
Design of Queue-Based Group Key
Agreement Protocol Using Elliptic Curve
Cryptography

Priyanka Jaiswal, Abhimanyu Kumar and Sachin Tripathi

Abstract Secure group communication is an important research issue in the field
of cryptography and network security, because group applications like online
chatting programs, video conferencing, distributed database, online games etc. are
expanding rapidly. Group key agreement protocols allow that all the members agree
on the same group key, for secure group communication, and the basic security
criteria must be hold. The design of secure group communication can be very
critical for achieving security goals. Many group key agreement protocols such as
Tree-based Group Diffie-Hellman (TGDH) Kim et al. (ACM Trans Inf SystSecur
(TISSEC) 7(1):60–96, (2004)) [1], Group Diffie-Hellman (GDH) Steiner et al. (IEEE
TransParallel Distrib Syst 11(8):769–780, (2000)) [2], Skinny Tree (STR) Wong
et al. (IEEE/ACMTrans Netw 8(1):16–30, (2000)) [3] etc., have been established for
secure group communication, but they have suffered from unnecessary delays as well
as their communication cost increased due to increased exponentiation. An alterna-
tive approach to group key agreement is the queue based group key agreement
protocol that reduces unnecessary delays, considers member diversity with filtering
out low performance members in group key generation processes. We propose a
novel queue based group key agreement protocol that uses the concepts of elliptic
curve cryptography. The proposed protocol gives better results than the other existing
related protocols and it also reduces computational overheads.

Keywords Group diffie hellman � Elliptic curve cryptography (ECC) � Queue
based group key agreement

P. Jaiswal (&) � A. Kumar � S. Tripathi
Department of Computer Science and Engineering, Indian School of Mines,
Dhanbad 826004, Jharkhand, India
e-mail: priyanka_jais4@yahoo.co.in

A. Kumar
e-mail: abhi_a1ks@yahoo.co.in

S. Tripathi
e-mail: var_1285@yahoo.com

© Springer India 2015
J.K. Mandal et al. (eds.), Information Systems Design and Intelligent Applications,
Advances in Intelligent Systems and Computing 339,
DOI 10.1007/978-81-322-2250-7_17

167



1 Introduction

Most of the groupware applications such as video conferencing, online chatting,
online game, net gambling, etc. are increasing day by day over internet. Security is
the major concern in maintaining such groupware application. Basic security ser-
vices such as privacy, integrity and authentication, are necessary for groupware
application as well as key management is very important in group key agreement
protocols for security purpose. Group key can be managed by one of the three ways,
as centralized, distributed and contributory group key management [4]. In cen-
tralized group key management a single entity or a set of entity is involved in the
generation and distribution of group key for group members via a pair-wise secure
channel established with each group member. Centralized group key management is
a simple group key management as it involves a single (or a set) of the entity.
However, Centralized group key management is inappropriate for peer group
communication as it involved a trusted third party or online key generation center
for supporting the group operation every time. Continuous availability of an entity
can be addressed as fault tolerance and replication. However, Centralized group key
management work well for one-many multicast network scenarios. Distributed
group key management is more suitable in peer group communication as it involved
dynamically selecting a group member for distribution of group key. In contrast, in
contributory group key management all members equally contribute in generation
of group key. This type of protocols is appropriate for dynamic peer groups. This
approach avoids the problem of single point of failure.

Group key plays major role in establishing secure group communication. So, key
generation is a major task in group key agreement through secure way. Many of
group key agreement protocols have been developed earlier for secure group
communication [1, 5], but they have some disadvantages. Since the group gener-
ation processes takes many modular exponentiations and long time in generation of
group key. For achieving higher security, group key protocol should be dynamic,
means it should change for each new join or leave member, so that new member
have not any knowledge about prior information [6]. Therefore group key man-
agement protocol focusing on the group key generation efficiently [1, 7–9]. Mod-
ular exponentiation is very expensive in computation of group key [1]. The number
of exponentiations for membership depends on group size as when the group size
increased the number of exponents will also increase. Tree Based Group Diffie-
Hellman (TGDH) uses the concept of Diffie-Hellman key exchange with logical
tree structure to achieve efficiency. The efficiency of TGDH is O(log2n), where n is
the group size. However, some extra overhead occurred in maintaining a perfect
key tree balance. Skinny tree has lower communication overhead, but it increases
computation. Burmester–Desmedt (BD) distributes and minimizes computation by
using more messages broadcast. All these protocols using similar security proper-
ties including group key independence. TGDH, STR, and other key management

168 P. Jaiswal et al.



are under a homogeneous computing and network environment. However, one of
the problems associated with the tree structure is the balancing of the tree, when the
members are changing the group.

