
EAST: Exploitation of Attacks and System
Threats in Network

Sachin Ahuja, Rahul Johari and Chetna Khokhar

Abstract In modern era, computer network is an emerging field. With the invention
of powerful computer network concepts today we are able to share information with
each other. We build complex systems so that user can use these systems with ease.
But with this comes the question of security. There comes a question, is the data that
we share safe? Complex systems built with the intent to use shared data for example
such as social networking sites certainly have some security loopholes. The most
important as well as the most difficult task of a developer is to ensure that whatever
the situation be, the system is consistent. But, as a matter of fact, no developer can
guarantee that. Systems do possess some vulnerabilities. In the work that follows, we
have tried to explore some prevalent system vulnerabilities and network attacks.
Using JAVA as a programming language we have shown the flaws/shinks in the
Web Programming and successfully simulated the vulnerabilities and attacks and
demonstrated encouraging results.

Keywords Dictionary attack � DoS attack � Brute force attack � Threat

1 Introduction

To begin with, System/Network security is a critical area which has become a hot
buzz in the recent years owing to the enormous number of the web site/applications
getting developed and hosted on the web server (both real and rogue). Some of
these sites are poorly coded by the programmers as a result they become easy fish

S. Ahuja (&) � R. Johari � C. Khokhar
USICT, GGSIP University, Dwarka, Delhi, India
e-mail: sachin.ahuja1992@gmail.com

R. Johari
e-mail: rahuljohari@gmail.com

C. Khokhar
e-mail: chetnakhokhar92@gmail.com

© Springer India 2015
J.K. Mandal et al. (eds.), Information Systems Design and Intelligent Applications,
Advances in Intelligent Systems and Computing 339,
DOI 10.1007/978-81-322-2250-7_60

601

for millions of hackers and crackers looking for the vulnerabilities in the Web Sites,
so that they can launch massive attacks and take over the control of these sites
hosting millions of Apps. We have worked on various system vulnerabilities
(password ageing, empty string password, empty catch block problem etc.) and on
the network attacks (Denial of Services, Dictionary attack and Brute force attack).
With the help of programming we have tried to explore these attacks and vulner-
abilities. For better understanding we have carried out the mathematical modeling
of the network. We have also discussed the problems that a system may face if it is
not safe against these loopholes. For completeness and clarity the paper is organized
as follows: Sect. 2 discusses about Objectives, Sect. 3 discusses about the related
work, Sect. 4 discusses about the Simulation performed, Sect. 5 discusses about the
methodology adopted, Sect. 6 discusses about the mathematical modeling of net-
work attacks, Sect. 7 discusses about the result, Sect. 8 discuss about conclusion
and future work. Section 9 contains all the figures followed by acknowledgement
and references section.

2 Objective

The Open Web Application Security Project (OWASP) [1, 2] is a worldwide not-
for-profit charitable organization focused on improving the security of software.
The same has listed various vulnerabilities and network attacks. We through our
work have tried to explore these vulnerabilities and attacks. We have tried to
explore different security loopholes that a system may possess. A developer while
developing any system should ensure that system is safe against these vulnerabil-
ities. The system should also protect itself against an attack made by an attacker
with the intent to gain control of the system.

3 Related Work

Huluka and Popov use Root Cause Analysis (RCA) in session management and
broken authentication Vulnerabilities and identify the way to improve different
aspects of security of web applications. Through RCA they found 9 root causes that
lead to broken authentication vulnerability and 11 root causes that lead to session
management vulnerability and they also provide deep detailed view of vulnera-
bilities, which results in effective solutions. These solutions are used to minimize
the recurrence of attacks on web applications [3]. Fonseca et al. present a prototype
tool and methodology for the evaluation of security mechanism of web applica-
tions. The idea behind their methodology is that they assess the existing mecha-
nisms of security and tools in different scenarios by injecting realistic vulnerabilities
in an application and attacking them. They also propose the Vulnerability and
Attack Injector Tool (VAIT) which automates the entire process. They have shown

