Performance Evaluation of Heuristic
Algorithms for Optimal Location
of Controllers in Wireless Networks

Dac-Nhuong Le

Abstract In this paper, we have presented the new Ant Colony Optimization
scheme for the optimal location of controllers in wireless networks, which is an
important problem in the process of designing cellular mobile networks. Our
objective functions are determined by the total distance based on pheromone matrix
of ants satisfies capacity constraints to find good approximate solutions. Our pro-
posed algorithms may give feasible solutions to this problem based on the global
search for high quality feasible solutions. The experimental results show that our
pro-posed algorithm has achieved a much better performance than the previous
approaches based on heuristic and evolution algorithms.

Keywords Base station controller - Wireless networks - Heuristic «+ Ant colony
optimization

1 Introduction

The size and complexity of computer networks have been growing very fast in the
last decade. In the past, a computer network usually only served a small number of
devices. Nowadays, it is common to find a computer network that serves hundreds
of even thousands of devices. It seems they this incredible growth will continue as
the customers needs and the telecommunication technology keep growing. As the
size and complexity of computer networks grow, so too does the need for good
design strategies. Optimal the placement of base stations in the designing of a
wireless network is very important for a cheaper and better customer service. This
issue is related to the problems of location of devices [1, 2]. The objective of
Terminal Assignment (TA) problem [3] involves with determining minimum cost
links to form a network by connecting a given collection of terminals to a given

D.-N. Le (X))
Haiphong University, Haiphong, Vietnam
e-mail: Nhuongld@hus.edu.vn

© Springer India 2015 843
J.K. Mandal et al. (eds.), Information Systems Design and Intelligent Applications,

Advances in Intelligent Systems and Computing 339,

DOI 10.1007/978-81-322-2250-7_84

844 D.-N. Le

collection of concentrators. The capacity requirement of each terminal is known and
may vary from one terminal to another. The capacity of concentrators is known.
The cost of the link from each terminal to each concentrator is also known. The
problem is now to identify for each terminal the concentrator to which it should be
assigned, under two constraints: Each terminal must be connected to one and only
one of the concentrators, and the aggregate capacity requirement of the terminals
connected to any concentrator must not exceed the capacity of that concentrator.
The assignment of BTSs to switches problem introduced in [4]. In which it is
considered that both the BTSs and controllers of the network are already positioned,
and its objective is to assign each BTSs to a controller, in such a way that a capacity
constraint has to be fulfilled. The objective function in this case is then formed by
two terms: the sum of the distances from BTSs to the switches must be minimized,
and also there is another term related to handovers, between cells assigned to
different switches which must be minimized.

2 Problem Formulation

Let us consider a mobile communication network formed by N nodes (BTSs), where
a set of M controllers must be positioning in order to manage the network traffic. It
is always fulfilled that M < N, and in the majority of cases. We start from the
premise that the existing BTSs infrastructure must be used to locate the switches,
since it saves costs. The complete optimal location of controller problem (OLCP)
has to deal with two issues in Fig. 1. First, the selection of the N controllers in
M nodes, second for each selection, an associated TA problem [5].

Let Iy,0,...,1Iy is set of N Base Stations (BTSs), wi,wy,...,wy is the weight
requirement of BTS, (lj] , ljz) is the coordinates of BTS /;Vj = 1.. .N on the Euclidean
grid; Let r,ra, ..., ry is set of Base Station Controllers (BSCs) should be estab-
lished, p1, pa, . . ., py is the capacity can satisfy of BSC r;, (r;1, ri2) is the coordinates
of BSC r;,Vi = 1...M on the Euclidean grid. The weights and capacity are positive
integers and w; <min{py,pa,...,pu},¥i =1,2...,N. Assign each BTS to one of
BSC such that no BSC exceeds its capacity. Let ¥ = {X|, X2, . . ., Xy } be a vector such
that means that BTS /; has been assigned to BSC r;, with is an integer such that ; = i.

