
Performance Analysis of RC4 and Some
of Its Variants

Suman Das, Hemanta Dey and Ranjan Ghosh

Abstract RC4 is a simple and fast cipher, which has proved itself as robust enough
and it is trusted by many organizations. But a number of researchers claimed that
RC4 has some weakness and bias in its internal states. To increase its security, some
guidelines recommended discarding the first N or 2N bytes from the final output
stream, where N is generally 256. In this paper, it has been statistically analyzed
whether the outputs of the algorithm really acquire more security by discarding
more number of initial bytes, like 4N or 8N. The original and modified algorithms
are analyzed with NIST Statistical Test Suite and it has been tried to estimate an
optimum quantity of output bytes to be discarded.

Keywords Modified RC4 � RC4 security � Stream cipher � Key stream generator �
NIST test suite

1 Introduction

RC4 is a simple, efficient, fast and easy-to-implement stream cipher. It contains an
initialization routine and a random number generator, where random values are
selected from an internal state array and two elements are swapped in each
step. Based on this table-shuffling principle, RC4 is designed for fast software and
hardware implementation and widely used in many protocols, standards and
commercial products. RC4 cryptanalysis has been mainly devoted to statistical
analysis of the output sequence, or to the initialization weaknesses. RC4 contains a
secret array of size N (generally, 256), in which integers (0–N − 1) are swapped,

S. Das (&)
Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
e-mail: aami.suman@gmail.com

H. Dey � R. Ghosh
Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
e-mail: hemantadey13@gmail.com

© Springer India 2015
J.K. Mandal et al. (eds.), Information Systems Design and Intelligent Applications,
Advances in Intelligent Systems and Computing 339,
DOI 10.1007/978-81-322-2250-7_25

259



depending upon two index pointers i and j in a deterministic (for i) and pseudo-
random (for j) way. There are two components of RC4: Key-Scheduling Algorithm
(KSA) and Pseudo-Random Generation Algorithm (PRGA). KSA performs ini-
tializing the S-Box with random-looking permutation of values and PRGA gener-
ates the final key-stream bytes [1].

There are several works on strength and weakness of RC4, which shows that
there is significant interest in the cryptographic community for it. It has been argued
that there are many biases in the PRGA due to propagation of biases in the KSA.
Some researchers argued that if the initial N or 2N bytes from the key-stream are
discarded, then these biases can be minimized, hence the security of RC4 increases.

In this paper, the authors have tried to study how the security of RC4 varies if
more and more initial bytes from the key-stream are discarded. Firstly 4N (here
1,024) and then 8N (here, 2,048) initial bytes are discarded and the outputs are
compared with the original algorithm. These variants of RC4 are analyzed statis-
tically, following the guidelines given by NIST (National Institute of Standards and
Technology), USA in their Statistical Test Suite, coded by the authors. It is found
that discarding as many numbers of bytes as possible does not actually increase the
security of RC4, but there is a certain optimum level, which should be maintained
to get more secured outputs.

KSA
Input: Secret Key K

for i = 0, … N – 1
S[i] = i;

next i

j = 0;
for i = 0, …, N – 1

{ j = j + S[i] + K[i]
swap(S[i], S[j]); 

}
next i

Output: S-Box S generated by K

PRGA
Input: S-Box S – The o/p of KSA

i = 0; j = 0;

while TRUE
{ i = i + 1

j = j + S[i]
swap(S[i], S[j]);
z = S[S[i] + S[j]];

}

Output: Random Stream Z

Table A. The RC4 Stream Cipher

2 Motivation

RC4 has gone through tremendous analysis since it has become public. Roos [2]
showed some weakness in KSA and identified several classes of weak keys for RC4
with some important technical results. He showed strong correlation between the
secret key bytes and the final key-stream generated. He suggested discarding a
number of bytes from the initial key-stream.

Akgün et al. [3] detected a new bias in the KSA and proposed a new algorithm to
retrieve the RC4 key in a faster way. Their framework significantly increases the

260 S. Das et al.



success rate of key retrieval attack. They showed that KSA leaks information about
the secret key if the initial state table is known.

