
L(4, 3, 2, 1)-Labeling for Simple Graphs

Soumen Atta and Priya Ranjan Sinha Mahapatra

Abstract An L(4, 3, 2, 1)-labeling of a graph is a function which assigns label to
each vertex of the graph such that if two vertices are one, two, three and four
distance apart then assigned labels must have a difference of at least 4, 3, 2 and 1
respectively between them. This paper presents L(4, 3, 2, 1)-labeling number for
simple graphs such as complete graphs, complete bipartite graphs, stars, paths and
cycles. This paper also presents an L(4, 3, 2, 1)-labeling algorithm for paths which
is optimal for paths on n� 7 vertices.

Keywords L(4, 3, 2, 1)-labeling � Labeling number � Graph labeling � Channel
assignment problem

1 Introduction

Channel Assignment Problem (CAP) is a problem of assigning radio channels to
radio transmitters such that interferences among different radio stations could be
avoided. Two stations which are at certain distance apart must be assigned channels
with some predefined separation. Separation between two channels depends on the
distance between the corresponding stations and is inversely proportional to the
distance between stations. So, CAP can be considered as a graph labeling problem
where vertices of the graph represent the radio stations and the edges represent
geographical adjacency among the radio stations. CAP has been considered as
vertex coloring problem by Hale [1]. Roberts [2] has considered the problem of
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assigning channels or frequencies to the transmitters which are “very close’’ and
“close’’. The “very close’’ transmitters receive frequencies with at least two sepa-
rations and “close’’ transmitters receive frequencies with at least one separation.
Based on this simple model, Griggs and Yeh [3] has defined the L(2, 1)-labeling of
a graph. An L(2, 1)-labeling of a graph G ¼ ðV ;EÞ is a mapping f which assigns
integer labels f ðxÞ and f ðyÞ to two vertices x and y such that jf ðxÞ � f ðyÞj � 2 if
dðx; yÞ ¼ 1 and jf ðxÞ � f ðyÞj� 1 if dðx; yÞ ¼ 2, where dðx; yÞ represents the shortest
distance between the vertices x and y [3]. The L(2, 1)-labeling problem is known to
be NP-complete [3]. More details on L(2, 1)-labeling of graphs can be found in [4].
In practice interference may go beyond two levels. So, Liu and Shao [5] generalized
the L(2, 1)-labeling problem and introduced the L(3, 2, 1)-labeling problem of
graph. An L(3, 2, 1)-labeling of graph G ¼ ðV ;EÞ is a mapping f : V ! N such
that jf ðxÞ � f ðyÞj � 3 if dðx; yÞ ¼ 1, jf ðxÞ � f ðyÞj � 2 if dðx; yÞ ¼ 2 and jf ðxÞ �
f ðyÞj � 1 if dðx; yÞ ¼ 3, 8x; y 2 V . The L(3, 2, 1)-labeling number of a graph G is
the smallest number k such that G has an L(3, 2, 1)-labeling with k as the maximum
label and the L(3, 2, 1)-labeling number is denoted as kðGÞ [5]. The L(3, 2, 1)-
labeling numbers for paths, cycles, caterpillars, n-ary trees, complete graphs and
complete bipartite graphs are determined by Clipperton et al. [6]. The L(3, 2, 1)-
labeling numbers for the Cartesian product of paths, cycles and powers of paths are
determined by Chia et al. [7]. The upper bounds of the L(3, 2, 1)-labeling numbers
for a graph with the maximum degree Δ and trees can also be found in [7].

It is very natural to consider interference beyond three levels. That is why we
have considered interference up to four levels in this paper. If the underlying
network topology is considered as a simple graph then this type of labeling can be
used to solve CAP.

The organization of the paper is as follows: Section 2 provides some basic
definitions of graph theory and notations used in this paper. In Sect. 3 we present
the L(4, 3, 2, 1)-labeling numbers for complete graphs, complete bipartite graphs,
stars, paths and cycles. Section 4 presents an L(4, 3, 2, 1)-labeling algorithm for
paths and we prove that this algorithm is optimal for paths on n� 7 vertices.
Section 5 concludes the paper.

2 Definitions and Notation

In this section we give some definitions and introduce some notations used in this
paper.