LA gh A Ah A
A AiAA o Afé A}A ’
A0 g

Fig. 1 Optimal location of controller problem model

Performance Evaluation of Heuristic Algorithms ... 845

Capacity of each BSC must be satisfied ZjeR,- w;<pi,i=1...M where,
R; = {j|%; = i}, i.e., R; represents the BTSs that are assigned to BSC r;. Let X =
{xi} (v 18 @ binary matrix describes the connection between the BTS /; to BSC

r;. Such that, x; = 1 means that BTS /; has been connected to BSC r;, and otherwise.
The objective of optimal location of controller problem is minimize the total con-
nectivity costs between (N — M) BTSs to M BSCs. The cost of connection from BTS

l;to BSC r; is calculated by cost t;; = \/(ljl — r,-1)2 + (lp — riz)z. The problem can be
defined as follows:

M _N-M
fx) = Z Z cost tiix; — min (1)
=1 j=1
Subject to:
M
doxi=1, Vi=T.N-M (2)
i=1
N-M
Z wixij <pi, Vi=1...M (3)
i=j

3 Related Works and Our Works

Both TA and OCLP are NP-complete combinatorial optimization problems [1, 6, 7],
so heuristic approach is a good choice [8]. All the previous work on the TA provides
powerful approaches when the cost of assigning a single terminal to a given con-
centrator is known before running the algorithms. The cost function is the Euclidean
distance between a terminal and its associated concentrator [1]. A Greedy is the first
algorithm proposed by Abuali et al. in [3] for solving the TA. Khuri and Chui
proposed a GA (Genetic Algorithm) with a penalty function as an alternative method
for solving the TA [4]. They showed its performance by means of the comparison
with the greedy algorithm GA-Greedy proposed in [3]. The improved GA is proposed
include: GENEsYs (Genetic Search) [7], LibGA [9], and GGA (Group Genetic
Algorithm) [10]. In [5], Sanz et al. introduced a hybrid heuristic consisting of SA
(Simulated Annealing) and a Greedy algorithm for solving the OLCP problem is
called by SA-Greedy algorithm. An improvement of SA-Greedy is LB-Greedy
algorithm [11], the lower bound comes from the solution obtained by assigning each
BTS J; to the nearest BSC r;. A hybrid neural-GA in which a Hopfield neural network
[12] manages the problems constraints and a GA searches for high quality solutions
with the minimum possible cost called by Hybrid I, Hybrid II proposed in [5, 13].

846 D.-N. Le

In the latest works on the OCLP, we proposed GA-BSC [14], Particle Swarm
Optimization (PSO-BSC) [15] and Ant Colony Optimization (ACO-BSC1) [16]
algorithms.

4 Our Proposed

In this section, we propose a new ACO algorithm combined Local search to
improve the speed and quality of solution. The ACO algorithm is originated from
ant behavior in the food searching. When an ant travels through paths, from nest
food location, it drops pheromone. According to the pheromone concentration the
other ants choose appropriate path. The paths with the greatest pheromone con-
centration are the shortest ways to the food [17].

Ant Encoding: We consider that configurations are sets of M nodes which will
be evaluated as BSCs for the network. The encoding of the ant k configuration is by
means of binary string of length N, say & = {x|,x,,...xy} where x; = 1 in the
binary string means that the corresponding node has been selected to be a con-
troller, whereas a O in the binary string means that the corresponding node is not a
BSC, but serve as BTS. We must select N nodes to be the controllers of the
network. We use fully random initialization in order to initialize the ant population.
After that, the ant k will have p 1 s, we use Ant_Repair function to ensure that all
binary strings of ants have exactly M 1 s.

Algorithm 1 Ant_repair

Input: The ant k = {z1,z2,...x n} has p 1s
Output: The ant k will have exactly M 1s
BEGIN
IF p < M THEN Adds (M — p) 1s in random positions;
ELSE Select (p — M) 1s randomly and removes them from the binary string;
END.

