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Abstract Image denoising is among the most fundamental problems in image
processing. A large range of methods covering various fields of mathematics are
available for denoising an image. The initial denoising models are derived from
energy minimization using nonlinear partial differential equations (PDEs). The
filtering based models have also been used for quite a long time where the deno-
ising is done by smoothing operators. The most successful among them was the
very recently developed nonlocal means method proposed by Buades, Coll and
Morel in 2005. Though the method is very accurate in removing noise, it is very
slow and hence quite impractical. In 2008, Gilboa and Osher extended some known
PDE and variational techniques in image processing to the nonlocal framework.
The motivation behind this was to make any point interact with any other point in
the image. Using nonlocal PDE operators, they proposed the nonlocal total varia-
tion method for Gaussian noise. In this paper, we develop a nonlinear PDE based
accelerated diffusion speckle denoising model. For faster convergence, we use the
Split Bregman scheme to find the solution to this new model. The new model shows
more accurate results than the existing speckle denoising model. It is also faster
than the original nonlocal means method.
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1 Introduction

Image restoration, especially image denoising, is a very important process and is
often necessary as a pre-processing for other imaging techniques such as seg-
mentation and compression. Images occur in many forms in our life. Among them,
ultrasound provides low cost images helpful for medical diagnosis. But since these
images are corrupted by speckle noise, it is not possible to do automatic processing.

In general, an observed image f, corrupted by Gaussian noise n, is represented by
the equation

f ¼ uþ n; ð1Þ

where u is the original noise free image. Here u; f : X � R
2 ! R. For any de-

noising model, the main objective is to reconstruct u from an observed image f. For
the last two decades, various partial differential equation (PDE) based models have
been developed for this purpose [1, 4–6, 10–13, 15, 19–21, 23].

In 1992, Rudin et al. [21] proposed the total variation (TV) denoising model. But
TV model is known for its staircasing effects. In 2005, Buades, Coll and Morel
proposed the filtering based nonlocal means model [3] which did not provide the
staircasing effect and was more accurate than the TV model. But this method was
very slow. Later in 2008, Gilboa and Osher introduced nonlocal PDE operators
[7–9, 14] and Bresson used it to develop a nonlocal version of the TV model [2, 22].

But these models were all meant for Gaussian or additive noise images. Speckle
noise is multiplicative and needs to be treated differently. The first effective speckle
noise model was introduced by Krissian et al. in 2005 [16, 17]. In 2007, Lim and
Williams [18] proposed a realistic version of the Krissian model. In this paper, we
develop a nonlocal speckle denoising model based on the model introduced by Lim
and Williams [18].

2 PDE Based Models

In 1992, Rudin et al. [21] proposed the total variation (TV) denoising functional, for
Gaussian noise images (1), as:

FðuÞ ¼
Z
X

jruj dxþ k
2

Z
X

f � uð Þ2dx: ð2Þ

where r is the standard deviation of the noise n and k is a constraint parameter. The
equivalent Euler-Lagrange equation gives the TV denoising model as
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@u
@t

�r � ru
jruj
� �

¼ kðf � uÞ: ð3Þ

To avoid singularities, it was regularized by using jruj � jreuj ¼ ðu2xþ
u2y þ e2Þ1=2.

The TV model was applicable only on Gaussian noise or additive noise. But
ultrasound or SAR images contain speckle noise which is multiplicative and cannot
be removed using the Gaussian noise models. In 2005, Krissian et al. [16] proposed
the most effective speckle noise model based on the TV model. The authors con-
sidered the speckle noise equation by

f ¼ uþ ffiffiffi
u

p
n; ð4Þ

where u is the desired image to find, n is Gaussian noise, and f denotes the observed
image. Thus, we have n ¼ f�uffiffi

u
p . By replacing f − u in (2) with the new expression for

n, the minimization functional for speckle denoising is given by

FðuÞ ¼
Z
X

jruj þ k
2

f � uffiffiffi
u

p
� �2

" #
dx: ð5Þ

From energy minimization of this functional, the TV-based speckle denoising
model can be derived as:

@u
@t

� u2

f þ u
jr�ujr � ru

jreuj
� �

¼ kjr�ujðf � uÞ: ð6Þ

It was later noted by Lim and Williams [18], that the coefficient of the diffusion
term in (6) is given by

jrujr ru
jruj
� �

� u2

f þ u
� u=2;

assuming that f � u. Hence, this coefficient makes the diffusion faster in the lighter
region (where the image values are high) and slower in the darker region (where the
image values are low). Since diffusion is associated with noise removal, noise is
removed or reduced from the diffusion process due to the second term in Eq. (6). In
2007, Lim and Williams [18] proposed the following realistic noise model

f ¼ uþ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
u� fs

p
Þn; ð7Þ

where fs denotes smoothed version of the noisy image f. Using this noise equation,
the non-standard anisotropic diffusion (NSAD) model is derived as:
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� Cju� fsjajr�uj2�pr � ru

jreuj2�p

 !
¼ kjr�uj2�pðf � uÞ; ð8Þ

where, C is a constant calculated numerically. Here, 1=2\a\2, and p is chosen
between 0 and 1 so that the model (8) becomes nonconvex and it has edge
enhancing features [13].

