
Comparing Efficiency of Software Fault
Prediction Models Developed Through
Binary and Multinomial Logistic
Regression Techniques

Dipti Kumari and Kumar Rajnish

Abstract Software fault prediction method used to improve the quality of software.
Defective module leads to decrease the customer satisfaction and improve cost.
Software fault prediction technique implies a good investment in better design in
future systems to avoid building an error prone modules. The study used software
metrics effectiveness in developing models in 2 aspects (binary and multinomial)
Logistic Regression. We are developing multivariate (combined effect of object-
oriented metrics) models in both aspects for finding the classes in different error
categories for the three versions of Eclipse, the Java-based open-source Integrated
Development Environment. The distribution of bugs among individual parts of a
software system is not uniform, in that case Multinomial aspects helps the tester to
prioritize the tests with the knowledge of error range or category and therefore, work
more efficiently. Multinomial models are showing better result than Binary models.

Keywords OO-metrics � Fault-prone � Prediction � Logistic regression �
Multinomial � LR � BMLR � MMLR

1 Introduction

Over the past years, software quality has become one of the most important
requirements in the development of systems. Fault-proneness estimation could play
a key role in quality control of software products [1]. To maintain this quality and
develop fault free software, almost in every organization that is involved in the

D. Kumari (&) � K. Rajnish
Department of Computer Science and Engineering, BIT Mesra, Ranchi 835215,
Jharkhand, India
e-mail: Kumari_dipti0511@yahoo.co.in

K. Rajnish
e-mail: krajnish@bitmesra.ac.in

© Springer India 2015
J.K. Mandal et al. (eds.), Information Systems Design and Intelligent Applications,
Advances in Intelligent Systems and Computing 339,
DOI 10.1007/978-81-322-2250-7_19

187



software development there are various activities that have to be performed. Such
an activity is testing. Software testing is a critical and essential part of software
development that consumes maximum resources and effort. Software testing almost
takes at least half of the resources and still doesn’t assure the 100 % correctness of
the system. Also every part of the software seems impossible to test. That’s why
everyone wants to focus or test only those parts of the software those have high
probability to be fault-prone. The aim of various researches is to find such parts of
system. Such parts includes classes, methods, inheritance paths etc. Software fault
prediction is one of the quality assurance activities in Software Quality Engineering
such as formal verification, fault tolerance, inspection, and testing. Software metrics
[2, 3] and fault data (faulty or non-faulty information) belonging to a previous
software version are used to build the prediction model. The fault prediction process
usually includes two consecutive steps: training and prediction. In the training
phase, a prediction model is built with previous software metrics (class or method-
level metrics) and fault data belonging to each software module. After this phase,
this model is used to predict the fault proneness labels of modules that locate in a
new software version [4].

Until now, software engineering researchers have used Case-based Reasoning,
Neural Networks, Genetic Programming, Fuzzy Logic, Decision Trees, Naive
Bayes, Dempster-Shafer Networks, Artificial Immune Systems, and several statis-
tical methods to build a robust software fault prediction model [5–8]. Some
researchers have applied different software metrics to build a better prediction
model, but recent papers [9] have shown that the prediction technique is much more
important than the chosen metric set. In this paper, we attempt to develop binary
and Multinomial LR models to estimates the fault-proneness in object oriented
environment. We organised this paper as: Sect. 2 provides the Research Back-
ground and Research Methodology, Sect. 3 provides Model Evaluation, Sect. 4
provides Analysis of result. Section 5 provides the Conclusion and Sect. 6 provides
Future scope.

2 Research Background

In this section, we present the selection of data source (Sect. 2.1), selection of
metrics in this article (Sect. 2.2), Collection of Fault data and its categorization
(Sect. 2.3) and Research methodology (Sect. 2.4).

2.1 Selection of Data Source

This study makes use of the data collected from three major releases of Eclipse
(Eclipse2.0, Eclipse2.1 and Eclipse3.0). We select Eclipse2.0, 2.1, and 3.0 as the
subjects of our study for two reasons: First, their fault data are publicly available

188 D. Kumari and K. Rajnish



(Therefore, it is easy to externally validate our empirical results by other
researchers. Second, they are major releases of Eclipse and have been widely used
for several years.

2.2 Selection of Independent Variables

The selection of software metrics was a difficult task because there are many
available metrics. We used two criteria in our selection process:

The set of metrics cover all aspects of OO design.
We have to be able to collect the metrics by using automated tool.