The pheromone matrix is generated with matrix elements that represent a
location for ant movement, and in the same time it is possible receiver location.
Each ant k has exactly M 1 s representing M BSCs is associated to one matrix. We
use real encoding to express an element of matrix Ay «y (Where N, M are the
number of BTSs, and BSCs). We construct a transport network G = (I, J, E) where
I={1,2,...,M} is the set of BSCs, J = {1,2,...,N — M} is the set of BTSs and
E is the set of edge connections between BSC r; and the BTS ;. We adding two
vertices S (Source) and D (Destination) is shown in Fig. 2.

Construct Ant Solutions: Each ant can move to any location according to the
transition probability defined by:

Performance Evaluation of Heuristic Algorithms ... 847

Fig. 2 The transport network r{i=1..N) Ij=1.M-N)
G=(I,J,E)

c(Srd=pt

et 'J‘)ZWM cfl,D)=w,;

4)

Py =

i

in which, 7;; is the pheromone content of the path from BSC r; to BTS Nik is the
neighborhood includes only locations that have not been visited by ant k when it is
at BSC r;, n;; is the desirability of BTS /;, and it depends of optimization goal so it
can be our cost function. The influence of the pheromone concentration to the
probability value is presented by the constant a, while constant £ do the same for
the desirability. These constants are determined empirically and our values are
o =1, p = 10. The ants deposit pheromone on the locations they visited according
to the relation.

‘cj'.’ew = ‘c;”rmm + A‘Cj].(or Tj= (1— ,())’L'zj + pAt;; (5)

where Atk = ———1L s the amount of pheromone that ant k exudes to the
T Va1 ra—1p)?

BTS [; when it is going from BSC r; to BTS ;. The cost function for the ant k is the
total distance between BSCs to BTSs is given by (1). The stop condition we used in
this paper is defined as the maximum number of interaction Ny,x. The pseudo-code
of ACO-BSC1 algorithm to solving OCLP as follows:

Algorithm 2 MMAS algortihm to optimizing QoS for multimedia services

BEGIN
Generating the pheromone matrix for the Ant k;
Update the pheromone values and set =* = k; i =1 ;
REPEAT
FORk =1TO K DO
Computing the cost function for the ant k by the formula (1);
Computing probability move of ant individual by the formula (4);
IF f(k) < f(z=*) THEN
Update the pheromone values by the formula (5);
Set z* = k;
ENDIF
ENDFOR
UNTIL (i > N prqq) or (an acceptable solution is found);
END.

848 D.-N. Le

ACO-BSCl algorithm combined with local search is called by ACO-BSC2. The
local search algorithm described as follows:

Algorithm 3 Local Search

BEGIN

c1 = randomly select a BSC in solutions;

c2 = randomly select a BSC in solutions;

S = {candidate;} by swapping a BTS between BSC ¢; and BSC ca;

CurentSolution = candidatey;

FOR EACH candidate; in S DO

IF f(CurentSolution) > f(candidate;) THEN CurentSolution = candidate;;

END.

5 Experiments and Results

In our experiments, we have already defined parameters for our algorithms: ant
population size K = 100, Maximum number of interaction Ny, = 500, parameter
o =1, f = 10. In order to test the performance of our algorithm, we tackle a set of
TA and OCLP instances of different difficulties in 3 case studies. We present the
results we have obtained followed by an analysis.