Maitra and Paul [4] revolved the non-uniformity in KSA and proposed for
additional layers over the KSA and the PRGA. They named the modified cipher as
RC4+, which avoids existing weaknesses of RC4. They presented a three-layer
architecture in a scrambling phase after the initialization to remove weaknesses of
KSA (KSA+). They also introduced some extra phases to improve the PRGA
(PRGA+).

Mironov [5] argued that discarding the initial 12–256 bytes from the output
stream of RC4 most likely eliminates the possibility of strong attacks. He estimated
the number of bytes to be discarded from the initial key-stream as 2N (here, 512) or
3N (here, 768) to get a more safe output.

Paul and Preneel [6] described a new statistical weakness in the first two output
bytes of RC4 key-stream and presented a new statistical bias in the distribution of
the first two output bytes of RC4. They recommended to drop at least the initial
2N bytes and argued to introduce more random variables in the PRGA to reduce the
correlation between the internal and the external states. They also proposed a new
key-stream generator namely RC4A with much less operations per output byte.

Tomasevic and Bojanic [7] used a strategy to favor more promising values that
should be assigned to unknown entries in the RC4 table and introduced an
abstraction in the form of general conditions about the current state of RC4. They
proposed a new technique to improve cryptanalytic attack on RC4, which is based
on new information from the tree representation of RC4.

Nawaz et al. [8] introduced a new 32-bit RC4 like faster key-stream generator
with a huge internal state, which offers higher resistance against state recovery
attacks. This is suitable for high speed software encryption.

Gupta et al. [9] thoroughly studied RC4 designing problem from the view point
of throughput. They implemented hardware architecture to generate two key-stream
bytes per clock cycle using the idea of loop unrolling and hardware pipelining.

Das et al. [10] eliminated the swap function of KSA by using a mathematical
process to fill-up the internal state array of RC4, which has been found giving a
better security after statistical analysis.

3 Proposed Modifications to RC4

Roos [1] and others strongly discussed about the weakness of KSA and weak keys
in RC4. Roos argued that in KSA, only the line of swap directly affects the state
table S while exchanging two elements and hence the previous line j = j + S
[i] + K[i] is responsible for calculating the indexes. Here, the variable i is deter-
ministic and j is pseudo-random. Therefore, the swap between two elements may
happen once, more than once, or may not happen at all—thus brings a weakness in
the KSA. He showed that there is a high probability of about 37 % for an element

Performance Analysis of RC4 … 261



not to be swapped at all. He proposed to discard some initial bytes, preferably
N (here, 256), to minimize the effects of these biases.

Mironov [4] used an abstract model to estimate the number of initial bytes that
should be dumped from the output stream of RC4. He identified a weakness in the
KSA and the PRGA, i.e., the final key-stream of RC4, which appears up to the first
2N or 3N bytes. He blamed the improper swap function as a cause of this bias.

In this paper, the authors tried to identify what is the maximum number of bytes
that should be discarded from RC4 key-stream before actual encryption starts. They
concluded that the number should be more than the previously estimated ones, but it
is not that discarding more and more bytes from the output stream really keeps on
increasing the security of RC4. Two sets of data (RC4_1024 and _2048), generated
by discarding 4N and 8N bytes respectively had been analyzed, along with data
generated by the original RC4.

Outputs of these variants of RC4 have been tested statistically using the guid-
ance of NIST, by the NIST Statistical Test Suite. For all the algorithms, a same text
file has been encrypted 500 times by using 500 same encryption keys, generating
500 ciphertexts for each algorithm, each of which contains at least 1,342,500 bits,
as recommended by NIST. The three sets of data are then compared to find out if
security varies for these algorithms after the proposed modifications.

4 The NIST Statistical Test Suite

NIST developed a Statistical Test Suite, which is an excellent and exhaustive
document consisting of 15 tests developed to test various aspects of randomness in
binary sequences produced by cryptographic algorithms [11, 12]. The tests are as
follows:

1. Frequency (Monobit) Test: Number of 1’s and 0’s in a sequence should be
approximately the same, i.e., with probability ½.