These metrics are characterized into coupling, cohesion, inheritance, class
complexity and class-size metrics. We used JHAWK [10] automated tool metric to
collect these metrics from the Eclipse source code [11]. JHAWK compiled the
source code and give output as each module name and their set of OO metrics.
These OO-metrics are independent variables.

2.3 Collection of Dependent Variable

The binary and multinomial dependent variable in this study is fault proneness.
Fault proneness is defined as the probability of fault detection in a class. We
collected the fault data from three releases of Eclipse (Versions 2.0, 2.1, and, 3.0)
provided by the publicly available data set promise2.0a [12–14]. This data set lists
the number of pre-release faults (reported in the first 6 months after release) for each
java file in Eclipse2.0, Eclipse2.1 and Eclipse3.0. Pre release bug data are used for
study and two types of categorization has been done on the pre release error data:

1. Binary Categorization: In this we only used two values 0 (means no error) and 1
(means with error). If a class contains error in it then we put 1 in error column
otherwise 0.

2. Multinomial Categorization: In this we divide the error severity into 4 classes.

For classification our followed steps are as follows:

• We find the descriptive statistics of pre error data. From that we are able to know
the min, different number of occurrences of error (nonzero) and max value of
error data in all classes of every versions of Eclipse.

• After that, we again find the descriptive statistics of (Min, 25, 50, 75 % and
Max) the different occurrences of number of errors (from min (nonzero) to max).
Based on that we classified class error data into one of five categories that are
defined as follows:

• No Error: class containing zero error

Comparing Efficiency of Software Fault Prediction … 189



• Nominal: class containing error in the range Min ≤ error < 25 %
• Low: class containing error in the range 25 % ≤ error < 50 %
• Medium: class containing error in the range 50 % ≤ error < 75 %
• High: class containing error in the range 75 % ≤ error < Max

More specifically, we attempt to answer the following questions by appropriate
statistical analysis technique:

• How accurate do the investigated metrics distinguish between fault-prone and
not fault-prone classes (binary categorization)?

• How accurate do the investigated metrics classifies classes into four categories:
Nominal, Low, Medium, and High based on the error severity level (multi-
nomial categorization)?

2.4 Research Methodology

In this section, we describe logistic regression (LR) analysis in binary and multi-
nomial aspects. LR is the most widely used technique in literature. It is used here to
predict dependent variable from a set of independent variables (a detailed
description is given by [15, 16]). Binary LR is used to construct models when the
dependent variable is binary and Multinomial LR is used to construct models when
the dependent variable is not binary but having more than two values.

2.4.1 Binary Logistic Regression Model

Binary Logistic regression is a standard statistical modeling method in which the
dependent variable Y can take on only one of two different values [17]. Assume that
X1, X2, …, Xn represents the independent variables (i.e. the metrics in this study)
and Pr(Y = 1|x1, x2, …, xn) represents the probability that Y = 1 when X1 = x1,
X2 = x2,…, and Xn = xn. Then, the logistic regression model assumes that Pr(Y = 1|
x1, x2, …, xn) is related to x1, x2, …, xn by the following equation:

PrðY ¼ 1jx1; x2; . . .; xnÞ ¼ eaþb1x1þ���þbnxn

1þ eaþb1x1þ���þbnxn
ð1Þ

where β is are the regression coefficients and can be estimated through the maxi-
mization of a log-likelihood.

190 D. Kumari and K. Rajnish



2.4.2 Multinomial Logistic Regression

Multinomial Logistic regression is modified form of binary logistic regression, it is
appropriate when the outcome is a polytomous variable (i.e. categorical with more
than two categories) and the predictors are of any type. Y can take on more than
two different values depending on the no. of different categories [17]. In the fol-
lowing, let the values be 0, 1, 2, 3 and 4. Here, Y = 1, 2, 3 and 4 represents the
corresponding class have fault according to the nominal category, low category,
mid category and high category and Y = 0 represents the corresponding class have
no fault. As in other forms of linear regression, multinomial logistic regression uses
a linear predictor function f(k, i) to predict the probability that observation i has
outcome k, of the following form:

f ðk; iÞ ¼ b0;k þ b1;k � x1;i þ b2;k � x1;i þ � � � þ bM;k � xM;i ð2Þ

where βM,k is a regression coefficient associated with the mth explanatory variable
and the kth outcome.