2 Related Work

Groupware application like video conferencing, online gaming, e-chatting, etc. may
have different settings. To provide secure group communication, secure key dis-
tribution and efficient key management are very necessary to maintain integrity,
confidentiality, and authentication. For secure group communication, group key
management is responsible for generating the group key and distributing it to all
intended recipients in a secure way over an insecure channel [4]. Group key
management can be categorized into centralized, distributed and contributory group
key management. In a centralized approach, a single entity or a set of entities is
involved in generation and distribution of group key. The centralized group key
management protocol is not suitable for peer group because it involves a continuous
availability of trusted third party (TTP) for generation and distribution of group key,
that may cause of single point of failure. However, the Distributed group key
management involves dynamically selecting the group key and distributing it to
other group member, which is more suitable for dynamic peer group communica-
tion. Distributed group key management involves distributing key in a decentralized
way. In contrast to centralized approach, contributory group key management
involves each group member to equally contribute, to generate the group key. This
avoids the problems of single point of failure. Contributory group key management
is most suitable for peer group communication, because each member has an equal
opportunity to generate a group key. Therefore the proposed protocol, uses the
contributory group key management approach to generate the group key. It uses
the elliptic curve cryptographic technique to reduce the exponentiation. Some of the
other related protocol like Burmester–Desmedt (BD) [10], Group Diffie–Hellman
(GDH) [2], Skinny Tree (STR) [3] and Tree Based Group Diffie Hellman (TGDH)
[1] and Queue Based Group Diffie Hellman (QGDH) [5], have some limitations.
The Burmester–Desmedt (BD), protocol support dynamic operation and uses
modular exponentiation to reduce communication overhead, but it requires more
message exchange to generate the group key. Group Diffie Hellman (GDH) pro-
vides better security, but it requires more computation and communication over-
head. The Skinny Tree (STR) Protocol is more suitable for member joining group
operation, it has relatively low communication cost, but it does not work well for
exclusion of members. The Tree Based group Diffe Hellman (TGDH) provides
efficient group key agreement protocol from above related protocols. The Queue
Based Group Diffie Hellman (QGDH) uses decentralized group key management
and contributory group key distribution mechanism to improve efficiency, however
modular exponentiation increases computational overhead. Therefore, we have
proposed a new elliptic curve based group key agreement protocol.

Design of Queue-Based Group Key Agreement Protocol … 169



3 Preliminary

3.1 Elliptic Curve Over Finite Field (Fp)

Let p ≥ 3 be a prime number. Let a, b ∊ Fp be such that 4a3 + 27b2 ≠ 0 in Fp. An
elliptic curve E over Fp is defined by the equation Y2 mod p ¼ ðx3 þ axþ bÞmod p
where (x, y), x, y ∊ Fp, together with an extra point O, called point identity. The set
of points E(Fp) forms an abelian group with the following addition rules.

• Identity: P + O = O + P = P for all P ∊ E(Fp).
• Negativity: If P(x, y) ∊ E(Fp) then (x, y) + (x, –y) = O, The point (x, –y) is

defined as –P called negative of P.
• Point addition: Let P(x1, y1), Q(x2, y2) ∊ E(Fp), then P + Q = R ∊ E(Fp) and

coordinate (x3, y3) of R is given by x3 = λ2 – x1 – x2 and y3 = λ(x1, x3) – y1 where
λ = y2�y1

x2�x1
:

• Point doubling: Let P(x1, y1) ∊ E(K) where P ≠ −P then 2P = (x3, y3) where

x3 ¼ 3x21 þ a
2y1

� �2
�2x1 and y3¼

3x21 þ a
2y1

� �
ðx1 � x3Þ � y1:

3.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given an elliptic curve E defined over a finite field Fp, a point P ∊ E(Fp) of order n,
and a point Q 2 Ph i; find the integer l ϵ [0, n − 1] such that Q = LP The integer L is
called the discrete logarithm of Q to base P, denoted L = logpQ.

3.3 Elliptic Curve Diffie Hellman (ECDH)

Elliptic Curve Diffie Hellman is one of the key exchange protocol used to estab-
lishes a shared key between two parties. ECDH protocol is based on the additive
elliptic curve group. ECDH selecting the underlying field (Fp) or GF(2

k), the curve
E with parameters a, b and the base point P is equal to n. The standards often
suggest that we select an elliptic curve with prime order and therefore any element
of the group would be selected and their order will prime number n. At the end of
the protocol the communicating parties end up with the same value K which is the
point on the curve.