2. Frequency Test within a Block: Whether frequency of 1’s in an M-bit block is
approximately M/2.

3. Runs Test: Whether number of runs of 1’s and 0’s of various lengths is as
expected for a random sequence.

4. Test for Longest-Run-of-Ones in a Block: Whether the length of the longest run
of 1’s within the tested sequence (M-bit blocks) is consistent with the length of
the longest run of 1’s as expected.

5. Binary Matrix Rank Test: Checks for linear dependence among fixed length
sub-strings of the sequence, by finding the rank of disjoint sub-matrices of it.

6. Discrete Fourier Transform Test: Detects periodic features in the sequence by
focusing on the peak heights in the DFT of the sequence.

7. Non-overlapping Template Matching Test: Occurrences of a non-periodic
pattern in a sequence, using a non-overlapping m-bit sliding window.

262 S. Das et al.



8. Overlapping Template Matching Test: Occurrences of a non-periodic pattern in
a sequence, using an overlapping m-bit sliding window.

9. Maurer’s Universal Statistical Test: Whether or not the sequence can be sig-
nificantly compressed without loss of information, by focusing on the number
of bits between matching patterns.

10. Linear Complexity Test: Finds the length of a Linear Feedback Shift Register
(LFSR) to generate the sequence—longer LFSRs imply better randomness.

11. Serial Test: Determines number of occurrences of the 2m m-bit overlapping
patterns across the entire sequence to find uniformity—every pattern has the
same chance of appearing as of others.

12. Approximate Entropy Test: Compares the frequency of all possible overlapping
blocks of two consecutive/adjacent lengths (m and m + 1).

13. Cumulative Sums Test: Finds if the cumulative sum of a sequence is too large or
small. Focuses on maximal excursion of random walks, which should be near 0.

14. Random Excursions Test: Finds if number of visits to a state within a cycle
deviates from expected value, calculates the no. of cycles having exactly K
visits in a cumulative sum random walk.

15. Random Excursions Variant Test: Deviations from the expected visits to var-
ious states in the random walk, calculates the number of times that a state is
visited in a cumulative sum random walk.

In each test, for a bit sequence, NIST adopted different procedures to calculate
the P-values (probability values) for different tests from the observed and expected
values under the assumption of randomness. The Test Suite has been coded by us
and used to study the randomness features of different variants of RC4.

5 Results and Discussions

After analyzing the outputs of the original RC4 and modified ones, using the NIST
Statistical Test Suite, as described above, it has been found that though discarding
some initial bytes of the key-stream increases the security of RC4, discarding more
and more bytes from the outputs do not help to increase the security of RC4—at
some point, the beginning of RC4 ends [4]. The final analysis and comparison is
displayed in Table 1, where the POP (Proportion of Passing) status and Uniformity
Distribution of NIST tests for these three algorithms are displayed and compared.
The best values of a particular test for each algorithm are shaded (in rows) and then
the numbers of shaded cells for each are counted (in columns). The highest count
(here, for RC4_1024) gives the best result, which shows that this one has a better
security than the other, at least for this particular data-set.

POPs and uniformity distributions generated by RC4_1024 and RC4_2048 for
the 15 tests, compared to the expected values [11], are displayed in Tables 2 and 3.
Distributions of P-values generated by the algorithms RC4_1024 and RC4_2048
for the 15 tests are displayed in Tables 4 and 5. Here, the interval between 0 and 1 is

Performance Analysis of RC4 … 263



Table 1 Comparison of POP status and uniformity distribution generated by the 15 NIST Tests
for RC4 and its variants

