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Abstract Ant System (AS) is the first algorithm in the Ant Colony Optimization
(ACO) domain to have successfully implemented. But, a little have been put for-
ward about the mathematical analysis of the stochastic model based AS. In this
paper, a deterministic solution of the classical Ant dynamics is introduced.
A transfer function model is developed and the system characterization is done in
frequency domain. It is helpful to explore the system behavior that gives the sup-
portive analysis on the stability of the Ant System. Also we deduce the necessary
bounds of the trail persistence q which will control the ant dynamics to avoid over
accumulation of pheromone and search for good optimal solution using Region of
Convergence (ROC) criterion. Simulation results also present supportive evidence
of the analysis.
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1 Introduction

Ant Colony Optimization (ACO) [1] is an important bio-inspired optimizations
technique that has notified its presence over the decade for solving different com-
plex problems. Ant System (AS) [2] is the first of its kind in this domain. It models
the ant foraging behavior and also, optimizes globally. It posses’ features like
robustness, positive feedback, distributed computing and can be easily implemented
with other algorithms. A lot of simulation work has been carried out on the Ant
algorithms and their variants in different application domain. However, not much of
related work on the theoretical analysis of ant dynamics has been explored in
literature. Graph-based Ant System [3] was framed by Gutjahr where an analytical
analysis on convergence has been studied. Also the author carried out a meticulous
analysis on the finite-time dynamics of ACO and its convergence speed [4].
A convergence analysis has been established by Stutzle and Dorigo [5] for ACO
algorithm. A differential equation approach using extended difference operator has
been used by Abraham et al. [6] to study deterministic Ant System dynamics and
ensure its stability and convergence.

Ant System dynamics is governed by the pheromone trail intensity update rule
given in (1). The performance of the Ant System depends on the choice of values
determined by the trail persistence, q in (1) and the values in general lie within
0\q\1 [2]. The values proposed in literature for the trail persistence are random
in nature that suits the algorithm with best optimal result. So, there is a need to
corroborate the range of values taken by the trail persistence and establish stability
of the Ant dynamics. This article presents a deterministic model of basic AS based
on transfer function model. Henceforth, frequency domain analysis helps us to find
out the range of values taken by the trail persistence that ensure the stability of this
linear ant system model. Also this paper focuses on the substantiation made to the
consolidated range of trail persistence, q which establishes the effectiveness in
characterization of the Ant dynamics. Also it is conformed in this paper that for a
stable ant dynamics, the uncontrolled pheromone deposition growth is not seen and
the explosion of pheromone concentration is resolved. Moreover, the study does not
violate the stochastic behavior of the ant dynamics, as the selection process of ants’
path is based on probability. Results of computer simulation have been provided in
order to support the analytical claims made in this paper.

This paper is further organized as: Sect. 2 gives the deterministic modeling of the
Ant Dynamics and its transfer function. Stability and convergence criterion of the
Ant System using ROC is established in Sect. 3. Section 4 depicts the simulation
results on TSP that validates the stability of the Ant System using ROC. Also the
Frequency domain analysis is used to validate the range of values of the pheromone
trail persistence, ρ that ensure stability of the Ant System. And finally the paper
concludes in Sect. 5.
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2 Modeling the Deterministic Framework of the Ant
System

Ant System being stochastic in nature, it is hard to establish the nature of the system
and to derive its stability. On such a ground, this paper is a humble effort towards
the development of transfer function based model of ant dynamics and subsequently
frequency domain analysis is made to establish the convergence of this system. The
consolidated range of the trail persistence factor, ρ is validated in this paper which
pledge in finding the optimal solution.

2.1 Basic Ant System

Ant-System (AS) [2] is the first successful technique to emphasize the swarm nature
of the real ants. The pheromone updation formula of the system in any path segment
is defined as,

sðtþ 1Þ ¼ 1� qð ÞsðtÞ þ Dsðtþ 1Þ ð1Þ

where, sðtÞ is the intensity of trail in any path segment at time t and Ds is the
incremental contribution in intensity of trail in that path segment.

q (0 ≤ ρ < 1) is the pheromone evaporation (decay) parameter; (1 − ρ) is the
pheromone residual parameter. Also the path selection of the ant system is governed
by a probability factor which is again controlled by sðtÞ.

2.2 Formulation of Transfer Function

In this section we will try to model the ant dynamics using transfer function based
approach by linearization method. This approach is helpful to find out the local
stability around equilibrium point of a system as the local behavior of the system
can be approximated using linear model.

