
Improvement of Data Integrity and Data
Dynamics for Data Storage Security
in Cloud Computing

Poonam M. Pardeshi and Bharat Tidke

Abstract Cloud stands today as an emerging standard, however, data outsourcing
paradigm is main security concern in cloud. To make sure that the data stored on the
cloud is safe, frequent data integrity checking is imperative. This work considers
the problem of data integrity in cloud storage and makes use of Dynamic Merkle
Hash Tree (DMHT) along with AES and SHA-1 algorithms to solve the same. RSA
algorithm has been used by many previously developed systems; the proposed work
makes use of AES which leads to performance improvement. The work also makes
use of the concept of Third Party Auditor (TPA) to achieve Public Auditing. In case
of corruption of data or data loss, the proposed work promises to recover the lost
data with the help of a backup system. In order to support dynamic data operations,
the Merkle Tree is made dynamic by making use of relative index. Further, to save
the communication bandwidth and cost, block level recovery is made instead of
recovery of entire file. On comparison with previous systems, the proposed system
shows reduction in server computation time. The proposed work thus aims at
improving and maintaining data integrity at untrusted server, supports dynamic data
operations and makes recovery possible by providing a recovery system.

Keywords Advanced encryption standard � Cloud computing � Data dynamics �
Merkle hash tree � Public auditability � Recovery system � Secured hash algorithm,
third party auditor

P.M. Pardeshi (&) � B. Tidke
Department of Computer Engineering, Flora Institute of Technology,
University of Pune, Pune, Maharashtra, India
e-mail: ppardeshi31@gmail.com

B. Tidke
e-mail: batidke@gmail.com

© Springer India 2015
J.K. Mandal et al. (eds.), Information Systems Design and Intelligent Applications,
Advances in Intelligent Systems and Computing 339,
DOI 10.1007/978-81-322-2250-7_27

279

1 Introduction

Cloud computing has become an emerging and highly appealing trend due to its
innumerable benefits. With its massively large storage centers, low cost, high
scalability, flexibility in access points and less client system resources utilization, it
has successfully diverted many clients towards it. This increase in the number of
cloud users along with their sensitive data renders the data outsourcing paradigm in
cloud as security demanding area. The dilemma becomes graver when the question
arises for the security of confidential data. If the server or Cloud Service Provider
(CSP) is untrusted, client may lose important data [1–14, 15–18]. For example, less
frequently accessed data can be deleted by server to save storage space on cloud, for
personal benefits server may try to hide data errors at the time of Byzantine failures.
The cloud thus has many security concerns related to its storage [2–8, 12–14].
Previously, much work has been done on improving the storage security in cloud by
verifying the data integrity. All of these works fall under either Private Auditing or
Public Auditing. In Private Auditing only client has the right to verify its own data
[5, 6] whereas in Public Auditing client can delegate the authority of data verifi-
cation to a third party on its behalf [4, 9, 11, 13–15, 18]. This third party is referred
as a Third Party Auditor (TPA). This paper focuses on improving the data integrity
by using DMHT, AES and SHA-1 algorithms. In proposed system, server is
assumed to be an untrusted entity, so, the data to be stored on it is encrypted priori
using AES-128 algorithm. If the key size of AES is increased from 128 to 192,
power and time consumption increases by 8 % and an increase of 16 % is caused by
256 bits key [19, 20], hence, AES-128 has been used in the proposed work both for
signing the root of the DMHT and data encryption. The work also assures data
availability and recoverability at the time of unpleasant situations at the server such
as a server crash in which integrity of data is lost, by providing a backup and
recovery system. DMHT has been used to make dynamic operations possible.

2 Background Theory

2.1 Third Party Auditor (TPA)

The TPA is an entity which is equipped with capabilities, knowledge, expertise and
skills that client does not possess. It works on behalf of client and is externally
allotted by client itself to verify integrity of its data. In other words, it reduces the
overhead of client and client no longer needs to do the job of verification on its own.