Test↓ POP status for NIST tests Uniformity distribution for NIST tests

RC4 RC4
1024

RC4
2048

RC4 RC4
1024

RC4
2048

1 0.988000 0.990000 0.992000 4.154218−01 8.831714−01 7.981391−01

2 0.992000 0.988000 0.986000 4.904834−01 1.087909−01 6.952004−01

3 0.992000 0.996000 0.996000 8.920363−01 5.181061−01 3.537331−01

4 0.982000 0.988000 0.988000 5.790211−01 2.343734−01 5.831447−01

5 0.984000 0.982000 0.986000 2.492839−01 2.596162−01 4.788391−02

6 0.980000 0.982000 0.996000 4.170881−02 1.509358−03 4.901567−05

7 0.990000 0.996000 0.995000 8.272794−01 4.749856−01 4.446914−01

8 0.992000 0.992000 0.988000 2.224804−01 9.673823−01 9.093595−02

9 0.982000 0.992000 0.990000 3.856456−02 3.976884−01 8.343083−01

10 0.992000 0.988000 0.986000 5.462832−01 7.034170−01 7.981391−01

11 0.982000 0.991000 0.990000 1.699807−01 5.707923−01 1.916867−01

12 0.992000 0.990000 0.988000 2.953907−01 7.981391−01 6.204653−01

13 0.995000 0.998000 0.995000 8.201435−01 9.705978−01 5.030520−02

14 0.983500 0.987500 0.986000 6.729885−02 6.204653−01 6.291943−02

15 0.985889 0.987667 0.986111 8.386675−02 5.328562−01 1.503405−02

Total: 4 9 5 3 8 4

Table 2 POP status and uniformity distribution generated for RC4_1024

Test↓ Expected POP Observed POP Status Uniformity distribution Status

1 0.976651 0.990000 Successful 8.831714−01 Uniform

2 0.976651 0.988000 Successful 1.087909−01 Uniform

3 0.976651 0.996000 Successful 5.181061−01 Uniform

4 0.976651 0.988000 Successful 2.343734−01 Uniform

5 0.976651 0.982000 Successful 2.596162−01 Uniform

6 0.976651 0.982000 Successful 1.509358−03 Uniform

7 0.976651 0.996000 Successful 4.749856−01 Uniform

8 0.976651 0.992000 Successful 9.673823−01 Uniform

9 0.976651 0.992000 Successful 3.976884−01 Uniform

10 0.976651 0.988000 Successful 7.034170−01 Uniform

11 0.980561 0.991000 Successful 5.707923−01 Uniform

12 0.976651 0.990000 Successful 7.981391−01 Uniform

13 0.980561 0.998000 Successful 9.705978−01 Uniform

14 0.985280 0.987500 Successful 6.204653−01 Uniform

15 0.986854 0.987667 Successful 5.328562−01 Uniform

264 S. Das et al.



divided into 10 sub-intervals, and the P-values that lie within each sub-interval are
counted and displayed. These P-values should be uniformly distributed in each sub-
interval [11]. Histograms on distribution of P-values for two tests (4 and 8) are
displayed in Figs. 1a–c and 2a–c respectively.