Definition 1 Let G ¼ ðV ;EÞ be a connected undirected graph and the minimum
distance between any two vertices x; y 2 V be denoted as dðx; yÞ. An L(4, 3, 2, 1)-
labeling of a graph G is a mapping f : V ! N if and only if 8x; y 2 V , the following
inequalities hold
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f ðxÞ � f ðyÞj j �
4; if dðx; yÞ ¼ 1
3; if dðx; yÞ ¼ 2
2; if dðx; yÞ ¼ 3
1; if dðx; yÞ ¼ 4:

8
>><

>>:

The L(4, 3, 2, 1)-labeling number kðGÞ of a graph G is the smallest number
k 2 N such that G has an L(4, 3, 2, 1)-labeling with k as its maximum label. An L(4,
3, 2, 1)-labeling of a graph G is said to be a minimal L(4, 3, 2, 1)-labeling of G if the
highest label used in any vertex of G is k. An L(4, 3, 2, 1)-labeling of a graph G
with k as its maximum label is often denoted as k-L(4, 3, 2, 1)-labeling.

Definition 2 A simple connected graph G ¼ ðV ;EÞ with jV j ¼ n is said to be
complete graph if 8x; y 2 V , ðx; yÞ 2 E, i.e. every pair of vertices of the graph are
adjacent to each other. This graph is denoted as Kn [8].

Definition 3 A simple connected graph G ¼ ðV ;EÞ is said to be a complete
bipartite graph if there exists two sets A and B such that (i) A [ B ¼ V and A \ B ¼
/ with jAj ¼ m, jBj ¼ n and jV j ¼ mþ n, (ii) 8ai; aj 2 A; ðai; ajÞ 62 E and
8bi; bj 2 B; ðbi; bjÞ 62 E, (iii) 8ai 2 A and bj 2 B, ðai; bjÞ 2 E. This graph is denoted
as Km;n [8].

Definition 4 A star graph can be defined as a K1;n complete bipartite graph. It is
generally denoted as Sn [8].

Definition 5 A graph G ¼ ðV ;EÞ is said to be a path if ðvi; viþ1Þ 2 E; 1� i\n
where jV j ¼ n and it is denoted as Pn [8].

Definition 6 A graph G ¼ ðV ;EÞ is said to be a cycle if ðvi; viþ1Þ 2 E; 1� i\n and
ðvn; v1Þ 2 E where jV j ¼ n and it is denoted as Cn [8].

3 L(4, 3, 2, 1)-Labeling Numbers for Simple Graphs

3.1 Complete Graphs

In this section we find the minimal L(4, 3, 2, 1)-labeling number kðKnÞ for complete
graphs.

Theorem 1 For any complete graph, Kn with n vertices, the minimal L(4, 3, 2, 1)-
labeling number kðKnÞ is 4n� 3.

Proof Let Kn ¼ ðV ;EÞ be a complete graph with vertex set V ¼ fv1; v2; . . .; vng and
also let f be a minimal L(4, 3, 2, 1)-labeling of Kn. Without loss of generality, we can
assume that f ðviÞ\ f ðvjÞ when i\ j and f ðv1Þ ¼ 1. As Kn is a complete graph,
therefore, dðx; yÞ ¼ 1; 8x; y 2 V ; x 6¼ y. This implies that jf ðxÞ � f ðyÞj � 4; 8x; y2 V .
Again f ðv1Þ ¼ 1. Therefore,
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f ðv2Þ� f ðv1Þ þ 4 ¼ 1þ 4 ¼ 5;
f ðv3Þ� f ðv2Þ þ 4 ¼ 5þ 4 ¼ 9;

..

.

f ðvnÞ� f ðvn�1Þ þ 4 ¼ f ðv1Þ þ ðn� 1Þ4 ¼ 1þ ðn� 1Þ4 ¼ 4n� 3:

Therefore, kðKnÞ ¼ 4n� 3. h

3.2 Complete Bipartite Graphs

In this section we find the minimal L(4, 3, 2, 1)-labeling number kðKm;nÞ for
complete bipartite graphs.

Theorem 2 For any complete bipartite graph, Km;n with ðmþ nÞ vertices, the
minimal L(4, 3, 2, 1)-labeling number kðKm;nÞ is 3ðmþ nÞ � 1.

Proof Let Km;n ¼ ðV ;EÞ be a complete bipartite graph with A ¼ fa1; a2; . . .; amg
and B ¼ fb1; b2; . . .; bng such that A [ B ¼ V and A \ B ¼ / and also let f be a
minimal L(4, 3, 2, 1)-labeling of Km;n.