Let us consider the pheromone updation equation of basic Ant System given in
(1) as a first order linear closed loop system and we try to recast the equation as
follows.

sðtþ 1Þ ¼ 1� qð ÞsðtÞ þ Dsðtþ 1Þ ð2Þ

) sðtÞ � sðt� 1Þ ¼ �qsðt� 1Þ þ DsðtÞ;
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) ds
dt

¼ �qsðt� 1Þ þ DsðtÞ; ð3Þ

Taking Laplace Transform of the above equation we get,

sTðsÞ � sð0Þ ¼ �qe�sTðsÞ þ DTðsÞ; ð4Þ

where, T(s) and DTðsÞ are the Laplace transform of sðtÞ and DsðtÞ respectively.
Now, to study the system response and establish its stability, we further simplify

and consider the system as a causal system, i.e., sð0Þ ¼ 0 and fort\0. Here, we
expande�s, and taking up to first order term the Eq. (4) is represented as,

sTðsÞ þ qð1� sÞTðsÞ ¼ DTðsÞ;

) s 1� qð Þ þ qð ÞTðsÞ ¼ DTðsÞ;

) TðsÞ
DTðsÞ ¼

1
s 1� qð Þ þ q

¼ FðsÞ
¼ Transfer Function of the deterministic Ant System: ð5Þ

The characteristics equation of the deterministic ant system is given by,

sð1� qÞ þ q ¼ 0 ð6Þ

) s ¼ �q
ð1� qÞ ð7Þ

In the next section we perform the characteristics analysis of the system using
ROC.

3 ROC Analysis of Ant Dynamics

In this section we analyze the ant dynamics given in (7) using ROC, and establish
the stable operating zone. In this paper, we take the help of Region of Convergence
(ROC) to study the characteristics of the ant system and further explore the stability
of the system. The stability of the system is ensured from different range of values
of ROC which also validates the range of value of the pheromone factor, ρ for ants’
successful operation.
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3.1 ROC and Stability Analysis of Ant System Dynamics

The range of values for which, ‘s’ converges for a given signal is known as Region
of Convergence (ROC). The ROC gives an idea of the stability of a system and by
property it does not contain any poles. The stability of a close loop system can be
easily analyzed from its characteristic equation using ROC. Tables 1 and 2 shows
the characterization of the Ant system for different values of ρ.

Table 1 shows the Region of Convergence for 0\q\1. It is seen that the values
of pheromone trail within this range give favorable results by including the

Table 1 Characterization of the deterministic Ant System for 0\q\1 using ROC

Rho
(ρ)

s ¼ �q
ð1�qÞ ROC (σ) Poles Comments System

stability

0.1 −0.11 σ > −0.11 −0.11 Pole lies on left half of s-plane. ROC
include imaginary axis

Stable

0.3 −0.43 σ > −0.43 −0.43 Pole lies on left half of s-plane. ROC
include imaginary axis

Stable

0.5 −1 σ > −1 −1 Pole lies on left half of s-plane. ROC
include imaginary axis

Stable

0.7 −2.33 σ > −2.33 −2.33 Pole lies on left half of s-plane. ROC
include imaginary axis

Stable

0.9 −9 σ > −9 −9 Pole lies on left half of s-plane. ROC
include imaginary axis

Stable

Table 2 Characterization of the deterministic Ant System for 0\q, q[ 1, and q ¼ 0; 1 using
ROC

Rho
(ρ)

s ¼ �q
ð1�qÞ ROC (σ) Poles Comments System

stability

−0.2 0.16 σ > 0.16 +0.16 Pole lies on right half of s-plane. ROC does
not include imaginary axis

Unstable

−0.4 0.28 σ > 0.28 +0.28 Pole lies on right half of s-plane. ROC does
not include imaginary axis

Unstable

−0.8 0.44 σ > 0.44 +0.44 Pole lies on right half of s-plane. ROC does
not include imaginary axis

Unstable

1.2 6 σ > 6 +6 Pole lies on right half of s-plane. ROC does
not include imaginary axis

Unstable

1.4 3.5 σ > 3.5 +3.5 Pole lies on right half of s-plane. ROC does
not include imaginary axis

Unstable

1.8 2.25 σ > 2.25 +2.25 Pole lies on right half of s-plane. ROC does
not include imaginary axis

Unstable

0 0 σ > 0 0 Pole lies on the imaginary axis. ROC does
not include imaginary axis

Unstable

1 ∞ σ > ∞ ∞ Pole lies on the exterior of the
s-plane. ROC does not include imaginary
axis

Unstable
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imaginary axis in its area of convergence. Whereas, for q\0 and q[ 1, system
does not include the imaginary axis and this make the system unstable. The sup-
portive results are present in Table 2. Again for q ¼ 0, the pole lie on the origin.
Hence ROC does not include the imaginary axis, and it leads to unstable system.
But for q ¼ 1, the poles are located at infinity. Hence the system behavior is
unstable. It is clear from Tables 1 and 2 that the value of pheromone trail ρ within
0\q\1 will give successful modeling of the ant system.

So, it is proved that the Ant System is stable for 0\q\1 using ROC. In the next
section, we simulate the Ant System on TSP for various values of q to validate the
range of parameters which will ensure the stability of ant system.