Cloud Storage Architecture:
Figure 1 shows cloud storage architecture. It has three network entities viz. client,
CSP and TPA present in it. Client stores data on cloud server, CSP is the service
provider where data is stored and TPA is responsible for auditing the stored data.

280 P.M. Pardeshi and B. Tidke

2.2 Merkle Hash Tree (MHT) and Dynamic Merkle Hash
Tree (DMHT)

A Merkle Hash Tree is a used widely for authentication of file blocks by crypto-
graphic structures. Its use greatly reduces server computation time [13]. Its con-
struction takes place in similar fashion as a normal binary tree. However, in this
paper, we make use of a DMHT instead of a simple MHT to make dynamic data
operations possible. Each node of a DMHT has two auxiliary information viz. a
hash value and a relative index unlike a static MHT whose leaf nodes has only hash
value [11]. Relative index is a term used for extra data filed carried by each node of
DMHT, which is used to indicate number of leaf nodes in the subtree of a node. An
example of a MHT is shown in Fig. 2, to make it dynamic, we make use of relative
index. So, if there exists a node ‘R’ with ‘a’ as left child and ‘b’ as right child then
the information carried by node ‘a’ will be (ha, na), node ‘b’ will be (hb, nb)and
relative index of root ‘R’ will be nr = na + nb. In Fig. 2, relative index of node ‘a’ is
2, ‘b’ is also 2 and that of ‘r’ is 4. To present this concept more clearly, we represent
a DMHT in Fig. 3.

Organization. Section 3 presents a survey on various systems developed for
providing storage security in cloud. Section 4 describes proposed model along with
implementation details. Section 5 shows performance analysis and Sect. 6 provides
conclusion and future work.

Fig. 1 Cloud storage architecture [1]

Improvement of Data Integrity and Data Dynamics … 281

3 Literature Review

A lot of work has been done in the storage security area of cloud out of which most
work has focused on integrity verification of data stored in cloud. Deswarte et al. [1],
makes use of RSA based hash function for file verification. Client can generatemultiple
challenges using same metadata in this scheme. The computational complexity at the
server adds to the limitation of this scheme. A technique proposed by Schwarz and
Miller [3] makes use of algebraic signature. In this, a function is used to fingerprint the
file block. The computation complexity at client and server side takes place at the cost
of linear combination of file blocks, also there are issues related to the security of this

Fig. 2 Merkle hash tree

Fig. 3 A dynamic Merkle hash tree [11]

282 P.M. Pardeshi and B. Tidke

scheme. Ateniese [4] were the first who considered Public Auditing for ensuring
possession of files at untrusted servers. The Provable Data Possession (PDP) model
supports large data sets in widely-distributed storage systems and is provably-secure
for remote data checking. This scheme imposes an overhead of generating metadata on
client and provides no support for dynamic auditing. Juels [5], “Proofs of Retriev-
ability” (POR), focuses on static archival of large files. Spot checking and error cor-
recting codes are used in this scheme to ensure data possession and retrievability.
Drawback: it cannot be used for public databases and is suitable only for confidential
data. Dynamic updation is not possible because of the sentinel nodes, public auditing is
not supported by the scheme. Scalable and Efficient Provable Data Possession (S-PDP
and E-PDP) protocols [6] makes contribution to the work of Ateniese [4]. It is dynamic
version of PDP scheme and relies only on efficient symmetric-key operations. It makes
use of less storage space by reducing the size of challenge and response blocks and uses
less bandwidth. Shortcomings: number of queries that can be answered are fixed priori,
partially dynamic scheme as block insertion is not supported. The scheme proposed by
Erway et al. [8] is a dynamic auditing protocol which supports public auditing. It
supports data dynamics via general data operation such as block insertion, deletion and
block modification. However, the scheme may leak data content to the auditor as it
needs linear combination of file blocks to be sent to the auditor for verification. Also,
the efficiency of this scheme is not clear. Table 1 shows comparison of different
existing systems with proposed one.