Without loss of generality, we can assume that f ðaiÞ \ f ðajÞ when i\j and
f ðbiÞ \ f ðbjÞ when i\j and f ða1Þ ¼ 1. Now dðai; ajÞ ¼ 2; 8ai; aj 2 A and i 6¼ j.
Therefore, jf ðaiÞ � f ðajÞj � 3; 8ai; aj 2 A and i 6¼ j. Since f ða1Þ ¼ 1, we have

f ða2Þ � f ða1Þ þ 3 ¼ 1þ 3 ¼ 4;
f ða3Þ � f ða2Þ þ 3 ¼ 4þ 3 ¼ 7;

..

.

f ðamÞ � f ðam�1Þ þ 3 ¼ f ða1Þ þ ðm� 1Þ3 ¼ 1þ ðm� 1Þ3 ¼ 3m� 2:

Again dðai; bjÞ ¼ 1, 8ai 2 A; bj 2 B. Therefore, jf ðaiÞ � f ðbjÞj � 4. Since f is
minimal labeling, we have f ðb1Þ ¼ f ðamÞ þ 4 ¼ ð3m� 2Þ þ 4 ¼ 3mþ 2.

Moreover, dðbi; bjÞ ¼ 2; 8bi; bj 2 B and i 6¼ j. Therefore, jf ðbiÞ � f ðbjÞj � 3;
8bi; bj 2 B and i 6¼ j. Since f ðb1Þ ¼ 3mþ 2, we have

f ðb2Þ� f ðb1Þ þ 3 ¼ ð3mþ 2Þ þ 3 ¼ 3mþ 5;
f ðb3Þ� f ðb2Þ þ 3 ¼ ð3mþ 5Þ þ 3 ¼ 3mþ 8;

..

.

f ðbnÞ� f ðbn�1Þ þ 3 ¼ f ðb1Þ þ ðn� 1Þ3 ¼ ð3mþ 2Þ þ ðn� 1Þ3 ¼ 3ðmþ nÞ � 1:

Therefore, kðKm;nÞ ¼ 3ðmþ nÞ � 1. h

Corollary 1 For a star, Sn, the minimal L(4, 3, 2, 1)-labeling number kðSnÞ is
3nþ 2.
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Proof According to the definition of star, Sn is K1;n. Therefore, using Theorem 2,
we can write kðSnÞ ¼ 3ð1þ nÞ � 1 ¼ 3nþ 2. h

3.3 Paths

In this section we find the minimal L(4, 3, 2, 1)-labeling number kðPnÞ for paths.
Lemma 1 For a path on n vertices, Pn, with n � 7, the minimal L(4, 3, 2, 1)-
labeling number kðPnÞ is at least 13.
Proof We prove this lemma using method of contradiction. Let f be a minimal L(4,
3, 2, 1)-labeling for a path on n vertices, Pn and v1 be the vertex with label 1. Now,
suppose that kðPnÞ\13 for n� 7. Obviously keeping v1 as an end vertex, there
exists an induced sub-path of at least three vertices. Let fv1; v2; v3g be this path.
Now, f ðv2Þ will have the following possibilities.

Case-I: f ðv2Þ ¼ 5:
Then f ðv3Þ ¼ 9 and f ðv4Þ ¼ 13, which contradicts our assumption.
Case-II: f ðv2Þ ¼ 6:
Then f ðv3Þ ¼ 10 and f ðv4Þ ¼ 14, which contradicts our assumption.
Case-III: f ðv2Þ ¼ 7:
Then f ðv3Þ ¼ 11 and f ðv4Þ ¼ 4; 3. Either possibilities of f ðv4Þ forces f ðv5Þ� 14,
which contradicts our assumption.

Therefore we can conclude that kðPnÞ is at least 13 for n� 7. h

Theorem 3 For a path, Pn on n vertices, the minimal L(4, 3, 2, 1)-labeling number
kðPnÞ is

kðPnÞ ¼

1 if n = 1
5 if n = 2
8 if n = 3
11 if n = 4, 5; 6
13 if n� 7

8
>>>><

>>>>:

Proof Here, we prove each of the cases one by one.

Case-I: n ¼ 1:
For a path, Pn with n ¼ 1, the minimal L(4, 3, 2, 1)-labeling number kðPnÞ is 1.
This is trivially true. Therefore, kðP1Þ ¼ 1.
Case-II: n ¼ 2:
For a path, Pn with n ¼ 2, the minimal L(4, 3, 2, 1)-labeling number kðPnÞ is 5,
as we don’t have any other choice of labeling except either f1; 5g or f5; 1g.
Therefore, kðP2Þ ¼ 5.