3 Model Evaluation Criteria

In the literature, many other measures have been proposed for evaluating the pre-
dictive effectiveness of classification models such as logistic regression models
[18–20]. Accuracy of the model is considered as the comparison factor with the
earlier traditional models and may be obtained using Confusion Matrix [21]. A
confusion matrix contains information about actual and predicted classifications
done by a classification system. TP and TN are the number of correct predictions
that an instance is positive and negative respectively. FP and FN are the number of
incorrect predictions that an instance is positive and negative respectively.

• Accuracy: the number of classes that are correctly classified divided by the total
number of classes. Where TP and TN are the number of correct predictions that
an instance is positive and negative respectively. FP and FN are the number of
incorrect predictions that an instance is positive and negative respectively. For
binary categorization

Accuracy ¼ TPþ TN
TPþ TN þ FPþ FN

ð3Þ

For Multinomial categorization

Comparing Efficiency of Software Fault Prediction … 191



Accuracy ¼ TPþ TNi

TPþ TNi þ FPþ FNi
ð4Þ

where TP = T0, TNi = T1, T2, T3 and T4, FP ¼ P4
j¼1 F0j FNi ¼

P4
i¼1

P4
j¼1 Fij

where i 6¼ j.
Where T0, T1, T2, T3 and T4 are the number of correct predictions that an

instance is positive, negative in nominal category, low category, mid category and
high category. Where F01 are the number of incorrect predictions that an instance is
actually in positive but predicted in nominal category. In Fij first subscript showing
the actual instance and second one is showing the predicted result.

• The general rule to evaluate the classification performance is to find the area
under the curve (AUC): AUC = 0.5 means no good classification;
0.5 < AUC < 0.6 means poor classification; 0.6 ≤ AUC < 0.7 means fair
classification; 0.7 ≤ AUC < 0.8 means acceptable classification;
0.8 ≤ AUC < 0.9 means excellent classification; AUC ≥ 0.9 means outstanding
classification.

4 Experimental Analysis

We have developed binary and multinomial model by taking the combined effect of
OO-metrics to identify faulty classes. The model is built using backward elimi-
nation in the model and model statistics are shown in Tables 1 and 2 for all
3 versions of Eclipse in binary and multinomial aspects respectively. From table we
find that Multinomial categorization are showing good result compare to Binary
Categorization.

4.1 Validation Result

Tables 3 and 4 summarizes the TP, TN, FP, FN, Sensitivity, (1-Specificity), AUC
and Accuracy results from 18-fold cross-validation for the Multivariate models for
binary and multinomial aspect respectively for all 3 version of Eclipse. Accuracy
result for nominal category is 58–65 % and AUC comes in poor category, but
accuracy for low, mid and high category is in 50–60 % and their classification
power comes in fair and acceptable classification. PACK is showing best result
among all metrics for Eclipse2.0 in MBLR model. Accuracy of nominal category is
high compare to other but its discriminating power is in poor class. Other 3 cate-
gories have accuracy 69–71 % and low and part of mid comes in acceptable class,
but high comes is excellent classification for Eclipse2.1 in MBLR model. PACK is
showing the best result among all. Same incidence is found in Eclipse3.0 for MBLR