4 Proposed Work

Design
Figure 4 represents data flow diagram of AES based Storage Security System which
has three network entities viz. client-who stores data on cloud, CSP-generates the
proof for data stored in it and TPA-an entity that performs proof verification.
Backup server serves the purpose of file recovery.

Table 1 Comparison between different systems

Scheme Ref. no. attributes
[4]
G. Ateniese
et al

[5]
A. Juels
et al

[6]
G. Ateniese
et al

[9]
C. Wang
et al

[20]
S. Zhong
et al

Proposed
system
(AESSS)

Privacy preserving No Yes No No Yes Yes
Unbound No. of
queries

Yes No No Yes Yes Yes

Public verifiability Yes No No Yes Yes Yes
Use of TPA No No No Yes No Yes
Recoverability No Yes No No No Yes
Dynamic
operations

No No Yes Yes Yes Yes

Untrusted server Yes Yes Yes Yes Yes Yes

Improvement of Data Integrity and Data Dynamics … 283

Notations:Esk—Secret key encryption, F—File storedat untrusted cloud server, x—
File block, T—Tag (signature), Φ—Set of tags

4.1 The Security Model

The proposed storage security model has two phases: The setup phase and the
Integrity verification phase.

4.1.1 The Setup Phase

In this phase, client generates a file F = {x1, x2, …, xn} which is a collection on n
number offile blocks The setup phase has five steps. In first step, for each file block, a
signature is generated using secret key, given as Ti = Esk(H(xi)), where xi is the ith
block offile. In second step all the signatures are collected together to make a signature
set called set of tags, represented as Φ = {Ti}. Then DMHT is constructed and root of
tree is signed using secret key as sigsk (H(R)). In last step, client advertises {F,Φ, sigsk
(H(R))} to the server and deletes F and Sigsk(H(R)) from local storage Fig. 5.

4.1.2 Integrity Verification Phase

The integrity verification process, in Fig. 6, is initiated by client by sending an
auditing request consisting of some metadata such as FileId and ClientId, to TPA
for a particular file. The TPA then generates a challenge and sends it to the server,
for which the server generates a proof. The proof contains the root and signature of
the DMHT generated for that particular file. The proof is then sent to the TPA
which performs integrity verification. Proof verification is done in two stages; firstly
signature of the root is checked for file authentication. For this, the output is true if
the signature matches with the one stored during file upload, otherwise false. If true,
then the value of the root is checked. If the value of the root is same as that stored

Fig. 4 Data flow in AES based storage security system

284 P.M. Pardeshi and B. Tidke

previously, then the file is integrated otherwise some part of the file is modified or
lost and the file has lost its integrity. Any changes made to any part of the file are
reflected in the root of the tree and so for integrity verification, checking only the
value of the root is sufficient. Client is notified about the file’s condition after
verification. The process is Privacy-Preserving as TPA views only the file tags for
verification and not the actual data. When a file is found to be infected, block level
checking is done to find out particularly which block is infected.

4.2 The Recovery System

Users can store a copy of their file in the backup section so that it can be recovered
if server undergoes any unpleasant situation such as server crash or link failure or
loss or corruption of original file data. Here, block level recovery is done by

Fig. 5 Pre-processing the file blocks

Fig. 6 Integrity checking process flow [14]

Improvement of Data Integrity and Data Dynamics … 285

fetching exactly the infected block instead of entire file from backup server. This
reductions required bandwidth. The recovery system makes data availability pos-
sible and hence adds to the plus points of the proposed system.

4.3 Dynamic Operations

4.3.1 Method for searching (i-th leaf node)

To perform dynamic operations, searching algorithm is necessary. Firstly i is
compared with index (n) of root node. If i is greater than the root node’s index then
False is emitted, else, we consider k = i and (ha, na) be the left subtree and (hb, nb)
is right subtree. We now compare k with the relative index of the left child. If k ≤ na
then k lies in left subtree otherwise in right subtree. If it lies in right subtree, let
k = k – na and use this algorithm to find the node right subtree. This procedure is
repeated until k = 1 i.e. a leaf node is reached.