Case study 1: We experiment on 13 test cases in [3]. The coordinates of terminals
and concentrators have been randomly obtained in a 100 grid, whereas the weights
associated with each terminal were randomly generated w; € [1,6],Vj = 1...N. The
capacities of each concentrator assigned fixed p; = 12,Vi = 1...M. Table 1 shows
the comparison of the best objective function of ACO-BSC1, ACO-BSC2, Greedy,
GENE sYs, LibGA, GGA algorithms. The results listed under the Greedy algorithm are

Table 1 Performance evaluation of the best solution of algorithms in Case study 1

Test | N M | Greedy | GENEsYs |LibGA | GGA | ACO- ACO- Improved
BSC1 BSC2 (%)
#1 100 |32 |1203 1153 1138 1115 | 1115 1115 0.88
#2 100 |32 | 1253 1180 1159 1166 | 1166 1159 0.94
#3 100 |31 |1274 1216 1181 1170 | 1170 1170 1.04
#4 100 |33 |1438 1394 1344 1359 | 1344 1303 1.35
#5 100 |27 | 1600 1540 1500 1469 | 1469 1423 1.77
#6 100 |27 | 1446 1393 1373 1388 | 1388 1373 0.73
#7 100 |31 | 1961 1917 1838 1863 | 1838 1725 2.36
#8 100 |27 |1865 1803 1702 1781 | 1630 1615 2.50
#9 100 |31 | 1564 1492 1425 1412 | 1412 1394 1.70
#10 | 100 |31 | 1367 1251 1216 1225 | 1225 1182 1.85
#11 200 |93 | 2002 1939 1898 1919 | 1769 1721 2.81
#12 300 |96 |2673 2607 2579 2595 |2369 2213 4.60
#13 | 400 | 128 | 3432 3327 3282 3316 |3168 2775 6.57

Performance Evaluation of Heuristic Algorithms ... 849

the best solutions yielded by the implementation after 100 executions in each case.
We force Greedy algorithm to stop after 10,000 iterations in order to make a com-
parison with the GENEsYs, LibGA, GGA algorithms which also iterate for 10,000
generations. We use the same population size is 500 and the same crossover rate is 0.6
in the three genetic algorithms. The experiment results show that our approach are
useful to reach the feasible regions very fast more than the three genetic algorithms.
The GENEsYs, LibGA, GGA algorithms may have to wander for a large of genera-
tions in the search space before the feasible regions can be identified. The Greedy
algorithm is the fast algorithm, but it does not always produce near optimal solutions,
and the GENEsYs does not perform as well as the LibGA, GGA algorithms in all cases.
While, our proposed algorithms run very efficiently and yields feasible solutions
consistently based on the heuristic information.

Case study 2: Table 2 summarize the results of executing the Hybrid I, Hybrid
11, ACO-BSCI and ACO-BSC?2 algorithms in the best and average cases on 15 test
cases after 100 executions in each case. The 15 TA test cases of different sizes, the
difficulty increases with the problem size in [5]. The coordinates of terminals and
concentrators have been randomly obtained in a 100 grid, whereas the weights
associated with each terminal were randomly generated. The capacities of each
concentrator vary from one problem to another, being in a range. Experimental
results show that the proposed algorithms are found to be optimal solution in the
best case similar to the Hybrid II algorithm. However, the performance of ACO-
BSC1, ACO-BSC2 algorithms equally or better than the Hybrid I and Hybrid 11
algorithms in all cases. The discovery of the ACO-BSC2 algorithm are better
demonstrat-ed in the average objective function.

Case study 3: We experiment on 10 OCLP instances of different sizes, the
difficulty increases with the problem size. The coordinates of terminals and con-
centrators have been randomly obtained in Table 3, whereas the weights associated
with each terminal were randomly generated w; € [1,30],Vj = 1...N. The capac-
ities of each concentrator vary from one problem to another, being in a range
pi € [50,150],Vi = 1...M. We compare the results obtained by the objective
function of the SA, SA-Greedy, LB-Greedy, GA-Greedy, GA-BSC, PSO-BSC, ACO-
BSCI and ACO-BSC?2 algorithms in the best and average cases. All experiment are
independent of all others, the results listed in Table 4 is the best solutions and
average solutions after 100 executions in each case. The experimental results show
that the objective function of our algorithms has achieved a much better perfor-
mance than other algorithms. In the small grid size and small number of nodes such
as problem #29, #30 and #31, all algorithms has approximate results both the best
solutions and the average solutions. However, when the problem size is large, the
experimental results are considerable different such as problem #34, #35, #36, #37
and #38. In some cases, all algorithms choose the same set of nodes to be BSCs, but
the objective function results of the ACO-BSC2 algorithm are much better.

