0.50 0.39

0.05 0.81 0.71 0.62 0.47

0.06 0.87 0.76 0.72 0.62

13.0 0.02 0.61 0.50 0.31 0.26

0.03 0.71 0.60 0.44 0.35

0.04 0.78 0.72 0.58 0.47

0.05 0.95 0.78 0.71 0.60

0.06 1.00 0.91 0.86 0.72
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that will be presented to the model. So, model validation is needed to cross validate
the fuzzy system using testing data set. The testing data set is useful in checking the
generalization capability of the resulting fuzzy system. That is why another 9 sets
[7] were then used for testing after the training was completed to verify the accuracy
of the predicted values of tool wear.

The fuzzy expressions for feed rate are LF: low feed, MF: medium feed, HF:
high feed; for depth of cut are SA: shallow, MD: medium deep, DE: deep; and for
cutting force are LFR: low force; MFR: medium force; HFR: high force. There are a
total of 27 fuzzy rules in the architecture. Thus, a typical ith rule of the fuzzy system
will be as follows:

If feed rate (fi) is high feed (HF),depth of cut (di) is deep (DE), and cutting force
(vi) is medium force (MFR), then tool wear is (pifi + qidi + rivi + ci), where pi, qi, ri,
and ci are the design parameters.

During training in adaptive neural-fuzzy system, 100 sets of experimental data
were used to conduct 10,000 cycles and 200 cycles of learning for Approach 1 and
Approach 2, respectively. Adaptive neuro-fuzzy system learning scenario for pre-
dicting tool wear is as follows:

Number of nodes = 78, Number of linear parameters = 108, Number of non-
linear parameters = 18.

Table 2 compares the predicted values and experimental values [7] of tool wear
after training by using Approach 1 and Approach 2 for some of the training cases.
In almost all the cases, prediction of tool wear using Approach 2 (average error:
2.32 % approx.) is better than Approach 1 (average error: 8.57 % approx.).

Table 2 Tool wear predicted by Approach 1, Approach 2, and its comparison with experimental
results [7] for some of the training cases

Feed
rate (in./
min)

Depth
of cut
(in.)

Cutting
force
(V)

Tool wear (mm)
experimental
result

Predicted value

Approach 1 Approach 2

Tool
wear
(mm)

Abs. %
error

Tool
wear
(mm)

Abs. %
error

5 0.03 0.11 0.55 0.5189 5.6545 0.5598 1.7818

5 0.06 0.45 0.35 0.3183 9.0571 0.3596 2.7428

7 0.03 0.27 0.45 0.4756 5.6889 0.4521 0.4667

7 0.05 0.64 0.25 0.2693 7.720 0.2538 1.520

7 0.06 0.67 0.25 0.2403 3.880 0.2501 0.040

9 0.02 0.15 0.55 0.5358 2.5818 0.5553 0.9636

9 0.06 0.76 0.25 0.2562 2.480 0.2485 0.600

11 0.02 0.19 0.55 0.5714 3.8909 0.5552 0.9454

11 0.04 0.5 0.45 0.4451 1.0888 0.4532 0.7111

11 0.06 0.87 0.25 0.2595 3.800 0.2488 0.480

13 0.03 0.35 0.55 0.5248 4.5818 0.5541 0.7454

13 0.05 0.71 0.45 0.4225 6.1111 0.4477 0.5111
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Table 3 shows the comparative study between predicted tool wear using
approach 1, approach 2, and experimental results obtained by Chen [7] for some of
the test cases. Simulation result shows that the average error of the modeling of tool
wear is approximately 3.51 and 9.01 % when Approach 2 and Approach 1 are used,
respectively, whereas average error of ANN predicted model [7] is around 10.47 %.
Approach 2 has been performed better than Approach 1, in most of the cases, for
making prediction of tool wear in milling operation. It may happen because back-
propagation algorithm is never assured of finding the global minimum. The error
surface may have many local minima, so it may get stuck during the learning
process on flat or near flat regions of the error surface. Results presented in Table 3
also show that the Approach 2 outperforms the ANN-based method in terms of test
accuracy of tool wear.

4 Conclusions

The conclusions that were drawn from this study can be summarized in the fol-
lowing points: An adaptive neuro-fuzzy inference system (ANFIS) based on first-
order Takagi–Sugeno fuzzy inference system is used to predict tool wear in milling
operation. Simulation results show Approach 2 (i.e., hybrid learning of fuzzy
system) performs better than approach 1 (i.e., back-propagation-based learning) and
ANN-based predictive model. The hybrid learning algorithm converges much faster
than pure back-propagation learning algorithm. The ability of the ANFIS for pre-
dicting tool wear of a machining process before carrying out actual experiment will
help us to develop an intelligent manufacturing system.

Table 3 Tool wear predicted by Approach 1, Approach 2, and its comparison with experimental
results [7] for some of the test cases

Feed rate
(in./min)

Depth of
cut (in.)

Cutting
force (V)

Tool wear (mm)
experimental
result

Predicted value

Approach 1 Approach 2

Tool
wear
(mm)

Abs. %
error

Tool
wear
(mm)

Abs. %
error

7.0 0.02 0.15942 0.45 0.5328 18.400 0.4738 5.2889

11.0 0.03 0.280193 0.55 0.5282 3.9636 0.5447 0.9636

7.0 0.05 0.47343 0.35 0.377 7.7143 0.3707 5.9143

5.0 0.04 0.347826 0.35 0.373 6.5714 0.3438 1.7714

11.0 0.06 0.874396 0.25 0.2566 2.6400 0.2444 2.2400

9.0 0.04 0.439614 0.45 0.4288 4.7111 0.395 12.222

13.0 0.02 0.497585 0.35 0.4643 32.657 0.3454 1.3143

7.0 0.06 0.536232 0.35 0.3484 0.4571 0.3491 0.2571

11.0 0.02 0.188406 0.55 0.5722 4.0364 0.5588 1.6001
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