4 Simulation Results and Analysis of the Ant System
Dynamics

The simulation study is done on TSP to prove the effectiveness of our deterministic
modeling of the Ant System, and validates the range of value of the pheromone
factor, ρ for ants’ successful operation. The simulation is made in MATLAB-
R2010a, ver. 7.10.0.499, in a Windows 7 environment, running on INTEL CORE
2DUO, 2.20 GHz processor, and 3 GB RAM. The efficacy of our proposed algo-
rithm has been tested using Ulysses16.tsp, Ulysses22.tsp and Oliver30.tsp problems
(Euclidean 2D distance TSP problems). For simplicity, we have adopted number of
ants equal to number of cities (here, the number of ants = 30, for a 30-city problem).
Experiments were carried out for 6,000 iterations and were averaged over 20
successive trials for different values of pheromone trail, ρ.

Table 3 analyses the outcome of the Ulysses16.tsp for different values of
pheromone trail. Similarly Tables 4 and 5 gives the same outcome for Ulysses22.tsp
and Oliver30.tsp problems. From Tables 1, 2 and 3 we find that ant system algo-
rithm behaves successfully when the pheromone trail is 0\q\1. This is the best fit
range of ρ for Ant System. This is also been proved from the below figures of
simulation. Figure 1a shows the iterative best cost and average node branching of
Ulysses16.tsp problem for ρ > 0. Figure 1b shows the same of Oliver30.tsp for
ρ < 0, and Fig. 1c of Ulysses22.tsp for ρ = 1. It is found that the system shows
premature convergence for all the above values of rho, ρ. Hence, the ant system is
unstable for the values of rho, ρ depicted in figures. But, the system converges at
high value for ρ = 0 (in Fig. 1d) for Ulysses16.tsp problem.

Hence it is proved that trail persistence, q should be 0� q� 1 for successful
operation of Ant System algorithm. The algorithm is unstable for q\0, q[ 1. So,
we have proved and validated the consolidate range of trail persistence, q where the
Ant System will be stable and will find its optimal solution more effectively.
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Table 3 Analysis of Ant System for different values of q for ULYSSES16 problem

TSP RHO (ρ) Best Worst Average Relative
deviation (%)

Optimal
iteration

ULYSSES16
(73.9876)

ρ = 0.1 73.9998 74.6287 74.1721 0.016487 816

ρ = 0.3 73.9998 74.2473 74.1007 0.01647 1,161

ρ = 0.5 73.9998 74.6148 74.1315 0.016487 458

ρ = 0.7 73.9998 74.2348 75.9836 0.016487 1,267

ρ = 1 73.9998 – – 0.016487 148
ρ = −0.2 28.27 – – −161.7177 3,862

ρ = −0.4 15.1111 – – −389.6242 2,096

ρ = 1.2 75.182 – – 0.016489 224

ρ = 1.4 74.6287 – – 0.859053 63

Table 4 Analysis of Ant System for different values of q for ULYSSES22 problem

TSP RHO (ρ) Best Worst Average Relative
deviation (%)

Optimal
iteration

ULYSSES22
(75.3)

ρ = 0.1 75.3984 76.6287 76.1721 0.130677 816

ρ = 0.3 75.3984 76.9243 76.1007 0.130677 61

ρ = 0.5 75.3984 75.9648 75.5615 0.130677 458

ρ = 0.7 75.3984 76.2103 75.9836 0.130677 1,267

ρ = 1 76.1397 – – 1.10284 2,181

ρ = −0.2 22.5068 – – −234.5656 3,865

ρ = −0.4 26.4169 – – −185.0448 2,090

ρ = 1.2 76.2751 – – 1.2784 1,369

ρ = 1.4 76.057 – – 0.99531 1,360

Table 5 Analysis of Ant System for different values of q for OLIVER30 problem

TSP RHO (ρ) Best Worst Average Relative
deviation (%)

Optimal
iteration

OLIVER30
(423.7406)

ρ = 0.1 423.7406 424.6717 423.9121 0 2,681

ρ = 0.3 423.7406 423.9117 423.9173 0 621

ρ = 0.5 423.7406 423.9117 423.8676 0 458

ρ = 0.7 423.7406 423.9117 423.8996 0 2,267

ρ = 1 423.9117 – – 0.04036 1,348

ρ = −0.2 425.2667 – – 0.35886 1,106

ρ = −0.4 427.1752 – – 0.80403 1,058

ρ = 1.2 426.5438 – – 0.657189 1,727

ρ = 1.4 442.3633 – – 4.20982 01
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5 Conclusion

This paper satisfactorily depicts a novel deterministic framework of the linear
model of the Ant System and also validated the effective range of trail persistence, ρ
where the Ant System will optimize better. This article is the first step in modeling
deterministic platform of the ant system. The stability of this closed loop Ant
dynamics is confirmed using Region of convergence for an effectual range of
pheromone persistence and that is validated with the theoretical values as proposed
in literature.
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Fig. 1 The iterative best cost and average node branching of a Ulysses16.tsp problem for ρ = 1.4
(ρ > 1). b Oliver30.tsp problem for ρ = −0.4 (ρ < 1). c Ulysses22.tsp problem for ρ = 1 and
d Ulysses16.tsp for ρ = 0. The figures show premature convergence except Fig. 1d
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