Table 5 shows the computational time of the seven algorithms. The computation
time of the GA-BSC, PSO-BSC is smaller than the SA, SA-Greedy and LB-Greedy
algorithm, however it is larger than the ACO-BSCI and ACO-BSC2 algorithms

D.-N. Le

850

€'8L8 '6v8 ¥'€68 v'6v8 ¥'L06 8798 8'868 v'6v8 09¢ e 0¢ 00T 8TH
81L8 'S8 €'8L8 P'S18 6'8L8 ¥'€Cs 9°¢88 SIS 09¢ 14313 0¢ 001 LTH#
P'ri6 €188 6’516 €188 Y6 €188 9'6T6 1'788 09¢ 6T 0¢ 001 oTH#
T0SS 9IS 9°19¢ 9° TS TTLS 9IS YILS oS ¥0T €LT LT 0S ST#
6°6CS 991§ 19¢¢ 9'91S (849 L'1TS 8'8¢¢ 9°91S €61 PLT LT 0S YeH#
8108 €06V SyIS €06¥ 8'1¢CS €06¥ LIS 9961 0T 81 LT 0S CTH
T'91¢€ 8V0E 8'0C¢ 8V0€ 6°6C¢ 80€ 6'1C¢ 911¢ 4} ¥6 o1 0¢ H
691¢€ T"€0€ 6'61¢ T°€0€ 1'cee 8°60¢ ¢8I¢ T°€0€ 0cI 86 o1 0¢ 1C#
€10€ P'S6¢ S'e0e P's6c TLOE ¥'s6c ¥'€0€ 8'S6C LTl LT o1 0¢ Oc#
T"L91 L'S9T 19T L'S9T €'L9T LS9T I"L9T1 L'S9T 6L L 9 0T 61#
6991 9'¥91 8991 9'v91 €891 9'v91 8991 9¥91 89 19 9 0T 8T#
€St T'IST 9CST T'IST 8'CS1 T'IST 9Csl T'Ist €8 LL 9 0T LT#
996 9'96 9'96 9'96 9'96 996 9'96 9'96 LE 143 € 01 ol#
6'98 6'98 6'98 6'98 6'98 6'98 6'98 6'98 w 6¢ € o1 ST#
8€L 8€L 8€L 8€L 8€L 8'€L 8'€L 8'€L 6¢ 93 € 0T VI#
afe1oAy 1s9g afe10Ay 189g a8e1oAy 1s9g a8e10Ay 189g w-1=1 (N 1=

70S4-00V 10S4-00V 11 PUAAH I PUAAH ldg x| W N| 9L

¢ Apmis ose) ur swyiLoS[e Jo suonnjos 9y} JO UOIEN[EAd AOUBULION] T J[qelL

Performance Evaluation of Heuristic Algorithms ... 851
Table 3 Main features of OCLP problems tackled
Test | Number of Number of Grid size Zwij=1...N) |2Zpi(i=1...M)
BTSs (N) BSCs (M)

#29 10 2 100 x 100 174 195
#30 15 3 100 x 100 298 324
#31 20 4 100 x 100 381 413
#32 40 6 200 x 200 527 638
#33 60 8 200 x 200 962 1150
#34 80 10 400 x 400 1258 1435
#35 100 15 600 x 600 1479 1612
#36 120 20 800 x 800 1581 1835
#37 150 25 1000 x 1000 1793 1908
#38 200 50 1500 x 1500 | 2384 2571
Table 4 Comparison of the results obtained by the difference algorithms considered
Test | SA SA-Greedy LB-Greedy ACO-BSC1

