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Abstract Given a set of n planar points, a positive integer k 1� k� nð Þ and a
geometric object, the objective of the k-cover problem is to find a smallest object
such that it covers at least k input points. A deterministic algorithm is proposed to
solve the k-cover problem when the object is an axis-parallel square and k[ n

2. The
time and space complexities of the algorithm are Oðnþ ðn� kÞ log2ðn� kÞÞ and
OðnÞ respectively.

Keywords Computational geometry � Facility location � Minimum enclosing
square � Matrix search

1 Introduction

Let S be a set of n planar input points. The points set S is said to be covered by a
geometric object C is each point of P lies within the interior of C or on the boundary
of C. The process of covering a set S by an object C is called full covering and the
corresponding problem is known as full covering problem. The full covering
problem has been well studied in different areas such as facility location, operation
research, computational geometry etc. The covering objects used are a circle [1, 2],
a rectangle [3], a square [4], a triangle [5], a circular annulus [6], a rectangular
annulus [7], a rectilinear annuls [8] etc. Another purpose of covering is to cover the
input points partially and corresponding problem is known as partial covering
problem. Therefore, one objective of the partial covering problem is to find a
smallest object of given type that covers at least k points of S. The partial covering
problem is also well studied in theoretical computer science and the objects used to
cover are a square [9, 10], a rectangle [11–13], and a circle [14]. In this paper we
consider the partial covering problem where the covering object is an axis-parallel
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square. A square is said to be axis-parallel if each of it’s side is parallel to one of the
coordinate axis. This problem is well studied in computational geometry with many
variations [15–17]. Interested reader may read these papers [18–21] and the ref-
erences therein for getting further variation of the partial covering problem. Another
motivation of considering this problem comes from classification when the
objective is to find a cluster of given shape that contains at least k points [22–24].

2 Preliminaries

The space of all candidate (or potential) solutions of a problem is called the solution
space, or search space. There are some optimization problems for which these
solution spaces are known. A well known such optimization problem is the graph
coloring problem where the task is to find the minimum number of colors to color a
graph, say G, and this number is called the chromatic number of G. Observe that
the integral value of the chromatic number will very between 1 and n where n is the
number of vertices of the graph G. This observation implies that the solution space
for the graph coloring problem is known. A general approach to solve this problem
is as follows. First solve the decision version of such problem and then use the
solution of this decision problem to solve the original problem. Observe that the
decision version of the graph coloring problem can be expressed as “is the graph G
is k colorable?”. The answer is always “Yes” or “No”. In this case the decision
problem is NP-hard [25] and therefore it implies that the original graph coloring
problem is also NP-hard.

3 Solution for General k

In this work we first consider the optimization problem of finding an axis-parallel
square for general values of k that covers at least k points of S and the area
(perimeter) is minimum. From now onwards a square means an axis-parallel square.
Let size denote the length of a square. A square Sk covering k points of S is said to
be k-cover square if there does not exist another square having area less than that of
Sk and covering k points from P [16]. We have the following result on the char-
acteristics of a k-cover square.

Observation 1 Reference [17] At least one pair of opposite sides of a k-cover
square must contain points from P.

This result implies that size of a k-cover square be determined from the set of
horizontal and vertical distances generated from the pair of points in S. Therefore
the solution space for this optimization problem is known. The decision version of
this problem can be defined as “given a length d, does there exist a square of size d
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that covers at least k points of S?”. Let MaxCoverðdÞ denote the square of size d
that covers the maximum number of points of S. Note that the decision problem of
the original problem is same with the problem of finding a location of
MaxCoverðdÞ: The following result in [18] is used to locate MaxCoverðdÞ:
Result 1 Reference [18] Given the length d, a location of MaxCoverðdÞ can be
computed in Oðn log nÞ time using OðnÞ space.

Let S ¼ p1; p2; . . .; pnf g be the set of points on the plane. Without loss of
generality let these points of S be in non-decreasing order on x- coordinate. Here we
use ðxðpÞ; yðpÞÞ to denote a point of S. Note that the result in Observation 1 implies
each of two horizontal sides (or two vertical sides) of a MaxCoverðdÞ must contains
a point of S. Thus two types of solutions are required to consider to solve this
problem. As these two types are symmetric, the techniques required to find of any
one type can be easily extended for other. Therefore, without loss of generality, we
assume that each horizontal side of the MaxCoverðdÞ is containing a point of S. The
solution space of the original problem can be viewed as matrix M given below.

x p2ð Þ � x p1ð Þ x p3ð Þ � x p1ð Þ . . . x pn�1ð Þ � x p1ð Þ x pnð Þ � x p1ð Þ
x p3ð Þ � x p2ð Þ x p4ð Þ � x p2ð Þ . . . x pnð Þ � x p2ð Þ
. . . . . . . . .
. . . . . . . . .
x pn�1ð Þ � x pn�2ð Þ x pnð Þ � x pn�2ð Þ
x pnð Þ � x pn�1ð Þ

0
BBBBBB@

1
CCCCCCA

We now conclude that the solution space of the problem can be stored in a lower
(upper) triangular matrix of order ðn� 1Þ � ðn� 1Þ: The first row of the matrix
M contains ðn� 1Þ horizontal distances, second row of M contains ðn� 2Þ hori-
zontal distances, and so on. This generalization implies that the ith row of M has
ðn� iÞ horizontal distances for i ¼ 1; 2; . . .; ðn� 1Þ. We now compute the number
of input points covered by the MaxCoverðdÞ using Result 1 for each value of
dð2 MÞ: Moreover we store the current minimum value of δ for which the square
MaxCoverðdÞ covers at least k points of S. Note that Result 1 can be used to find a
placement of MaxCoverðdÞ in Oðn log nÞ time and the value of δ is one among
Oðn2Þ values of matrix M. Thus we can derive the following straight forward result.