170 P. Jaiswal et al.



4 Proposed Queue Based Group Key Agreement Protocol

In the proposed protocol there are (M1,M2,M3,…,Mn) n number of members in the
group, and there is a group controller server (GCS) responsible for every member
authentication and key generation. The group controller server (GCS) manages all
the consisting group member and contain information about the group members such
as current login list of members, information about the registered member, current
session key etc. GCS also manages the BKQ according to the arrival of the member.
GCS requests all members to generate blind key, then GCS creates a BKQ and stores
the blind key in BKQ into the order of the arrival. The highest performance member
blind key is always stored on the front end of the BKQ, whereas the low performance
member blind key is stored on the rear end of the BKQ. Figure 1 shows an example
of structural Blind Key Queue (BKQ), in which the first spot blinded key is com-
puted with the last spot blinded key (xn1xn2B), and the member with the second spot
is computed key with the member in last second spot (xn2xn3B). The proposed
algorithm can be categorized into setup phases and key generation phase, in the setup
phase KGC initializes public parameters, and in second phase KGC and users are
contributed to generate group key.

4.1 Setup

(By KGC) This algorithm takes a security parameter k ∊ Z* and does the following:
KGC chooses a k bit prime p 2 Z�

p and determine the tuple Fp, E/Fp, B.
where

E/Fp: Elliptic curve over Fp.
B: Base point on elliptic curve.

KGC publishes parameters = {Fp, E/Fp, B} as system parameters.

xn1B xn2B xn3B xn4B

xn1xn4B xn2xn3B

xn1xn2xn3xn4B

Fig. 1 Blind key queue
structure

Design of Queue-Based Group Key Agreement Protocol … 171



4.2 Key Generation

• Each user select an integer x where x ∊ Zp*.
• Each user calculates Qi as a product of private key and a base point (B).

Qi = xi * B, Qi is the public key of member i, where 1 ≤ i ≤ n.
• Each member sends Qi to group controller server (GCS).

When GCS got many requests, GCS arranges those requests in order of their
arrival and performs the following operations.

• GCS stores Qi in their respective position in queue in order of their arrival from
different users.

• GCS arranges each request coming from the group and when a threshold
number of members are registered, then GCS says front end and rear end
members to generate group key means member with A1 spot will generate a
group key with member in An spot. Member at A2 spot will generate with
member at A(n−1) and so on.

• After that GCS waits for threshold time, and if any group key arrives, then GCS
will recreate public key Queue (PKQ) in order of their arrival. After the
threshold time, if group key from certain group is absent, then GCS gives them
last chance to generate group key together or independently and send to GCS in
the given time. If they still fail then GCS ignore them. They can join later using
‘one by one’ algorithm.

• The last step is repeated until level log2n+1 and the session key is generated and
stored in current session key (CSK) register. The current session key
(CSK) = x1x2x3…xi…x(n−1)xnB.

5 Member Join

Join and leave operation is an important part in dynamic group key agreement
protocol. Since any time a member or a set of members can join or leave the group.

Whenever a new member wants to join the group, the group controller broadcast
a control message to others member to update their public key and then sends back
to group controller, then group controller arranges all the keys in order of their
arrival as well as with the new member key. It includes the following steps.

• When a new member wants to join the group, it sends their public key to GCS.
• GCS stores member’s public key and identity in the database.
• GCS updates, current session key CSK = CSK′ + Qi (using elliptic curve point

addition).
• GCS selects a random number N between [0, p − 1].
• Calculate new current session key CSK1 = N*CSK.
• GCS broadcasts CSK1 as new session key to all the members including new

member and updated CSK.

172 P. Jaiswal et al.



6 Member Leave/Mass Leave

If a member or set of member wants to leave the group then the group session key
of the resulting group must be updated to provide the forward secrecy. The leave
operation includes following steps.

• When a member wants to leave the group, it sends leave request to GCS, by
sending a public key as Qi.

• GCS updates, current session Key CSK = CSK − Qi.
• GCS selects a random number N on [0, p − 1].
• Calculate new current session key CSK1 = N * CSK.
• Update CSK to CSK1.
• Broadcast the new CSK to all members except leaving member.

7 Security Analysis and Comparison with Other Protocols

This protocol maintains security due to elliptic curve discrete logarithm problem.
Adversary wants to find out the value of x by the given value of B and Q where B is
the base point of the elliptic curve and Q = x · B, where B is x times added to itself
to generate Q. However, it is computationally infeasible to find out the value of
x due to elliptic curve discrete logarithm problem. The responses of the proposed
protocol from the various attacks are addressed as follows.

7.1 Known Session Key Security

In the proposed protocol, each member Mi randomly chooses a private key xi 2 Z�
p

in the session. The session key depends on each member’s private key. If an
adversary compromise one session key, then it is not an easy task to compromise
other’s session key. So, it cannot find other’s session key. So, this protocol provides
known session key security.

7.2 No Key Control

The proposed protocol is fully contributive protocol, because the session key of the
proposed protocol depends on each members blind key which are computed with
each member’s private key as Qi = xiB.