Best Average | Best Average | Best Average | Best Average
#29 | 1874 196.3 187.4 192.6 187.4 189.1 187.4 187.4
#30 | 315.0 347.6 315.0 3285 315.0 3354 315.0 315.0
#31 |428.3 431.5 427.2 429.8 419.6 428.7 418.7 419.1
#32 | 1784.7 1826.3 1798.5 1818.9 1658.2 17354 1615.3 1631.5
#33 |2091.3 21359 1996.7 2215.1 1954.7 1976.3 1916.6 1945.2
#34 | 4625.6 4863.2 4612.4 4863.2 4531.8 4627.5 4518.1 4557.4
#35 | 73464 7955.6 7536.5 8027.2 7213.7 7371.9 7136.5 7182.9
#36 | 12863.7 |14769.6 |13753.8 |14176.8 |10863.7 |11325.7 |9578.4 9621.7
#37 |23638.6 |24518.2 [26624.3 |26875.1 |19569.2 |18423.6 |16874.7 |17934.5
#38 | 157894.2 | 167452.1 | 168253.7 | 172147.5 | 143665.4 |151763.9 |141257.2 |14855.8
Test | GA-BSC GA-Greedy PSO-BSC ACO-BSC2

Best Average | Best Average | Best Average | Best Average
#29 | 1874 191.4 187.4 190.7 187.4 188.5 187.4 188.2
#30 | 315.0 3283 315.0 329.1 315.0 327.6 315.0 3234
#31 | 4154 425.6 417.3 428.5 412.7 416.8 412.7 416.8
#32 | 1615.3 1637.2 1615.3 1639.5 1615.3 1631.9 1615.3 1628.7
#33 | 1910.6 2027.4 1927.3 2105.8 1911.9 2012.7 1910.6 1934.1
#34 | 4507.8 4623.9 4539.3 4681.7 4503.4 4572.8 4503.4 4543.9
#35 | 7144.1 73524 7156.3 7320.2 7137.1 7217.3 7136.5 7161.8
#36 |9584.3 10625.1 | 9632.5 11150.5 |9563.6 971214 | 9563.6 9611.2
#37 |16896.7 [16912.5 |16861.3 |16894.8 |16861.3 |16878.1 |[16861.3 |16872.2
#38 | 1412769 |141362.8 | 141335.2 | 141374.1 | 141235.8 | 141272.8 |141235.8 | 141257.7

852 D.-N. Le

Table 5 Computation time (in seconds) of compared difference algorithms

Test | SA SA-Greedy | LB-Greedy | GA-Greedy | GA-BSC | PSO-BSC | ACO_BSC1 | ACO_BSC2
#29 | 0.4528 |0.4278 0.3912 0.3986 0.3979 0.3858 0.3711 0.3681
#30 | 0.5793 | 0.5284 0.4837 0.4695 0.4788 0.4672 0.4629 0.4756
#31 | 1.1547 | 1.2719 1.1956 1.1967 1.1859 1.1753 1.1467 1.1491
#32 | 1.9561 | 1.8260 1.7978 1.8153 1.7547 1.7193 1.6836 1.6173
#33 | 2.3934 | 2.1868 2.1329 2.1411 2.0972 2.0448 2.0423 2.0426
#34 | 3.0284 |2.9525 2.9851 2.8772 2.8561 2.7923 2.7568 2.6331
#35 | 3.6874 | 3.7356 3.5647 3.5626 3.5723 3.5539 3.5482 3.5072
#36 | 4.2693 | 4.1388 4.0522 3.9784 3.9841 3.9311 3.9269 3.6851
#37 | 5.1932 |5.2191 5.2326 5.2167 5.1871 5.1589 5.1251 5.0775
#38 | 6.5471 | 6.2833 6.1972 6.1523 6.1365 6.0921 6.0343 6.0148

compared. The ACO-BSC2 algorithm is able to obtain much better solutions than
the ACO-BSC1 algorithm, which is a reasonable computation time. The ACO-BSC2
is the fastest algorithm, as expected in almost cases.