3 Nonlocal PDE Based Models

Apart from the PDE based models, there were also filtering based denoising
models. The neighborhood filter has a big advantage of not blurring the edges.
Based on this fact, Buades, Coll, and Morel proposed the new state of art image
denoising algorithm known as nonlocal means algorithm [3]. The algorithm is
given by the formula

NL½u�ðxÞ ¼ 1
CðxÞ

Z
X

e�
ðGaIjuðxþ�Þ�uðyþ�Þj2Þð0Þ

h2 uðyÞ dy; ð9Þ

where CðxÞ ¼ RX e�
ðGaIjuðxþ�Þ�uðzþ�Þj2Þð0Þ

h2 dz.
Here, Ga is the Gaussian kernel with standard deviation a, h is a filtering

parameter and uðxþ �Þ denotes the neighborhood of the pixel x. However in this
case, each pixel value is denoised using the weighted average of all the pixels in the
image. Thus for a given discrete noisy image u ¼ fuðiÞ : i 2 Ig, the estimated value
NL½u�ðiÞ, for a pixel i, is computed as

NL½u�ðiÞ ¼
X
j2I

wði; jÞuðjÞ; ð10Þ

where the weight w(i, j) depends on the similarity of the i and j pixels and satisfies
the conditions 0�wði; jÞ� 1 and

P
j wði; jÞ ¼ 1. The weight function is defined as

wði; jÞ ¼ 1
CðiÞ e

�
jjuðN iÞ�uðN jÞjj22;a

h2 ; ð11Þ

where C(i) is the normalizing constant given by

CðiÞ ¼
X
j

e�
jjuðN iÞ�uðN jÞjj22;a

h2 : ð12Þ
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The similar neighborhoods have a very small Euclidean distance which in turn
results in larger weight, since the weight function is decreasing with respect to
Euclidean distance. Here the parameter h acts as a degree of filtering. For com-
putational purposes, the authors restricted the search of similar windows to a
window of size 21 × 21 pixels and the similarity square neighborhood N i of 7 × 7
pixels. Though the method was very good in removing noise, it is very slow and
hence quite impractical.

In 2005, Kindermann et al. [14] first tried to relate the filtering method to the
energy minimization. In 2008, Gilboa and Osher [9] extended some known PDE
and variational techniques in image processing to the nonlocal framework. The
biggest challenge for the extension was the fact that the classical derivatives are
local operators. Thus, they had to redefine the required operators following the
ideas of Zhou and Schlkopf [24, 25]. In this paper, we would like to introduce a
nonlocal speckle denoising model based on the NSAD model [18]. The NSAD
model is known to provide sharper edges than TV. Hence, we apply the nonlocal
PDE operators it is expected to provide even better results for the existing non-
convex model.

4 NLAD Model

According to our observation, the speckle model by Krissian et al. is quite effective
and NSAD model is a realistic one. Keeping this in mind, we develop a new model
incorporating the positive aspects of both. Here, we propose the following form of a
noise model:

f ¼ uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ Cju� fsja

q� �
n; ð13Þ

where f is the observed image or initial image, u is the desired image to find, n is
Gaussian noise, and fs denotes smoothed version of the noisy image f. This gives

n ¼ f � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ Cju� fsja

p : ð14Þ

Now, the regularized functional will be given by

min
u

F2ðuÞ � min
u

Z
X

jr2uj þ k
2

f � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ Cju� fsja

p
 !2

2
4

3
5 dx

0
@

1
A: ð15Þ

We apply Euler-Lagrange to minimize this functional. Following the NSAD
model [18] closely, we derive an edge enhancing accelerated diffusion (EEAD)
model based on the nonconvex model as:
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¼ uþ Cju� usjað Þjr�ujr � ru
jr�uj
� �

þ kjr�ujðf � uÞ; ð16Þ

where a\1 and C is a constant calculated numerically. Now we extend this model
to a nonlocal framework based on the nonlocal PDE operators introduced by Gilboa
and Osher [9] and obtain the following nonlocal accelerated diffusion (NLAD)
model:

FðuÞ ¼
Z
X

jrNLuj þ k
f � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uþ Cju� fsja
p
 !2

2
4

3
5 dx: ð17Þ

In the next section, we describe a numerical procedure for this model. It is based
on the Split Bregman scheme.