602 S. Ahuja et al.

the effectiveness of proposed methodology by running the tool on set of experi-
ments. The results of their research proved that the methodology proposed by them
is an effective way not only for the evaluation of weakness of security mechanism
but also helps in identifying the ways of its improvement [4]. Sadeghian et al.
presents a comprehensive review of different types of SQL injection detection and
prevention techniques. They made the detailed analysis of all the techniques and
provided the strengths and weaknesses of each technique. The structural classifi-
cation of the SQL injection detection and prevention techniques assists other
researchers in the adoption of correct technique for their studies [5]. In [6] author(s)
demonstrate the comparative performance analysis of MD5, DES and AES
encryption algorithms [1] on the basis of execution time, LOC (Lines of Code) over
a web application. In [7] author(s) discusses and analyzes the current developments
in online authentication procedures including one-time-password systems, bio-
metrics and Public Switched Telephone Network for cardholder authentication. The
author(s) proposes a complete new framework for both onsite and online (Internet
shopping) credit card transactions. In [8, 9] author(s) presents a detailed review on
various types of vulnerabilities, Structured Query Language Injection attacks, Cross
Site Scripting Attack, and prevention techniques. The Author(s), also proposes
future expectations and possible developments of countermeasures against Struc-
tured Query Language Injection attacks. In [10] author(s) presents an integrated
model to prevent reflected cross site scripting attack and SQL Injection attacks in
applications which are made in PHP. These models work in two modes which are
production and safe mode environment. They create sanitizer model for reflected
cross site scripting attack and security query model for SQL Injection attack in safe
mode. They validate user input text against sanitizer model and input entries which
create SQL queries are validated against security query model in production mode.
In [11] author(s) demonstrates the exploitation of web vulnerabilities in a credit
card validation web application using brute force and dictionary attack. In [12]
author(s) also proposes a similar technique to handle the security of the alphabets
and numbers but without any detailed comparison. In [13] author(s) proposes a
technique to encrypt and decrypt the Alphabets, Numbers and Alphanumeric data in
minimum span of time with minimum lines of code, designed logic of which has
been coded in JAVA. In [14] Scholte et al. represents IPAAS, a novel technique.
This technique is based on automated detection of data type of input parameters
which successfully prevents the exploitation of XSS and SQL injection vulnera-
bilities [15]. They implemented this technique for PHP applications and also ana-
lyzed the performance of this technique by running this technique on five real-world
web applications. Their technique successfully prevented 65 % of XSS vulnera-
bilities and 83 % of SQL injection vulnerabilities. In [16] author(s) have designed a
Java based tool to show the exploitation of Injection using SQL Injection attack [1]
and Broken Authentication [2] using Brute Force Attack and Dictionary Attack and
the prevention of all these attacks by storing the data in our database in encrypted
form using AES algorithm [17].

EAST: Exploitation of Attacks and System Threats in Network 603

4 Simulation Performed

We have used java programming paradigm as a tool for exploring the above dis-
cussed attacks and vulnerabilities. We have used JAVA DEVELOPMENT
TOOLKIT as a tool for stimulating the same. The results along with the outputs are
discussed above. We have used Microsoft Access to build our own database and
used Microsoft Excel to draw the plots that we have shown in our work.

5 Our Methodology

We have divided our methodology into two parts:

5.1 Methodology for Exploring Vulnerabilities

5.1.1 Vulnerability

Although many definitions of vulnerabilities exist. But, simply speaking it is a
‘flaw’ or a Programming bug committed by a novice programmer. If a system has a
flaw, the attacker can access that flaw and will take advantage of this flaw to reduce
system assurance and reliability. The different vulnerabilities are explained below:

Password Ageing

Password ageing can result in the possibility of diminished password integrity. If a
user does not change his/her password for a long period of time, his/her user
account can be tracked by any person and make his account insecure. If no
mechanism is in place for managing password aging, users will have no incentive to
update passwords in a timely manner. Therefore, support for password ageing
mechanisms must be added in the design phase of development.