1. Insertion
When a block say x* has to be inserted after a block xi—ith block, signature T is
generated for this block by using secret key. An update request is then con-
structed as update = (I, i, x*, T*) and sent to server. Server executes update
operation and for this, it follows the steps as: it stores the block x* and leaf node
h(H(x*)). (ii) It finds h(H(xi)) in DMHT, reserve Ωi and then inserts leaf node h
(H(x*)) after i-th node. A new internal node is added to the tree with relative
index as 2 and information of all nodes which fall between this node and root
node are modified by recalculating their hashes and relative index. A new root
node is generated based on the changes made.

2. Data Deletion and Modification
Data deletion has similar process and is just the opposite of data insertion
operation. Based on node searching algorithm, the required node is searched and
then deleted. After deleting it the same procedure is followed as in data inser-
tion. In data modification, the data is replaced and so the structure of the tree
remains the same. The procedure followed is same as that in the data insertion.

5 Performance Analysis

5.1 Verification Time for Different Number of File Blocks

Figure 7 presents a graph for time taken for verification of different number of file
blocks. Verification time varies according to variation in number of infected blocks.
As observed form Fig. 7, time required for verification of a file when no block is

286 P.M. Pardeshi and B. Tidke

infected is least while this time increases gradually with the increment in number of
infected blocks in a file. For example, for a file size of 3 MB, it takes 5 ms to verify
the integrity of file if it is not infected, whereas, when its 1 block is infected it needs
8 ms, for 2 infected blocks 10 ms, for 3 infected blocks 11 ms and for 4 infected
blocks it takes 13 ms. Table 2 gives a detailed view of graph represented in Fig. 7.

5.2 Server Computation Time

The graph in Fig. 8 shows that server computation time taken by AES based
Storage Security System is less as compared to RSA based security system. For
example for a file of size 90 kb, AESSS takes 1.3 s while RSA bases system takes
nearly 3.8 s for server computation. Thus, the proposed system’s server computa-
tion proves to be much less than the other systems.

Fig. 7 Comparison of verification time for different number of file blocks

Table 2 Comparison of verification time for different number of file blocks

Sr.
No.

File size
in MB

Verification time in milliseconds when

No block
infected

1 Block
infected

2 Blocks
infected

3 Blocks
infected

4 Blocks
infected

1 1 4 6 7 7 8

2 3 5 8 10 11 13

3 5 12 18 19 19 20

4 10 17 26 27 29 32

5 15 19 29 32 33 34

6 20 23 34 35 37 39

Improvement of Data Integrity and Data Dynamics … 287

6 Conclusion and Future Scope

The proposed system ensures user data security at untrusted cloud server by fre-
quent integrity checking of stored data. Use of AES algorithm instead of RSA for
signature generation and encryption makes the scheme more secured and efficient.
The system supports Public Auditing with the help of TPA and relieves its users
from the overhead of integrity verification. Use of tags instead of actual data blocks
for verification makes the auditing process time efficient and Privacy Preserving.
The system supports dynamic data operations by constructing DMHT. The backup
and recovery server takes care of availability of data during unpleasant situations at
the server. Block level recovery highly reduces the communication cost and time
for recovery.

References

1. Deswarte, Y., Quisquater, J., Saidane, A.: Remote integrity checking. In: Proceedings of
Conference on Integrity and Internal Control in Information Systems (IICIS’03), Nov 2003

2. Sebe, F., Domingo-Ferrer, J., Martinez-Balleste, A., Deswarte, Y., Quisquater, J.-J.: Efficient
remote data possession checking in critical information infrastructures. IEEE Trans. Knowl.
Data Eng. 20(8), 1034–1038 (2008)

3. Schwarz, T., Miller, E.L.: Store, forget and check: using algebraic signatures to check
remotely administered storage. In: Proceedings of ICDCS ’06. IEEE Computer Society (2006)

4. Ateniese, G.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS’07) (2007)

5. Juels, A.: Pors: proofs of retrievability for large files. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS ’07), pp. 584–597 (2007)