5 Split Bregman Scheme for NLAD Model

We now describe the Split Bregman scheme to solve the NLAD functional (17).
The Split Bregman algorithm was introduced by Goldstein and Osher in [xxx1].
This was developed as a faster numerical scheme for the nonlocal TV denoising
problem. The authors applied operator splitting and then used the Bregaman iter-
ation to solve the resulting constrained minimization problem. It was used to find
solution to a nonlocal version of the regular TV model [2, 22]. The same scheme
was also used to find a nonlocal version of the TV based speckle denoising model
[xxx2] introduced by Krissian [16, 17]. We will closely follow the steps described
in these papers and develop a numerical scheme for the NLAD model. First we
develop the Split Bregman scheme for the EEAD model and then extend the idea to
a nonlocal framework.

5.1 Split Bregman Scheme for EEAD Model

As discussed in Sect. 4, the minimization functional for the EEAD model was given
by (15). For Split Bregman scheme, we introduce d ¼ ru and construct the con-
strained minimization problem as

min
d;u

Z
X

jdj þ k
2

f � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ Cju� fsja

p
 !2

dx; subject to d ¼ ru: ð18Þ

This can be changed to a unconstrained problem as:

170 A.B. Misra and H. Lim



min
u

FðuÞ;

where

FðuÞ ¼
Z
X

jdj þ k
2

f � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ Cju� fsja

p
 !2

dxþ b
2
kd �ru� bk22: ð19Þ

Here, b is a penalty parameter and b is the Bregman iteration variable. We can now
split this in two subproblems of u and d given as:

min
u

Z
X

k
2

f � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ Cju� fsja

p
 !2

dxþ b
2
kd �ru� bk22; ð20Þ

min
d

Z
X

jdj dxþ b
2
kd �ru� bk22: ð21Þ

Now, using the following approximation

@

@u
k
2

f � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ Cju� fsja

p
 !2

0
@

1
A ¼ 2k

u� fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ Cju� fsja

p : ð22Þ

Therefore, the optimality condition for u in (20) gives us

ðk� b
2

uþ Cju� fsjað ÞDÞu ¼ kf � b
2

uþ Cju� fsjað Þdivðd � bÞ: ð23Þ

The optimality condition can be discretized using the definition of discrete gradient,
divergence and Laplacian as discussed in [9]. This gives

kþ 2b uij þ Cjuij � fs;ijja
� �� �

uij ¼ kfij þ b uij þ Cjuij � fs;ijja
� �

	 uij þ Cjuij � fs;ijj
� �ðuiþ1; j þ ui�1; j þ ui; jþ1 þ ui; j�1

þ dx;i�1; j � dx;ij þ dy;i; j�1 � dy;ij � bx;i�1; j þ bx;ij � by;i; j�1 þ by;ijÞ:
ð24Þ

Thus, we get

ukþ1
ij ¼ 1

kþ 2b uij þ Cjuij � fs;ijja
� �� � ½kfij þ b uij þ Cjuij � fs;ijja

� �
	 uij þ Cjuij � fs;ijj
� �ðuiþ1; j þ ui�1; j þ ui; jþ1 þ ui; j�1

þ dx;i�1; j � dx;ij þ dy;i; j�1 � dy;ij � bx;i�1; j þ bx;ij � by;i; j�1 þ by;ij�: ð25Þ
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Since there is no coupling between elements of d, the optimal value of d is com-
puted using the shrinkage operator described in [xxx3] and [xxx4]:

dkþ1
ij ¼ rukþ1

ij þ bkij
jrukþ1

ij þ bkijj
maxfjrukþ1

ij þ bkijj � 1=b; 0g: ð26Þ

The variable b is initialized to zero and is updated after each Bregman iteration as:

bkþ1
ij ¼ bkij þrukþ1

ij � dkþ1
ij : ð27Þ

The scheme (25)–(27) provides a much faster solution for the TV based EEAD
model.

5.2 Split Bregman Scheme for NLAD Model

For our new NLAD model (17) the Split Bregman functional will be of the form

FðuÞ ¼
Z
X

jrNLuj þ k
f � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uþ Cju� fsja
p

 !2
2
4

3
5 dx: ð28Þ

Then the optimality condition for u gives us the equation

k� bðuþ Cju� fsjaÞDNLð Þu ¼ kf � bðuþ Cju� fsjaÞdivNLðd � bÞ:

Denoting the discretized points x; y 2 X	 X by i and j, and using the discrete
definition for divNL and DNL [2, 9], the discrete minimization scheme is given as:

kui � bðuij þ Cjuij � fs;ijjaÞ
X
j

wijðuj � uiÞ
 !

¼ kfi � bðuij þ Cjuij � fs;ijjaÞ
X
j

ffiffiffiffiffiffi
wij

p ðdij � dji � bij þ bjiÞ
 !