192 D. Kumari and K. Rajnish



T
ab

le
1

M
ul
tiv

ar
ia
te

m
od

el
st
at
is
tic
s
fo
r
bi
na
ry

ca
te
go

ri
za
tio

n

E
cl
ip
se
2.
0

E
cl
ip
se
2.
1

E
cl
ip
se
3.
0

M
et
ri
c

B
S.
E

Si
g

M
et
ri
c

B
S.
E

Si
g

M
et
ri
c

B
S.
E

Si
g

N
om

in
al

N
O
M

0.
01
4

0.
00
6

0
A
V
C
C

0.
13

7
0.
03

0
C
C

0.
01

1
0.
00
2

0

A
V
C
C

0.
13
6

0.
03
3

0.
02

7
N
O
S

0.
00

3
0.
00
2

0.
02
6

M
PC

−
0.
01

7
0.
00
5

0

N
O
S

0.
00
4

0.
00
1

0.
00

4
PA

C
K

0.
06

7
0.
00
5

0
FO

U
T

0.
04

4
0.
01
3

0.
00
1

PA
C
K

0.
06
3

0.
00
5

0
N
L
O
C

−
0.
00

3
0.
00
1

0.
00
2

R
FC

0.
01

4
0.
00
4

0.
00
2

C
B
O

0.
01
8

0.
00
8

0.
02

5
T
C
C

0.
00

9
0.
00
4

0.
02
1

PA
C
K

0.
05

6
0.
00
4

0

N
L
O
C

−
0.
00
2

0.
00
1

0.
01

4
C
on

st
an
t

−
2.
16

7
0.
06
4

0
A
V
C
C

0.
11

5
0.
02
6

0

FO
U
T

0.
07
6

0.
01
6

0
C
on

st
an
t

−
2.
11

3
0.
05
6

0

C
on

st
an
t

−
1.
5

0.
06
2

0

L
ow

N
O
S

0.
01

0.
00
4

0.
01

8
PA

C
K

0.
07

9
0.
00
8

0
C
C

0.
01

9
0.
00
4

0

PA
C
K

0.
11
5

0.
00
9

0
R
FC

0.
01

2
0.
00
4

0.
00
4

L
M
C

−
0.
04

4
0.
01
8

0.
01
6

N
L
O
C

-0
.0
09

0.
00
3

0.
00

5
C
B
O

0.
03

7
0.
01
8

0.
03
5

PA
C
K

0.
06

6
0.
00
7

0

L
M
C

0.
04
1

0.
02

0.
04

4
C
on

st
an
t

−
5.
88

1
0.
22
4

0
C
on

st
an
t

−
6.
54

1
0.
26
7

0

M
A
X
C
C

0.
04

0.
01
4

0
00

6

C
on

st
an
t

−
5.
21
7

0.
26
8

0

M
id

PA
C
K

0.
12
4

0.
01
3

0
PA

C
K

0.
07

1
0.
01
1

0
C
B
O

0.
08

4
0.
02
5

0.
00
1

C
B
O

0.
07
9

0.
02
2

0
R
FC

0.
02

4
0.
00
7

0
PA

C
K

0.
08

5
0.
00
9

0

N
L
O
C

−
0.
01
7

0.
00
7

0.
02

C
B
O

0.
06

9
0.
02
2

0.
00
2

A
V
C
C

0.
27

9
0.
12
7

0.
02
8

T
C
C

0.
03
9

0.
01
9

0.
04

5
C
on

st
an
t

−
8.
1

0.
51
3

0
C
on

st
an
t

−
8.
76

2
0.
50
1

0

C
on

st
an
t

−
6.
86
1

0.
70
3

0

H
ig
h

PA
C
K

0.
13
5

0.
01
8

0
N
O
M

−
0.
24

1
0.
12
1

0.
04
7

C
C

0.
02

4
0.
00
7

0.
00
1

C
B
O

0.
09
9

0.
03
6

0.
00

7
N
O
S

0.
04

1
0.
01
7

0.
01
7

PA
C
K

0.
08

9
0.
01
1

0

L
M
C

0.
11
2

0.
04
4

0.
01

PA
C
K

0.
07

6
0.
02
8

0.
00
7

C
on

st
an
t

−
9.
99

1
0.
90
2

0

FO
U
T

0.
10
2

0.
05

0.
04

2
R
FC

0.
06

1
0.
02
1

0.
00
5

C
on

st
an
t

−
8.
98
3

1.
05
6

0
N
L
O
C

−
0.
03

5
0.
01
5

0.
01
8

C
on

st
an
t

−
7.
36

4
1.
33
4

0

Comparing Efficiency of Software Fault Prediction … 193



T
ab

le
2

M
ul
tiv

ar
ia
te

m
od

el
st
at
is
tic
s
fo
r
m
ul
tin

om
ia
l
ca
te
go

ri
za
tio

n

E
cl
ip
se
2.
0

E
cl
ip
se
2.
1

E
cl
ip
se
3.
0

M
et
ri
c

B
S.
E

Si
g

M
et
ri
c

B
S.
E

Si
g

M
et
ri
c

B
S.
E

Si
g

N
O
S

0.
00

3
0.
00

1
0.
01

2
U
W
C
S

−
0.
00

7
0.
00

4
0.
04

5
A
V
C
C

0.
12

2
0.
02

0

PA
C
K

0.
06

4
0.
00

4
0

R
FC

0.
00

6
0.
00

2
0.
00

4
U
W
C
S

0.
01

1
0.
00

2
0

C
B
O

0.
01

9
0.
00

8
0.
01

7
C
C

0.
01

0.
00

4
0.
00

7
PA

C
K

0.
05

6
0.
00

4
0

FO
U
T

0.
07

3
0.
01

5
0

M
A
X
C
C

0.
02

5
0.
00

7
0

FO
U
T

0.
04

1
0.
01

3
0.
00

1

A
V
C
C

0.
11

5
0.
02

3
0

N
L
O
C

−
0.
00

3
0.
00

1
0.
00

3
T
C
C

0.
00

7
0.
00

2
0

N
L
O
C

−
0.
00

2
0.
00

1
0.
01

1
PA

C
K

0.
06

8
0.
00

4
0

C
B
O

0.
01

5
0.
00

7
0.
02

3

C
on

st
an
t

−
1.
44

3
0.
05

7
0

C
on

st
−
1.
96

6
0.
04

7
0

C
on

st
−
2.
08

5
0.
05

1
0

194 D. Kumari and K. Rajnish



model. In MMLR model the accuracy of nominal category is 62–66 %,its AUC
come in the poor class. But all other 3 categories has accuracy 55 % and AUC for
low (in Eclipse2.1 and 3.0) and high (in Eclipse2.0) comes under acceptable class