Empty String Password

Using an empty string as a password can make an account insecure. It is never a
good idea to assign an empty string to a password variable. If the empty password is
used to successfully authenticate against another system, then the corresponding
account’s security is likely to be compromised because it accepts an empty pass-
word. Thus, a constraint should be imposed that the user should not make empty
string as password and if he does there should be an error ‘empty string
password…’.

604 S. Ahuja et al.

Empty Catch Block Problem

It is usually a bad idea having an empty catch block. When an exception is thrown
and not caught, the process has given up an opportunity to decide if a given failure
or event is worth a change in execution. Instead, one should catch the exact
exception types that he expects because these are the types the program code is
prepared to handle. For example, concept of dangling pointers can be a conse-
quence of empty catch block problem.

5.2 Methodology for Exploring Network Attacks

5.2.1 Network Attacks

In computers, a network attack is any attempt to destroy, expose, alter, disable, steal
or gain unauthorized access to or make unauthorized use of a resource (say data).
The attacker tries to invade into the system to destroy it. Any attempt made for such
intent is called as a network attack. Various network attacks are explained below:

Denial of Service

DOS stands as an acronym for “Denial of Service”. This is caused due to the
massive traffic at the server end. The large amount of traffic causes the throughput
of the server to reduce. The large amount of requests causes the server to go busy.
The high amount of traffic causes the server to response abnormally. At the end the
server will not be able to respond to the clients properly. As a result of which the
following two scenarios can occur:

(i) The response time of server for client reduces drastically due to which system
throughput and efficiency decreases.

(ii) The system hangs due to increased traffic as a result of which the system
crashes.

Figures 1 and 2 show a client server architecture. Figure 1 represents server
window which is ready to receive request from clients. Clients in turn try to request
to server. As a client is connected to server, a “Hello Client” message is sent on
client window by server as a confirmation. It has been found that in DOS, the
Server is bombarded by millions of requests, some genuine and the rest bogus/fake,
resulting in collapse of the Services provided by the Server.

EAST: Exploitation of Attacks and System Threats in Network 605

Dictionary Attack

The dictionary attack is a type of attack in which a hacker can spy on the system by
using a pre designed list of probable passwords. The programmer can develop a
database consisting of these probable passwords. These passwords can be formed
by reviewing the profile of the person. A Database was created in MS Access and
populated with hundreds of ID’s bearing Username and Password. The above
formed list of passwords can be compared against the password entered by the
programmer. If the password entered by the user matches any of the password in the
list then the system is at risk and it can easily be attacked by an experienced hacker.
We have implemented dictionary attack using a Microsoft Access database which is
connected to a Java program using jdbc-odbc drivers. Figure 3 shows the simulation
of Dictionary Attack being successful. The username and password entered by the
user in a java form is matched in the usernames and passwords present in the
database. The program of “Dictionary Attack” has been executed and the “number
of iterations” versus “length of the password” has been plotted as shown in Fig. 4. It
can be seen from the plot that the number of iterations to find a given password does
not depend on the length of the string entered. Rather, it depends on the number of

Fig. 1 Server side window for denial of service attack

Fig. 2 Client side window
for denial of service attack

606 S. Ahuja et al.

records that the database contains. We have executed this program by taking a small
database of about 100 records where each record consists of characters (a-z) from
UNICODE character set. If the entered password is not there in the database we
have to iterate a maximum of iterations equal to the number of records in the
database.

Brute Force Attack

The brute force attack is one of the best attacks if one wants to analyze the
password sensitivity of a system. In this attack we have built a character set and the
program tests all the possible combinations of characters present in the character set
against the password entered by the user. If the password entered by the user
matches with any of the combinations as discussed above the password is said to be
cracked and the system is at risk. The simulation of same has been shown in Fig. 5.
The program of “Brute Force Attack” has been executed and the “number of
iterations*0.0001” versus “length of the password” has been plotted as shown in
Fig. 6. It can be seen from the plot that the number of iterations to find a given

Fig. 3 Execution of dictionary attack showing the attack being successful

Fig. 4 Histogram for
dictionary attack showing
number of iterations versus
length of the password

EAST: Exploitation of Attacks and System Threats in Network 607

password depends on the length of the string entered. The password entered by user
is checked against all the possible combinations of characters (a-z) from UNICODE
character set. Brute force is a stronger attack than Dictionary attack because it has a
very high probability of cracking the password. It can be seen that as the length of
the entered password increases, the number of iterations required to break the
password also increases. The security of a system can be increased if we put some
password restrictions and make the length of the password greater than or equal to 7
characters. This is so because it will hinder the attacker from cracking the password
in that transient amount of time when the system is momentarily at rest.