Design of Queue-Based Group Key Agreement Protocol … 173



7.3 Forward Secrecy

The coming member does not know about what was the group key earlier because
they receive information about the generating point of the elliptic curve. They
cannot guess the group key because the group key is computed with each one
secrets and generating point of the group key. The secret is a random number, taken
privately by each member. Random number is unknown to connecting a member.
So, the new member cannot find the previous group key.

7.4 Backward Secrecy

The leaving member cannot compute the new group key because the share of the
leaving member is no longer part of the group key. The group key is updated by
GCS using the blind key contribution of all members except the leaving member.
So, all the previous group keys are completely unknown to leaving member/s.

7.5 Key Independence

A member, who knows a set of key, cannot discover previous or future key. So the
proposed protocol maintains key independence.

7.6 Comparison with Other Existing Protocols

This section compares the cost of major group key management operations of the
proposed protocol with other existing group key agreement schemes. The com-
parison Table 1 shows the following notation for comparison.

n: Number of members in the group
h: Height of the original key tree
p: Number of leaving member.

8 Conclusion

We have proposed an efficient queue based group key agreement protocol. We have
analyzed many prior group key agreement protocols like TGDH, STR, BD, QBDH
etc., they provide better security but they takes more computational overheads. So,
we have used elliptic curve cryptographic technique that removes exponentiation to

174 P. Jaiswal et al.



reduce computational overheads. The comparison table shows that it provides better
results than the other group key agreement protocols.

Acknowledgment This work is supported by UGC (University Grant Commission), Govt. of
India under project No.—UGC(77)/2012-13/316/CSE. We would like to thank UGC for the
support in this research work.

References

1. Kim, Y., Perring. A., Tsudik, G.: Tree-based group key agreement. ACM Trans. Inf. Syst.
Secur. (TISSEC). 7(1), 60–96 (2004)

2. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Trans.
Parallel Distrib. Syst. 11(8), 769–780 (2000)

3. Wong, C., Gouda, M., Lam, S.: Secure group communication using key graphs. IEEE/ACM
Trans. Netw. 8(1), 16–30. (2000)

4. Amir, Y., Kim, Y., Rotaru, C.N., Tsudik, G.: On the performance of group key agreement
protocols. ACM Trans. Inf. Syst. Secur. (TISSEC). 7(3), 457–488 (2004)

5. Hong, S.: Queue based group key agreement protocol. Int. J. Netw. Secur. 9(2), 135–142
(2009)

Table 1 Comparison with
other protocols Protocols Messages Exponentiation

TGDH Join 3 3h/2

Leave 1 3h/2

Mass leave 2n 3h

STR Join 3 4

Leave 1 3n/2 + 2

Mass leave 1 3n/2 + 2

GDH Join n + 3 n + 3

Leave 1 n − 1

Mass leave 1 n − p

BD Join 2n + 2 3

Leave 2n − 2 3

Mass leave 2n − 2p 3

QGDH Initial
setup

2n − 2 3(log2n)/2

Join 2n − 2 3(log2n)/2

Leave 2n − 2 3(log2n)/2

Mass leave 2n − 2 3(log2n)/2

Proposed
protocol

Initial
setup

2n − 2 0

Join 2 0

Leave 2 0

Mass leave 2 0

Design of Queue-Based Group Key Agreement Protocol … 175



6. Diffie, W., Hellman, M. E.: New directions in cryptography. IEEE Tran. Inf. Theor. IT 22(6),
644–654 (1976)

7. Hong, S., Benitez, N.L.: Enhanced group key computation protocol. In: International
Conference on Security and Management-SAM’06. Las Vegas, USA, 26–29 June 2006

8. Hsu, C.F., Cui, G.H., Cheng, Q., Chen, J.: A novel linear multi-secret sharing scheme for
group communication in wireless mesh networks. J. Netw. Comput. Appl. 34(2), 464–468
(2011)

9. Bohli, J.M.: A framework for robust group key agreement. Comput. Sci. Appl. ICCSA,
355–364 (2006)

10. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system. In:
Advances in cryptology–Eurocrypt’94, pp. 275–286. Springer, Berlin (1994)

176 P. Jaiswal et al.


	17 Design of Queue-Based Group Key Agreement Protocol Using Elliptic Curve Cryptography
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Elliptic Curve Over Finite Field (Fp)
	3.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)
	3.3 Elliptic Curve Diffie Hellman (ECDH)

	4 Proposed Queue Based Group Key Agreement Protocol
	4.1 Setup
	4.2 Key Generation

	5 Member Join
	6 Member Leave/Mass Leave
	7 Security Analysis and Comparison with Other Protocols
	7.1 Known Session Key Security
	7.2 No Key Control
	7.3 Forward Secrecy
	7.4 Backward Secrecy
	7.5 Key Independence
	7.6 Comparison with Other Existing Protocols

	8 Conclusion
	Acknowledgment
	References