and except high for Eclipse2.1 comes in excellent class. The AUC result for
Eclipse2.1 in high category gives the outstanding classification. Binary model is not
best way to find the fault-prone and fault-free classes, but Multinomial Logistic
regression is the best way to classify the classes in different categories depending on
the number of errors in classes and work more efficiently.

5 Conclusion

In this paper, we re-examine the ability of metrics (metrics covering all aspects of
software’s property) for predicting fault-prone classes in OO systems. Our results
are summarized as follows:

• When Multivariate logistic regression models built with combined effect of all
chosen metrics. This shows better result in prediction. But, among both aspect
(i.e. Binary, Multinomial) multivariate model shows better result in multinomial
aspect of fault prediction.

• Of the investigated metrics, PACK is the only metric which is used to develop
model in both aspects as well as both way bivariate and multivariate. It shows
that pack metric has the best discrimination ability.

• We conclude that prioritizing the test on the basis of different number of errors
in different error categories is more effective than the category of fault prone and
fault free classes in binary categorization for developing fault prediction model.

6 Future Work

In the future work, we will replicate this study using these investigated metrics and
other modeling techniques to draw stronger conclusion for getting best predictor
and model also. In this study we have used all those metric which are capable for
giving the significant threshold for differentiating the classes in binary categorization
(error-free and error-prone) and also multinomial categorization (nominal, low, mid
and high) from our previous study [22].

Table 3 Evaluation result of the performance of binary multivariate model for all 3 version of
eclipse

Version TP TN FP FN Sensitivity 1-Specificity AUC Accuracy

Eclipse2.0 3,649 879 437 1,683 0.34 0.11 0.62 68.11

Eclipse2.1 5,386 595 309 1,507 0.28 0.05 0.61 76.71

Eclipse3.0 7,250 727 376 2,151 0.25 0.05 0.60 75.94

Comparing Efficiency of Software Fault Prediction … 195



T
ab

le
4

E
va
lu
at
io
n
re
su
lt
of

th
e
pe
rf
or
m
an
ce

of
m
ul
tin

om
ia
l
m
ul
tiv

ar
ia
te

m
od

el
fo
r
al
l
3
ve
rs
io
n
of

ec
lip

se

V
er
si
on

M
ul
tin

om
ia
l
m
ul
tiv

ar
ia
te

m
od

el

T
ru
e

Fa
ls
e

Se
ns
iti
vi
ty

1-
Sp

ec
ifi
ci
ty

A
U
C

A
cc
ur
ac
y

N
om

L
ow

M
id

H
ig
h

N
om

L
ow

M
id

H
ig
h

N
om

L
ow

M
id

H
ig
h

N
om

L
ow

M
id

H
ig
h

N
om

L
ow

M
id

H
ig
h

N
om

L
ow

M
id

H
ig
h

E
cl
ip
se
2

69
4.
00

12
.0
0

2.
00

2.
00

49
5.
00

20
.0
0

2.
00

0.
00

0.
29

0.
79

0.
75

0.
75

0.
12

0.
17

0.
18

0.
18

0.
59

0.
81

0.
81

0.
80

65
.9
1

55
.6
6

55
.5
1

55
.5
1

E
cl
ip
se
2.
1

45
3.
00

5.
00

2.
00

3.
00

36
8.
00

11
.0
0

1.
00

1.
00

0.
26

0.
58

0.
75

1
0.
07

0.
10

0.
11

0.
11

0.
59

0.
74

0.
83

0.
97

62
.2
9

55
.5
5

55
.5
1

55
.5
2

E
cl
ip
se
3

62
2.
00

7.
00

3.
00

1.
00

40
9.
00

10
.0
0

0.
00

0.
00

0.
23

0.
64

0.
74

0.
89

0.
06

0.
10

0.
10

0.
10

0.
59

0.
78

0.
83

0.
90

64
.8
3

55
.5
8

55
.5
2

55
.4
9

196 D. Kumari and K. Rajnish



References

1. Bellini, P., Bruno, I., Nesi, P., Rogai, D.: Comparing fault-proneness estimation models.
ICECCS ’05 Proceedings of the 10th IEEE International Conference on Engineering of
Complex Computer Systems, pp. 205–214 (2005)