Table 3 POP status and uniformity distribution generated for RC4_2048

Test↓ Expected POP Observed POP Status Uniformity distribution Status

1 0.976651 0.992000 Successful 7.981391−01 Uniform

2 0.976651 0.986000 Successful 6.952004−01 Uniform

3 0.976651 0.996000 Successful 3.537331−01 Uniform

4 0.976651 0.988000 Successful 5.831447−01 Uniform

5 0.976651 0.986000 Successful 4.788391−02 Uniform

6 0.976651 0.996000 Successful 4.901567−05 Non-uniform

7 0.976651 0.995000 Successful 4.446914−01 Uniform

8 0.976651 0.988000 Successful 9.093595−02 Uniform

9 0.976651 0.990000 Successful 8.343083−01 Uniform

10 0.976651 0.986000 Successful 7.981391−01 Uniform

11 0.980561 0.990000 Successful 1.916867−01 Uniform

12 0.976651 0.988000 Successful 6.204653−01 Uniform

13 0.980561 0.995000 Successful 5.030520−02 Uniform

14 0.985280 0.986000 Successful 6.291943−02 Uniform

15 0.986854 0.986111 Successful 1.503405−02 Uniform

Table 4 Distribution of P-values generated for RC4_1024

Test↓ 1 2 3 4 5 6 7 8 9 10

1 48 45 44 56 50 52 59 46 47 53

2 61 56 39 51 45 44 41 47 67 49

3 51 47 55 51 54 41 43 58 59 41

4 50 60 38 54 48 62 51 54 39 44

5 52 50 51 54 59 47 41 35 62 49

6 48 60 55 26 48 41 62 68 41 51

7 42 44 59 45 57 40 57 53 54 49

8 51 51 59 50 48 43 48 48 51 51

9 41 59 58 38 51 52 53 40 52 54

10 53 47 48 49 58 39 51 44 53 58

11 88 84 97 105 106 95 100 112 102 111

12 41 42 49 53 57 46 51 56 52 53

13 114 84 91 116 93 109 84 82 100 126

14 391 416 424 414 415 393 390 391 402 364

15 902 908 973 894 880 880 907 871 830 955

Performance Analysis of RC4 … 265



Table 5 Distribution of P-values generated for RC4_2048

Test↓ 1 2 3 4 5 6 7 8 9 10

1 45 52 45 58 47 54 53 53 40 53

2 59 49 45 47 54 44 53 41 50 58

3 47 46 58 57 47 47 48 63 50 37

4 53 40 42 57 44 57 51 56 46 54

5 52 50 47 60 60 46 37 45 52 51

6 43 49 50 40 66 35 47 81 37 52

7 44 52 47 49 46 62 39 55 59 47

8 61 38 39 46 56 60 61 47 41 51

9 54 49 55 44 47 61 50 46 49 45

10 56 46 47 44 54 47 54 46 60 46

11 91 83 91 113 104 88 117 99 101 113

12 45 40 46 49 57 53 62 47 49 52

13 90 73 112 83 111 112 104 105 99 111

14 422 372 425 376 445 402 415 385 397 361

15 872 931 972 889 879 876 938 908 856 879

* Horizontal ranges for Table 4: 1: 0.0–0.1, 2: >0.1–0.2, 3: >0.2–0.3, …, 10: >0.9–1

N
o.

 o
f 

P
O

P
s

Ranges (0 – 1) 

(a) (b) (c)

Fig. 1 a–c Histograms for P-value distribution of test 4 for RC4, RC4_1024 and RC4_2048

N
o.

 o
f 

PO
Ps

Ranges (0 – 1) 

(a) (b) (c)

Fig. 2 a–c Histograms for P-value distribution of test 8 for RC4, RC4_1024 and RC4_2048

266 S. Das et al.



Scattered Graphs on the POP Status for the 15 tests are displayed in Figs. 3a–c,
which examine the proportion of sequences that pass a test. A threshold value
(expected POP) has been calculated following the guidance given by NIST. If the
proportion falls outside of (i.e., less than) this expected value, then there is evidence
that the data is not random [11]. If most of the values are greater than this expected
value, then the data is considered to be random. For a particular algorithm, the more
number of POPs tend to 1 for the 15 tests, the more random will be the data
sequence.

Finally, it has been observed that discarding so many of the initial key-stream
bytes does not actually increase the security—saturation occurs after discarding a
certain number of bytes. It is clear, though discarding 1,024 bytes is giving a better
result than the original RC4, discarding 2,048 bytes is not that satisfactory. Here, in
the current data set, after the statistical analysis, the saturation point has been found
as 1,024.

6 Conclusion

The RC4_1024 is found to stand in the better merit list comparing to the standard
RC4 and RC4_2048. It seems that security in RC4 will be enhanced by discarding a
certain number of initial bytes (here, 1,024) from the key-stream. It has been
observed that to get more secured key-stream bytes from RC4, an optimum level of
discarding the initial bytes from the key-stream should be maintained—discarding
as many numbers of bytes as possible does not actually increase its security.
Rigorous study is required to find more optimum results in this regard.