6. Ateniese, G.: Scalable and efficient provable data possession. In: Proceedings of the 4th
InternationalConferenceonSecurity andPrivacy inCommunicationNetworks (SecureComm ’08)
(2008)

0

1

2

3

4

5

6

7

8

9

10

40 90 150 170 220 260

T
im

e
in

 S
ec

o
n

d
s

File Size In KB

AES based System

RSA based System

Fig. 8 Server computation time comparison

288 P.M. Pardeshi and B. Tidke

7. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In: Proceedings of
the 33rd International Conference on Very Large Databases (VLDB), pp. 782–793 (2007)

8. Erway, C., Kuocu, A., Pamanthou, C., R.Tamassia: Dynamic Provable Data Possession. In:
Proceedings of the 16th ACM Conference on Computer and Communications Security
(CCS’09) (2009)

9. Wang, C.: Enabling public auditability and data dynamics for storage security in cloud
computing. IEEE Trans. Parallel Distrib. Syst. 22(5), May 2011

10. Wang, C., Wang, Q., Ren, K., Lou, W.: Ensuring dynamic data storage security in cloud
computing. In: Procedings of the 17th International Workshop Quality of Service (IWQos’09)
(2009)

11. Chen, L., Chen, H.: Ensuring dyanmic data integrity with public auditing for cloud storage. In:
Proceedins of International Conference on Computer Science and Service System (ICSSS’
2012) (2012)

12. Kunfam, L.M.: Data Security in the world of cloud computing. IEEE Secur. Priv. 7(4), 61–64
(2009)

13. Venkatesh, M.: Improving Public Auditability. Data Possession in Data Storage Security for
Cloud Computing, ICRTIT-IEEE (2012)

14. Hao, Z., Yu, N.: A multiple-replica remote data possession checking protocol with public
verifiability. In: Proceedings of the 2nd International Data, Privacy and E-Com Symposium
(ISDPE ’10) (2010)

15. Zhou, M., Zhang, R., Xie, W., Qian, W., Zhou, A.: Security and privacy in cloud computing: a
survey. In: Sixth International Conference on Semantics, Knowledge and Grids (2010)

16. Sravan Kumar R., Saxena, A.: Data integrity proofs in cloud storage, 978-1-4244-8953-4/11/
$26.00 ©, 2011 IEEE

17. Varalakshmi, P.: Integrity checking for cloud environment using encryption algorithm, 978-1-
4673-1601-9/12/$31.00 ©, 2012 IEEE

18. Hao, Z., Zhong, S., Yu, N.: A privacy-preserving remote data integrity checking protocol with
data dynamics and public verifiability. IEEE Trans. Knowl. Data Eng. 23(9) (2011)

19. Elminaam, D.S.A., Kader, H.M.A., Hadhoud, M.M.: Performance evaluation of symmetric
encryption algorithms. IJCSNS Int. J. Comput. Sci. Netw. Secur. 8(12), 280–286 (2008)

20. Singh, S.P., Maini, R.: Comparison of data encryption algorithms. Int. J. Comput. Sci. Comm.
(IJCSC) 2(1), 125–127 (2011)

Improvement of Data Integrity and Data Dynamics … 289

	27 Improvement of Data Integrity and Data Dynamics for Data Storage Security in Cloud Computing
	Abstract
	1 Introduction
	2 Background Theory
	2.1 Third Party Auditor (TPA)
	2.2 Merkle Hash Tree (MHT) and Dynamic Merkle Hash Tree (DMHT)

	3 Literature Review
	4 Proposed Work
	4.1 The Security Model
	4.1.1 The Setup Phase
	4.1.2 Integrity Verification Phase

	4.2 The Recovery System
	4.3 Dynamic Operations
	4.3.1 Method for searching (i-th leaf node)

	5 Performance Analysis
	5.1 Verification Time for Different Number of File Blocks
	5.2 Server Computation Time

	6 Conclusion and Future Scope
	References