: ð29Þ

The iteration steps for this method is given by

ukþ1
i ¼ 1

kþ bðuþ Cju� fsjaÞ
P

j wij
½bðuþ Cju� fsjaÞ

X
j

wiju
k
j þ kfi

� bðuþ Cju� fsjaÞð
X
j

ffiffiffiffiffiffi
wij

p ðdij � dji � bij þ bjiÞÞ�; ð30Þ
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dkþ1
ij ¼

ffiffiffiffiffiffi
wij

p ðukþ1
j � ukþ1

i Þ þ bkijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j wijðukþ1

j � ukþ1
i Þ2 þ bkij

2
q

	max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

wijðukþ1
j � ukþ1

i Þ2 þ bk2ij

s
� 1
b
; 0

0
@

1
A; ð31Þ

bkþ1
ij ¼ bkij þ

ffiffiffiffiffiffi
wij

p ðukþ1
j � ukþ1

i Þ � dkþ1
ij : ð32Þ

The three Eqs. (30)–(32) provide a numerical scheme for the NLAD model.

6 Numerical Results

The numerical results of the images are displayed here. We have considered one
synthetic speckle noise image (lenna) and one ultrasound image (gallstone). Both
images are of size 128 × 128 and the summary of results are given in Table 1. We
have provided both inverted absolute residuals ðjf � ujÞ and speckle noise residuals
ðn ¼ f�uffiffi

u
p Þ for both images. It is evident that the NLAD model works best among the

models compared here. The EEAD model is also comparable to this one. The
Krissian model is not denoising well and also shows some artificial textures in some
of the resulting images. We have results for exactly same number of iterations for
EEAD and Krissian models and EEAD has better results. For the NLAD model,
only 1–2 iterations were enough for both images.

From the lenna image in Fig. 1a, we see that the Krissian residual shows the
presence of edges and fine textures due to the blurring effect of TV. Nonlocal means
works better on the edges but not on the textures. Both EEAD and NLAD maintain
texture better though EEAD has some blurring effect. In Fig. 1b, the noise residuals
of lenna image show that Krissian and nonlocal means do not pick up noise very
well. Both EEAD and NLAD remove noise better than the other models compared
here. NLAD works best among all the models compared here. It is also evident
from PSNR values listed in Table 1. The NLAD model has the highest PSNR value
with EEAD being the closest to it. Krissian has the lowest PSNR. But this model is

Table 1 NLAD model comparison for speckle noise

Krissian et al. Nonlocal means EEAD NLAD

Images Time (s) PSNR Time (s) PSNR Time (s) PSNR Time (s) PSNR

Lenna
(PSNR = 24.51)

0.72 26.39 11.46 28.21 0.92 28.81 4.57 29.09

Gallstones 0.14 − 11.92 − 0.16 − 4.73 −
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the fastest of all. Nonlocal means is the worst model among all here. It does not
remove noise very well and also takes a long time. NLAD takes less than half time
than nonlocal means.

The ultrasound gallstone image in Fig. 2a also shows that NLAD has the best
performance in removing speckle noise. Here, also Krissian model does not pre-
serve edges and texture, and also makes the image blurry. EEAD is removing noise
quite well but the image is still blurry. Nonlocal means is not making the image
blurry but it is not removing much noise. The NLAD is best in removing the noise.

Fig. 2 NLAD model results for ultrasound gallstone image. a Absolute residual. b Noise residual

Fig. 1 NLAD model results for synthetic lenna image. a Absolute residual. b Noise residual
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It is also evident from Fig. 2b. Here also we can see that NLAS picks up most noise
while preserving the edges and texture. Since this is a natural image we cannot
compare the PSNR values. But we do get same results for the execution time. Once
again Krissian model is the fastest. The execution time for the NLAD is smaller
than nonlocal means but larger than the Krissian model. Overall we can say NLAD
is better and accurate than the other models compared here.

7 Conclusion

In this paper, we develop a nonlocal version of an edge enhancing speckle deno-
ising model. The NLAD model provides denoising using nonlocal operators and it
also presents us with accelerated diffusion. This model works really well in terms of
denoising speckle noise images. We show that it picks up most noises compared to
the other models discussed here. We compare this model with the TV based
Krissian speckle denoising model and it is shown NLAD performs better than the
Krissian model. It also works better than the EEAD model, which is basically the
TV based version of the NLAD model. The biggest drawback is that it is slow
compared to the TV based models. The reason behind that is the model is devel-
oped using nonlocal operators which are defined based on nonlocal means. The
nonlocal means model itself is a very slow Gaussian denoising model. Apart from
execution time, it is shown in this paper that nonlocal means model does not work
very well with speckle noise images. The NLAD model works much slower than
TV based models, but it is still faster than the nonlocal means method and gives
better result than the TV based models.
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