Result 2 Let S be the set of n input points on the plane and kð� nÞ be an integer
constant. A smallest axis-parallel square covering at least k input points can be
found in Oðn3 log nÞ time and OðnÞ space.
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4 Improvement Using Matrix Search for k[ n
2

We now improve Result 2 for large values of k k[ n
2

� �
: Let S1; S2; S3; S4 and S5

and S5 be a partition of S such that S ¼ S1 [ S2 [ S3 [ S4 [ S5 and all the partitions
are not required to be pairwise disjoint. S1 and S2 are the ðn� kÞ left most and right
most points of S respectively. S3 and S4 are the ðn� kÞ bottom most and top most
points of S respectively. Moreover S5 ¼ S� S0 where S0 ¼ S1 [ S2 [ S3 [ S4: Let
the minimum enclosing rectangle (MER) R contain all points of S5: The boundaries
of R is closed in the sense that each side of R contains at least one point of S. The
following result in [17] is used for k[ n

2 :

Observation 2 Reference [17] For k[ n=2, Sk must covers all the points of R.

The length of the largest side of the minimum enclosing rectangle R is denoted
by D: The following result is extended in [17] to compute a placement of
MaxCoverðdÞ when d[D:

Result 3 Reference [17] A placement of MaxCoverðdÞ for a given d[D can be
found in Oððn� kÞ logðn� kÞÞ time using OðnÞ space.

Define Q be the subset of S such that Q is the points of S0 and the points on the
boundary of the minimum enclosing rectangle R. Let ¼ q1; q2; . . .; qrf g denote the
non decreasing order of the points in Q on x-coordinate. Observe that the number of
points in Q is r and r is of Oðn� kÞ: Moreover the value of r is at most 4ðn� kÞ:
We use qa and qb to denote the points of S those lie on the right and left side of the
minimum enclosing rectangle R respectively. The results in Observation 2 and
Observation 1 imply that the solution space for finding Sk for k[ n

2 is now reduced
from the above matrix M to the following matrix N.

x qað Þ � x q1ð Þ x qaþ1ð Þ � x q1ð Þ . . . x qrð Þ � x q1ð Þ
x qað Þ � x q2ð Þ x qaþ1ð Þ � x q2ð Þ . . . x qrð Þ � x q2ð Þ
. . . . . . . . .
x qað Þ � x qið Þ x qaþ1ð Þ � x qið Þ . . . x qrð Þ � x qið Þ
. . . . . . . . .
x qað Þ � x qb

� �
x qaþ1ð Þ � x qb

� �
. . . x qrð Þ � x qb

� �

0
BBBBBB@

1
CCCCCCA

Note that the number of elements in the matrix N is Oððn� kÞ2Þ: We can now
use Result 3 for each entry of N. Thus the following result can be found like earlier.

Result 4 Let S be the set of n input points on the plane and kð[ n
2Þ be an integer

constant. A smallest axis-parallel square covering at least k points of S can be
found in Oððn� kÞ3 logðn� kÞÞ time using OðnÞ space.

It is now shown that the standard sorted matrices search by Frederickson and
Johnson [26] can be used to improve Result 4. Sorted matrices search is basically a
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prune and search technique. The technique has been demonstrated in the last decade
in various works dealing with (not only) covering problems and facility location
[27]. The idea is to define a decision problem of the original optimization problem
and then perform a kind of binary search in order to determine the optimal (in this
case, smallest area) value. Recall that in our case, the objective of the decision
version of the problem is to find a placement of the square MaxCoverðdÞ where
d 2 N. Note that elements in each row are in non-increasing order. The same
ordering is also true for elements in each column of N. This implies that N is a
sorted matrix [26, 28]. Using our decision problem we can make a kind of binary
search using the sorted matrix N obtaining running time of OðTd � logðn� kÞ þ nÞ,
where Td is the running time of the decision algorithm. Here the task of the decision
algorithm is to find a placement of the square MaxCoverðdÞ for d[D: It follows
from Result 3 that Td ¼ Oððn� kÞ logðn� kÞÞ: In a similar pass we can find
another potential solution keeping time and space complexities unchanged. Thus
we have the following result.

Result 5 Let S be the set of n input points on the plane and kð[ n
2Þ be an integer

constant. A smallest area square covering at least k points of S can be found in
Oðnþ ðn� kÞ log2ðn� kÞÞ time using OðnÞ space.

5 Conclusion

An Oðnþ ðn� kÞ log2ðn� kÞÞ time algorithm is proposed to identify a smallest
axis-parallel square that covers at least k points among a set of n points. It is shown
that the search space of the decision problem of the original optimization problem is
a sorted matrix when k[ n

2. However, the solution space of the decision problem is
not a sorted matrix for general k. This observation mainly forces the authors in [18]
to use another prune and search technique other than matrix search to solve the
optimization problem for general k and their solution requires Oðn log2 n) time and
OðnÞ space. It would be interesting to investigate the possibility of finding an
efficient search technique that can reduce the complexity of the optimization
problem for general k other than the method used in [18].
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