Fig. 5 Execution of brute
force attack being successful

Fig. 6 Histogram showing
number of iterations versus
length of the password for
brute force attack

608 S. Ahuja et al.

6 Mathematical Modeling of Network Attacks

6.1 DoS

l ← Number of legitimate requests.; q ← Number of bogus requests
r ← Total number of requests generated; s ← Total number of requests being

received at the server.; P ← Performance of the server at time (t).
DOS()
{if q ≫ l{P dips, affecting throughput due to the success of DOS attack} else if

(l ≫ q){The attack was un successful, P and throughput increases} else{Server
works at maximum speed and delivers at consistent throughput.} end if; end if}.

D ← Difference between number of legitimate requests and number of bogus
requests. D = l − q. As the number of fake requests (q) increases the system
throughput decreases. Simply put, as q increases the number of legitimate requests
handled by the server decreases per unit time. Therefore the difference between the
number of legitimate and bogus requests is the key parameter to represent the
time complexity of the algorithm discussed above. P (Performance of server) =
Ө(D) = Ө(l − q).

6.2 Brute Force Attack

Note: Our character set contains characters a-z.
P Plain text string to be searched.
S String which is compared with the pattern to be searched.
n Length of the string P
flag true, if attack is successful, otherwise false
Brute_Force_Attack()
{ for i =1 to n

Compare all the combinations of S of length i with P
if(S==P){ flag = true } //Attack Successful
else{flag = false} //Attack not successful

end for }

Time Complexity: Suppose, if the length of the string P is 1 the number of
maximum attempts will be 26 because the size of character set is 26. Now if size of
P is 2 the number of possible combinations will be (26 + 26^2). Similarly, when the
size of the P to be searched is “n” the number of combinations will be:
(26 + 26^2 + 26^3 + ��� + 26^n). If we use the rules of asymptotic notations 26^n
will be the dominant factor. Therefore in our case: Time Complexity = Ө (26^n).
Now it is logical to say that because the size of character set was 26 in our case,
there complexity of the algorithm comes out to be 26^n. However if the number of
characters in the character set is m, then: Time complexity: Ө (m^n); Space
complexity: num*n. Here: num are the number of bytes per symbol by the
encoding scheme being employed according to the architecture.

EAST: Exploitation of Attacks and System Threats in Network 609

6.3 Dictionary Attack

P Plaintext to be searched ; N Number of records in dictionary
i Number of iterations.
Assumptions : Threshold value for number of attempts to search N.
Dictionary_Attack()
{ for i=1 to N

R ith record in the dictionary
if (R is equal toP){Record matched. Search successful}
else if (i>n){Record not matched. Search unsuccessful}

end if ; end if; end for }
Time Complexity: O(N). The time taken to search for the plaintext will be a

linear search (according to our algorithm) in the dictionary and will be of order N.

7 Result

Various attacks and vulnerabilities given by OWASP such as Denial of service
(DOS) Attack, Brute Force Attack, and Dictionary Attack have been executed using
Java programming platform. The results of various simulations have been shown
wherever necessary and different graphs have been plotted.

8 Conclusion and Future Work

Various vulnerabilities and attacks have been explored. We suggest that for
developing a secure and a reliable system the developer while writing code should
take care of these vulnerabilities during the development phase of SDLC (software
development life cycle). Otherwise system and data integrity may be at risk and the
system will have some loopholes which an attacker can use to invade into the
system. These are not the only vulnerabilities or attacks. There are many. In our
future work, we will be exploring other vulnerabilities and attacks and will also be
giving the solutions for the vulnerabilities and attacks discussed in this paper.