L(4, 3, 2, 1)-Labeling for Simple Graphs 515



Case-III: n ¼ 3:
The labeling pattern f5; 1; 8g shows that kðPnÞ� 8 for n ¼ 3. Suppose
kðPnÞ\8 for n ¼ 3. If f ðv1Þ ¼ 1, then f ðv2Þ� 5 and f ðv3Þ� 9, which is a
contradiction. Again if f ðv2Þ ¼ 1, then either f ðv1Þ� 5, f ðv3Þ� 8 or f ðv1Þ� 8,
f ðv3Þ� 5. In either case we have a contradiction. Therefore, kðP3Þ ¼ 8.
Case-IV: n ¼ 4; 5; 6:
The labeling pattern f9; 5; 1; 11; 7; 3g shows that kðPnÞ� 11 for n ¼ 4; 5; 6.
Suppose kðPnÞ\11 for n ¼ 4; 5; 6. As f is a minimal Lð4; 3; 2; 1Þ-labeling, a
vertex must have the label 1. If f ðv1Þ ¼ 1 then f ðv4Þ� 13, a contradiction. If
f ðv2Þ ¼ 1 then either f ðv1Þ ¼ 5 or f ðv3Þ ¼ 5. When f ðv1Þ ¼ 5, then f ðv4Þ ¼ 12,
a contradiction. When f ðv3Þ ¼ 5, then f ðv5Þ ¼ 13, a contradiction. Therefore,
kðPnÞ ¼ 11 for n ¼ 4; 5; 6.
Case-V: n� 7:
We can find a labeling pattern f ðfv1; v2; v3; v4; v5; v6; v7gÞ ¼ f5; 9; 13; 3;
7; 11; 1g. It can be defined that two vertices with indices i and j will get same
label if i � j (mod 7) and the maximum natural number used to label the first
seven vertices starting from index i ¼ 1 to index i ¼ 7 is 13. Therefore, we can
conclude that kðPnÞ� 13 for n� 7. Again using Lemma 3.3 we get kðPnÞ� 13
for n� 7. So, combining these two results we can finally conclude that kðPnÞ ¼
13 for n� 7. h

3.4 Cycles

Lemma 2 For a cycle, Cn on n vertices, the minimal L(4, 3, 2, 1)-labeling number
kðCnÞ is

kðCnÞ ¼
1 if n = 1
5 if n = 2
9 if n = 3

8
<

:

Proof

Case-I: n ¼ 1:
This is trivially true. Therefore, kðCnÞ ¼ 1 if n ¼ 1.
Case-II: n ¼ 2:
Here we have only two choices for labeling the vertices v1 and v2. The two
possibilities of ff ðv1Þ; f ðv2Þg is either f1; 5g or f5; 1g. Therefore, kðCnÞ ¼ 5 if
n ¼ 2.
Case-III: n ¼ 3:
Clearly, a cycle with 3 vertices is nothing but a complete graph with 3 vertices.
Using Theorem 1 we can compute kðK3Þ ¼ 9. Therefore, kðCnÞ ¼ 9 if n ¼ 3.h
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Observation 1 For a cycle, Cn on n vertices, the distance between any two vertices
is at most n

2

� �
.

Observation 2 kðCnÞ� kðPnÞ.

This is true because Pn is a subgraph of Cn.

4 L(4, 3, 2, 1)-Labeling Algorithm for Path

In this section we present an algorithm of L(4, 3, 2, 1)-labeling for path, Pn on n
vertices. The label of any vertex of Pn obtained from our proposed algorithm
depends only on the index of the corresponding vertex.

Algorithm: L(4, 3, 2, 1)-labeling algorithm for Path

Input: Path, Pn on n vertices.
Output: L(4, 3, 2, 1)-labeling for Pn.
Let the label assigned to the vertex of index i be denoted as L(i) where 1 ≤ i ≤ n.
begin
for every vertex of index i

L(i) = (4i mod 14) + 1
end

An example of label assignment for Pn with n ¼ 20 using the above algorithm is
as follows: f5; 9; 13; 3; 7; 11; 1; 5; 9; 13; 3; 7; 11; 1; 5; 9; 13; 3; 7; 11g.
Claim 1 The proposed L(4, 3, 2, 1)-labeling algorithm for Path, Pn on n vertices is
optimal for n� 7.

Proof In Theorem 3 we have already proved that kðPnÞ ¼ 13 for n� 7. The label
obtained for any vertex with index i from the proposed algorithm is at most 13. This
proves that our proposed algorithm is optimal. h

5 Conclusion

This paper presents L(4, 3, 2, 1)-labeling for different types of graphs. It may be
worthy to find out the labeling number for different complex graphs.
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