6 Conclusion and Future Works

In this paper, we have presented the new ACO scheme for the optimal location of
controllers in wireless networks. The proposed algorithms overcomes the disad-
vantages of previous approaches based on Greedy heuristics are no longer valid,
and blind algorithms are necessary for achieving high quality solutions to the
problem. Our algorithms may give feasible solutions to this problem based on the
global search for high quality feasible solutions. The experimental results show that
our proposed algorithms have achieved a much better performance than previous
heuristic algorithms. Optimizing location of controllers in wireless networks with
profit, coverage area and throughput maximization is our next research goal.

References

1. Krishnamachari, B., et al.: Base station location optimization in cellular wireless networks
using heuristic search algorithms. In: Wang, L. (ed.) Soft Computing in Communications.
Springer, Berlin (2003)

2. Menon, S., et al.: Assigning cells to switches in cellular networks by incorporating a pricing
mechanism into simulated annealing. IEEE Trans. Syst. Man Cybern. 34(1), 558-565 (2004)

3. Abuali, F.N., et al.: Terminal assignment in a communications network using genetic
algorithms. In: Proceedings of the 22nd Annual ACM Computer Science Conference,
pp. 74-81. ACM press (1994)

4. Merchant, A., Sengupta, B.: Assignment of cells to switches in PCS networks. IEEE/ACM
Trans. Netw. 3(5), 521-521 (1995)

Performance Evaluation of Heuristic Algorithms ... 853

5.

10.

11.

12.

13.

14.

15.

16.

17.

Sanz. S.S., et al.: A Hybrid Greedy-Simulated Annealing algorithm for the optimal location of
controllers in wireless networks. In: Proceedings of the 5th WSEAS Madrid, pp. 159-164
(2006)

. Glaer, C., Reith, S., Vollmer, H.: The complexity of base station positioning in cellular

networks. Discrete Appl. Math. 148(1), 112 (2005)

. Back, T.: GENEsYs 1.0 Software distribution and installation notes, Systems Analysis

Research Group, LSXI, University of Dortmund, Germany (1992)

. Gendreau, M., Potvin, J.Y.: Handbook of Meta-heuristics. Springer, Berlin (2010)
. Corcoran, A.L., Wainwright, R.L.: LibGA: A User-Friendly Workbench for Order-Based

Genetic Algorithm Research. In: Proceeding of the 1993 ACM/SIGAPP, pp. 111-117. ACM
Press, New York

Jong, D., Kenneth, A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
Dissertation Abstracts International, University of Michigan (1975)

Bernardino, E.M.: A hybrid differential evolution algorithm for solving the terminal
assignment problem. Lecture Notes in Computer Science, vol. 5517, p. 179186. Springer,
Berlin (2007)

Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biol.
Cybern. 52, 141152 (2007)

Sanz, S.S., et al.: Optimal switch location in mobile communication networks using hybrid
genetic algorithms. Appl. Soft Comput. 8(4), 14861497 (2008)

Le, D.-N,, et al.: A New Evolutionary Approach for the Optimal Location of Controllers in
Wireless Networks. In: Proceeding of 2nd ICICM 2012, pp. 81-86. Hongkong, 26-27 Oct
2012

Le, D.-N., et al.: A novel PSO-based algorithm for the optimal location of controllers in
wireless networks. Int. J. Comput. Sci. Netw. Secur. 12(8), 23-27 (2012)

Le, D.-N.: PSO and ACO algorithms applied to optimizing location of controllers in wireless
networks. Int. J. Comput. Sci. Telecommun. 3(10), 1-7 (2012)

Sttzle, T., Ibanez, M.L., Dorigo, M.: A Concise Overview of Application of Ant Colony
Optimization. Wiley, Hoboken (2010)

	84 Performance Evaluation of Heuristic Algorithms for Optimal Location of Controllers in Wireless Networks
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Related Works and Our Works
	4 Our Proposed
	5 Experiments and Results
	6 Conclusion and Future Works
	References