9 Figures

See Figs. 1, 2, 3, 4, 5 and 6.

610 S. Ahuja et al.

References

1. https://www.owasp.org/index.php/Top_10_2013-A1-Injection
2. https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_

Management
3. Huluka, D., Popov, O.: Root cause analysis of session management and broken authentication

vulnerabilities. In: IEEE, pp. 82–86 (2012)
4. Fonseca, J., Vieira, M., Madeira, H.: Evaluation of web security mechanisms using

vulnerability and attack injection. In: IEEE (2013)
5. Sadeghian, A., Zamani, M., Manaf, A.A.: A taxanomy of SQL injection detection and

prevention techniques. In: IEEE, pp. 53–56 (2013)
6. Johari, R., Jain, I., Ujjwal, R.L.: Performance analysis of MD5, DES and AES encryption

algorithms for credit card application. In: International Conference on Modeling and
Computing, ICMC (2014)

7. Gupta, S., Johari, R.: A new framework for credit card transactions involving mutual
authentication between cardholder and merchant. In: 2011 International Conference on
Communication Systems and Network Technologies (CSNT), pp. 22–26. IEEE (2011)

8. Johari, R., Sharma, P.: A survey on web application vulnerabilities (SQLIA, XSS) exploitation
and security engine for SQL injection. In: 2012 International Conference on Communication
Systems and Network Technologies (CSNT), pp. 453–458. IEEE (2012)

9. Johari, R., Gupta, N.: Secure query processing in delay tolerant network using java
cryptography architecture. In: International Conference on Computational Intelligence and
Communication Networks (CICN), pp. 653–657. IEEE (2011)

10. Sharma, P., Johari, R., Sarma, S.S.: Integrated approach to prevent SQL injection attack and
reflected cross site scripting attack. In: International Journal of System Assurance Engineering
and Management, pp. 343–351. Springer, Belin (2012)

11. Jain, I., Johari, R., Ujjwal, R.L.: Web vulnerability exploitation using brute force attack and
dictionary attack. In: Proceedings of 9th National Conference on Smarter Approaches in
Computing Technologies and Applications (2014)

12. Ruby, L., Johari, R.: Designing a secure encryption technique for web based application. Int.
J. Adv. Res. Sci. Eng. (IJARSE) 3(7), 159–163 (2014)

13. Ruby, L., Johari, R.: SANE : secure encryption technique for alpahamuneric data over web
based applications. Int. J. Eng. Res. Technol. (IJERT) 3(8), (2014)

14. Scholte, T., Robertson, W., Balzarotti, D., Kirda, E.: Preventing input validation
vulnerabilities in web applications through automated type analysis. In: IEEE 36th
International Conference on Computer Software and Applications, pp. 233–243 (2012)

15. https://www.owasp.org/index.php/SQL_Injection
16. Jain, I., Johari, R., Ujjwal, R.L.: CAVEAT: credit card vulnerability exhibition and

authentication tool. In: Second International Symposium on Security in Computing and
Communications (SSCC’14), pp. 391–399. Springer, Berlin (2014)

17. http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

EAST: Exploitation of Attacks and System Threats in Network 611

https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/SQL_Injection
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

	60 EAST: Exploitation of Attacks and System Threats in Network
	Abstract
	1 Introduction
	2 Objective
	3 Related Work
	4 Simulation Performed
	5 Our Methodology
	5.1 Methodology for Exploring Vulnerabilities
	5.1.1 Vulnerability
	Password Ageing
	Empty String Password
	Empty Catch Block Problem

	5.2 Methodology for Exploring Network Attacks
	5.2.1 Network Attacks
	Denial of Service
	Dictionary Attack
	Brute Force Attack

	6 Mathematical Modeling of Network Attacks
	6.1 DoS
	6.2 Brute Force Attack
	6.3 Dictionary Attack

	7 Result
	8 Conclusion and Future Work
	9 Figures
	References