2. Misra, S.: Evaluation criteria for object-oriented metrics. Acta Polytech. Hung. 8(5), 109–136
(2011)

3. Pusatli, O.T., Misra, S.: Software measurement activities in small and medium enterprises: an
empirical assessment. Acta Polytech. Hung. 8(5), 21–42 (2011)

4. Seliya, N.: Software Quality Analysis with Limited Prior Knowledge of Faults. Wayne State
University, Department of Computer Science, Graduate Seminar (2006)

5. Mittal, P., Singh, S., Kahlon, K.S.: Empirical model for fault prediction using.object-oriented
metrics in mozilla firefox. Int. J. Comput. Technol. Res. 1(6), 151–161 (2013)

6. Kayarvizhy, N., Kanmani, S.: High precision cohesion metric. WSEAS Trans. Inform. Sci.
Appl. 10, 79–89 (2013)

7. Zhou, Y., Xu, B., Leung, H.: On the ability of complexity metrics to predict fault-prone
classes. J. Syst. Softw. 83, 660–674 (2010)

8. Shatnawi, R., Li, W., Swain, J., Newman, T.: Finding software metrics threshold values using
ROC curves. J. Softw. Maintenance Evol. Res. Pract. 22(1), 1–16 (2010)

9. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect
predictors. IEEE Trans. Softw. Eng. 32(1), 2–13 (2007)

10. JHAWK.: Metrics reference. http://www.virtualmachinery.com/jhawkreferences.html. Acces-
sed March 2014

11. Eclipse source code (for archived releases).: http://archive.eclipse.org/eclipse/downloads/.
Accessed 3 Dec 2013

12. Eclipse bug data (for archived releases).: http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse.
Accessed 20 Nov 2013

13. Zimmermann, T., Premrai, R., Zeller, A.: Predicting defects for eclipse. In: Proceedings of the
Third International Workshop on Predictor models in Software Engineering, 2007

14. Schroter, A., Zimmermann, T., Premraj, R., Zeller, A.: If your bug database could talk. In:
Proceedings of the Fifth International Symposium on Empirical Software Eng. 2, 18–20 2006

15. Hosmer D, Lemeshow S.: Applied Logistic Regression. Wiley, New York (1989)
16. Basili, V., Briand, L., Melo, W.: A validation of object oriented design metrics as quality

indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)
17. Georage,D., Mallery,P.: SPSS for Windows STEP BY STEP. Pearson Education (2011)
18. Jiang, Y., Cukic, B., Ma, Y.: Techniques for evaluating fault prediction models. Empirical

Softw. Eng. 13(5), 561–595 (2008)
19. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning

algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)
20. Hopkins, W.G.: A New View of Statistics. Sport Science, New Zealand (2003)
21. Chidamber, S., Darcy, D., Kemerer, C.: Managerial use of metrics for object-oriented

software: an exploratory analysis. IEEE Trans. Softw. Eng. 24(8), 629–639 (1998)
22. Kumari, D., Rajnish, K.: Finding error-prone classes at design time using class based object-

oriented metrics threshold through statistical method. Infocomp J. Comput. Sci. 12(1), 49–63
(2013)

Comparing Efficiency of Software Fault Prediction … 197

http://www.virtualmachinery.com/jhawkreferences.html
http://archive.eclipse.org/eclipse/downloads/
http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse

	19 Comparing Efficiency of Software Fault Prediction Models Developed Through Binary and Multinomial Logistic Regression Techniques
	Abstract
	1 Introduction
	2 Research Background
	2.1 Selection of Data Source
	2.2 Selection of Independent Variables
	2.3 Collection of Dependent Variable
	2.4 Research Methodology
	2.4.1 Binary Logistic Regression Model
	2.4.2 Multinomial Logistic Regression


	3 Model Evaluation Criteria
	4 Experimental Analysis
	4.1 Validation Result

	5 Conclusion
	6 Future Work
	References