References

1. Stinson, D.R.: Cryptography—Theory and Practice. Dept. of Combinatorics & Optimization,
University of Waterloo, Ontario (2002)

2. Roos, A.: A Class of Weak Keys in the RC4 Stream Cipher. Post in sci.crypt (1995)

Nist Tests (1 – 15)

PO
P 

(.
95

 –
 1

) 
(a) (b) (c)

Fig. 3 a–c Scattered graphs on POP status on 15 NIST tests for RC4, RC4_1024 and RC4_2048

Performance Analysis of RC4 … 267



3. Akgün, M., Kavak, P., Demicri, H.: New results on the key scheduling algorithm of RC4.
INDOCRYPT, 5365, 40–52. http://link.springer.com/content/pdf/10.1007/978-3-540-9754-5_4.
pdf (2008). (Last accessed on 2 July 2014, Lecture Notes in Computer Science, Springer)

4. Maitra, S., Paul, G.: Analysis of RC4 and proposal of additional layers for better security
margin. INDOCRYPT 5365, 40–52. http://eprint.iacr.org/2008/396.pdf (2008). (Last accessed
on 2 July 2014, Lecture Notes in Computer Science, Springer)

5. Mironov, I.: (Not So) Random shuffles of RC4. In: CRYPTO, LNCS 2442, pp. 304–319.
California (2002) (Last accessed on 18 Aug 2014)

6. Paul, S., Preneel, B.: A new weakness in the RC4 keystream generator and an approach to
improve the security of the cipher. In: FSE 2004, LNCS, vol. 3017, pp. 245–259. Springer,
Heidelberg. http://www.iacr.org/archive/fse2004/30170244/30170244.pdf (2004) (Last
accessed on 2 July 2014)

7. Tomašević, V., Bojanić, S.: Reducing the state space of RC4 stream cipher. In: Bubak, M.
et al. (eds.) ICCS 2004, LNCS 3036, pp. 644–647. Springer, Berlin. http://link.springer.com/
chapter/10.1007%2F978-3-540-24685-5_110#page-1 (2004). (Last accessed on 2 July 2014)

8. Nawaz, Y., Gupta, K.C., Gong, G.: A 32-bit RC4-like keystream generator, IACR Eprint
archive. http://eprint.iacr.org/2005/175.pdf (2005). (Last accessed on 2 July 2014)

9. Gupta, S.S., Chattopadhyay, A., Sinha, K., Maitra, S. Sinha, B.P.: High-performance hardware
implementation for RC4 stream cipher. IEEE Trans. Comput. 82(4) (2013) (Last accessed on 2
July 2014)

10. Das, S., Dey, H., Ghosh, R.: Comparative study of randomness of RC4 and a modified RC4.
Int. Sci. Technol. Congr. IEMCONG-2014, 143–149 (2014)

11. National Institute of Standard & Technology (NIST), Tech. Admin., U.S. Dept. of Commerce,
A Stat. Test Suite for RNGs & PRNGs for Cryptographic Applications. http://csrc.nist.gov/
publications/nistpubs800/22rec1SP800-22red1.pdf (2010)

12. Kim, S.J., Umeno, K, Hasegawa, A.: Corrections of the NIST Statistical Test Suite for
Randomness. Communications Research Lab., Inc. Admin. Agency, Tokyo (2004)

268 S. Das et al.

http://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007/978-3-540-9754-5_4.pdf
http://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007/978-3-540-9754-5_4.pdf
http://eprint.iacr.org/2008/396.pdf
http://www.iacr.org/archive/fse2004/30170244/30170244.pdf
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007%2F978-3-540-24685-5_110#page-1
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007%2F978-3-540-24685-5_110#page-1
http://eprint.iacr.org/2005/175.pdf
http://csrc.nist.gov/publications/nistpubs800/22rec1SP800-22red1.pdf
http://csrc.nist.gov/publications/nistpubs800/22rec1SP800-22red1.pdf

	25 Performance Analysis of RC4 and Some of Its Variants
	Abstract
	1 Introduction
	2 Motivation
	3 Proposed Modifications to RC4
	4 The NIST Statistical Test Suite
	5 Results and Discussions
	6 Conclusion
	References


